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POWER ANALYSIS OF

PROJECTION-PURSUIT INDEPENDENCE TESTS

Kai Xu and Liping Zhu

Anhui Normal University and Renmin University of China

Abstract: Three important projection-pursuit correlations, namely, distance cor-1

relation, projection correlation and the multivariate Blum-Kiefer-Rosenblatt (BKR)2

correlation, have been proposed in the literature to test independence between3

two random vectors in arbitrary dimensions. In this paper we compare the asymp-4

totic power performance of independence tests built upon these three projection-5

pursuit correlations in a uniform sense. We show that, in the presence of outliers,6

the projection correlation test and the multivariate BKR correlation test are still7

powerful, whereas the distance correlation test may lose power. We also analyze8

the minimax optimality of these independence tests. We show that their mini-9

mum separation rates are of order n−1, where n stands for the sample size, and10

this minimax optimal rate is tight in terms of projection correlation, distance11

correlation and multivariate BKR correlation, respectively.12

Key words and phrases: distance correlation; independence test; minimax opti-13

mality; projection correlation; power function; robustness14
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1. INTRODUCTION

1. INTRODUCTION15

Many important applications require to quantify the degree of nonlinear de-16

pendence between two random vectors. For example, in genomics research,17

one may be interested to test whether certain diseases are associated with18

mutations of a particular group of genes. In economic studies, one may wish19

to evaluate nonlinear dependence between the stock market and real estate20

returns. In brain sciences, one may expect to discover whether two sets of21

voxels measured over time at different parts of brain are functionally related.22

We formulate these applications into the problems of testing independence.23

In symbols, let x = (X1, . . . , Xp)
T ∈ Rp and y = (Y1, . . . , Yq)

T ∈ Rq be two24

random vectors. We assume throughout that p > 1 and q > 1 unless stated25

otherwise. The goal of independence tests is to test26

H0 : x and y are statistically independent; H1 : x and y are dependent.(1.1)27

Testing for independence has a long history in the literature. Pearson28

correlation is perhaps the first and one of the most important metrics to test29

for independence between two univariate random variables (i.e. p = q = 1).30

Extensions within the univariate case include, but not limited to, Hoeffding31

(1948), Blum et al. (1961) and Bergsma and Dassios (2014). These exten-32

sions are based on ranks of observations and thus are not able to be used33
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1. INTRODUCTION

if either x or y is multivariate (i.e. p > 1 or q > 1). In the multivariate34

case where both x and y follow jointly normal or elliptically symmetric35

distributions, testing for independence amounts to testing whether they36

are linearly uncorrelated (Oja, 2010). Important examples along this line37

include likelihood ratio test (Wilks, 1935) and canonical correlation coeffi-38

cient (Hotelling, 1936). Interested readers may refer to Puri and Sen (1971),39

Hettmansperger and Oja (1994) and Taskinen et al. (2005) for extensions40

of likelihood ratio test.41

In the past two decades, there has been much effort to relax the dis-42

tributional assumptions. See, for example, Kankainen (1995) and Bakirov43

et al. (2006). Gretton et al. (2005) proposed an independence criterion44

based on the entire eigen-spectrum of covariance operators in reproducing45

kernel Hilbert spaces. Székely et al. (2007) and Székely and Rizzo (2009)46

made important advances through proposing distance correlation to test47

independence between two random vectors in arbitrary dimensions. Dis-48

tance correlation is well defined by assuming the first moments of both x49

and y are finite, and is generalized by Sejdinovic et al. (2013), Pan et al.50

(2019) and Shen et al. (2019) from different perspectives. Heller et al.51

(2013) pointed out that, if the moment conditions are violated, say, if the52

underlying distribution of either x or y is heavy-tailed or the observations53
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contain outliers, the distance correlation test may suffer from low power.54

Given that outlying observations arise frequently in practice with high-55

dimensional data, it is highly desirable to develop robust counterparts of56

distance correlation. Towards this goal, Zhu et al. (2017) proposed an alter-57

native projection correlation, which completely removes the moment condi-58

tions required by distance correlation. The projection correlation is in spirit59

a multivariate version of Hoeffding (1948). Kim et al. (2018) suggested a60

projection-averaging approach to the classic two-sample test problems, and61

stated that their approach can be readily generalized to test independence62

between two random vectors. In this paper, we follow Kim et al. (2018)63

through extending the Blum-Kiefer-Rosenblatt (BKR) correlation to the64

multivariate case. Neither projection correlation nor the multivariate BKR65

correlation requires moment condition on either x or y. We shall show that,66

both distance correlation and projection correlation are based on the inte-67

grated squared distance between the joint distribution of the projections68

and the product of their marginal distributions over unit spheres. The in-69

dependence tests built upon distance correlation, projection correlation and70

the multivariate BKR correlation are indeed all of projection-pursuit type.71

In this paper we compare power performance of the aforementioned72

three projection-pursuit independence tests because they share many sim-73
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ilarities. In particular, projection correlation, distance correlation and the74

multivariate BKR correlation have closed-form expressions and require no75

tuning parameters, and all tests are consistent against all fixed alternatives.76

More importantly, all three tests can be represented by integrals of the dis-77

tance between the joint distribution function of (x,y) and the product of78

the marginal distribution functions of x and y. They differ only in the79

weights. To elaborate, we define Sd−1 def
= {α ∈ Rd : ‖α‖ = 1}, where ‖ · ‖80

is Euclidean norm. FαTx(s)
def
= pr(αTx ≤ s), FβTy(t)

def
= pr(βTy ≤ t) and81

FαTx,βTy(s, t)
def
= pr(αTx ≤ s,βTy ≤ t), for α ∈ Sp−1, β ∈ Sq−1, s ∈ R1

82

and t ∈ R1. Both (αTx) and (βTy) are the respective projections of x and83

y. In the Supplementary Material, we shall show that the squared distance84

covariance can be represented as85

DC(x,y) = (cpcq)
−1

∫
α∈Sp−1

∫
β∈Sq−1

∫
t∈R1

∫
s∈R1

86 {
FαTx,βTy(s, t)− FαTx(s)FβTy(t)

}2
(ds dt)dβdα, (1.2)87

and the squared projection covariance can be represented as88

PC(x,y) = (γpγq)
−1

∫
α∈Sp−1

∫
β∈Sq−1

∫
t∈R1

∫
s∈R1

89 {
FαTx,βTy(s, t)− FαTx(s)FβTy(t)

}2
dFαTx,βTy(s, t)dβdα. (1.3)90

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



1. INTRODUCTION

Kim et al. (2018) wrote the multivariate BKR correlation coefficient as91

mBKR(x,y) = (γpγq)
−1

∫
α∈Sp−1

∫
β∈Sq−1

∫
t∈R1

∫
s∈R1

92 {
FαTx,βTy(s, t)− FαTx(s)FβTy(t)

}2
dFαTx(s)dFβTy(t)dβdα. (1.4)93

In the above three displays, cp
def
=
{

2π(p−1)/2/(p− 1)
}
/Γ{(p − 1)/2}, γp

def
=94

πp/2−1/Γ(p/2) and Γ(·) is gamma function. These displays differ at how we95

average over s and t. In particular, in (1.2) the uniform weights are given96

on the R1 ⊗ R1 space, and in (1.3) and (1.4) more weights are given on97

higher density regions. It is thus anticipated that the projection correlation98

test and the multivariate BKR correlation test are more robust to extreme99

observations than the distance correlation test. The projection correlation100

uses the joint density of (αTx) and (βTy) as a weight function, whereas the101

multivariate BKR correlation uses the product of their marginal densities.102

The asymptotic null distributions of the above projection-pursuit in-103

dependence tests depend on the joint distribution of x and y which are104

however generally unknown in practice. To approximate the asymptotic105

null distributions, random permutations are widely used in these indepen-106

dence tests. However, the consistency of random permutations is rarely107

explored in the literature. In the present context, we shall show that, the108

permutation procedure provides a reasonable approximation of the asymp-109

totic null distributions without exhausting all possible permutations. As a110
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by-product, this allows us to carry out power analysis of projection-pursuit111

independence tests. We shall show that, in the presence of outliers, the112

permutation test based on either projection correlation or the multivariate113

BKR correlation is very powerful while the permutation test based on dis-114

tance correlation may lose power. To gain more insights on their asymptotic115

behaviors, we analyze the minimax optimality of these projection-pursuit116

independence tests over a wide class of distributions using the Le Cam’s117

Lemma (Baraud, 2002). We show that their minimum separation rates are118

all of order n−1, where n stands for the sample size. The minimum sep-119

aration rate is a lower bound that characterizes the separation boundary120

between the testable and non-testable regions. The rate n−1 is indeed tight121

in terms of projection correlation, distance correlation and the multivariate122

BKR correlation, respectively.123

2. SOME PRELIMINARIES124

2.1 The Computational Complexities125

We provide explicit forms for (1.2), (1.3) and (1.4) first. Suppose {(xi,yi), i =126

1, . . . , 6} are six independent copies of (x,y). Let z be either x or y.127

We define a(z1, z2, z3, z4, z5)
def
= ang(z1 − z5, z2 − z5) + ang(z3 − z5, z4 −128

z5) − ang(z1 − z5, z3 − z5) − ang(z2 − z5, z4 − z5), where ang(a,b)
def
=129
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arccos {(aTb)/(‖a‖‖b‖)} stands for the angle between the two vectors a and130

b and arccos(·) is the inverse cosine function. If zi, zj and zk are all distinc-131

tive, ang(zi− zk, zj − zk) is well defined and ranges from 0 to π. Following132

Escanciano (2006) and Zhu et al. (2017), we define ang(zi−zk, zj−zk) = 0, if133

zi = zj 6= zk, or zi = zk 6= zj, or zj = zk 6= zi, and ang(zi−zk, zj−zk) = −π134

if zi = zj = zk. We further define b(z1, z2, z3, z4)
def
= ‖z1 − z2‖ + ‖z3 −135

z4‖ − ‖z1 − z3‖ − ‖z2 − z4‖. Székely et al. (2007) and Székely and Rizzo136

(2009) showed that DC(x,y) = E {b(x1,x2,x3,x4)b(y1,y2,y3,y4)} /4. By137

Theorem 1 of Zhu et al. (2017), the explicit form of projection correlation138

is given by PC(x,y) = E{a(x1,x2,x3,x4,x5)a(y1,y2,y3,y4,y5)}/4. Kim139

et al. (2018, Theorem 7.2) derived that the multivariate BKR correlation140

has the form of mBKR(x,y) = E{a(x1,x2,x3,x4,x5)a(y1,y2,y3,y4,y6)}/4.141

With a random sample of size n, say, {(xi,yi), i = 1, . . . , n}, we estimate142

DC(x,y), PC(x,y) and mBKR(x,y) with U -statistic theory. In particular,143

D̂C(x,y)
def
= {4(n)4}−1

n∑
(i,j,k,l)

b(xi,xj,xk,xl)b(yi,yj,yk,yl),144

P̂C(x,y)
def
= {4(n)5}−1

n∑
(i,j,k,l,r)

a(xi,xj,xk,xl,xr)a(yi,yj,yk,yl,yr),145

and146

m̂BKR(x,y)
def
= {4(n)6}−1

n∑
(i,j,k,l,r,s)

a(xi,xj,xk,xl,xr)a(yi,yj,yk,yl,ys),147
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where (n)m
def
= n(n− 1) · · · (n−m+ 1). The summations148

n∑
(i,j,k,l)

,
n∑

(i,j,k,l,r)

and
n∑

(i,j,k,l,r,s)

149

are taken over the indexes that are different from each other.150

Next we compare the computational complexity of calculating P̂C(x,y),151

D̂C(x,y) and m̂BKR(x,y). The sample distance covariance is a U -statistic152

of order four, the sample projection covariance is a U -statistic of order five,153

and the sample multivariate BKR correlation is a U -statistic of order six.154

Székely and Rizzo (2013) and Yao et al. (2018) stated that155

D̂C(x,y) = {n(n− 3)}−1
[
tr(ÃB̃)156

+{(n− 1)2}−11T

nÃ1n1
T

nB̃1n − 2(n− 2)−11T

nÃB̃1n

]
,(2.5)157

where 1n ∈ Rn is a vector of ones, Ã = (‖xi − xj‖)n×n ∈ Rn×n and B̃ =158

(‖yi−yj‖)n×n ∈ Rn×n. That is, the computational complexity of D̂C(x,y)159

is of order O(n2). To calculate P̂C(x,y) and m̂BKR(x,y), we define Ak
def
=160

(aijk) ∈ R(n−1)×(n−1) and Bk
def
= (bijk) ∈ R(n−1)×(n−1), where aijk

def
= ang(xi−161

xk,xj −xk), bijk
def
= ang(yi−yk,yj −yk), for i 6= k, j 6= k and k = 1, . . . , n.162
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With some straightforward algebraic calculations, it can be verified that163

n∑
(i,j,k)

aijkbijk =
n∑
k=1

tr(AkBk),164

n∑
(i,j,k,l)

aijlbikl =
n∑
l=1

{1T

(n−1)AlBl1(n−1) − tr(AlBl)},165

n∑
(i,j,k,l,r)

aijrbklr =
n∑
r=1

{1T

(n−1)Ar1(n−1)1
T

(n−1)Br1(n−1)166

−41T

(n−1)ArBr1(n−1) + 2tr(ArBr)}.167

Collecting these results, we have168

P̂C(x,y) = {n(n− 1)(n− 4)}−1

n∑
r=1

[
tr(ArBr)169

+{(n− 2)2}−11T

(n−1)Ar1(n−1)1
T

(n−1)Br1(n−1)170

−2(n− 3)−11T

(n−1)ArBr1(n−1)

]
. (2.6)171

Thus, the computational complexity of P̂C(x,y) is of order O(n3). Simi-172

larly, we can verify that173

m̂BKR(x,y) = {n(n− 1)(n− 2)(n− 5)}−1

n∑
r 6=s

[
tr(ArBs)174

+{(n− 3)2}−11T

(n−1)Ar1(n−1)1
T

(n−1)Bs1(n−1)175

−2(n− 4)−11T

(n−1)ArBs1(n−1)

]
, (2.7)176

indicating that estimating the multivariate BKR correlation requires O(n4)177

operations. Calculating distance correlation has the smallest complexity.178
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2.2 The Permutation Procedure179

Zhu et al. (2017) and Székely et al. (2007) showed that the U -statistic180

estimates, D̂C(x,y) and P̂C(x,y), are n-consistent under H0 and root-n-181

consistent under fixed alternatives, respectively. Consequently, n D̂C(x,y)182

and n P̂C(x,y) converge in distribution to their respective nondegenerate183

limits under H0 and diverge to infinity under fixed alternatives. Following184

Zhu et al. (2017), we can establish the distribution theory for m̂BKR un-185

der both the null and the alternative hypotheses. To be precise, m̂BKR186

is n-consistent under H0 and root-n-consistent under fixed alternatives.187

Therefore, we reject H0 when n D̂C(x,y), n P̂C(x,y) and n m̂BKR are188

greater than or equal to certain critical values. However, the asymptotic189

null distributions of n D̂C(x,y), n P̂C(x,y) and n m̂BKR are not tractable190

when p > 1 or q > 1. To address this issue, Zhu et al. (2017) and Székely191

et al. (2007) suggested to approximate the critical values adaptively using192

the following random permutation approach.193

1. Suppose {i1, i2, . . . , in} and {j1, j2, . . . , jn} are two random permuta-194

tions of {1, 2, . . . , n}. Define xbk
def
= xik and ybk

def
= yjk , for k = 1, . . . , n.195

Re-estimate DC(x,y), PC(x,y) and mBKR(x,y) using {(xbk,ybk), k =196

1, . . . , n}. Denote the resulting estimates by D̂C(xb,yb), P̂C(xb,yb)197

and m̂BKR(xb,yb), respectively. Replicate this permutation proce-198
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dure B times, say, B = 1000, to approximate the asymptotic null199

distributions of D̂C(xb,yb), P̂C(xb,yb) and m̂BKR(xb,yb).200

2. Denote the observations Dn
def
= {(xi,yi), i = 1, · · · , n}. We define the201

critical values at the significance level α by202

qDCα,n
def
= inf

[
t ∈ R : 1− α ≤ pr{n D̂C(xb,yb) ≤ t | Dn}

]
, (2.8)203

qPCα,n
def
= inf

[
t ∈ R : 1− α ≤ pr{n P̂C(xb,yb) ≤ t | Dn}

]
, (2.9)204

qmBKRα,n
def
= inf

[
t ∈ R : 1− α ≤ pr{n m̂BKR(xb,yb) ≤ t | Dn}

]
,205

(2.10)206

We approximate pr{n D̂C(xb,yb) ≤ t | Dn}, pr{n P̂C(xb,yb) ≤ t |207

Dn} and pr{n m̂BKR(xb,yb) ≤ t | Dn} with empirical probabilities208

B−1

B∑
b=1

I
{
n D̂C(xb,yb) ≤ t

}
, B−1

B∑
b=1

I
{
n P̂C(xb,yb) ≤ t

}
,209

and

B−1

B∑
b=1

I
{
n m̂BKR(xb,yb) ≤ t

}
.

This is in spirit to approximate the asymptotic null distributions of210

n D̂C(xb,yb), n P̂C(xb,yb) and n m̂BKR(xb,yb), respectively.211

This random permutation procedure is intuitively valid and thus widely212

used in multiple testing problems and independence tests. A random per-213

mutation procedure is said to be consistent if it provides a reasonable ap-214
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proximation to the asymptotic null distribution. The consistency of random215

permutation has been extensively studied by Romano and Wolf (2005) in216

the context of multiple testing problems. However, its consistency is rarely217

discussed in the context of independence tests. In Theorem 1 we show that218

this permutation procedure is consistent in all three independence tests.219

The detailed proofs are given in the Supplementary Material. Throughout220

pr(· | H0) and pr(· | H1) stand for the respective probabilities of a random221

event occurs under H0 and H1. They are not conditional probabilities.222

Theorem 1. As n→∞, both223

sup
t∈R

∣∣∣pr{n P̂C(xb,yb) ≤ t | Dn} − pr{n P̂C(x,y) ≤ t | H0}
∣∣∣224

and225

sup
t∈R

∣∣∣pr{n m̂BKR(xb,yb) ≤ t | Dn} − pr{n m̂BKR(x,y) ≤ t | H0}
∣∣∣226

converge in probability to 0. If we assume E(‖x‖2) + E(‖y‖2) <∞, then227

sup
t∈R

∣∣∣pr{n D̂C(xb,yb) ≤ t | Dn} − pr{n D̂C(x,y) ≤ t | H0}
∣∣∣228

converges in probability to 0 as n→∞.229

We require the condition E(‖x‖2) + E(‖y‖2) < ∞ to ensure that the230

kernel of the U -statistic estimate D̂C(x,y) is uniformly integrable. The-231

orem 1 guarantees that this random permutation procedure approximates232
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the asymptotic null distributions precisely as long as the sample size n is233

sufficiently large. In other words, the type-I error rates of all projection-234

pursuit independence tests are asymptotically controllable. This allows us235

to analyze statistical power of these projection-pursuit independence tests.236

Exhausting all possible permutations is usually computationally pro-237

hibitive and practically infeasible. Therefore, we provide a random approx-238

imation in the above permutation procedure. Proposition 1 states that, as239

long as the number of random permutations, B, is sufficiently large, the240

random approximation is asymptotically valid.241

Proposition 1. Given the data Dn,242

sup
t∈R

∣∣∣∣∣B−1

B∑
b=1

I
{
n P̂C(xb,yb) ≤ t

}
− pr{n P̂C(xb,yb) ≤ t | Dn}

∣∣∣∣∣,243

244

sup
t∈R

∣∣∣∣∣B−1

B∑
b=1

I
{
n m̂BKR(xb,yb) ≤ t

}
− pr{n m̂BKR(xb,yb) ≤ t | Dn}

∣∣∣∣∣,245

and246

sup
t∈R

∣∣∣∣∣B−1

B∑
b=1

I
{
n D̂C(xb,yb) ≤ t

}
− pr{n D̂C(xb,yb) ≤ t | Dn}

∣∣∣∣∣247

converge in probability to 0, as B →∞.248
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3. ROBUSTNESS STUDY249

We first highlight the robustness of the projection correlation test and the250

multivariate BKR correlation test in a Huber contamination model. The251

following is an ε-contamination model:252

(x,y) ∼ Fx,y = (1− ε)F (1)
x,y + εH(n)

x,y, (3.11)253

where F
(1)
x,y and H

(n)
x,y are two distributional functions, F

(1)
x,y is fixed yet H

(n)
x,y254

may vary with n, and 0 < ε < 1. We remark here that x and y are255

dependent if (x,y) ∼ F
(1)
x,y and independent if (x,y) ∼ H

(n)
x,y. We use the256

ε-contamination model (3.11) to evaluate whether an independence test can257

maintain adequate power when H
(n)
x,y has an adverse impact on its power258

performance. The test functions using distance correlation, projection cor-259

relation and the multivariate BKR correlation are defined, respectively, by260

ΦDC
α

def
= I

{
n D̂C(x,y) ≥ qDCα,n

}
, ΦPC

α
def
= I

{
n P̂C(x,y) ≥ qPCα,n

}
,261

ΦmBKR
α

def
= I

{
n m̂BKR(x,y) ≥ qmBKRα,n

}
,262

where qDCα,n , qPCα,n and qmBKRα,n are the critical values defined in (2.8), (2.9) and263

(2.10) through random permutations, and I(A) is an indicator function,264

which equals one if A is true and zero otherwise. For all three projection-265

pursuit independence tests, we reject H0 at the significance level α when266
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the estimates of projection-pursuit correlations are larger than their crit-267

ical values, that is, when n D̂C(x,y) ≥ qDCα,n , n P̂C(x,y) ≥ qPCα,n and268

n m̂BKR(x,y) ≥ qmBKRα,n . We study the robustness of projection-pursuit in-269

dependence tests through comparing their power performance in that The-270

orem 1 ensures that one can always use random permutations to control271

the type-I error rate.272

Theorem 2 states that the independence tests built upon projection273

correlation and the multivariate BKR correlation are uniformly powerful274

over different types of contaminations. By contrast, the distance correlation275

test becomes asymptotically powerless against certain contaminations.276

Theorem 2. Suppose {(xi,yi), i = 1, . . . , n} are generated independently277

from model (3.11) with the contamination ratio ε = cn−1/2, where c is a278

small positive constant not depending on n, and there exist three positive279

constants, $, $′ and $′′, such that PC(x,y) ≥ $, DC(x,y) ≥ $′ and280

mBKR(x,y) ≥ $′′ for sufficiently large n.281

1. The projection correlation test and the multivariate BKR correlation

test are asymptotically powerful uniformly over H
(n)
x,y in the sense that

lim
n→∞

inf
H

(n)
x,y

pr(ΦPC
α = 1 | H1) = 1 and lim

n→∞
inf
H

(n)
x,y

pr(ΦmBKR
α = 1 | H1) = 1.
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2. Assume E(‖x‖2 + ‖y‖2) < ∞ if (x,y) ∼ F
(1)
x,y, and if (x,y) ∼ H

(n)
x,y,

n{var(‖x‖) var(‖y‖)}−1/2 = o(1). The distance correlation test is

asymptotically powerless against such choices of H
(n)
x,y in the sense of

lim
n→∞

inf
H

(n)
x,y

pr(ΦDC
α = 1 | H1) ≤ α.

The first assertion of Theorem 2 implies that the projection correla-282

tion test and the multivariate BKR correlation test are insensitive to the283

presence of outliers. In the second statement of Theorem 2, we assume284

n{var(‖x‖) var(‖y‖)}−1/2 = o(1) if (x,y) ∼ H
(n)
x,y, which allows var(‖x‖)285

and var(‖y‖) to be divergent, and accordingly, model (3.11) to yield out-286

liers. We impose this condition to demonstrate that the distance correlation287

test might lose power in the presence of outliers.288

We conduct simulations to illustrate Theorem 2 with finite sample size.289

Following Davison and Hinkley (1997), we set B = 1000 throughout our290

numerical studies.291

Example 1. In the ε-contamination model (3.11), we consider an extreme292

case for F
(1)
x,y: x follows multivariate standard normal distribution, and y293

equals x exactly. This ensures that x and y are dependent. In other words,294

the observations are drawn under H1. In addition, we set295

H(n)
x,y = (2πσ2)−p/2 exp{−(xTx)2/(2σ2)}

p∏
k=1

I(0 ≤ Yk ≤ 1).296
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We consider two scenarios for (ε, σ). In the first scenario, ε = 0.5n−1/2
297

and σ = {1, 2.5, 5, 10, 20, 40, 80}. In the second scenario, σ = 100 and ε =298

cn−1/2, for c = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. Both σ and ε control the degree299

of heavy-tailedness. As σ and c increase, the distance between H0 and300

H1 is smaller and the probabilities of observing extreme values from H
(n)
x,y301

increase as well. We fix p = q = 10, n = 30, and decide the critical values302

with permutations at the significance level α = 0.05. The simulations are303

replicated 1000 times. The empirical powers of the projection correlation304

test, the distance correlation test and the multivariate BKR correlation test305

are summarized in Figure 1. It can be clearly seen that, the empirical powers306

of the projection correlation test and the multivariate BKR correlation test307

are very close to one throughout, indicating that the projection correlation308

test and the multivariate BKR correlation test are consistently robust to309

the changes of σ and ε. By contrast, the empirical power of the distance310

correlation test drops down very quickly as σ and ε increase. The distance311

correlation test is completely powerless when σ or ε is sufficiently large.312

Example 2. In the ε-contamination model (3.11), we set H
(n)
x,y to be the313

product of (p+ q) independent t distributions with one degree of freedom,314

and F
(1)
x,y to be the Dirac measure of the form F

(1)
x,y = I(x = κ1p)I(y = x),315

for κ = {5, 15}, where 1p is a p-vector of ones. Let ε = cn−1/2, for c =316
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(A): ε = 0.5n−1/2 and σ = (B): σ = 100 and ε = cn−1/2, c

{1, 2.5, 5, 10, 20, 40, 80} = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}

Figure 1: The empirical powers of the projection correlation test (solid line),

the distance correlation test (dotted line) and the multivariate BKR correlation

test (dotdash line) when the random sample is drawn from the ε-contamination

model (3.11) with different ε and σ.

{0.2, 0.4, 0.6, 0.8, 1.0}. As c increases, the probabilities of observing extreme317

values from H
(n)
x,y increase as well, which, as stated in Theorem 2, may affect318

the power performance of independence tests. Let p = q = {5, 10, 20} and319

n = 30. The significance level is set to be α = 0.05.320

The empirical powers are summarized in Tables 1 and 2 based on 1000321

replications. Following the suggestion of an anonymous reviewer, we also322

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



4. MINIMAX OPTIMALITY

include the distance correlation based t-test (Székely and Rizzo, 2013) into323

our comparison. We denote this test by SR, the initials of the authors’324

last names. The SR test is asymptotically distribution-free. Therefore, we325

use its asymptotic null distribution directly to decide the critical values. It326

is expected that, the projection correlation test and the multivariate BKR327

correlation test are significantly more powerful than the distance correla-328

tion test and the distance correlation t-test across all scenarios. When c329

decreases from 1 to 0.2, p and q increase from 5 to 20, or κ increase from 5330

to 15, the deviation from H0 is accumulating. The powers of the projection331

correlation test and the multivariate BKR correlation test increase signifi-332

cantly. By contrast, the distance correlation test loses its power completely333

when κ = 5. Since the SR test was specifically developed for large dimen-334

sions, it is more powerful than the distance correlation test, especially when335

p = 20. However, the SR test is still inferior significantly to the projection336

correlation test and the multivariate BKR correlation test in terms of power337

performance, particularly when p and c are relatively small.338

4. MINIMAX OPTIMALITY339

Next we study the minimax optimality of the projection correlation test,340

the distance correlation test and the multivariate BKR correlation test. To341
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Table 1: The empirical powers of the projection correlation test (“PC”), the dis-

tance correlation test (“DC”), the multivariate BKR correlation test (“mBKR”)

and the distance correlation t-test (“SR”) in Example 2 with three different set-

tings of dimension when κ = 5 and the nominal level is 0.05.

c = 1.0 c = 0.8 c = 0.6 c = 0.4 c = 0.2

p = 5 PC 0.152 0.391 0.635 0.808 0.907

DC 0.056 0.069 0.104 0.158 0.219

mBKR 0.114 0.303 0.534 0.725 0.841

SR 0.059 0.102 0.247 0.386 0.457

p = 10 PC 0.198 0.458 0.701 0.851 0.946

DC 0.051 0.063 0.083 0.123 0.160

mBKR 0.164 0.397 0.616 0.798 0.884

SR 0.058 0.143 0.295 0.479 0.542

p = 20 PC 0.231 0.544 0.777 0.897 0.955

DC 0.053 0.061 0.078 0.089 0.109

mBKR 0.182 0.410 0.647 0.841 0.916

SR 0.074 0.221 0.346 0.552 0.703

simplify subsequent illustration, let Φα be a level-α test function, which342

equals 1 if one rejects H0 and 0 otherwise. Denote by pr(· | H0) and pr(· |343

H1) the probabilities evaluated under H0 and H1, respectively. Accordingly,344

pr(Φα = 1 | H0) is the type-I error rate and pr(Φα = 0 | H1) is the type-II345

error rate. We define the class of level-α test functions by Tα
def
= {Φα :346

pr(Φα = 1 | H0) ≤ α}. We measure the dependence between x and y347
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Table 2: The empirical powers of the projection correlation test (“PC”), the

distance correlation test (“DC”), the multivariate BKR test (“mBKR”) and the

distance correlation t-test (“SR”) in Example 2 with three different settings of

dimension when κ = 15 and the nominal level is 0.05.

c = 1.0 c = 0.8 c = 0.6 c = 0.4 c = 0.2

p = 5 PC 0.216 0.508 0.749 0.876 0.948

DC 0.112 0.239 0.394 0.512 0.620

mBKR 0.195 0.482 0.711 0.804 0.896

SR 0.132 0.384 0.508 0.615 0.732

p = 10 PC 0.272 0.592 0.791 0.913 0.971

DC 0.082 0.177 0.282 0.401 0.512

mBKR 0.266 0.514 0.750 0.875 0.914

SR 0.190 0.455 0.682 0.796 0.889

p = 20 PC 0.318 0.655 0.852 0.940 0.977

DC 0.061 0.110 0.188 0.264 0.354

mBKR 0.287 0.568 0.796 0.918 0.962

SR 0.242 0.544 0.751 0.885 0.951

by projection correlation, distance correlation and the multivariate BKR348

correlation, respectively. Define349

UPC(c)
def
= {(x,y) : PC(x,y) ≥ cn−1}, UDC(c)

def
= {(x,y) : DC(x,y) ≥ cn−1},350

UmBKR(c)
def
= {(x,y) : mBKR(x,y) ≥ cn−1}.351
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If the degree of dependence between x and y is weak, it may be difficult352

to distinguish between H0 and H1. Theorem 3 states that, for all level-353

α tests, there exist (x,y) ∈ UPC(c0) for the projection correlation test,354

(x,y) ∈ UDC(c0) for the distance correlation test and (x,y) ∈ UmBKR(c0)355

for the multivariate BKR correlation test, such that their type-II error rates,356

pr(Φα = 0 | H1), are not asymptotically negligible even when n→∞. The357

specified constant c0 is quantifies the degree of deviation from H0.358

Theorem 3. For any 0 < ξ < 1 − α, there exists c0 > 0 such that the359

minimax type-II error rates are lower bounded as n→∞, namely360

lim
n→∞

inf
Φα∈Tα

sup
(x,y)∈UPC(c0)

pr(ΦPC
α = 0 | H1) ≥ ξ,361

lim
n→∞

inf
Φα∈Tα

sup
(x,y)∈UmBKR(c0)

pr(ΦmBKR
α = 0 | H1) ≥ ξ,362

lim
n→∞

inf
Φα∈Tα

sup
(x,y)∈UDC(c0)

pr(ΦDC
α = 0 | H1) ≥ ξ.363

364

Theorem 3 indicates that, the projection-pursuit independence tests can365

not maintain adequate power even if the dependence between x and y are366

cn−1 far apart in terms of PC(x,y), mBKR(x,y) or DC(x,y), respectively,367

for an arbitrarily small c. However, if we allow c to diverge to infinity,368

the story will be different. To be specific, the type-II error rates of these369

independence tests shrink to zero as n→∞. This is formulated in Theorem370
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4. Define371

ΦDC
α

def
= I

{
n D̂C(x,y) ≥ qDCα,n

}
, ΦPC

α
def
= I

{
n P̂C(x,y) ≥ qPCα,n

}
372

ΦmBKR
α

def
= I

{
n m̂BKR(x,y) ≥ qmBKRα,n

}
,373

where qDCα,n , qPCα,n and qmBKRα,n are defined in (2.8), (2.9) and (2.10).374

Theorem 4. The minimax type-II error rate of the projection correlation375

test tends to zero uniformly over UPC(cn) with cn →∞ as n→∞, namely376

lim
n→∞

sup
(x,y)∈UPC(cn)

pr(ΦPC
α = 0 | H1) = 0.377

The minimax type-II error rate of the multivariate BKR correlation test378

tends to zero uniformly over UmBKR(cn) with cn →∞ as n→∞, namely379

lim
n→∞

sup
(x,y)∈UmBKR(cn)

pr(ΦmBKR
α = 0 | H1) = 0.380

Furthermore, if ‖x‖ and ‖y‖ are squared-integrable, the minimax type-381

II error rate of the distance correlation test tends to zero uniformly over382

UDC(cn) with cn →∞ as n→∞, namely383

lim
n→∞

sup
(x,y)∈UDC(cn)

pr(ΦDC
α = 0 | H1) = 0.384

385

Theorem 4, together with Theorem 3, indicates that the minimax lower386

bound of the minimum separation rate is n−1. This lower bound is asymp-387

totically tight for the projection correlation test and the multivariate BKR388
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correlation test. If ‖x‖ and ‖y‖ are squared-integrable, this lower bound is389

also asymptotically tight for the distance correlation test.390

5. DISCUSSION391

We consider three projection-pursuit correlations, namely, distance corre-392

lation, projection correlation and the multivariate BKR correlation. All393

these correlations quantify the difference between the joint distribution394

function and the product of the marginal distribution functions. These395

three projection-pursuit correlations differ only in the weight function. We396

investigate their robustness, and compare the power performance of inde-397

pendence tests built upon these projection-pursuit correlations under a min-398

imax framework. We also seek for conditions under which these projection-399

pursuit independence tests are minimax rate optimal.400

It is practically interesting yet theoretically challenging to characterize401

the exact value of c in UDC(c), UPC(c) and UmBKR(c) that separates the402

testable region from the non-testable one. This is because the class of403

alternatives we are targeting is very huge owing to the existence of nonlinear404

dependence. This issue is beyond the scope of the present context though,405

it deserves further investigations.406
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proofs of (1.2), Proposition 1 and Theorems 1-4.408
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Kim, I., Balakrishnan, S., and Wasserman, L. (2018). “Robust multivariate nonparametric tests438

via projection-pursuit.” https://arxiv.org/abs/1803.00715.439

Oja, H. (2010). Multivariate nonparametric methods with R: an approach based on spatial signs440

and ranks. Springer Science & Business Media.441

Pan, W., Wang, X., Zhang, H., Zhu, H., and Zhu, J. (2019). “Ball covariance:a generic measure442

of dependence in banach space.” Journal of the American Statistical Association, to appear.443

Puri, M. and Sen, P. (1971). Nonparametric Methods in Multivariate Analysis. New York:444

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



REFERENCE

Wiley.445

Romano, J. and Wolf, M. (2005). “Exact and approximate stepdown methods for multiple446

hypothesis testing.” Journal of the American Statistical Association, 100, 94–108.447

Sejdinovic, D., Sriperumbudur, B., Gretton, A., and Fukumizu, K. (2013). “Equivalence of448

distance-based and rkhs-based statistics in hypothesis testing.” Annals of Statistics, 41,449

2263–2291.450

Shen, C., Priebe, C., Gretton, A., and Vogelstein, J. (2019). “From distance correlation to451

multiscale graph correlation.” Journal of the American Statistical Association, to appear.452

Székely, G. and Rizzo, M. (2009). “Brownian distance covariance.” Annals of Applied Statistics,453

3, 1236–1265.454
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