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Abstract:

Suppose one is interested in estimating causal effects in the presence of poten-

tially unmeasured confounding with the aid of a valid instrumental variable. This

paper investigates the problem of making inferences about the average treatment

effect when data are fused from two separate sources, one of which contains in-

formation on the treatment and the other contains information on the outcome,

while values for the instrument and a vector of baseline covariates are recorded

in both. We provide a general set of sufficient conditions under which the aver-

age treatment effect is nonparametrically identified from the observed data law

induced by data fusion, even when the data are from two heterogeneous popula-

tions, and derive the efficiency bound for estimating this causal parameter. For

inference, we develop both parametric and semiparametric methods, including
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a multiply robust and locally efficient estimator that is consistent even under

partial misspecification of the observed data model. We illustrate the methods

through simulations and an application on public housing projects.

Key words and phrases: Two-sample inference; Multiple robustness; Unmeasured

confounding

1. Introduction

The instrumental variable method is widely used in the health and social sci-

ences for identification and estimation of causal effects in the presence of po-

tentially unmeasured confounding (Bowden and Turkington, 1990; Robins,

1994; Angrist et al., 1996; Greenland, 2000; Wooldridge, 2010; Hernán and

Robins, 2006; Didelez et al., 2010). A valid instrumental variable Z is a

pre-exposure variable that is (a) associated with treatment D, (b) indepen-

dent of any unmeasured confounder U of the exposure-outcome association,

and (c) has no direct causal effect on the outcome Y , conditional on a set

of measured baseline covariates X. The instrumental variable approach has

a longstanding tradition in econometrics going back to the original works

of Wright (1928) and Goldberger (1972) in the context of linear structural

modeling; see Wooldridge (2010), Clarke and Windmeijer (2012), Baiocchi

et al. (2014) and Swanson et al. (2018) for more recent reviews. Under
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correct specification of the linear structural equation models and assum-

ing absence of baseline covariates, the conventional instrumental variable

estimand of the average treatment effect is the population moment ratio

cov(Z, Y )/cov(Z,D).

However, in many empirical scenarios only information on (Y, Z,X)

is available from the primary population of interest. Angrist and Krueger

(1992) and Arellano and Meghir (1992) showed that the two sets of moments

can be estimated from two separate sources by leveraging information on

(D,Z,X) from an auxiliary population, a method known as two-sample

instrumental variable estimation. Furthermore, Klevmarken (1982) and

Angrist and Krueger (1995) introduced two-sample two-stage least squares

estimation with first stage regression for the treatment model based on

the auxiliary sample; see Ridder and Moffitt (2007) and Angrist and Pis-

chke (2008) for reviews. This methodology has since been widely applied

in econometrics and social sciences (Inoue and Solon, 2010), and more re-

cently in two-sample Mendelian randomization studies to estimate causal

relationships using genetic factors as instruments (Pierce and Burgess, 2013;

Gamazon et al., 2015; Lawlor, 2016; Zhao et al., 2018, 2019). As noted by

Zhao et al. (2019), the aforementioned methods typically assume that the

auxiliary data are also sampled from the primary population. In addition,
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linear structural models impose strong homogeneity assumptions on the

treatment effect. A robust analytic framework for instrumental identifica-

tion and estimation of causal effects under data fusion therefore remains

of keen interest in observational studies. Graham et al. (2016) identified

the two-sample instrumental variable problem as one specific example of a

general class of data combination models, and extended the semiparamet-

ric efficiency theory of Hahn (1998) and Chen et al. (2008) to this class

of models. Recent work has also made significant strides towards relaxing

the assumptions for identification of causal effects under data fusion (Pacini

and Windmeijer, 2016; Choi et al., 2018; Zhao et al., 2018; Buchinsky et al.,

2018; Shu and Tan, 2019; Zhao et al., 2019; Pacini, 2019).

When full data on L = (Y,D,Z,X) are available from the primary

population of interest, Robins (1994), Imbens and Angrist (1994), An-

grist et al. (1996) and Heckman (1997) formalized the instrumental variable

approach under the potential outcome framework (Neyman, 1923; Rubin,

1974), which allows one to nonparametrically define the causal estimands

of interest. In this paper, we propose novel assumptions under which the

average treatment effect of D on Y in the primary population of interest can

be uniquely and nonparametrically identified from the observed data law

induced by data fusion. To estimate this identifying statistical functional,
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we develop a suite of parametric and semiparametric estimators including

a multiply robust and locally efficient one that remains consistent even if

the observed data model is partially misspecified. We compare the pro-

posed estimators both in theory and via simulations, and investigate issues

of efficiency and robustness of existing estimators.

2. Model

Suppose we are interested in estimating the average treatment effect of a bi-

nary treatment D on outcome Y in a primary population of interest, which

is confounded by measured covariates X as well as unmeasured ones U ,

with the aid of a binary instrumental variable Z. However, we only observe

{(Yi, Zi, Xi)
T , i = 1, ..., np} from this population. As a remedy, suppose an

additional sample {(Di, Zi, Xi)
T , i = 1, ..., na} is available from an auxil-

iary population, possibly different from the primary population. Similar to

Graham et al. (2016); Shu and Tan (2019), we assume the following about

the data source mechanism:

Assumption 1 (Binomial sampling). The combined set of n = np + na

units are independent and drawn from either the primary population with

a fixed probability Q0 ∈ (0, 1) or the auxiliary population with probability

1−Q0.
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Let Ri be an indicator variable, equal to 1 if the ith unit is drawn from

the primary population, and 0 otherwise. By assumption 1, the combined

set of observed data {Oi = (Ri, RiYi, (1 − Ri)Di, Zi, Xi)
T , i = 1, ..., n}

can be treated as a random sample from a synthetic merged population.

Let F (O) denote the distribution of O, with density with respect to some

dominating measure given by

f(O) = q†R(1− q†)1−Rf(V |R = 1)Rf(V |R = 0)1−R×

f(Y |V,R = 1)Rf(D|V,R = 0)1−R,

(2.1)

where V = (Z,X) and q† = pr(R = 1). Let E(·) denote expectation taken

with respect to this mixture distribution, and let π(z, x) = E(R|Z = z,X =

x). By Bayes’ rule,

f(z, x|R = 1) = f(z, x|R = 0)

{
1− q†

q†
π(z, x)

1− π(z, x)

}
.

Let Yd for d ∈ {0, 1} denote the potential outcome that would be ob-

served if D were set to d, which is related to the observed data via the

consistency assumption Yd = Y if D = d. To achieve identification of

∆ ≡ E(Y1 − Y0|R = 1) based on the observed data law F (O) induced

by data fusion, we make the following assumptions about the primary and

auxiliary populations.
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2.1 Primary population

Suppose Z is a valid binary instrument that satisfies the following assump-

tions (Didelez and Sheehan, 2007; Pearl, 2009; Clarke and Windmeijer,

2012):

Assumption 2 (Instrument Relevance). Z 6⊥⊥ D|X,R = 1.

Assumption 3 (Instrument Independence). Z ⊥⊥ U |X,R = 1.

Assumption 4 (Exclusion Restriction). Y ⊥⊥ Z|D,X,U,R = 1.

Here A ⊥⊥ B|C indicates conditional independence of A and B given

C (Dawid, 1979). Instrument relevance ensures that Z is a correlate of

the exposure even after conditioning on X, while instrument independence

states that Z is independent of all unmeasured confounders of the exposure-

outcome association. Exclusion restriction formalizes the assumption of no

direct effect of Z on Y not mediated by D. Furthermore, the assumption

of no unmeasured confounding given (X,U) can be stated as

Assumption 5 (Latent Ignorability). Yd ⊥⊥ D|X,U,R = 1, for d ∈ {0, 1}

(Robins, 1994).

Assumptions 2–5 may be known to hold at the design stage when the

investigator controls treatment allocation conditional on baseline covariates
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in double blind randomized trials. In observational studies, the potential

instrumental variable may be viewed as being randomized through some

natural or quasi-experiment within levels of the observed covariates (Hernán

and Robins, 2006), although these assumptions are typically untestable

without further conditions. The exclusion restriction assumption 4 implies

the following semiparametric structural models:

E(D | Z,X,U,R = 1) = g0(X,U) + g1(X,U)Z

E(Y | D,Z,X,U,R = 1) = h0(X,U) + h1(X,U)D,

(2.2)

where for k ∈ {0, 1}, gk(·) and hk(·) are arbitrary square-integrable func-

tions of (X,U) that are only restricted by natural features of the model, e.g.

such that the exposure mean is bounded between zero and one. Note that

for binary (Z,D), model (2.2) is saturated as there are no restrictions on the

corresponding data laws f(D|Z,X,U,R = 1) and f(Y |D,Z,X,U,R = 1)

except for the implications of assumption 4. Under assumptions 4 and 5,

h1 (x, u) = E(Y1−Y0|X = x, U = u,R = 1) encodes the conditional average

treatment effect within levels of (X,U), hence ∆ = E {h1 (X,U) |R = 1} .

The linear structural equation model (Wright, 1928; Goldberger, 1972)

E(D | Z,X,U,R = 1) = θ0 + θ1X + θ2U + θ3Z

E(Y | D,Z,X,U,R = 1) = β0 + β1X + β2U + ∆D,

(2.3)

is a special case of (2.2), where the function h1(X,U) is reduced to the scalar
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parameter of interest ∆ encoding the homogeneous average treatment effect

within levels of (X,U).

Even when full data on L = (Y,D,Z,X) are available from the pri-

mary population, it is well known that while a valid instrumental variable

satisfying assumptions 2–5 suffices to obtain a valid statistical test of the

sharp null hypothesis of no individual causal effect, the population average

treatment effect ∆ is itself not uniquely identified from the law F (L|R = 1)

(Balke and Pearl, 1997). With a further monotonicity assumption about

the effect of Z on D, Angrist et al. (1996) showed that the local average

treatment effect (LATE) among compliers can be nonparametrically identi-

fied. This framework has been further generalized in recent years by Abadie

et al. (2002), Abadie (2003), Carneiro et al. (2003), Tan (2010a), Ogburn

et al. (2015) and Kennedy et al. (2019). Zhao et al. (2019) discussed iden-

tification of LATE in two-sample instrumental variable analyses. However,

because the population of compliers is itself nonidentifiable in general, ∆ is

arguably still a causal parameter of interest in many observational studies

(Robins and Greenland, 1996; Imbens, 2010). Wang and Tchetgen Tchet-

gen (2018) proved identifiability of ∆ from the law F (L|R = 1) under the

additional assumption

g1(X,U) = g1(X) or h1(X,U) = h1(X) almost surely, (2.4)
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i.e. at least one of these effects is not allowed to vary with U . We show that

∆ can be identified from F (O) provided X must be sufficiently rich so that

the effect of exposure on the outcome is uncorrelated with the effect of the

instrument on the exposure conditional on X (Cui and Tchetgen Tchetgen,

2019), which can be achieved even if X does not include all confounders of

the effect of D on Y .

Assumption 6 (Orthogonality). cov{g1(X,U), h1(X,U)|X,R = 1} = 0

almost surely.

Assumption 6 may hold under certain data generating mechanisms even

if (2.4) does not, and is guaranteed to hold under the sharp causal null effect.

In addition, we require every unit within levels of the observed covariates

to have some chance of receiving each level z ∈ {0, 1} of the instrument.

Assumption 7 (Positivity). 0 < pr(Z = 1|X,R = 1) < 1 almost surely.

2.2 Auxiliary population

We make the following assumptions about the auxiliary population:

Assumption 8 (Support overlap). 0 < π(Z,X) < 1 almost surely.

Assumption 9 (Propensity score equality). pr(D = 1|Z,X,R = 0) =

pr(D = 1|Z,X,R = 1) almost surely.
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2.3 Nonparametric identification11

Assumption 8 ensures that the support of the common variables (Z,X)

in the primary population is contained within that in the auxiliary popu-

lation, and together with assumption 9 allows us to identify the treatment

propensity score τ(z, x) = pr(D = 1|Z = z,X = x,R = 1) based on F (O).

Assumption 9 only requires predictive invariance for the treatment between

the two heterogeneous populations, and we do not require the stronger con-

dition of “structural invariance” (e.g. assumptions 3–6 also hold in the

auxiliary population), which is related to the notions of “invariant predic-

tion” (Peters et al., 2016), “autonomy” (Haavelmo, 1944) and “stability”

(Pearl, 2009) as discussed in Zhao et al. (2019).

2.3 Nonparametric identification

We show that under assumptions 1–9, ∆ is a functional on the nonpara-

metric observed data statistical model Mnp = {F (O) : F (O) unrestricted}

of all regular laws F (O) that satisfy the positivity and support overlap

assumptions. In the following, let λ(z|x) = pr(Z = z|X = x,R = 1) de-

note the probability density or mass function of Z given X in the primary

population.

Theorem 1. Under assumptions 1–9,

∆ = E

{
R

q†
(−1)1−Z

λ(Z|X)

Y

[τ(1, X)− τ(0, X)]

}
. (2.5)
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Remark 1. When Y is continuous and D and Z are discrete of finite

domain, the canonical instrumental variable assumptions 3 and 4 impose no

constraints on the law F (L|R = 1) (Bonet, 2001). In addition, assumption 9

is akin to coarsening at random, which leaves the observed data law F (O)

unrestricted (Robins, 1997; Van der Laan et al., 2003). When Y is also

discrete, assumptions 3 and 4 impose inequality constraints which do not

restrict the parameter space of F (L|R = 1) locally if the true observed data

law lies in the interior of the space defined by these constraints (Wang et al.,

2017; Wang and Tchetgen Tchetgen, 2018).

Remark 2. While nuisance parameters such as {λ(·), τ(·)} can in principle

be estimated nonparametrically using methods such as sieve estimation

(Hahn, 1998; Hirano et al., 2003; Chen et al., 2008), in this paper we focus

on parametric working models due to the curse of dimensionality when X is

of moderate or high dimension (Robins and Ritov, 1997). Since one cannot

be confident that any of these models is correctly specified, we also propose

an estimator of ∆ that is robust to misspecifications of these models.

Remark 3. The form of the identification formula (2.5) in Theorem 1

suggests that ∆ may be identified as long as one has access to consistent

estimators of the propensity score τ(z, x) in the primary population. The

utility of the sample from the auxiliary population lies in estimation of

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



13

τ(z, x) under Assumption 9, which is not testable as D is not observed in

the sample from the primary population. On the other hand, ∆ may be

identified without the need for an auxiliary sample if the propensity score

is known by design in the primary population.

3. Estimation

3.1 Maximum likelihood estimation

Let Ê(·) denote the empirical mean operator Ê{h(O)} = n−1
∑n

i=1 h(Oi),

and let (α̂, ψ̂, ξ̂, θ̂) denote the maximum likelihood estimators of (α, ψ, ξ, θ)

that index the parametric models π(z, x;α), λ(z|x;ψ), τ(z, x; ξ) and addi-

tionally f(y|z, x, R = 1; θ) = f(Y = y|Z = z,X = x,R = 1; θ) for the

outcome conditional density specified by the analyst. We note that under

assumption 9, τ(z, x) = pr(D = 1|Z = z,X = x,R = 0) so that inferences

on ξ can be based on the auxiliary sample. By taking iterated expectation

of (2.5) with respect to (Z,X), the plug-in estimator of ∆ is

∆̂mle = Ê

{
1

q̂

(−1)1−Z

λ(Z|X; ψ̂)

π(Z,X; α̂)E(Y |Z,X,R = 1; θ̂)

τ(1, X; ξ̂)− τ(0, X; ξ̂)

}
, (3.6)

where the distribution of (Z,X) is estimated by its empirical distribution

and q̂ = Ê(R). It is clear that consistency of ∆̂mle relies on correct specifi-

cations of the models π(z, x;α), λ(z|x;ψ), τ(z, x; ξ) and f(y|z, x, R = 1; θ).
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3.2 Semiparametric estimation14

In the following we propose several semiparametric estimators of ∆ that do

not require these models to be fully specified. We proceed by first noting

the following decomposition of the outcome conditional mean model.

Lemma 1. Under assumptions 2–6,

E(Y |Z = z,X = x,R = 1) = H(x)τ(z, x) + ω(x), (3.7)

where ω(x) ≡ cov[g1 (X,U) , h1 (X,U) |X = x,R = 1] + E[h0(X,U)|X =

x,R = 1] and H(x) ≡ E[h1(U,X)|X = x,R = 1] is the treatment effect

curve conditional on observed covariates. Therefore, ∆ = E{H(X)|R = 1}.

3.2 Semiparametric estimation

Consider the following submodels ofMnp in which smooth parametric mod-

els (indexed by finite-dimensional parameters) for certain components of the

observed data law F (O) are correctly specified:

Definition 1.

M1 : The models λ(z|x;ψ) and τ(z, x; ξ) are correctly specified such that

λ(z|x;ψ†) = λ(z|x) and τ(z, x; ξ†) = τ(z, x) for some unknown values

(ψ†, ξ†);

M2 : The models H(x; γ), ω(x; η) and τ(z, x; ξ) are correctly specified such

that H(x; γ†) = H(x), ω(x; η†) = ω(x) and τ(z, x; ξ†) = τ(z, x) for some
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unknown values (γ†, η†, ξ†);

M3 : The models H(x; γ), ω(x; η) and π(z, x;α) are correctly specified such

that H(x; γ†) = H(x), ω(x; η†) = ω(x) and π(z, x;α†) = π(z, x) for some

unknown values (γ†, η†, α†).

We propose semiparametric estimators for ∆ which are consistent and

asymptotically normal in each of the above submodels. Our first estimator

∆̂1 of ∆ is motivated by identification formula (2.5) which does not require

specification of an outcome model for f(y|z, x, R = 1), and solves

0 = Ê
{
µ1(O; ∆, ψ̂, ξ̂, q̂)

}
≡ Ê

{
R

q̂

(−1)1−Z

λ(Z|X; ψ̂)

Y

[τ(1, X; ξ̂)− τ(0, X; ξ̂)]
−∆

}
.

(3.8)

Remark 4. The models for {λ(·), τ(·)} can be specified and estimated with-

out access to the outcome data. Estimation of ∆ using ∆̂1 could therefore

be considered as part of a more objective analysis design in the sense that it

mitigates potential for “data-dredging” exercises when the outcome model

is fully specified (Rubin, 2007).

We propose two additional estimators of ∆ which do not require a model

for λ(·) but instead posit modelsH(X; γ) and ω(X; η) for components of the

outcome conditional mean (3.7). Consider the semiparametric estimators
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∆̂2 and ∆̂3 which solve

0 = Ê {µj(O; ∆, γ̂j, q̂)} ≡ Ê

{
R

q̂
[H(X; γ̂j)−∆]

}
(3.9)

for j = 1, 2 respectively, where the estimators γ̂2 and γ̂3 are constructed in

a way such that they are consistent in the submodels M2 and M3 respec-

tively, as follows. Let v(X) and w(X) be analyst-specified vector functions

of the same dimensions as γ and η respectively, for example {v(X), w(X)} =

{∂H(X; γ)/∂γ, ∂ω(X; η)/∂η}, and let Gv,w(X,Z) = {vT (X)Z,wT (X)}T

where AT denotes the transpose of A. Then let (γ̂2, η̂2) be the joint so-

lution to the estimating equation

0 = Ê
{
Gv,w(X,Z)

{
R[Y −H(X; γ)τ(Z,X; ξ̂)− ω(X; η)]

−(1−R)H(X; γ)[D − τ(Z,X; ξ̂)]
}}
,

while (γ̂3, η̂3) jointly solve

0 = Ê

{
Gv,w(X,Z)

{
R[Y − ω(X; η)]− (1−R)π(Z,X; α̂)

1− π(Z,X; α̂)
H(X; γ)D

}}
.

Lemma 2. Under standard regularity conditions (Newey and McFadden,

1994), the estimators ∆̂1, ∆̂2, and ∆̂3 are consistent and asymptotically

normal in submodels M1, M2 and M3, respectively.

Remark 5. To ensure that the proposed estimators of ∆ lie between −1

and 1 in the case of binary Y , following Wang and Tchetgen Tchetgen
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(2018) we can specify a model such as

H(X; γ) = tanh(γTX) =
exp(2γTX)− 1

exp(2γTX) + 1
,

which guarantees that H(X; γ) ∈ [−1, 1]. In addition, instead of the de-

composition (3.7) for continuous Y , Wang and Tchetgen Tchetgen (2018)

provided a variation independent decomposition of the components in the

likelihood {pr(Y = 1|Z,X,R = 1), pr(D = 1|Z,X,R = 1)} for binary Y ,

and their estimation strategy for these components may be adopted simi-

larly.

3.3 Multiply robust estimation

To motivate the multiply robust estimator, we consider efficient estimation

of ∆ in Mnp. Any regular and asymptotically linear estimator ∆̂ has an

associated influence function µ(O; ∆) such that ∆̂ − ∆ = Ê{µ(O; ∆)} +

op(n
−1/2) (Bickel et al., 1993). Therefore it suffices to identify µ(O; ∆) with

the lowest variance, which is the efficient influence function.

Theorem 2. The efficient influence function for ∆ in Mnp is

µeff(O; ∆) =

(−1)1−Z


R
q†

[Y −H (X) τ(Z,X)− ω(X)]

−1−R
q†

π(Z,X)
1−π(Z,X)

H (X) [D − τ(Z,X)]


λ(Z|X) [τ(1, X)− τ(0, X)]

+
R

q†
{H (X)−∆} ,

(3.10)
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3.3 Multiply robust estimation18

so that the semiparametric efficiency bound for estimating ∆ in Mnp is

E{µ2
eff(O; ∆)}.

We use µeff(·) as an estimating function and plug in estimates of the nui-

sance parameters to estimate the causal effect ∆. This method of construct-

ing estimating equations from influence functions has been used widely, e.g.

in Bang and Robins (2005); Tan (2006b); Tchetgen Tchetgen et al. (2009);

Sun et al. (2018); Sun and Tchetgen Tchetgen (2018); Wang and Tchet-

gen Tchetgen (2018). Consider (γ̃, η̃) which jointly solve

0 = Ê

{
Gv,w(X,Z)

{
R[Y −H(X; γ)τ(Z,X; ξ̂)− ω(X; η)]

−(1−R)π(Z,X; α̂)

1− π(Z,X; α̂)
H(X; γ)[D − τ(Z,X; ξ̂)]

}}
.

(3.11)

We note that the estimator γ̃ is doubly robust in the sense that it is

consistent for γ† in the modelM2∪M3, which is necessary for the multiply

robust result stated below.

Lemma 3. Under standard regularity conditions (Newey and McFadden,

1994), the estimator ∆̂mul which solves

0 = Ê
{
µeff(O; ∆, η̃, γ̃, ψ̂, ξ̂, α̂, q̂)

}
(3.12)

is consistent and asymptotically normal in the union modelMunion = ∪3
j=1Mj

(multiply robust). Moreover, ∆̂mul attains the semiparametric efficiency
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bound in Mnp (and, following the general results of Robins and Rotnitzky

(2001), also in Munion) at the intersection submodel {∩3
j=1Mj} where all

working models are correctly specified (locally efficient).

The asymptotic variance formula of each estimator described in this

section follows from standard M-estimation theory (Newey and McFadden,

1994). For inference based on the proposed semiparametric estimators of

∆ in both the simulation study and application (sections 5 and 6 respec-

tively), consistent estimation of the asymptotic variance is described in the

Supplementary Materials.

4. Comparison to some existing estimators

Suppose that E(U |Z = z,X = x,R = 1) = E(U |X = x,R = 1) is linear in

x, then the linear structural models (2.3) yield the observed data models

τlinear(Z,X; ξ) = ξT (1, Z,X)T ;

ωlinear(X; η) = ηT (1, X)T ;

E(Y | Z,X,R = 1) = ∆τlinear(Z,X; ξ) + ωlinear(X; η).

We also have that H (X) is indexed by the scalar parameter of interest

∆. Using the notation in section 3, it can be shown that the two-sample
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instrumental variable estimator (Inoue and Solon, 2010) (∆̂tsiv, η̂tsiv) solves

0 = Ê

{
Gv,w(X,Z)

{
R[Y − ωlinear(X; η)]− (1−R)q̂

1− q̂
∆D

}}
.

Inferences based on the two-sample instrumental variable estimator can be

viewed as special instances of inferences obtained under a particular speci-

fication of submodelM3 with the above parametric models for {H(·), ω(·)}

and additionally π(z, x;α) = q where q ∈ R, e.g. the marginal distribution

of (Z,X) is the same in the primary and auxiliary populations. Therefore

∆̂tsiv will fail to be consistent for ∆ if any of the parametric models inM3 is

incorrectly specified. Furthermore, we note that the two-sample two-stage

least squares estimator (∆̂ts2sls, η̂ts2sls) solves

0 = Ê

{
Gv,w(X,Z)

{
R[Y −∆τlinear(Z,X; ξ̂)− ωlinear(X; η)]

− (1−R)q̂

1− q̂
∆[D − τlinear(Z,X; ξ̂)]

}}
,

which is a special case of the doubly robust estimating equation (3.11). It

follows that ∆̂ts2sls is consistent for ∆ in M2 ∪ M3; even when the true

marginal distribution of (Z,X) differs between the primary and auxiliary

populations, ∆̂ts2sls is consistent provided the linear propensity score model

τlinear(·) is correctly specified. We can also show via semiparametric effciency

theory that ∆̂ts2sls is asymptotically more efficient than its non-doubly ro-

bust counterpart ∆̂tsiv at the intersection submodel M2 ∩M3 (Tan, 2007;
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Tsiatis, 2007). The above properties were noted by Inoue and Solon (2010).

Shu and Tan (2019) proposed a class of doubly robust estimators (∆̂dr, η̂dr)
T

which solve

0 = Ê

{
Gv,w(X,Z)

{
R[Y −∆τ(Z,X; ξ̂)− ωlinear(X; η)]

− (1−R)π(Z,X; α̂)

1− π(Z,X; α̂)
∆[D − τ(Z,X; ξ̂)]

}}
,

where users can freely specify models for {τ(·), π(·)}. Graham et al. (2016)

introduced in earlier work a doubly robust auxiliary-to-study tilting estima-

tor under restricted nuisance model specifications in efficient estimation of

data combination models. Inferences based on ∆̂dr can be viewed as special

instances of inferences obtained under a particular specification of submodel

M2 ∪M3 with H (X) = ∆ and ωlinear(·). In constrast to ∆̂mul, ∆̂dr will

generally fail to be consistent for ∆ outside the union model M2 ∪ M3.

We note that a generalized version of ∆̂dr that accommodates arbitrary

parametric model specifications in M2 ∪M3 is given by

∆̂dr2 = Ê {RH(X; γ̃)/q̂} , (4.13)

where γ̃ solves (3.11).
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5. Simulation study

We investigate the finite-sample properties of the proposed semiparametric

estimators under a variety of settings. For the primary population, baseline

covariates X = (X1, X2, X3)T are mutually independent and marginally

distributed as U(0, 1); (Y,A, Z, U) is distributed as follows:

U |X ∼ TN{ϑTX, 1, (ϑTX − 1, ϑTX + 1)};

Z|X ∼ Bernoulli {p = {1 + exp [−ψT (1, XT )T ]}−1};

D|Z,X,U ∼ Bernoulli {p = {1 + exp [−ξT (1, Z,XT )T ]}−1 + 0.2[U − ϑTX]};

Y |D,X,U ∼ N{γT (1, XT )TD + 1.25×~1TX + 6U, 1},

where TN{µ, σ2, (l, u)} denotes a truncated normal distribution with sup-

port [l, u], ϑ = (0.5,−0.5, 0)T , ψ = (−1, 0.5, 0.5, 0.5)T , ξ = (−1.3, 1.2, 0.5,−0.25−

0.25)T , γ = (2, 0.5, 0.5, 0.5)T and ~1 = (1, 1, 1)T . For the auxiliary pop-

ulation, X = (X1, X2, X3)T are mutually independent and marginally dis-

tributed as TN{0.5, 1, (0, 1)}, Z|X ∼ Bernoulli {p = {1+exp [−ψT (1, XT )T ]}−1}

and D|Z,X ∼ Bernoulli {p = {1+exp [−ξT (1, Z,XT )T ]}−1}; the remaining

parts of the data law are left unrestricted. For each simulation replicate

of total sample size n, we generate np ∼ binomial(n, p = 0.7), followed by

an i.i.d. sample of size np from the primary population with only realiza-

tions of (Y, Z,X) recorded, and another i.i.d. sample of size na = n − np
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from the auxiliary population with only realizations of (D,Z,X) recorded.

The two samples are then merged, and an indicator variable R is intro-

duced, equal to 1 or 0 if the unit is drawn from the primary or auxiliary

population respectively. It can be verified that the above data generating

mechanism satisfies assumptions 1–9, and that the corresponding true ob-

served data models are λ(1|x;ψ) = {1 + exp [−ψT (1, xT )T ]}−1, τ(z, x; ξ) =

{1 + exp [−ξT (1, z, xT )T ]}−1, H(x; γ) = γT (1, xT )T , ω(x; η) = ηT (1, xT )T

and π(z, x;α) = {1 + exp [−αT (1, z, xT , x2T )T ]}−1 where x2 = (x2
1, x

2
2, x

2
3)T

(by Bayes’ rule). We are interested in estimating the average treatment

effect ∆ = E{γT (1, XT )T |R = 1} = 2.75. The four semiparametric estima-

tors ∆̂1, ∆̂2, ∆̂3 and ∆̂ mul are implemented using v(x) = w(x) = (1, xT )T

as index functions.

Similar to Kang et al. (2007), we evaluate the performance of the pro-

posed estimators in situations where some models may be mis-specified

by considering the transformed variables V ∗ = (Z∗, X∗1 , X
∗
2 , X

∗
3 )T where

Z∗ ∼ Bernoulli{p = Φ(−2 + 3Z)}, X∗1 = exp(−0.5X1) + ε1, X∗2 = X2/[1 +

exp(Z)] + ε2 and X∗3 = (X1X3)3 + ε3; Φ(·) is the cumulative distribution

function of the standard normal distribution and the error terms are gen-

erated as (ε1, ε2, ε3)T ∼ N(0, I3). Then a particular component model is

mis-specified when the analyst uses V ∗ instead of V in the working model.
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Specifically, we report results from the following five scenarios:

M′
0: All models are correct;

M′
1: Only models λ(z|x;ψ) and τ(z, x; ξ) are correct;

M′
2: Only models τ(z, x; ξ), H(x; γ) and ω(x; η) are correct;

M′
3: Only models π(z, x;α), H(x; γ) and ω(x; η) are correct;

M′
4: All models are incorrect.

All simulation results are based on 1000 Monte Carlo runs of n = 10000

units each. Table 1 summarizes simulation results. In agreement with

theory, ∆̂1 has small bias in M′
0 and M′

1, ∆̂2 has small bias in M′
0 and

M′
2, ∆̂3 has small bias inM′

0 andM′
3, and ∆̂mul has small bias inM′

l, l =

0, 1, 2, 3. InM′
0 where all models are correct, ∆̂1 and ∆̂2 have smaller Monte

Carlo standard errors compared to ∆̂3 which involves weighting through the

data source propensity score π(z, x).

6. Application

Currie and Yelowitz (2000) studied the effect of public housing partici-

pation on housing quality and educational attainment, and showed that

project participation is associated with poorer outcomes based on data
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Table 1: Monte Carlo results of the proposed semiparametric estimators

under different scenarios

Model
Estimator

∆̂1 ∆̂2 ∆̂3 ∆̂mul

|Bias| (SE)

M′0 0.01 (0.29) 0.01 (0.29) 0.08 (0.33) 0.04 (0.31)
M′1 0.01 (0.29) 0.65 (0.34) 0.74 (0.37) 0.05 (0.30)
M′2 0.67 (0.36) 0.01 (0.32) 0.11 (0.41) 0.05 (0.33)
M′3 1.10 (0.46) 1.20 (0.48) 0.09 (0.34) 0.06 (0.33)
M′4 1.30 (0.47) 2.20 (0.57) 0.77 (0.44) 0.72 (0.39)

RMSE

M′0 0.09 0.09 0.11 0.10
M′1 0.08 0.54 0.68 0.09
M′2 0.58 0.10 0.18 0.11
M′3 1.50 1.70 0.12 0.11
M′4 1.80 5.00 0.78 0.67

from the Survey of Income and Program Participation (SIPP). However,

many unobserved factors such as social ties are likely to affect both project

participation and outcomes, and the authors suspect that failure to control

for this source of endogeneity would bias the estimated causal effects of

living in projects downwards, since families in projects may be more likely

to live in substandard housing in any case, and their children may be more

likely to experience negative outcomes. Leveraging on the sex composition

of children as an instrumental variable for project participation, Currie and

Yelowitz (2000) use two-sample instrumental variable methods to combine
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information from the 1990 Census data and 1990-1995 waves of the March

Current Population Survey (CPS), and find that project households are

less likely to suffer from overcrowding or live in high-density complexes,

and project children are less likely to have been held back. Their study is

important as the results overturn the stereotype that project participation

is harmful in terms of living conditions and children’s educational attain-

ment.

In this analysis, we apply the proposed methods to estimate the causal

effect of project participation (D) on reported monthly rental payments

(Y ) in the SIPP population; reported rent may be viewed as a proxy for

housing quality (Currie and Yelowitz, 2000). The binary instrumental vari-

able Z takes on value 1 if a family had a boy and a girl, and 0 if both are

boys or girls. Families with two children of opposite genders will be eligible

for three-bedroom apartments as opposed to two-bedroom apartments, and

therefore will be more likely to participate in the housing project, although

there is little reason to expect that the children’s sex composition will di-

rectly affect Y . In line with the Currie and Yelowitz (2000) study, the vector

of baseline covariates X includes the household head’s gender, age, race, ed-

ucation, marital status and the number of boys in the family. We specify

main effects models for {λ(·), τ(·), π(·)} with logistic links. In addition, fol-
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Table 2: Estimates of the effect of public housing project participation on

reported monthly rental (divided by 1000 US dollars).

point estimate standard error 95% Wald CI

∆̂ts2sls 0.3717 0.1124 (0.1513, 0.5920)

∆̂1 0.7650 0.3442 (0.0903, 1.4397)

∆̂2 0.3790 0.1162 (0.1513, 0.6068)

∆̂3 0.4999 0.2533 (0.0034, 0.9964)

∆̂mul 0.9155 0.4126 (0.1069, 1.7242)

lowing Shu and Tan (2019) we add an additional interaction term involving

household head information to the linear predictor function of the model

for π(·) to improve covariate balance, and specify ω(x; η) = ηT (1, xT )T ,

H(x; γ) = ∆. The analysis results based on n1 = 116901 renters’ complete

records for (Y, Z,X) from the 1990 Census of SIPP (R = 1) and n0 = 10382

renters’ complete records for (D,Z,X) from CPS (R = 0), for a total sample

size of n = 127283, are summarized in Table 2.

The two-sample two-stage least squares estimate of 0.3717 agrees with

the point estimate presented in Table 4 of Currie and Yelowitz (2000),

although the analytic standard error of 0.1124 is larger than the value of

0.0589 reported by the original study, as the former takes into account

the variability associated with the first-stage estimation. While the point

estimates of the proposed estimators are all larger than 0.3717, the point

estimate of ∆̂mul is closest to that of ∆̂1, which suggests that the models
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for {λ(·), τ(·)} in this illustrative analysis may be specified nearly correctly;

Tchetgen Tchetgen and Robins (2010) describe a formal specification test to

detect which of the baseline models is correct under the union modelMunion.

The point estimate of 0.9155 for ∆̂mul also suggests that the causal effect of

housing project participation on improving household living conditions is

probably larger than the value reported in Currie and Yelowitz (2000), since

∆̂ts2sls is generally no longer consistent outside the union modelM2 ∪M3.

7. Discussion

Suppose we observe data on (D,Z,X) from the primary population of in-

terest and fuse it with data on (Y, Z,X) from an auxiliary source, i.e. Ri

equals to either 0 or 1 if the ith unit is drawn from the primary or the aux-

iliary population respectively. In this case, it is clear that inference about

the identifying functional

∆ = E

{
1−R
1− q†

(−1)1−Z

λ(Z|X)

Y

[τ(1, X)− τ(0, X)]

}

is not possible under submodel M1, since Y is not observed from the

primary population. Nonetheless, inference for ∆ is still possible under

M2 ∪ M3 if we replace assumption 9 with predictive invariance for the

outcome:
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Assumption 10. E(Y |Z,X,R = 0) = E(Y |Z,X,R = 1) almost surely.

Indeed, it can be shown that under assumptions 1–8 and 10, the esti-

mator

∆̃dr3 = Ê {(1−R)H(X; γ̃)/(1− q̂)} , (7.14)

where γ̃ solving (3.11) is consistent and asymptotically normal in the union

model M2 ∪ M3. We note that because ∆̂tsiv, ∆̂ts2sls and ∆̂dr typically

specify H (x; γ) = ∆ which does not depend on values for the baseline

covariates, one can be agnostic as to which of the two samples is drawn

from the primary population as long as assumptions 1–10 all hold.

There are several improvements and extensions for future work. Multi-

ple valid instrumental variables can be incorporated by adopting a standard

generalized method of moments approach (Hansen, 1982), and the proposed

estimators can be improved in terms of efficiency (Tan, 2006a, 2010b) and

bias (Vermeulen and Vansteelandt, 2015). In this paper, we focused on the

canonical case of binary Z and D; extension of the proposed methodology to

the case of general Z or D is an interesting topic for future research. It will

also be of interest to investigate the use of negative controls under data fu-

sion to mitigate unmeasured confounding and identify causal effects, which

has gained increasing recognition and popularity in recent years (Miao and

Tchetgen Tchetgen, 2017; Shi et al., 2018).
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Multiply robust estimation typically entails postulating various para-

metric models for the nuisance parameters (Molina et al., 2017). Cher-

nozhukov et al. (2018) showed that n−1/2 consistent estimation of low-

dimensional parameters of interest based on nonparametric efficient scores

such as µeff(O; ∆) is possible when all the nuisance parameters are con-

sistently estimated with sufficiently fast rates, even when the complexity

of the nuisance model space is no longer limited by classical settings. In

future research, we plan to investigate estimation and inference for the av-

erage treatment effect under data fusion when various flexible and highly

data-adaptive machine learning methods are used to estimate the nuisance

parameters.

Supplementary Materials

Supplementary material available includes the proof of Lemmas and

Theorems as well as details on asymptotic variance estimation for the pro-

posed estimators.
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