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Quantile Martingale Difference Divergence

for Dimension Reduction

Chung Eun Lee and Haileab Hilafu

The University of Tennessee, Knoxville, TN 37996.

Abstract: In this article, we utilize two metrics, the quantile martingale dif-

ference divergence (QMDD) and the quantile martingale difference divergence

matrix (QMDDM) which measure the quantile dependence of a scalar response

variable and a vector of predictors, to reduce the dimension of the predictors

by considering the central quantile subspace or central subspace. The proposed

dimension reduction methods do not involve user-chosen parameters or assume

a parametric model, and are simple to implement. Extensive simulations and

real data illustration are provided to demonstrate the usefulness of the proposed

methods. The proposed methods are shown to yield competitive finite sample

performances. Theoretical properties are also provided.

Key words and phrases: Central subspace, Dimension reduction, Quantile depen-

dence.
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1. Introduction

The sufficient dimension reduction (SDR) in regression paradigm (Li

1991, Cook 1998) incorporates dimension reduction with the concept of

sufficiency to attain low-dimensional predictors without loss of information

on the regression of Y ∈ R on X ∈ Rp. A subspace spanned by the columns

of a matrix β ∈ Rp×d′ , d
′ ≤ p is said to be a sufficient dimension reduction

subspace if Y X | β>X, where denotes independence. Furthermore,

the minimal sufficient dimension reduction subspace is called the central

subspace and is formally defined as

SY |X = ∩{span(β) : Y X | β>X} := span(B), (1.1)

where B ∈ Rp×d. During the past two decades, there has been a growing

literature on SDR; see the excellent reviews by Cook (1998), Li (2018),

and Ma & Zhu (2013). The developments have been mainly devoted to

the approaches targeting the central subspace. For example, the sliced

inverse regression (Li 1991), the sliced average variance estimation (Cook

& Weisberg 1991), the parametric inverse regression (Bura & Cook 2001),

the contour regression (Li et al. 2005), the directional regression (Li & Wang

2007), and the cumulative slicing estimation (Zhu et al. 2010), the Fourier
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method (Zhu & Zeng 2006), the ensemble of minimum average variance

estimators method (Yin & Li 2011), and the sufficient dimension reduction

method via distance covariance (Sheng & Yin 2016), among others.

In many applications, the focus of a regression analysis is a particular

characteristic of Y given X, instead of the entire conditional distribution

of Y given X. Methods along this line of research include the central mean

subspace (Cook & Li 2002), the central k-th moment subspace (Yin &

Cook 2002) , the central variance subspace (Zhu & Zhu 2009), and the T -

central subspace (Luo et al. 2014). Later, Kong & Xia (2012) and Kong

& Xia (2014) proposed the quantile outer-product of gradients (QOPG)-

based method which can be used to estimate the central quantile subspace

(Luo et al. 2014); see (3.6) for the definition of the central quantile sub-

space. Recently, Christou (2019) proposed an efficient algorithm for finding

the central quantile subspace and generalized the approach considering any

statistical functional of interest. However, the approach implicitly assumes

the linear model for the conditional quantile of Y given X, when the struc-

tural dimension of the central quantile subspace dτ is one. Also, the both

procedures in Kong & Xia (2014) and Christou (2019) rely on the use of

nonparametric regression, and thus require several user-chosen quantities.

In this paper, we consider the semi-parametric model below and propose
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a new approach estimating the central quantile subspace.

Qτ (Y | X) = g(B>τ X, ε), (1.2)

where Qτ (Y | X) is the conditional τ -th quantile of Y given X, g is an arbi-

trary link function, Bτ ∈ Rp×dτ is a matrix which spans the central quantile

subspace, and ε is an error term independent of X. Throughout this article,

we assume that the central quantile subspace and central subspace exist.

We refer to Luo et al. (2014), Christou (2019), Cook (1998), and Yin et al.

(2008) for many interesting details on the central quantile subspace and the

central subspace. We first introduce a variant of the martingale difference

divergence (MDD) (Shao & Zhang 2014) the so-called quantile martingale

difference divergence (QMDD) which measures the quantile dependence,

and apply QMDD to estimate the central quantile subspace. An appealing

feature of our approach is that it does not impose any parametric struc-

ture between the conditional quantile of Y given X and B>τ X, and it does

not involve any tuning parameters, so it is simple and easy to implement.

Moreover, we introduce a new bootstrap test to determine the dimension

of the central quantile subspace. Further, we propose an inverse regres-

sion method to estimate the central subspace by developing the quantile
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martingale difference divergence matrix (QMDDM)-based approach which

is also computationally efficient as other inverse regression methods with

numerically stable estimates.

The remainder of the paper is organized as follows. In Section 2, we give

a brief review of the martingale difference divergence (Shao & Zhang 2014)

and the martingale difference divergence matrix (MDDM) (Lee & Shao

2018). We introduce QMDD, its properties, and application to estimating

the central quantile subspace in Section 3. In Section 4, we introduce the

QMDDM-based approach to seek the central subspace. Section 5 presents

numerical studies on synthetic data, and Section 6 presents application of

the proposed method to a real data set. Section 7 contains summary and

discussion. All proofs are relegated to the supplementary material.

A word on notation. Let i =
√
−1 be the imaginary unit. Scalar

product of vectors x and y is 〈x, y〉. For a complex-valued function f(·),

|f |2 = ff̄ , where f̄ is the complex conjugate of f . Denote the Euclidean

norm of X = (x1, · · · , xp) ∈ Rp as ‖X‖, where ‖X‖2 =
∑p

i=1 x
2
i . For a

square matrix A = (Ai,j)
p
i,j=1 ∈ Rp×p, the spectral norm of A is denoted as

‖A‖2 =
√
λmax(A>A), where λmax(A

>A) is the largest eigenvalue of A>A,

Forbenius norm is denoted as ‖A‖F =
√
tr(A>A) and tr(A) =

∑p
i=1 Ai,i.

For X ∈ Rp, X ∈ L2 if E‖X‖2 < ∞. The orthogonal complement of S is
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S⊥.

2. Review of MDD and MDDM

To introduce the new approaches for dimension reduction, we briefly review

the martingale difference divergence (MDD) and the martingale difference

divergence matrix (MDDM). For U ∈ Rr and V ∈ R, where r is a fixed

positive integer, Shao & Zhang (2014) proposed MDD to measure the mean

dependence of V on U, i.e.,

E(V | U) = E(V ), almost surely. (2.3)

Specifically if E(|V |2 + ‖U‖2) < ∞, MDD2(V | U) is defined as the non-

negative number which is

MDD2(V | U) = −E
[
{V − E(V )}{V ′ − E(V

′
)}‖U−U

′‖
]
, (2.4)

where (V
′
,U

′
) is an independent copy of (V,U). The key property is that

MDD2(V | U) = 0 if and only if (2.3) holds, so it fully characterizes the

mean independence of V on U.

Recently, Lee & Shao (2018) introduced MDDM, which can be viewed

as an extension of martingale difference divergence from a scalar to a matrix
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and further applied it to the dimension reduction for the conditional mean

of a multivariate time series. For two random vectors V ∈ Ru and U ∈ Rr

with E(‖V‖2 + ‖U‖2) <∞, MDDM(V | U) is defined as

MDDM(V | U) = −E
[
{V − E(V)}{V′ − E(V′)}>‖U−U′‖

]
, (2.5)

where (V′,U′) is an independent copy of (V,U). From (2.5), it is easy to

see that MDDM(V | U) ∈ Ru×u is a real, symmetric, and positive semi-

definite matrix.

3. Central Quantile Subspace

Often times, the interest of a regression analysis may be the conditional

τ -th quantile of Y given X, where τ ∈ (0, 1). To this end, we seek the

central quantile subspace which is introduced by Luo et al. (2014) and its

definition is provided below.

Definition 1. The central quantile subspace for a given τ ∈ (0, 1) is defined

as

SQ(Y |X)(τ) = ∩{span(β) : Qτ (Y | X) = Qτ (Y | β>X) almosty surely}

:= span(Bτ ). (3.6)
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It is important to note that the space SQ(Y |X)(τ) = span(Bτ ) is iden-

tifiable but not Bτ itself. Thus, we shall seek the identifiable parameter,

SQ(Y |X)(τ); see Luo et al. (2014), Sheng & Yin (2016), and Li (2018) for

more background on the identifiability of the spaces spanning the central

quantile subspace and the central subspace. We first introduce a variant of

MDD which is central to our new approach. Its definition and properties

are introduced in the following section.

3.1 Quantile Martingle Difference Divergence

By using MDD in (2.4), we state a formal definition of a natural analogue

of martingale difference divergence that quantifies the quantile dependence

between a random variable Y and a random vector X.

Definition 2. For a continuous random variable Y , a random vector X ∈

L2 and τ ∈ (0, 1), the τ -th quantile martingale difference divergence is

defined as

QMDDτ (Y | X) = −E
[
{1(Y ≤ yτ )− τ}{1(Y

′ ≤ yτ )− τ}‖X−X
′‖
]
,

where (X
′
, Y

′
) is an independent copy of (X, Y ) and yτ is the unconditional

τ -th quantile of Y .
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The quantile martingale difference divergence is a special case of MDD

so inherits the key property of MDD which is stated in the following propo-

sition. The proof is omitted since the proposition is obtained by the direct

consequence of Proposition 1 in Lee et al. (2019).

Proposition 1. For a continuous random variable Y ∈ R, a random vector

X ∈ L2, and a given τ ∈ (0, 1), we have

1. QMDDτ (Y | X) ≥ 0.

2. QMDDτ (Y | X) = 0 if and only if P (Y ≤ yτ | X) = P (Y ≤ yτ )

almost surely.

Inspired by the sample estimation of MDD2 in Shao & Zhang (2014), we

construct the estimator of QMDD as below.

Definition 3. Given the iid observations (Xi, Yi)
n
i=1 from the joint distri-

bution of (X, Y ), the sample τ -th quantile martingale difference divergence

is a nonnegative number defined as Q̂MDDτ (Y | X) = −1
n2

∑n
i,j=1{1(Yi ≤

ŷτ )−τ}{1(Yj ≤ ŷτ )−τ}‖Xi−Xj‖, where ŷτ is the empirical unconditional

τ -th quantile of Y .

Using the arguments in Section 2 of Lee & Shao (2018), it can be

shown that Q̂MDDτ (Y | X) is nonnegative and is a biased estimator of
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QMDDτ (Y | X), where the bias is asymptotically negligible when p is

fixed. It is possible to define an unbiased estimator of QMDDτ (Y | X) by

adopting U -centering approach (Székely & Rizzo (2014), Park et al. (2015),

Zhang et al. (2018)). However, the nonnegativeness is more preferred than

the unbiasedness for the optimization step in Section 3.2.

3.2 Estimation of the Central Quantile Subspace

Our specific goal is to find the linear combinations of X, say B>τ X, Bτ ∈

Rp×dτ , which can fully describe the conditional quantile of Y given X for a

pre-specified τ ∈ (0, 1). In other words, Qτ (Y | X) = Qτ (Y | B>τ X) almost

surely, where Bτ constructs the central quantile subspace. This implies that

modeling τ -th conditional quantile of Y as a function of X can be simplified

by replacing X with a lower dimensional B>τ X without loss of regression

information. Interestingly, under the Condition 1 below and using results

in Cook (1998) and Li et al. (2015), we have 1(Y ≤ yτ ) is independent

of B>0,τX, where (Bτ ,B0,τ ) ∈ Rp×p is an orthogonal matrix. This further

implies

P (Y ≤ yτ | B>0,τX) = P (Y ≤ yτ ) almost surely. (3.7)
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Condition 1. Suppose Bτ and B0,τ are the basis which span SQ(Y |X)(τ)

and S⊥Q(Y |X)(τ), respectively. Assume that B>τ X is independent of B>0,τX.

Condition 1 is an analogue of the assumptions in Proposition 1 of Sheng

& Yin (2013) and Proposition 2 of Sheng & Yin (2016), where the assump-

tion is made for the basis associated with the central quantile subspace and

its orthogonal complement. As it is mentioned in Sheng & Yin (2013) and

Sheng & Yin (2016), this assumption is not as strong as it seems to be, and

it could be satisfied asymptotically when p is reasonably large; see section

3.5 in Sheng & Yin (2013) for more discussion.

Suppose the Condition 1 holds and the structural dimension dτ is

known. Then for a given τ , we have (3.7) which is equivalent with

QMDDτ (Y | B>0,τX) = 0.

Motivated by this fact, we propose the following optimization with the

objective function Gτ (β0) = QMDDτ (Y | β>0 X). Our estimator B0,τ is

B̂0,τ = argmin
β>0 β0=Ip−dτ

Ĝτ (β0), (3.8)

where Ĝτ (·) is the sample counterpart of Gτ (·). In order to optimize (3.8)
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with efficient computational cost, we use the optimization solver with or-

thogonality constraint proposed by Wen & Yin (2013). They use the effi-

cient first-order updating procedure which preserves the orthogonality con-

straint, so it can achieve substantial saving in computational time; see Wen

& Yin (2013) for more details.

Next, we show that the estimator proposed above yields consistent esti-

mate. Since Bτ or B0,τ are only identifiable up to span(Bτ ) or span(B0,τ ),

we define the following distance and show the theoretical result. For semi-

orthogonal matrices H1, H2 ∈ Rp×p−dτ , i.e., H>1 H1 = H>2 H2 = Ip−dτ ,

D(H1,H2) =
√
p− dτ − tr(H1H>1 H2H>2 ). (3.9)

Note that D(H1,H2) = 0 if and only if span(H1) = span(H2). In prepara-

tion, we make the following assumptions.

Condition 2. (C1) The cumulative distribution function of the continu-

ous response variable Y , FY , is continuously differentiable in a small

neighborhood of yτ , say [yτ − δ0, yτ + δ0] with δ0 > 0. Let G1(δ0) =

infy∈[yτ−δ0,yτ+δ0]fY (y) and G2(δ0) = supy∈[yτ−δ0,yτ+δ0]fY (y), where fY

is the density function of Y . Assume that 0 < G1(δ0) ≤ G2(δ0) <∞.

(C2) There is a p× (p− dτ ) semi-orthogonal matrix B0,τ which minimizes
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Gτ . Furthermore, the minimum value of Gτ is obtained at a semi-

orthogonal matrix β0 if and only if D(β0,B0,τ ) = 0.

The condition (C1) is used in Shao & Zhang (2014) and Zhang et al. (2018)

for conditional quantile screening and testing. This assumption is on the

marginal distribution of Y and is quite mild. The last condition (C2) en-

sures that B0,τ is the unique minimizer of Gτ in a sense of D; see Lemma

1.1 in the supplementary material.

Theorem 1. Assume that dτ is known. Under Condition 1, Condition 2,

and X ∈ L2, we have D(B̂0,τ ,B0,τ )→p 0, as n→∞.

Remark 1. It is worth mentioning the difference among our method and

methods of Kong & Xia (2014), Christou (2019). In estimation procedure,

Kong & Xia (2014) and Christou (2019) rely on local smoothing quantile

regression whereas our approach uses QMDD which is an unconditional

mean. Thus, the existing methods require user-chosen parameters such as

a kernel function, bandwidth parameter, and the order of the polynomial

regression, whereas the QMDD-based approach involves no user-chosen pa-

rameters. Moreover, when the structural dimension is one, the approach of

Christou (2019) relies on the OLS estimate regressing the nonparametric

estimate Q̂τ (Y | X) on X which implicitly assumes that Qτ (Y | X) is a
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linear function of B>τ X, while our approach does not impose any model

assumptions between Qτ (Y | X) and B>τ X.

3.3 Dimension Selection

In practice, the dimension of the central quantile subspace is unknown

and needs to be adaptively estimated from the data. Recently, Lee et al.

(2019) introduced a wild bootstrap test for testing the mean independence

of functional data using MDD-type test statistic. Since QMDD is an ana-

logue of MDD, we follow the approach in Lee et al. (2019) and propose a

new bootstrap test with QMDD to estimate the structural dimension dτ .

In particular, we sequentially test

H
(k)
0 : dτ = k, k = 1, · · · , p

using the wild bootstrap procedure described below.

1. Compute the test statistic, Tn = n · Q̂MDDτ (Y | B̂>0,τX), where B̂>0,τ

is estimated by (3.8) and dim(B̂0,τ ) = k.

2. Generate the bootstrap statistic by

T ∗n,b =

∣∣∣∣∣−1

n

∑
i,j

w
(b)
i {1(Yi ≤ ŷτ )− τ}{1(Yj ≤ ŷτ )− τ}|B̂∗>0,τXi − B̂∗>0,τXj|w(b)

j

∣∣∣∣∣ ,
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where (w
(b)
i )ni=1 are iid with zero mean and unit variance, e.g., standard

normal variables, and

B̂∗>0,τ = argmin
β>0 β0=Ip−k

(
−1

n2

∑
i,j

w
(b)
i {1(Yi ≤ ŷτ )− τ}{1(Yj ≤ ŷτ )− τ}|β>0 Xi − β>0 Xj|w(b)

j

)2

.

3. Repeat step 2 for B times and collect (T ∗n,b)
B
b=1.

4. Obtain the (1−α)-th quantile from the collected (T ∗n,b)
B
b=1, say Q∗(1−α),

and set it as the critical value for the test with significance level α.

5. Reject the null hypothesis if Tn is greater than the critical value

Q∗(1−α).

If k is smaller than the true dimension, dτ , then we expect to reject H
(k)
0

and accept H
(k)
0 when k is identical to dτ . The theory to show the consis-

tency of the wild bootstrap test seems very challenging and is left for future

research. The main difficulty of showing the consistency of the test arises

from using the estimate B̂0,τ to compute Tn and involves the optimization

step. Nevertheless, we applied the bootstrap test to determine the dimen-

sion dτ in our simulation study and observed that the bootstrap test with

α = 10% works reasonably well; see Section 5.1.
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4. Central Subspace

In this section, we seek the central subspace SY |X and propose an estimation

method using the so-called quantile martingale difference divergence matrix.

4.1 Quantile Martingale Difference Divergence Matrix

Most existing inverse regression methods assume the linearity condition,

and the first moment methods hinge on the fact that Σ−1
{
E(X|Y = y) −

E(X)
}
∈ SY |X, for all y, where Σ = var(X). Then, the central subspace,

or its subspace, can be obtained by estimating E(X|Y = y)− E(X). Often

times, a nonparametric approach is used to estimate E(X|Y = y), which

involves a user chosen quantity, e.g., a number of slices. Instead, we focus

on the observation that

Σ−1
{
E(X|1(Y ≤ yτ ) = y)− E(X)

}
∈ SY |X, ∀τ ∈ (0, 1), ∀y ∈ {0, 1}.

(4.10)

Since (4.10) hinges on the mean dependence, we use MDDM in Lee & Shao

(2018) to characterize this relationship and define a quantile dependence

analogue of MDDM which involves no user-chosen quantities.

Definition 4. For a continuous random variable Y , a random vector X ∈
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L2 and τ ∈ (0, 1), the τ -th quantile martingale difference divergence matrix

is defined as

QMDDMX|Y (τ) = −E
[
{X− E(X)}{X′ − E(X

′
)}>|1(Y ≤ yτ )− 1(Y

′ ≤ yτ )|
]
,

where (X
′
, Y

′
) is an independent copy of (X, Y ).

Note that QMDDMX|Y (τ) is a real, symmetric, and positive semi-

definite matrix. Moreover, QMDDM inherits the same useful property as

MDDM which is span{QMDDMX|Y (τ)} = span[cov{E(X | 1(Y ≤ yτ ))}];

see Theorem 1 in Lee & Shao (2018). In the following, we show that

QMDDMX|Y (τ) can only identify one direction of SY |X. Suppose E(X) = 0.

The τ -th quantile martingale difference divergence matrix is defined as

−E
[
XX

′>|1(Y ≤ yτ )− 1(Y
′ ≤ yτ )|

]
= −E

[
XX

′>{1(Y ≤ yτ )1(Y
′
> yτ ) + 1(Y > yτ )1(Y

′ ≤ yτ )}
]

= c ·mτ (X)mτ (X)>,

where c is a positive number and mτ (X) = E [X1(Y ≤ yτ )] ∈ Rp. This

implies that the rank of QMDDMX|Y (τ) is one. Similar to the sample

estimation of MDDM in Lee & Shao (2018), we define the sample estimator
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of QMDDM as given in the definition below.

Definition 5. Given iid observations (Xi, Yi)
n
i=1 from the joint distribution

of (X, Y ), the sample τ -th quantile martingale difference divergence matrix

is defined as ̂QMDDMX|Y (τ) = − 1
n2

∑n
h,l=1(Xh − X)(Xl − X)>|1(Yh ≤

ŷτ )− 1(Yl ≤ ŷτ )|, where X = 1
n

∑n
h=1 Xh.

4.2 Estimation of the Central Subspace

As we mentioned in Section 4.1, for a given τ , QMDDMX|Y (τ) can only

provide one direction. In Theorem 2, we show that this direction indeed

belongs to SY |X.

Theorem 2. Assume the linearity condition that E(X | B>X) is a linear

function of B>X, where B is a p × d basis matrix for SY |X. Then for a

continuous random variable Y , a random vector X ∈ L2, and any τ ∈ (0, 1),

we have Σ−1span{QMDDMX|Y (τ)} ⊆ SY |X.

In order to gather information of SY |X under different quantiles, we con-

struct a new matrix by following the approaches in Kong & Xia (2014) and

Christou (2019).

Definition 6. Let γ1,τ be the eigenvector of QMDDMX|Y (τ) associated
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with the largest eigenvalue. We define a new matrix by

Γ =

∫ 1

0

Γ(τ)dτ, where Γ(τ) = γ1,τγ
>
1,τ .

Note that the matrix Γ is a real, symmetric, positive semidefinite matrix

and encodes the information about the directions of SY |X. More precisely,

the eigenvectors of Γ corresponding to the largest d eigenvalues of Γ belong

to SY |X. The technique of aggregating the valid directions of the cen-

tral subspace in Γ is quite common in SDR and provides successful finite

sample performances; see Li (1991), Kong & Xia (2014), Christou (2019).

As we have finite observations of (Xi, Yi)
n
i=1, we shall approximate Γ by

(τi)
n−1
i=1 , τi = i

n
. In other words, we define

Γ̂ =
1

n

n−1∑
i=1

Γ̂(τi), where Γ̂(τi) = γ̂1,τi γ̂
>
1,τi
,

and γ̂1,τi is the eigenvector of ̂QMDDMX|Y (τi) associated with the largest

eigenvalue.

Denote {νj, ηj}pj=1 and {ν̂j, η̂j}pj=1 as the eigenvalues and eigenvectors

of Γ and Γ̂, respectively. We make the following assumptions, under which

we establish the consistency of {ν̂j, η̂j}dj=1.
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Condition 3. (D1) The eigenvalues of Γ are given by ν1 > ν2 > · · · >

νd > 0 = νd+1 = · · · = νp.

(D2) All elements of Γ(τ) are absolutely continuous on [0,1].

Theorem 3. Under Condition 3 and X ∈ L2, we have

1. ν̂j − νj = Op(n
−1/2) for j = 1, · · · , d,

2. ‖η̂j − ηj‖ = Op(n
−1/2) for j = 1, · · · , d.

Theorem 3 suggests that the empirical eigenvalues and eigenvectors of Γ̂

are reasonable estimators of the population counterparts for large sample

size. This theorem is proved for fixed p, and the theory for growing p is left

for future research.

In practice, the structural dimension d of the central subspace is un-

kown. To estimate it, we adopt the BIC-type criterion proposed by Feng

et al. (2013).

d̂ = arg max
d∈{1,··· ,p}

n
d∑

m=1

(log(λ̂m + 1)− λ̂m)

2
p∑

m=1

(log(λ̂m + 1)− λ̂m)

− 2Cn ×
d(d+ 1)/2

p

 , (4.11)

where Cn is a penalty constant, and d(d+1)/2 equals to the number of free

parameters.
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5. Numerical Simulations

In this section, we evaluate the finite sample performance of the proposed

methods through simulations, and compare their performances with existing

ones. In order to assess the estimation accuracy, we compute the trace

correlation (Zhu et al. 2010), i.e., R = tr(PBPB̂)/d, where PB represents

the projection matrix onto the column space of B. Note that 0 ≤ R ≤ 1

and R = 1 if span(B) is identical to span(B̂), and R = 0 if span(B) is

perpendicular to span(B̂). Thus, larger values of R indicate more accurate

estimates. For each example, we repeat the simulations 100 times and

report results in the form of mean(standard deviation) of R. When

assessing the estimation performance, we treat the structural dimension as

known. However, we carry out separate simulation analysis to assess the

performance of estimating the dimension using the bootstrap procedure in

Section 3.3 or BIC-type criterion (Feng et al. 2013) in Section 4.2.

5.1 Central Quantile Subspace

In this section, we estimate the central quantile subspace. In particu-

lar, we compare with the methods of QOPG in Kong & Xia (2014) and

SIQR/MIQR in Christou (2019). These two methods involve several user-

chosen parameters. We follow the choices made in the code provided and
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the suggestions in Li (2018), Kong & Xia (2014), Christou (2019). We tried

several different bandwidth parameters, h = chn
−1/(p+4) or h = chn

−1/(dτ+4)

depending on the predictor used for smoothing, ch = 0.7, 1.5, 2.34, and use

the Gaussian kernel, linear quantile regression. Throughout the simulations

for central quantile subspace, we consider the sample sizes n = 200, 400,

the dimensions of the predictor vector p = 5, 10, and the quantiles τ =

0.25, 0.5, 0.75 unless otherwise specified. For the dimension selection, the

bootstrap replicate B = 400, {wi}ni=1 are from the standard normal distri-

bution, and the significance level is α = 10%.

Example 1. This example is adopted from Christou (2019). The response

variable Y is generated as Y = 3x1 + x2 + ε, where X = (x1, · · · , xp) and

ε are independently generated from standard normal distribution. For a

given τ , Bτ = (3, 1, 0, · · · , 0)>/
√

10.

Table 1 reports the trace correlation R for each method. All methods

estimate the central quantile subspace accurately in terms of a higher R.

Also, all three methods produce very comparable results. We observe that

when p decreases or n increases, all methods improve. Note that Qτ (Y | X)

depends on B>τ X in a linear fashion and so, the SIQR of Christou (2019) is

expected to perform well since it uses OLS estimate regressing Q̂τ (Y | X)

on X. It is interesting that the QMDD-based and QOPG-based approaches
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can perform better than SIQR in some cases, e.g., when p = 5. It appears

that the QOPG-based method performs slightly better than the QMDD

and SIQR counterparts.

Table 1: Simulation results for the central τ−th quantile subspace estimation. Reported
results are mean(standard deviation) of the trace correlation from 100 replications.

τ = 0.25 τ = 0.5 τ = 0.75

Method p n = 200 n =400 n = 200 n =400 n = 200 n =400

QMDD
5 0.97 (0.02) 0.99 (0.01) 0.98 (0.01) 0.99 (0.01) 0.97 (0.02) 0.99 (0.01)

10 0.95 (0.02) 0.98 (0.01) 0.96 (0.02) 0.98 (0.01) 0.95 (0.02) 0.98 (0.01)

QOPG

ch = 0.7
5 0.98 (0.01) 0.99 (0.01) 0.98 (0.01) 0.99 (0.01) 0.98 (0.01) 0.99 (0.01)

10 0.97 (0.01) 0.99 (0.01) 0.97 (0.01) 0.99 (0.01) 0.97 (0.01) 0.99 (0.01)

ch = 1.5
5 0.99 (0.01) 1.00 (0.00) 0.99 (0.01) 1.00 (0.00) 0.99 (0.01) 1.00 (0.00)

10 0.98 (0.01) 0.99 (0.01) 0.98 (0.01) 0.99 (0.01) 0.98 (0.01) 0.99 (0.01)

ch = 2.34
5 0.99 (0.01) 1.00 (0.00) 0.99 (0.01) 1.00 (0.00) 0.99 (0.01) 1.00 (0.00)

10 0.98 (0.01) 0.99 (0.00) 0.98 (0.01) 0.99 (0.00) 0.98 (0.01) 0.99 (0.01)

SIQR

ch = 0.7
5 0.97 (0.03) 0.98 (0.04) 0.97 (0.02) 0.98 (0.04) 0.97 (0.03) 0.98 (0.04)

10 0.97 (0.02) 0.98 (0.01) 0.97 (0.02) 0.98 (0.01) 0.97 (0.02) 0.98 (0.01)

ch = 1.5
5 0.97 (0.03) 0.98 (0.04) 0.97 (0.03) 0.98 (0.04) 0.97 (0.03) 0.98 (0.04)

10 0.97 (0.02) 0.98 (0.01) 0.97 (0.02) 0.98 (0.01) 0.97 (0.02) 0.98 (0.01)

ch = 2.34
5 0.97 (0.03) 0.98 (0.04) 0.97 (0.03) 0.98 (0.04) 0.97 (0.03) 0.98 (0.04)

10 0.96 (0.02) 0.98 (0.01) 0.96 (0.02) 0.98 (0.01) 0.97 (0.02) 0.98 (0.01)

Example 2. This example is adopted from Kong & Xia (2012) with slight

modification which satisfies Condition 1. The data is generated by Y =

exp(3
√
2x1+3

√
2x5−6+6x3ε)

1+exp(3
√
2x1+3

√
2x5−6+6x3ε)

, where X = (x1, · · · , xp) are independently gener-

ated from U(0, 1), ε is from U(−1, 1). For a given τ , Bτ = (
√

2, 0, 2(2τ −

1), 0,
√

2, 0, · · · , 0)>/
√

4 + 4(2τ − 1)2.

From Table 2, we can see that QMDD-based and QOPG-based methods

outperform the SIQR method. Notice that the model has a strong nonlinear
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quantile dependence between Y and B>τ X. We speculate that this could

be a part of the reason for the inferior performance of the SIQR approach.

It also shows that the QOPG-based approach performs better than the

QMDD-based counterpart for some cases depending on (τ, h). Furthermore,

the performance of the existing methods substantially changes based on

different values of ch, showing its sensitivity with respect to the choice of

h. It is also worth noting that there seems no uniformly best choice of h

which gives the best performance for all cases. In other words, for different

combinations of (τ, n, p), different values of h yield the best performance.

Table 2: Simulation results for the central τ−th quantile subspace estimation. Reported
results are mean(standard deviation) of the trace correlation from 100 replications.

τ = 0.25 τ = 0.5 τ = 0.75

Method p n = 200 n =400 n = 200 n =400 n = 200 n =400

QMDD
5 0.89 (0.06) 0.93 (0.04) 0.95 (0.04) 0.98 (0.02) 0.91 (0.06) 0.94 (0.04)

10 0.83 (0.08) 0.90 (0.05) 0.90 (0.05) 0.95 (0.02) 0.84 (0.07) 0.91 (0.04)

QOPG

ch = 0.7
5 0.66 (0.18) 0.75 (0.12) 0.83 (0.15) 0.89 (0.10) 0.81 (0.17) 0.88 (0.10)

10 0.56 (0.11) 0.63 (0.09) 0.83 (0.09) 0.91 (0.05) 0.80 (0.09) 0.86 (0.06)

ch = 1.5
5 0.93 (0.04) 0.97 (0.03) 0.95 (0.03) 0.97 (0.02) 0.97 (0.02) 0.99 (0.01)

10 0.79 (0.09) 0.87 (0.05) 0.89 (0.05) 0.94 (0.03) 0.91 (0.04) 0.95 (0.02)

ch = 2.34
5 0.94 (0.04) 0.97 (0.02) 0.95 (0.03) 0.97 (0.02) 0.97 (0.02) 0.99 (0.01)

10 0.88 (0.06) 0.93 (0.04) 0.91 (0.04) 0.95 (0.02) 0.94 (0.03) 0.97 (0.02)

SIQR

ch = 0.7
5 0.44 (0.25) 0.42 (0.22) 0.52 (0.25) 0.53 (0.21) 0.45 (0.28) 0.47 (0.25)

10 0.41 (0.19) 0.45 (0.17) 0.56 (0.20) 0.64 (0.20) 0.51 (0.21) 0.59 (0.21)

ch = 1.5
5 0.36 (0.25) 0.37 (0.22) 0.43 (0.27) 0.47 (0.24) 0.38 (0.30) 0.43 (0.27)

10 0.36 (0.19) 0.41 (0.19) 0.50 (0.23) 0.60 (0.23) 0.47 (0.24) 0.58 (0.24)

ch = 2.34
5 0.34 (0.25) 0.35 (0.22) 0.40 (0.28) 0.44 (0.25) 0.36 (0.30) 0.42 (0.27)

10 0.35 (0.19) 0.40 (0.19) 0.49 (0.24) 0.60 (0.24) 0.47 (0.25) 0.58 (0.24)

Example 3. This example is taken from Luo et al. (2014) and it ad-
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dresses the correlated X case. More specifically the data is generated by

Y = 1 + x1 + (1 + 0.4x2)ε, where X = (x1, · · · , xp) is from N(0,Σ), Σ =

[Σij]
p
i,j=1, Σij = 0.5|i−j| and ε is from standard normal distribution. This is a

heteroscedastic model, where Bτ = (1, 0.4Φ−1(τ), 0, · · · , 0)>/
√

1 + (0.4Φ−1(τ))2,

Φ is the c.d.f. of the standard normal distribution.

The trace correlation results are reported in Table 3. The QMDD-based

and the QOPG-based methods are superior to the SIQR approach in terms

of a higher R in all cases. For τ = 0.25, 0.5, we observe that our method

is comparable or outperforms the QOPG method when ch = 0.7, 1.5. Note

that X is correlated which indicates that Condition 1 is not valid in this

example. It shows that our QMDD-based approach could still work for

correlated B>τ X and B>0,τX to some extent.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



5.1 Central Quantile Subspace26

Table 3: Simulation results for the central τ−th quantile subspace estimation. Reported
results are mean(standard deviation) of the trace correlation from 100 replications.

τ = 0.25 τ = 0.5 τ = 0.75

Method p n = 200 n =400 n = 200 n =400

QMDD
5 0.93 (0.06) 0.95 (0.04) 0.93 (0.06) 0.97 (0.03) 0.88 (0.08) 0.95 (0.04)

10 0.86 (0.08) 0.92 (0.04) 0.86 (0.07) 0.93 (0.04) 0.77 (0.11) 0.88 (0.05)

QOPG

ch = 0.7
5 0.70 (0.25) 0.83 (0.14) 0.75 (0.21) 0.86 (0.12) 0.75 (0.17) 0.86 (0.10)

10 0.71 (0.15) 0.82 (0.09) 0.77 (0.11) 0.89 (0.07) 0.74 (0.10) 0.84 (0.07)

ch = 1.5
5 0.93 (0.05) 0.97 (0.03) 0.94 (0.05) 0.97 (0.02) 0.94 (0.04) 0.97 (0.02)

10 0.83 (0.11) 0.91 (0.05) 0.86 (0.08) 0.93 (0.04) 0.85 (0.07) 0.92 (0.04)

ch = 2.34
5 0.95 (0.05) 0.97 (0.02) 0.95 (0.04) 0.98 (0.02) 0.94 (0.04) 0.97 (0.02)

10 0.89 (0.07) 0.94 (0.04) 0.90 (0.05) 0.95 (0.03) 0.89 (0.05) 0.94 (0.03)

SIQR

ch = 0.7
5 0.46 (0.28) 0.53 (0.29) 0.46 (0.28) 0.54 (0.30) 0.32 (0.23) 0.39 (0.23)

10 0.38 (0.24) 0.56 (0.24) 0.46 (0.24) 0.65 (0.22) 0.30 (0.17) 0.44 (0.19)

ch = 1.5
5 0.42 (0.28) 0.52 (0.30) 0.42 (0.29) 0.54 (0.30) 0.30 (0.23) 0.37 (0.24)

10 0.36 (0.23) 0.55 (0.25) 0.44 (0.25) 0.64 (0.22) 0.28 (0.17) 0.43 (0.19)

ch = 2.34
5 0.42 (0.29) 0.51 (0.30) 0.41 (0.30) 0.54 (0.30) 0.29 (0.23) 0.36 (0.24)

10 0.35 (0.24) 0.55 (0.25) 0.43 (0.25) 0.64 (0.22) 0.27 (0.18) 0.43 (0.19)

Example 4. This example considers an inverse model. In particular, we

generate the data by X = β1log(Y 2 + 1.5) + β2(sign(Y )) + ε, where Y

is generated from U(−3, 3), ε is from Beta(1,2), and β1 = b1, β2 = b2

or β1 = (b>1 , b
>
1 )>/

√
2, β2 = (b>2 , b

>
2 )>/

√
2, where b1 = (2, 0,−1, 0, 2)>/3,

b2 = (0, 1, 0, 1, 0)>/
√

2. There are two directions and Bτ = (β1, β2) for

τ = 0.25, 0.75.

Table 4 summarizes the performance of our method, the QOPG and

MIQR approaches. The QMDD-based approach is superior to the method

of QOPG and MIQR. As the data is generated from the inverse model, this

example seems to be more complicated than the previous examples. Due
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to this fact, we presume that this could have affected the nonparametric

modeling step in QOPG and MIQR, and lead to some loss of accuracy.

Table 4: Simulation results for the central τ−th quantile subspace estimation. Reported
results are mean(standard deviation) of the trace correlation from 100 replications.

τ = 0.25 τ = 0.75

Method p n = 200 n =400 n = 200 n =400

QMDD
5 0.99 (0.01) 0.99 (0.01) 0.99 (0.01) 0.99 (0.01)

10 0.97 (0.02) 0.98 (0.01) 0.97 (0.02) 0.98 (0.01)

QOPG

ch = 0.7
5 0.57 (0.09) 0.53 (0.05) 0.58 (0.10) 0.53 (0.05)

10 0.51 (0.06) 0.53 (0.07) 0.52 (0.08) 0.54 (0.08)

ch = 1.5
5 0.94 (0.04) 0.96 (0.02) 0.94 (0.03) 0.97 (0.02)

10 0.87 (0.04) 0.93 (0.02) 0.87 (0.04) 0.93 (0.02)

ch = 2.34
5 0.94 (0.04) 0.97 (0.02) 0.94 (0.03) 0.97 (0.02)

10 0.82 (0.05) 0.91 (0.03) 0.82 (0.06) 0.91 (0.03)

MIQR

ch = 0.7
5 0.54 (0.07) 0.55 (0.07) 0.54 (0.07) 0.54 (0.06)

10 0.49 (0.03) 0.51 (0.03) 0.49 (0.03) 0.51 (0.03)

ch = 1.5
5 0.55 (0.08) 0.54 (0.07) 0.54 (0.06) 0.54 (0.07)

10 0.49 (0.03) 0.51 (0.02) 0.49 (0.02) 0.51 (0.03)

ch = 2.34
5 0.53 (0.06) 0.54 (0.06) 0.53 (0.06) 0.52 (0.04)

10 0.49 (0.03) 0.51 (0.02) 0.49 (0.02) 0.51 (0.02)

Example 5. In this example, we generate the response variable Y by Y =

√
x1 + 1 +

√
x2 + 1 + ε, where X = (x1, · · · , xp) is generated by χ2(2), and

ε is from Beta(1,2). Here Bτ = (β1, β2), where β1 = (1, 0, · · · , 0)> and

β2 = (0, 1, 0, · · · , 0)>.

From Table 5, it appears that our approach outperforms the existing

methods in all cases. Overall, our simulation evidence seems to suggest that

the QMDD-based approach can perform better than the existing methods

for both forward and inverse models with quite stable performance while
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the performance of existing ones show sensitivity with respect to the choice

of h. It is worth mentioning that our approach does not involve any user-

chosen quantities and is simpler to implement.

Table 5: Simulation results for the central τ−th quantile subspace estimation. Reported
results are mean(standard deviation) of the trace correlation from 100 replications.

τ = 0.25 τ = 0.5 τ = 0.75

Method p n = 200 n =400 n = 200 n =400 n = 200 n =400

QMDD
5 0.90 (0.07) 0.94 (0.05) 0.92 (0.06) 0.96 (0.04) 0.93 (0.06) 0.96 (0.03)

10 0.80 (0.09) 0.86 (0.07) 0.86 (0.08) 0.91 (0.05) 0.87 (0.06) 0.92 (0.05)

QOPG

ch = 0.7
5 0.61 (0.13) 0.62 (0.12) 0.60 (0.13) 0.62 (0.11) 0.61 (0.13) 0.63 (0.14)

10 0.54 (0.06) 0.54 (0.07) 0.55 (0.07) 0.55 (0.07) 0.55 (0.07) 0.56 (0.08)

ch = 1.5
5 0.65 (0.16) 0.72 (0.15) 0.68 (0.16) 0.76 (0.15) 0.70 (0.16) 0.77 (0.16)

10 0.53 (0.04) 0.55 (0.06) 0.56 (0.08) 0.61 (0.11) 0.60 (0.10) 0.67 (0.13)

ch = 2.34
5 0.77 (0.17) 0.89 (0.10) 0.75 (0.17) 0.86 (0.12) 0.74 (0.15) 0.86 (0.12)

10 0.58 (0.10) 0.69 (0.13) 0.65 (0.11) 0.75 (0.12) 0.67 (0.13) 0.77 (0.12)

MIQR

ch = 0.7
5 0.64 (0.14) 0.64 (0.15) 0.64 (0.14) 0.66 (0.15) 0.63 (0.14) 0.64 (0.15)

10 0.54 (0.06) 0.54 (0.07) 0.54 (0.06) 0.54 (0.06) 0.54 (0.07) 0.54 (0.06)

ch = 1.5
5 0.66 (0.14) 0.65 (0.13) 0.65 (0.14) 0.65 (0.14) 0.66 (0.15) 0.65 (0.15)

10 0.54 (0.07) 0.54 (0.07) 0.55 (0.07) 0.55 (0.08) 0.55 (0.08) 0.55 (0.07)

ch = 2.34
5 0.67 (0.14) 0.65 (0.13) 0.67 (0.15) 0.66 (0.14) 0.67 (0.15) 0.65 (0.15)

10 0.55 (0.07) 0.55 (0.07) 0.55 (0.08) 0.56 (0.08) 0.56 (0.09) 0.55 (0.07)

Lastly, we apply the bootstrap test described in Section 3.3 to select the

dimension of the central quantile subspace. Table 6 reports the percentage

of correctly identifying the structural dimension of the central quantile sub-

space under the previous simulation models when n = 400 and p = 5. The

bootstrap test for dimension selection has reasonable results for all models.
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Table 6: Percentages of correctly selected dimension, under-selection, and over-selection
over 100 replicates for each example.

Model τ d̂τ < dτ d̂τ = dτ d̂τ > dτ

Example 1
0.25 0 100 0

0.50 0 100 0

0.75 0 100 0

Example 2
0.25 0 99 1

0.50 0 100 0

0.75 0 100 0

Example 3
0.25 0 100 0

0.50 0 100 0

0.75 0 100 0

Example 4
0.25 0 100 0

0.75 0 100 0

Example 5
0.25 1 90 9

0.50 0 88 12

0.75 0 99 1

5.2 Central Subspace

In this section, we estimate the central subspace. We compare our method

with the existing inverse regression methods including the sliced inverse

regression (SIR; Li 1991), the directional regression (DR; Li & Wang 2007),

and the cumulative slicing (CUME; Zhu et al. 2010). For SIR and DR, the

number of slices is 5. We consider the sample size n = 200, 400, and the

dimension of the predictor p = 10, 20. When we estimate the structural

dimension using the BIC-type criterion, we use Cn = n1/3p2/3 following the

recommendation in Feng et al. (2013).
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Example 6. This example considers a single index model. More specifi-

cally, the response Y is generated by Y = (β>1 X+1)3+ε, where X and ε are

generated from U(0, 5) and U(−1, 1), respectively. The central subspace is

spanned by B = β1, where β1 = (1, 1, 1, 0, 0, · · · , 0)>.

Table 7 summarizes the performance of all methods under different

models. For this example, it appears that all approaches perform reason-

ably well, where our QMDDM-based method performs slightly better than

the existing ones. Overall, when n increases and p decreases, all methods

produce better estimates of PB as R increases.

Example 7. In this example, we consider a heteroscedastic model. In

particular, we generate the data by the following model. Y = exp(β>1 X+1+

β>2 Xε), where X and ε are defined in Example 6. The structural dimension

is equal to two and B = (β1, β2), where β1 = (1, 1, 1, 0, 0, · · · , 0)> and

β2 = (0, 0, 0, 1, 1, 1, 0, · · · , 0)>.

From Table 7, we observe that our QMDDM-based approach is superior

to the existing methods in terms of a higher R. It shows that CUME and

SIR are comparable with the CUME slightly performing better than the

SIR and outperforming the DR.

Example 8. In this example, we examine a model with correlated X.
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We generate the response by Y =
β>1 X

(β>2 X+1.5)2+0.5
+ 0.5β>1 Xε, where X is

generated from N(0,Σ), where Σ = [σij]
p
i,j=1, σij = 0.5|i−j|, and ε is

generated from N(0, 1). Here, B = (β1, β2), where β1 = (1, 0, · · · , 0)>,

β2 = (0, 1, 0 · · · , 0)>.

Table 7 also presents the means and standard errors of all approaches

for this example. It suggests that the QMDDM-based method generates

higher R values than the other ones which indicates that the QMDD-based

approach outperforms the other methods in all cases.

Example 9. In this example, we consider an inverse model introduced in

Example 4. In particular, we generate X = β1log(Y 2+1.5)+β2(sign(Y ))+ε,

where Y , ε, and B = Bτ are defined in Example 4.

According to Table 7, it seems that all methods produce accurate re-

sults since R values are high enough. More precisely, the CUME and the

QMDDM-based methods are very comparable and outperform the other ex-

isting methods. To summarize, the simulation results clearly demonstrate

the usefulness of the proposed approach which is easy to implement and

includes no user-chosen parameter.

Furthermore, Table 8 reports the percentage of correctly identifying the

structural dimension of the central subspace under the previous simulation
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models when n = 400 and p = 10. We apply BIC-type criterion in Sec-

tion 4.2. We observe that BIC-type criterion works fairly well under all

models.

Table 7: Simulation results for the central subspace estimation. Reported results are
mean(standard deviation) of the trace correlation from 100 replications.

Model p n CUME SIR DR QMDDM

Example 6
10

200 0.98 (0.01) 0.99 (0.00) 0.99 (0.00) 1.00 (0.00)
400 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

20
200 0.97 (0.01) 0.99 (0.00) 0.98 (0.01) 1.00 (0.00)
400 0.98 (0.01) 1.00 (0.00) 0.99 (0.00) 1.00 (0.00)

Example 7
10

200 0.79 (0.07) 0.75 (0.10) 0.51 (0.14) 0.83 (0.06)
400 0.88 (0.04) 0.85 (0.06) 0.65 (0.15) 0.91 (0.03)

20
200 0.63 (0.07) 0.57 (0.10) 0.26 (0.12) 0.66 (0.07)
400 0.78 (0.05) 0.73 (0.07) 0.38 (0.12) 0.79 (0.05)

Example 8
10

200 0.79 (0.07) 0.74 (0.11) 0.65 (0.13) 0.88 (0.08)
400 0.86 (0.06) 0.86 (0.09) 0.80 (0.13) 0.94 (0.05)

20
200 0.63 (0.09) 0.52 (0.11) 0.40 (0.11) 0.75 (0.10)
400 0.76 (0.06) 0.72 (0.08) 0.63 (0.12) 0.87 (0.05)

Example 9
10

200 0.99 (0.00) 0.86 (0.05) 0.83 (0.05) 0.99 (0.00)
400 0.99 (0.00) 0.92 (0.02) 0.91 (0.03) 1.00 (0.00)

20
200 0.98 (0.01) 0.72 (0.05) 0.66 (0.05) 0.99 (0.00)
400 0.99 (0.00) 0.84 (0.03) 0.81 (0.04) 0.99 (0.00)

Table 8: Percentages of correctly selected dimension, under-selection, and over-selection
over 100 replicates for each example.

Model d̂ < d d̂ = d d̂ > d

Example 6 0 100 0

Example 7 0 100 0

Example 8 14 86 0

Example 9 0 100 0
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6. Real Data Illustration

In this section, we focus on the central quantile subspace and consider the

riboflavin data which has been analyzed by Buhlmann et al. (2014) and

Zhang et al. (2019). This data contains 71 samples of the riboflavin pro-

duction rate and the expression level of 4,088 genes. The response is the

logarithm of the riboflavin production rate and the predictors are the loga-

rithm of the expression level of genes. Due to the high dimensionality and

relatively small sample size, we apply variable screening to the predictors

similar to Buhlmann et al. (2014) and Zhang et al. (2019). In particular,

we select g strongly related genes to the riboflavin production rate by using

the quantile dependence analogue of the martingale difference correlation in

Shao & Zhang (2014). After applying the bootstrap test in Section 3.3, we

determine dτ = 1 for τ = 0.25, 0.5, 0.75 with the selected genes. We apply

the proposed method and the existing methods with the same user-chosen

quantities in Section 5.1. Figure 1 reports the estimated direction using

the whole data with g = 5 and the estimated direction with g = 10 is very

similar to the ones in the figure; see the supplementary material. It shows

some curvatures for τ = 0.25, 0.5, 0.75. To evaluate the estimation sta-

bility of the central quantile subspace, we consider the boostrap variability

B−1
∑B

b=1 ‖PB̂τ
−PB̂bτ

‖F , where B̂τ is the estimated semi-orthogonal matrix
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on the whole data and B̂b
τ , b = 1, · · · , B, is the estimated semi-orthogonal

matrix on 71 bootstrap samples from B = 100 bootstrap replicates. The

boostrap variability is summarized in Table 9 which includes the best re-

sults of the existing methods among different bandwidth parameters. It

shows that the proposed method generates more stable estimation of the

central quantile subspace than the existing methods. In terms of the com-

putational time, the QMDD-based approach requires comparable or less

computational time than the existing counterparts for this data set. In

particular, when g = 5 and ch = 0.7, and τ = 0.25, the QMDD, the QOPG,

and the SIQR methods take 4.64, 14.54, and 5.17 (seconds) for B = 100

bootstrap replicates. The computation has been done by Windows 10 com-

puter with Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz processor, 32.0 GB

installed memory (RAM), 64-bit Operating System.

QMDD QOPG SIQR

τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.25 τ = 0.5 τ = 0.75

g = 5 0.20 (0.02) 0.16 (0.01) 0.15 (0.01) 0.45 (0.02) 0.72 (0.03) 0.55 (0.03) 0.50 (0.03) 0.85 (0.03) 0.64 (0.02)
g = 10 0.28 (0.02) 0.20 (0.01) 0.17 (0.01) 0.69 (0.02) 0.89 (0.03) 0.87 (0.03) 0.72 (0.02) 0.85 (0.03) 0.93 (0.03)

Table 9: Comparison of methods for the central quantile subspace in esti-
mation stability.
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Figure 1: Sufficient summary plots of the central τth-quantile subspace direction for
QMDD approach with g = 5. The solid lines refer to the local quantile regressions for
each quantile.

7. Conclusion

In this paper, we use two metrics, the quantile martingale difference diver-

gence and quantile martingale difference divergence matrix to estimate the

central quantile subspace and the central subspace, respectively. We also

introduce a new bootstrap test to select the structural dimension for cen-

tral quantile subspace and use BIC-type criterion to choose the dimension

of central subspace. Finite sample performances and real data application

suggest that our QMDD(M)-based approach performs comparably well and

can produce more accurate results with comparable or less computational

time. In contrast to the existing methods for the central quantile sub-

space or the central subspace, the QMDD(M)-based approach includes no

user-chosen numbers so the QMDD(M)-based approach is more convenient
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and simple to implement. Theoretical results are obtained under suitable

conditions and they justify the validity of our methods.

We shall conclude by mentioning several future research topics. The

bootstrap test to select the structural dimension is worth investigating. A

rigorous theoretical study is needed. It would be important to understand

the behavior of the proposed approaches when the dimension p is large from

theoretical aspects and examine if we can extend the method to large p case

however it seems to be very challenging. Another issue is that we assume

Y is a univariate throughout the article. It would be useful to extend

our methods to a multivariate Y which seems to be nontrivial. Lastly, it

would be interesting to extend the idea to estimate the envelope quantile

regression in Ding et al. (2019) considering the connection between SDR

and the predictor envelope model. The research along these directions are

well underway.
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