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Relationship between orthogonal and baseline parameterizations

and its applications to design constructions

Cheng-Yu Sun and Boxin Tang

Simon Fraser University, Canada

Abstract: When studying two-level factorial designs, the most commonly adopted

definition of factorial effects is a set of orthogonal treatment contrasts, which we

refer to as the orthogonal parameterization (OP). While most design results and

analysis strategies have been developed and understood within the scope of OP, a

more appropriate alternative in some situations is the baseline parameterization

(BP). In this paper, we study the relationship between the OP and the BP, which

allows us to better understand the relatively unexplored BP. Besides being in-

sightful, this relationship is very useful in design construction. Design properties

considered here are estimability, optimality and robustness. Worth noting is a

general class of Rechtschaffer designs for their robust properties under the BP.

Key words and phrases: Effect hierarchy, efficiency criterion, minimum aberra-

tion, orthogonal array, Rechtschaffner design, robust design.

1. Introduction In many industrial and scientific investigations, the ob-

jective is to build a model that can adequately describe how the response of

a system changes when the levels of input factors are changed. The impact
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Relationship between two parameterizations

on the mean response caused by changing the levels of one or more factors

is called a factorial effect. The most commonly adopted definition of fac-

torial effects for a 2m factorial, given by Box and Hunter (1961), is a set

of mutually orthogonal treatment contrasts, called the orthogonal parame-

terization (OP). Though having received less attention, a more appropriate

alternative in some situations is the baseline parameterization (BP). Under

the BP, the experimenters are more interested in the effects when those

non-involved factors are kept at their intrinsic baseline levels.

The BP is a relatively unexplored territory, but its importance has

started to rise in recent years. Yang and Speed (2002), Kerr (2006), and

Banerjee and Mukerjee (2008) investigated factorial designs under the BP

in the context of cDNAmicroarray experiments. More recently, Mukerjee and Tang

(2012) proposed a minimum K-aberration criterion to sequentially mini-

mize the bias in the estimation of main effects caused by non-negligible

interactions, in the order of importance given by the effect hierarchical

principle (Wu and Hamada (2011), pp.172-3). The construction of min-

imum K-aberration designs is further considered in Li, Miller, and Tang

(2014), Miller and Tang (2016), and Mukerjee and Tang (2016).

Since the factorial effects under the OP and BP are both treatment

contrasts, there must exist a linear relationship between them. What cannot

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



be foreseen is the special way one set of effects depends on the other. This

special pattern in the linear relationship has some important implications

in the construction of baseline designs. The objectives of the paper are to

derive this relationship and explore its applications to design construction

under the BP in terms of estimability, optimality and robustness.

The rest of this paper is organized as follows. In Section 2, we firstly

introduce the formal definitions of factorial effects under the OP and the

BP. Then, the linear relationship between the two types of parameterization

is derived, and its implications are given. Section 3 shows how to use the

results in Section 2 to find designs under the BP. We show that certain or-

thogonal arrays continue to be optimal under the BP. General Rechtschaffer

designs are introduced, and shown to enjoy a robust property under the BP.

The last section contains some concluding remarks and all proofs are given

in the appendix.

2. The relationship between the OP and the BP

Consider a factorial experiment involvingm two-level factors F1, F2, . . . , Fm,

each at levels 0 and 1. Let τg denote the mean response at the treat-

ment combination g = (g1, g2, . . . , gm) with gi = 0 or 1 (i = 1, 2, . . . , m),

and let G be the collection of all 2m treatment combinations. Since the
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treatment combination (1, 1, 0, . . . , 0) corresponds to the subset {1, 2} of

S = {1, 2, . . . , m}, we use τ12 and τ(1,1,0,...,0) interchangeably, depending on

which one is more convenient from the context. Under the OP, for a subset

v = {i1, i2, · · · , ik} of S, the k-factor interaction Fi1Fi2 · · ·Fik (the main

effect if k = 1) is given by

βv =
1

2m

∑

g∈G

τg(−1)
∑k

h=1
gih . (2.1)

We let βφ = 2−m
∑

G τg, the grand mean. Under the BP, the main effect of

Fi is given by θi = τi − τφ, and the two-factor interaction FiFj is given by

θij = τij − τi − τj + τφ. More generally, for a subset w = {i1, i2, · · · , ik} of

S, the k-factor interaction Fi1Fi2 · · ·Fik under the BP is given by

θw =
∑

u⊆w

τu(−1)|w|−|u|. (2.2)

where | · | stands for the cardinality of a set.

Both βv and θw measure the impact on τg caused by level changing

of the involved factor(s), but the former looks at the effect in an overall

sense, while the latter places emphasis on the situation in which all non-

involved factors are set at level 0, the baseline level. For example, consider

v = w = {1} in (2.1) and (2.2). Let G∗ = {(g2, g3, . . . , gm) : gi = 0, 1}. The

main effects of F1, under the OP and the BP respectively, can be written

as β1 = (1/2m)
∑

g∗∈G∗

(

τ(0,g∗) − τ(1,g∗)
)

and θ1 = τ(1,0,...,0) − τ(0,0,...,0). Up to
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a constant, β1 averages out the effects of F1 conditional on every g∗ ∈ G∗,

while θ1 only computes the effect of F1 when all other factors are set at

their baseline levels.

Baseline parameterization arises naturally when each factor has a null

state or a baseline level. For example, in a toxicological study, each factor

is a toxin, and each treatment combination is a mix of several toxins. The

absence and presence of a particular toxin can be represented by level 0 and

1, respectively. Or in an agricultural experiment, two kinds of fertilizers are

applicable, serving as the two levels of a factor. Then level 0 can stand for

the currently used fertilizer, and level 1 for the new fertilizer.

By combining (2.1) and (2.2), we obtain a linear relationship between

the OP and the BP, as stated in the theorem below.

Theorem 1. We have that

(i) βv =
∑

w⊇v awθw, with aw = (−1)|v|2−|w|,

(ii) θw =
∑

v⊇w cvβv, with cv = (−2)|w|.

We see in Theorem 1 that the θw’s in the expression of βv are those with w

containing v. Similar phenomenon occurs in the expression of θw in terms of

βv’s. It is this special pattern in the linear relationship between the θw’s and

βv’s that renders its usefulness in the construction of baseline designs, which
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we will examine in Section 3. Proposition 2 in Mukerjee and Tang (2012),

which states an orthogonal array is universally optimal for estimating main

effects under the BP, is established based on the simple fact that θi = −2βi,

for i = 1, 2, . . . , m, if βv = 0 for all |v| ≥ 2. An even more important

implication is that the absence of interactions under the OP yields the same

thing under the BP and vice versa. We now consider a situation that is

more general than the absence of interactions. For a collection C of subsets

of S, we say it is echelon if for any s that is collected by C, all subsets of s

are also collected. Then Theorem 1 implies the following result.

Corollary 1. Let C be echelon. Then, βv = 0 for all v /∈ C if and only if

θw = 0 for all w /∈ C. As a special case, absence of factorial effects of order

k or higher is invariant to the choice of parameterization.

If a collection of factorial effects, say {βv : v ∈ C} or {θw : w ∈ C}, are

believed to be active, the corresponding models under the OP and the BP

are, respectively,

τg =
∑

v∈C

βv

∏

k∈v

(1− 2gk) (g ∈ G); (2.3)

τg =
∑

w∈C

θw
∏

k∈w

gk (g ∈ G), (2.4)

We say that model (2.3) and (2.4) are, respectively, the OP and the BP
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model associated with C, and they are called echelon if C is echelon. Corol-

lary 1 says that these two models are equivalent if C is echelon. The main-

effect-only model and the models that contain all main effects plus some/all

two-factor interactions are most often used in practice, all of which are ech-

elon models. We end this section by two toy examples aimed at illustrating

Theorem 1 and Corollary 1.

Example 1. Consider a three-factor system A whose mean responses are

System A: (τ000, τ001, τ010, τ011, τ100, τ101, τ110, τ111) = (1, 1, 1, 1, 2, 2, 5, 5).

By equation (2.2), there are only two active factorial effects under the BP:

θ1 = 1 and θ12 = 3. However, by equation (2.1), there are three active

factorial effects under the OP: β1 = −1.25, β2 = −0.75, and β12 = 0.75.

The OP model that contains only β1 and β12 fails to characterize the mean

response structure because C = {φ, {1}, {1, 2}} is not an echelon collection.

Applying part (i) of Theorem 1, β12 = 0.25θ12 + 0.125θ123 = 0.75. One can

similarly compute βv for the other v’s, using θw’s.

Example 2. Another system has the following mean responses.

System B: (τ000, τ001, τ010, τ011, τ100, τ101, τ110, τ111) = (1, 1,−1,−1, 2, 2, 3, 3).

Under the BP, (θ1, θ2, θ12) = (1,−2, 3), and all the other θw’s are zero. Since

the model is associated with an echelon collection C = {φ, {1}, {2}, {1, 2}},
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by Corollary 1, the OP model that contains only β1, β2, and β12 is true

as well. Using equation (2.1) to verify this, we can find (β1, β2, β12) =

(−1.25, 0.25, 0.75) and all other βv’s are zero.

3. Finding baseline designs

3.1 Preliminary results

SupposeN experimental runs are allowed in a designD, and let (gi1, gi2, · · · , gim)

denote the i-th run (i = 1, 2, . . . , N). Under design D, the OP and the BP

models associated with C are, respectively,

E(Yi) =
∑

v∈C

βv

∏

j∈v

(1− 2gij) (i = 1, 2, . . . , N); (3.5)

E(Yi) =
∑

w∈C

θw
∏

j∈w

gij, (i = 1, 2, . . . , N), (3.6)

where Yi is the response of the i-th run. Let XC and WC be the model

matrices of (3.5) and (3.6), respectively. A design is said to be able to esti-

mate model (3.5) (respectively, model (3.6)) if X ′
CXC (respectively, W ′

CWC)

is invertible.

Theorem 2. If a design is able to estimate an echelon OP model, it is able

to estimate its counterpart BP model, and vice versa.
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3.1 Preliminary results9

Theorem 2 allows the estimability of certain BP models to be established

with little effort. One example is that the full k-th order model, the model

that contains all factorial effects of order k or lower, can be estimated

under an orthogonal array of strength 2k. Another interesting application

of Theorem 2 is in the next example.

Example 3. Cheng (1995) showed that an N -run orthogonal array, if N

is not a multiple of eight, can estimate the full second order model when

projected onto any four factors. This projection property, by Theorem 2,

holds regardless of the parameterization.

For a design D and an OP model associated with C, we define its DC-

efficiency as det(X ′
CXC), and its AC-efficiency as trace(X ′

CXC)
−1. We say a

design is DC-optimal (respectively, AC-optimal) if it maximizes det(X ′
CXC)

(respectively, minimizes trace(X ′
CXC)

−1) among all competing designs. Sim-

ilarly, we can define the DC- and AC-optimality criteria under the BP by

replacing XC with WC.

Proposition 1. Let C be an echelon collection. If a design is DC-optimal

under the OP, it is DC-optimal under the BP, and vice versa.

Proposition 1 is an implication of a more general result given by Propo-

sition 2, which can be directly derived from Theorem 1. We point out
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3.2 Designs from orthogonal arrays10

here that both Propositions 1 and 2 are special cases of Lemma 6 in

Stallings and Morgan (2015), though stated in a different context.

Proposition 2. If C is echelon, then det(X ′
CXC) is proportional to det(W ′

CWC).

The ratio does not depend on the design but on C alone.

We conclude this subsection with a corollary. Its implication will be

discussed after Theorem 3 in the next subsection.

Corollary 2. Let C be an echelon collection. The DC-efficiency of a design

remains unchanged under level switching of one or more factors, regardless

of the parameterization.

3.2 Designs from orthogonal arrays

Cheng (1980) showed that an orthogonal array is universally optimal under

the main-effect-only model. For another example, a design given by an

orthogonal array of strength 2k, is A- and D-optimal under the full k-th

order model. These results are obtained all under the OP. In this subsection,

we generalize a result by Moriguti (1954) to baseline designs. We also

comment on generating baseline designs with robust properties.

Consider the OP model associated with C and let β̂v be the least square

estimator of βv. We assume as usual that all observations are uncorrelated

and have a common variance. Moriguti (1954) proved that a design whose
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3.2 Designs from orthogonal arrays11

model matrix XC has mutually orthogonal columns minimizes Var(β̂v) for

each v ∈ C among all competing designs. The next theorem says that a

similar result also holds for the BP if C is echelon.

Theorem 3. Under an OP model associated with C, a design D minimizes

Var(β̂v) for each v ∈ C among all competing designs if XC is orthogonal. If

further C is echelon, then under the counterpart BP model, D also minimizes

Var(θ̂w) among all competing designs for every w in C that is not contained

by another u in C.

For convenience of discussion, we call θw a cap effect if w is not con-

tained by another u in C. Then Theorem 3 establishes the optimality for

every cap effect under the stated conditions. Cap effects should be the

first in line to be tested for their significance when one seeks a simpler

model in the analysis stage. We look at some useful cases. If the main-

effects model is considered with the inclusion of an intercept, then all the

main effects are cap effects. Therefore, Theorem 3 generallizes a result

in Mukerjee and Tang (2012) who established optimality for every main

effect. For a model consisting of all main effects and all two-factor interac-

tions, the two-factor interactions are cap effects. If one considers a model

consisting of all main effects plus some two-factor interactions, then these

two-factor interactions are cap effects, and so are those main effects that
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3.2 Designs from orthogonal arrays12

are not involved in these two-factor interactions.

As switching the two levels does not affect the orthogonality of XC,

Theorem 3 also suggests a simple strategy for generating an efficient baseline

design that is robust to non-negligible effects. While a full investigation of

this problem is out of the scope of the present paper, we give an example

to illustrate the idea.

Example 4. Consider the model associated with C = {φ, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}}

and an eight-run design D, displayed in transposed form below:











0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 1 1 0 1 0 0 1











.

Design D is a resolution IV regular design. Since design D has an

orthogonal model matrixXC, it has the optimal properties given in Theorem

3. Let D∗ be the design obtained from D by level switching the fourth

factor. Then D∗ has the same optimality properties as D. To further

distinguish one design from the other, we compute the bias caused by non-

negligible effects. Assume θ24 is the only non-negligible effect. Following

the idea of minimum K-aberration, the design which has a smaller value

of ‖(W ′
CWC)

−1W ′
CW24‖ would be preferred, where WC is the model matrix

under the BP, W24 is the Hadarmard product of the second and fourth
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3.3 Rechtschaffner designs13

factor in the design matrix, and ‖·‖ denotes the Euclidean norm. Since

‖(W ′
CWC)

−1W ′
CW24‖ equals 2 for D and 0.816 for D∗ , D∗ is preferred.

3.3 Rechtschaffner designs

Consider the full second order model, associated with the collection C2 =

{s ⊆ S : |s| ≤ 2}. Based on the early mentioned one-to-one correspon-

dence between a subset and a treatment combination, C2 corresponds to a

design consisting of (1+m+m(m−1)/2) different treatment combinations,

which is known as the Rechtschaffner design, denoted by DC2 . Using the

same correspondence, we define DC likewise for any C and still call it a

Rechtschaffner design. Design DC2 was firstly presented by Rechtschaffner

(1967), who suggested its use under the full second order model. The es-

timability of DC2 under the OP was later proved by several authors, with

generalizations to echelon models for mixed-level and/or higher order situ-

ations. We state a result for the two-level situation, which is a special case

of Theorem 15.25 in Cheng (2014).

Proposition 3. For an echelon collection C, the OP model associated with

C is estimable under Rechtschaffner design DC.

Under the BP, the Rechtschaffner design DC has a stronger property.
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3.3 Rechtschaffner designs14

Theorem 4. For any collection C, the BP model associated with C is es-

timable under Rechtschaffner design DC.

Compared with Proposition 3, Theorem 4 does not assume that C is

echelon. A special case of Rechtschaffner designs is DC1 with C1 = {s ⊆ S :

|s| ≤ 1}. This design, commonly known as a one-factor-at-a-time design,

was discussed in Mukerjee and Tang (2012) for its robust property: non-

negligible interactions never cause bias to the estimation of main effects

under the BP. This property, in fact, holds for any Rechtschaffner design

DC with an echelon C.

Theorem 5. Let C be an echelon collection. Then Rechtschaffner design

DC allows unbiased estimation of the BP model associated with C, even if

the effects outside the model are non-negligible.

Example 5. Consider the model associated with C = {φ, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}}

and the Rechtschaffner design DC, displayed in transposed form below:











0 1 0 0 0 1 1

0 0 1 0 0 1 0

0 0 0 1 0 0 1

0 0 0 0 1 0 0











.

If θ24 is a non-negligible effect, the bias caused by it can be found by

(W ′
CWC)

−1W ′
CW24θ24. It is clear that W24 is an all-zeros vector, and hence
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θ24 would not cause bias to θ̂w for all w ∈ C. The same argument can be

made for all other effects outside the model.

Though Rechtschaffner design DC enjoys a nice property of robustness,

it is not very efficient. We now consider a class of N -run Rechtschaffner de-

signs based on DC, where C = {s0 = φ, s1, s2, . . . , sp}, by allowing each run

in DC to appear multiple times. Let fj be the number of times the treat-

ment combination corresponding to sj appears in DC, for j = 0, 1, . . . , p,

where N =
∑p

j=0 fj. The next result gives an optimal allocation.

Proposition 4. Let C be an echelon collection. An N-run Rechtschaffner

design based on DC is AC-optimal under the BP if fj = Nq
1/2
j /

∑p
j=0 q

1/2
j

for j = 0, 1, . . . , p, where qj is the number of subsets in C that contain sj.

4. Concluding Remarks

This paper derives a linear relationship between the OP and the BP, and

from its special pattern we conclude that an echelon model has the same

form under the two types of parameterization. We further discuss its impli-

cations on estimability, optimality, and robustness of baseline designs. In

particular, we show that certain orthogonal arrays continue to be optimal

under the BP. We introduce general Rechtschaffner designs, showing they

enjoy a robust property that is only available under the BP.
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There are two possible future research directions. One is illustrated

by Example 5, regarding how to find the level permutations that min-

imize the bias caused by non-negligible effects. Under the main-effect-

only model, this has been investigated by Mukerjee and Tang (2012) and

Li, Miller, and Tang (2014). It would be useful to obtain some results

for more general echelon models. The other problem is to consider com-

promise designs between robust designs and optimal designs, which can

be done by adding runs to a Rechtschaffner design. The compromise de-

signs are expected to enjoy an in-between performance in terms of both

efficiency and robustness, as demonstrated for the main-effect model by

Karunanayaka and Tang (2017).
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A. Appendix: Proofs

A.1 Proof of Theorem 1

Let τ be a column vector with componenets τφ, τ1, τ2, τ12, . . . , τ12···m in Yates

order. Vectors θ and β are similarly defined. Let Hm be the m-fold Kro-
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A.2 Proof of Theorem 217

necker product of H and Lm the m-fold Kronecker product of L, where

H =









1/2 1/2

1/2 −1/2









and L =









1 0

1 1









.

We then have β = Hmτ and τ = Lmθ. Therefore β = HmLmθ and

θ = (HmLm)
−1β. Theorem 1 follows by noting that HmLm is the m-fold

Kronecker product of HL and (HmLm)
−1 is the m-fold Kronecker product

of (HL)−1 and the special forms of HL and (HL)−1 as given by

HL =









1 1/2

0 −1/2









and (HL)−1 =









1 1

0 −2









.

A.2 Proof of Theorem 2

This result follows immediately from Proposition 2.

A.3 Proof of Corollary 2

For a design D, let Dπ be the design obtained from D by level switching

one or more factors. We use W and Wπ to denote the model matrices

under D and Dπ for the BP, respectively. Matrices X and Xπ are defined

similarly for the OP. By Proposition 2, the ratio (det(X ′X)/det(W ′W )) =

(det(X ′
πXπ)/det(W

′
πWπ)) is a constant which only depends on the model.

Since det(X ′X) = det(X ′
πXπ), we conclude that det(W ′W ) = det(W ′

πWπ).
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A.4 Proof of Theorem 318

A.4 Proof of Theorem 3

Due to a result by Moriguti (1954), Var(β̂v) attains its minimal value for

each v ∈ C if XC is orthogonal. If C is echelon, by Theorem 1 and Corollary

1, we have that θw =
∑

v⊇w,v∈C cvβv. If w is not contained by another u in

C, then θw = cwβw. Thus, Var(θ̂w) = c2wVar(β̂w) is minimized.

A.5 Proof of Theorem 4

Consider the matrix Wm = Lm in the proof of Theorem 1, which is the

model matrix of the full model. Let W ∗
m be the N × N submatrix of Wm,

obtained by deleting all rows and columns except for the j1-, j2-,..., jN -th

rows and columns. It is sufficient to show that W ∗
m is non-singular. Note

that j1 = 1 since a Rechtschaffner design always contains g = (0, . . . , 0)

and the model always contains the intercept. The non-singularity of W ∗
m is

easily seen since Wm is a lower triangular matrix with all diagonals being

one, which the case is because Wm = Wm−1 ⊗ W1 and W1 has the same

pattern.

A.6 Proof of Theorem 5

Let C = {s0 = φ, s1, s2, . . . , sp}. Without loss of generality, let the i-th

run gi = (gi1, . . . , gim) correspond to si, i = 0, 1, . . . , p. The fitted model
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A.7 Proof of Proposition 419

can be written as E(Y ) = WCθC, where E(Y ) = (τs0, τs1 , . . . , τsp)
′ and

θC = (θφ, θs1, . . . , θsp)
′. Since there may exist some non-negligible effects θw

with w /∈ C, we let the true model be E(Y ) = WCθC +
∑

w/∈C Wwθw, where

Ww is a (p+ 1)× 1 column vector with the i-th entry equal to
∏

j∈w gij.

Let θ̂C be the least square estimator from the fitted model. Then,

E(θ̂C) = (W ′
CWC)

−1W ′
CE(Y ) = θC +

∑

w/∈C(W
′
CWC)

−1W ′
CWwθw. Thus, if we

can show that for each w /∈ C, Ww is an all-zeros column vector, then the

proof is completed. This is evident because
∏

j∈w gij is one if si contains w

as a subset, and zero otherwise. However, due to the fact that C is echelon,

no si can contain w as a subset.

A.7 Proof of Proposition 4

Let model (3.6) under the Rechtschaffner design DC (i.e., fj = 1 for j =

0, 1, . . . , p.) be E(Y ) = WCθC , where E(Y ) = (τs0, τs1 , . . . , τsp)
′ and θC =

(θφ, θs1 , . . . , θsp)
′. Consider an N -run Rechtschaffner design and let E be

the (p+ 1)× (p + 1) identity matrix. The model matrix can be written as

AWC, where A is an N × (p+1) matrix. The first f0 rows of A are the first

row of E, the following f1 rows are the second row of E, and so on. The

AC-efficiency is

tr ((AWC)
′(AWC))

−1
= tr

(

W−1
C (A′A)−1(W ′

C)
−1
)

= tr
(

(A′A)−1(W ′
C)

−1(WC)
−1
)
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It is evident that (A′A)−1 = diag(f−1
0 , f−1

1 , . . . , f−1
p ), so the AC-efficiency

is
∑p

j=0 qjf
−1
j , where qj is the (j, j)-th element of (W ′

C)
−1(WC)

−1, for j =

0, 1, . . . , p. By Cauchy-Schwarz inequality, subject to
∑p

j=0 fj = N ,
∑p

j=0 qjf
−1
j

is minimized if fj = N
(

qj
0.5/

∑p
j=0 qj

0.5
)

, so the proof can be completed

by showing qj is the number of subsets in C that contain sj .

By definition (2.2), for any w ∈ C, θw =
∑

u⊆w τu(−1)|w|−|u|, which is

equal to
∑

u∈C,u⊆w τu(−1)|w|−|u| since C is echelon. It is then implied that

θC = W−1
C E(Y ) gives the definition back, and thus the j-th column of W−1

C

is

(

(−1)|s0|−|sj|I(s0 ⊇ sj), (−1)|s1|−|sj|I(s1 ⊇ sj), . . . , (−1)|sp|−|sj|I(sp ⊇ sj)
)′
,

where I(si ⊇ sj) = 1 if si contains sj as a subsets, and 0 otherwise. Now

we can find that the (j, j)th element of (W ′
C)

−1(WC)
−1, which is the squared

length of the jth column vector of W−1
C , is

∑p
i=0{(−1)|si|−|sj|I(si ⊇ sj)}

2 =

∑p
i=0 I(si ⊇ sj) (j = 0, . . . , p).

————————-
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