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Abstract

Although Bayesian inference is an immensely popular paradigm among a large segment of

scientists including statisticians, most applications consider objective priors and need critical in-

vestigations [20]. While it has several optimal properties, a major drawback of Bayesian inference

is the lack of robustness against data contamination and model misspecification, which becomes

pernicious in the use of objective priors. This paper presents the general formulation of a Bayes

pseudo-posterior distribution yielding robust inference. Exponential convergence results related

to the new pseudo-posterior and the corresponding Bayes estimators are established under the

general parametric set-up and illustrations are provided for the independent stationary as well as

non-homogeneous models. Several additional details and properties of the procedure are described,

including the estimation under fixed-design regression models.

Keywords: Robust Bayes Pseudo-Posterior, Density Power Divergence, Exponential Conver-

gence, Bayesian Linear Regression, Logistic Regression.

1 Introduction

Bayesian analysis is arguably one of the most popular statistical paradigms with applications across

different scientific disciplines. It is widely preferred by many non-statisticians due to its nice inter-

pretability and incorporation of prior knowledge. From a statistical point of view, it is widely accepted
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even among many non-Bayesians, because of its nice optimal (asymptotic) properties. Bayesian in-

ference is built on the famous ‘Bayes theorem’, the celebrated 1763 paper of Thomas Bayes, which

combines prior knowledge with experimental evidence to produce posterior conclusions. However,

over these 250 years, Bayesian inference has also been subject to several criticisms and some of these

debates are still ongoing [20]. Other than the controversies about its internal logic [19, 34], a major

practical drawback of Bayesian inference is its non-robust nature against misspecification in models

(including data contamination and outliers) and priors, as has been extensively observed in the litera-

ture; see [12, 13, 45, 47, 61] and the references therein. The optimal solution to this problem has been

developed mainly for prior misspecifications [10, 11, 17, 18, 22, 30, 33]; the Bayesians traditionally

viewed the model to be perfect for the given data. Thus the possibility of model misspecification and

data contamination has been generally ignored for a long time till the appearance of some very recent

publications, some of which we describe later in this section.

In applying Bayesian inference to the complicated datasets of the present era, we need to use

complex and sophisticated models which are highly prone to misspecification or data contamination.

In reality, where “All models are wrong”, the Bayesian philosophy of refining the fixed model adap-

tively [23] often fails to handle complex scenarios or leads to “a model as complex as the data” [59].

Data contamination can lead to erroneous posterior conclusions. The problem becomes more clear

but pernicious in case of inference with objective or reference priors. For example, the Bayes estimate

of the mean of a normal model, with any objective prior and symmetric loss function, is the highly

non-robust sample mean. What is a matter of greater concern, as noted by Efron [20], is that most

of the recent applications of Bayesian inference hinge on objective priors and so they always need to

be scrutinized carefully, sometimes even from a frequentist perspective. The posterior non-robustness

against model misspecification and data contamination makes the process vulnerable and we clearly

need a solution to this problem.

From a true Bayesian perspective, there are only few solutions to the problem of model misspeci-

fication [49, 50, 53, 54]. However, most of them, if not all, assume that the perturbation in the model
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is known beforehand, such as gross error contaminated models with known contamination proportion

ε. For modern complex datasets, this is rarely meaningful. There has been several recent publica-

tions which are motivated by the need to safeguard Bayes inference against model misspecification

by relying on a generalized (pseudo) posterior which is expressed in terms of a loss function and a

tuning parameter η [1, 13, 14, 32, 36, 38, 42, 48, 57]. This approach, referred to as the PAC-Bayesian

approach generated from Gibb’s posterior, has been quite successful in regression and other super-

vised classification problems with misspecified model assumptions. But the resulting inference is not

robust against outliers with respect to a specified model which is correct for the majority of the data.

This is because every sample observation, including outliers, receives equal weight in PAC-Bayesian

approach and hence it closely resembles the model robust non-parametric analysis; see [28].

To achieve robustness against data contamination (outliers) in Bayesian inference, some attempts

have been made to develop alternative solutions by linking Bayesian inference suitably to the fre-

quentist concept of robustness. In the frequentist sense, there are two major approaches to achieve

robustness, namely the use of heavy tailed distributions (e.g., t-distribution in place of normal), or

new (robust) inference methodologies [9, 35]. The first one has been adopted by some Bayesian sci-

entists; see [3, 4] and [16] among others. However, the difficulty with this approach is the availability

of appropriate heavy tailed alternatives in complex scenarios and it indeed does not solve the non-

robustness of Bayesian inference for a specified model (which might be of a lighter tail). The second

approach of frequentist robustness serves the purpose but differs in the strictest probabilistic sense

from the Bayesian philosophy, since one needs to alter the posterior density appropriately to achieve

robustness against data contamination or model misspecification; the resulting modified posteriors

are generally referred to as pseudo-posterior densities. Different such pseudo-posteriors have been

proposed by [2, 5, 15, 28, 31, 37, 46]; but all of them have primarily considered independent station-

ary models and have different pros and cons. Another recent attempt, in the borderline of these two

approaches, has been proposed by [59], who have transformed the given model to a localized model

involving hyperparameters to be estimated through the empirical Bayes approach.
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1.1 Background: R(α)-posterior for IID set-up

We consider a particular pseudo-posterior originally proposed by [28] in the independently and iden-

tically distributed (IID) set-up. This choice has been motivated by its several nice properties and

its potential for extension to more general set-ups. As a brief description, consider n IID random

variables X1, . . . , Xn taking values in a measurable space (χ,B). Assume that there is an underlying

true probability space (Ω,BΩ, P ) such that, for i = 1, . . . , n, Xi is B/Ω measurable, independent with

respect to P and it’s induced distribution G(x) has an absolutely continuous density g(x) with respect

to a dominating σ-finite measure λ(dx). We model G by a parametric family {Fθ : θ ∈ Θ ⊆ Rp}

which is assumed to be absolutely continuous with respect to λ having density fθ. Consider a prior

density for θ over the parameter space Θ given by π(θ). Ghosh and Basu [28] defined a robust pseudo-

posterior density, namely the R(α)-posterior density of θ, given the sample xn = (x1, . . . , xn)T on the

random variable Xn = (X1, . . . , Xn)T , as

π(α)
n (θ|xn) =

exp(q
(α)
n (xn|θ))π(θ)∫

exp(q
(α)
n (xn|θ′))π(θ′)dθ′

, α ≥ 0, (1)

where q
(α)
n (xn|θ) is the α-likelihood of xn given by

q(α)
n (xn|θ) =

1

α

n∑
i=1

fαθ (xi)−
n

1 + α

∫
f1+α
θ − n

α
=

n∑
i=1

q
(α)
θ (xi), (2)

with Gn being the empirical distribution based on the data and

q
(α)
θ (y) =

1

α
(fαθ (y)− 1)− 1

1 + α

∫
f1+α
θ . (3)

In a limiting sense, q
(0)
n (xn|θ) =

∑n
i=1 (log(fθ(xi))− 1), which is the usual log-likelihood (plus a

constant); so the R(0)-posterior is just the ordinary Bayes posterior. The idea came from a frequentist

robust estimator, the minimum density power divergence (DPD) estimator (MDPDE) of [8], which

has proven to be a useful robust generalization of the maximum likelihood estimator (MLE); see [28]

for details. The similarity of this approach (at α > 0) with the usual Bayes posterior (at α = 0)

is that, it does not require nonparametric smoothing like some other pseudo-posteriors and it is

additive in the data so that the posterior update is easy with new observations. In [28], its robustness
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is demonstrated and a Bernstein-von Mises type limiting result is proved under the IID set-up.

1.2 The Contribution of This Paper

We provide a generalization of the R(α)-posterior density for a completely general parametric model

set-up beyond IID data, through a suitable structural definition of the α-likelihood function, and

derive the exponential convergence results associated with the new pseudo-posterior for the general

set-up. These, in fact, generalize the corresponding results for the usual Bayes posterior [6] for

the R(α)-posterior and their advantages are illustrated through several applications. Our major

contribution in the present paper can be summarized as follows.

• This paper is the first to define a robust pseudo-posterior for the general class of parametric

models with a finite set of parameters. All the previous literature on pseudo-posterior are

confined to the IID set-up or a particular example of a non-IID case. Our model set-up is

extremely general to cover the IID case as well as every type of non-homogeneous and dependent

observations provided the inference is to be performed based on a finite set of parameters. We

have defined a robust R(α)-posterior and the associated estimators for such a general class of

statistical inference problems covering enormous applications.

• To illustrate the wide applicability of our proposal, we have explicitly presented the forms of

the R(α)-posterior or the α-likelihood function for several important cases like the independent

non-homogeneous data including linear and logistic regressions, time series and Markov models,

diffusion processes, etc. Our R(α)-posteriors also contain the usual Bayes posterior at α → 0

and hence provides a direct generalization of the latter at α > 0.

• All the previous pseudo-posteriors currently available in the literature sacrifice the conditional

probability interpretation of the usual Bayes theory. In this paper, for the first time, we dis-

cuss a pseudo-posterior, namely the R(α)-posterior, that retains this conditional probability

interpretation with respect to a suitably modified model and modified prior; the R(α)-posterior
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indeed becomes the ordinary Bayes posterior for such a modified set-up (Remark 2.1). We also

introduce the R(α)-marginal density of data, a robust generalization of the usual marginal.

• Beyond the methodological proposals, we also establish the theoretical properties of the pro-

posed R(α)-posterior under the fully general parametric set-up. We study the asymptotic prop-

erties of the R(α)-marginal and the corresponding joint density of data and parameters. We also

derive the exponential convergence of the R(α)-posterior probabilities and hence the exponential

consistency of the associated R(α)-Bayes estimators under the fully general set-up. As per our

knowledge, such an optimal asymptotic property is not available for any other pseudo-posterior.

• The assumptions needed for our theoretical derivations are indeed extensions of those required

for the classical Bayes theory [6]; they are based on the usual concepts of information denseness,

merging of distributions in probability, (modified) prior negligibility and the existence of uniform

exponential consistent tests. We have further simplified these conditions for the IID and the

non-homogeneous set-ups. They are verified for common examples like linear regression with

known or unknown error variance and logistic regression models. Although the initial set of

conditions under the general parametric models look more stringent than the current literature,

we have illustrated that they indeed hold under very mild conditions in common examples; e.g.,

for linear or logistic regressions they are seen to hold only under the boundedness conditions

on the fixed design matrix and the positive definiteness of the associated variance matrix.

• We have also separately studied the interesting cases of discrete priors under IID set-up, and

the associated maximum R(α)-posterior estimator with their exponential consistency.

• Finally, to bridge the gap between the theoretical developments with their practical applicability,

we also discuss several important practical issues like the computation of the R(α)-posterior and

associated estimates and the choice of the tuning parameter α. The usefulness of our proposal

is illustrated numerically for the linear regression with known and unknown error variance and

logistic regression along with the corresponding algorithms and R codes.
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For brevity, all proofs and the R-codes are given in the Online Supplement.

2 A general form of the R(α)-posterior distribution

In order to extend the R(α)-posterior density to a more general set-up, let us assume that the random

variable Xn is defined on a general measurable space (χn,Bn) for each n (sample size). Also assume

that there is an underlying true probability space (Ω,BΩ, P ) such that, for each n ≥ 1, Xn is Bn/Ω

measurable and its induced distribution Gn(xn) is absolutely continuous with respect to some σ-finite

measure λn(dxn) having “true” probability density gn(xn). We wish to model it by a parametric

family of distributions Fn = {Fn(·|θ) : θ ∈ Θn ⊆ Rp} where the elements of Fn are assumed to be

absolutely continuous with respect to λn having density fn(xn|θ) for each n. Note that, we have not

assumed the parameter space Θn to be independent of the sample size n. Similarly, the prior measure

πn(θ) on Θn may be n-dependent with πn(Θn) ≤ 1. Consider a σ-field BΘn on the parameter space

Θn. Generalizing from (2), we propose to define the α-likelihood function q
(α)
n (xn|θ) in such a way

that ensures
q(0)
n (xn|θ) := lim

α↓0
q(α)
n (xn|θ) = log fn(xn|θ)− n, for all xn ∈ χn. (4)

Our definition should guarantee that the α-likelihood, as a function of θ, is BΘn measurable for each

xn and jointly Bn×BΘn measurable when both Xn and θ are random. Then, for this general set-up,

we define the corresponding R(α)-posterior probabilities as

π(α)
n (An|xn) =

∫
An

exp(q
(α)
n (xn|θ))πn(θ)dθ∫

Θn
exp(q

(α)
n (xn|θ))πn(θ)dθ

, An ∈ BΘn , (5)

whenever the denominator is finitely defined and is positive; otherwise we may define it arbitrarily,

e.g., π
(α)
n (An|xn) = πn(An). Definition (4) ensures that π

(0)
n is the usual Bayes posterior.

For an useful alternative representation, we defineQ
(α)
n (Sn|θ) :=

∫
Sn

exp(q
(α)
n (xn|θ))dxn, M

(α)
n (Sn, An) :=∫

An
Q

(α)
n (Sn|θ)πn(θ)dθ and M

(α)
n (Sn) := M

(α)
n (Sn,Θn)/M

(α)
n (χn,Θn), for Sn ∈ Bn and An ∈ BΘn .

In the following, we will assume that the model and priors are chosen to satisfy 0 < M
(α)
n (χn,Θn) <

∞. Then, the last two measures have densities with respect to λn(dxn) given by m
(α)
n (xn, An) =∫

An
exp(q

(α)
n (xn|θ))πn(θ)dθ andm

(α)
n (xn) = m

(α)
n (xn,Θn)/M

(α)
n (χn,Θn), respectively. Clearly, m

(α)
n (xn)
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is a proper probability density, which we refer to as the R(α)-marginal density of Xn; the associated

R(α)-marginal distribution is M
(α)
n (·). At α > 0, it provides a robust version of the ordinary Bayes

marginal m
(0)
n (xn). Whenever 0 < m

(α)
n (xn) <∞, we can re-express the R(α)-posterior probabilities

(5) in terms of this R(α)-marginal density as π
(α)
n (An|xn) =

m
(α)
n (xn,An)

m
(α)
n (xn,Θn)

=
m

(α)
n (xn,An)/M

(α)
n (χn,Θn)

m
(α)
n (xn)

, for

An ∈ BΘn . Then the R(α)-Bayes joint posterior law of the parameter θ and the data Xn is defined

as L(α)Bayes
n (dθ, dxn) = π(α)

n (dθ|xn)M (α)
n (dxn) =

M
(α)
n (dxn, dθ)

M
(α)
n (χn,Θn)

. (6)

This provides a nice interpretation of the quantity M
(α)
n (Sn, An), when properly normalized, as the

product measure associated with the R(α)-Bayes joint posterior distribution of θ and Xn. At α = 0,

all these again simplify to the ordinary Bayes measures.

Example 2.1 [Independent Stationary Data]:

The simplest possible set-up is that of IID observations as described in Section 1. In terms of the gen-

eral notation presented above, we have Xn = (X1, . . . , Xn) with its observed value xn = (x1, . . . , xn)

and the general measurable space (χn,Bn) is the n-fold product of (χ,B). Additionally, we have

Gn(xn) =
∏n
i=1G(xi), g

n(xn) =
∏n
i=1 g(xi), λ

n(dxn) =
∏n
i=1 λ(dxi), F

n(xn|θ) =
∏n
i=1 Fθ(xi),

fn(xn|θ) =
∏n
i=1 fθ(xi) and so Fn is also the n-fold product of the family of individual distributions

Fθ. Under these notations, the α-likelihood q
(α)
n (xn|θ), which is given by (2), satisfies the required

measurability assumptions along with the condition in (4).

Then, under suitable assumptions on the prior distribution as before, the corresponding R(α)-

posterior distribution is defined by (5) which is now equivalent to (1) and can be written as a product

of stationary independent terms corresponding to each xi (additivity). Other related measures can

be defined from these quantities; we will come back to them again in Section 4. �

Example 2.2 [Independent Non-homogeneous Data]:

Suppose X1, . . . , Xn are independently but not identically distributed random variables, where each

Xi is defined on a measurable space (χi,Bi) for i = 1, . . . , n. Considering an underlying common

probability space (Ω,BΩ, P ), the random variable Xi is assumed to be Bi/Ω measurable, independent

with respect to P and its induced distribution Gi(x) has an absolutely continuous density gi(x) with
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respect to some common dominating σ-finite measure λ(dx), for each i = 1, . . . , n. For each i, the

true distribution Gi is to be modeled by a parametric family F i = {Fi,θ : θ ∈ Θ ⊆ Rp} which is

absolutely continuous with respect to λ having density fi,θ. Note that, although the densities are

potentially different for each i, they are assumed to share the common unknown parameter θ leaving

us with enough degrees of freedom for estimation of θ.

This set-up of independent non-homogeneous (INH) observations covers many interesting practical

problems, the most common one being the regression with fixed design. Suppose t1, . . . , tn be n fixed,

k-variate design points. For each i = 1, . . . , n, given ti we independently observe xi which has the

parametric model density fi,θ(xi) = f(xi; ti,θ) depending on ti through a regression structure. This

can, for example, have the form
E(Xi) = ψ(ti,β), i = 1, . . . , n, (7)

where β ⊆ θ is the unknown regression coefficients and ψ is a suitable link function. In general,

the unknown parameter θ = (β, σ) may additionally contain some variance parameter σ. For the

subclass of generalized linear models, we take ψ(ti,β) = ψ(tTi β) and f from the exponential family of

distributions. For normal linear regression, we have ψ(ti,β) = tTi β and f is the normal density with

mean tTi β and variance σ2. Here, the underlying random variables Xis, associated with observations

xis, have the INH structure with the common parameter θ = (β, σ) and the different densities

fi,θ. We can further extend this set-up to include the heterogeneous variances (by taking different

σi for different fi,θ but involving some common unknown parameters) as a part of our INH set-

up. In terms of the general notation, the random variable Xn = (X1, . . . , Xn) is defined on the

measurable space (χn,Bn) = ⊗ni=1(χi,Bi), and we have Gn(xn) =
∏n
i=1Gi(xi), g

n(xn) =
∏n
i=1 gi(xi),

λn(dxn) =
∏n
i=1 λ(xi), F

n(xn|θ) =
∏n
i=1 Fi,θ(xi) and fn(xn|θ) =

∏n
i=1 fi,θ(xi) so that Fn = ⊗ni=1F i.

Now, under this INH set-up, we can define the R(α)-posterior by suitably extending the definition

of the α-likelihood function q
(α)
n (xn|θ) from its IID version in (2) keeping in mind the general re-

quirement (4). Borrowing ideas from [26], who have developed the MDPDE for the INH set-up, and

following the intuition behind the construction of the α-likelihood (2) of [28], one possible extended

definition for the α-likelihood in the INH case can be given by
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q(α)
n (xn|θ) =

n∑
i=1

[
1

α
fαi,θ(xi)−

1

1 + α

∫
f1+α
i,θ

]
− n

α
=

n∑
i=1

q
(α)
i,θ (xi), (8)

with q
(α)
i,θ (y) = 1

α

(
fαi,θ(y)− 1

)
− 1

1+α

∫
f1+α
i,θ . Note that, we have q

(0)
n (xn|θ) =

∑n
i=1 (log(fi,θ(xi))− 1),

satisfying the required condition in (4). So, assuming a suitable prior for θ, the R(α)-posterior for

the INH observations is defined through (5) with q
(α)
n (xn|θ) being given by (8). Note that, the

resulting posterior is again a product of independent but non-homogeneous terms. We will discuss

their properties in detail in Section 5. �

Remark 2.1. In the first introduction of the R(α)-posterior under IID set-up [28], it was noted that

its only drawback is the loss of the probabilistic interpretation. Here also, so far, we have defined

the R(α)-posterior differently than the conditional probability approach of the usual Bayes theory and

called it a pseudo-posterior. But, in fact, it can also be interpreted as an ordinary Bayes posterior

under a suitably modified model and prior, which becomes prominent in our general set-up. To see

this, define an α-modified model density q̃
(α)
n (xn|θ) =

exp(q
(α)
n (xn|θ))

Q
(α)
n (χn|θ)

and the α-modified prior density

π̃
(α)
n (θ) = Q

(α)
n (χn|θ)πn(θ)

M
(α)
n (χn,Θn)

. Both are proper densities and satisfy the required measurability assumptions

whenever the relevant integrals exist finitely. Further, π̃
(α)
n (θ) is a function of θ only (independent

of the data) and hence may be used as a prior density in Bayesian inference; but it depends on α

and the model. In particular, at α = 0, π̃
(0)
n (θ) = πn(θ) and q̃

(0)
n (xn|θ) = fn(xn|θ) so they indeed

represent modifications of the model and the prior, respectively, in order to achieve robustness against

data contamination. Now, for any measurable An ∈ BΘn, the standard Bayes (conditional) posterior

probability of An with respect to the (α-modified) model family Fn,α =
{
q̃

(α)
n (·|θ) : θ ∈ Θn

}
and the

(α-modified) prior π̃
(α)
n (θ) is given by

∫
An

q̃
(α)
n (xn|θ)π̃

(α)
n (θ)dθ∫

Θn
q̃
(α)
n (xn|θ)π̃

(α)
n (θ)dθ

, which simplifies to π
(α)
n (An|xn) as in (5).

In the following we briefly present the forms of the α-likelihood for some other practically impor-

tant model set-ups, but their detailed investigations are kept for the future.

Example 2.3 [Time Series Data]:

Consider the true probability space (Ω,BΩ, P ) and an index set T . A measurable time series Xt(ω)

is a function defined on T × Ω, which is a random variable on (Ω,BΩ, P ) for each t ∈ T . Given a
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time series {Xt(ω) : t ∈ T}, they are assumed to be associated with an increasing sequence of sub

σ-fields {Gt} and have absolute continuous densities g(Xt|Gt) for t ∈ T . For a stationary time series,

one might take Gt = Ft−1, the σ-field generated by {Xt−1, Xt−2, . . .}, for each t ∈ T . In parametric

inference, we model g(Xt|Gt) by a parametric density fθ(Xt|Ft−1) and try to infer about the unknown

parameter θ from an observed sample xn = {xt : t ∈ {1, 2, . . . , n}} of size n. For example, in a Poisson

autoregressive model, we assume fθ(xt|Ft−1) to be a Poisson density with mean λt = hθ(λt−1, Xt−1)

for all t ∈ T = Z and some known function hθ involving the unknown parameter θ ∈ Θ ⊆ Rp. In the

Bayesian paradigm, we additionally assume a prior density π(θ) and update it to get inference based

on the posterior density of θ given the observed sample data. We can develop the robust Bayesian

inference for any such time series model through the proposed R(α)-posterior density provided a

suitable α-likelihood function can be defined. Following the construction of the MDPDE in such time

series models [39–41, among others], we can define the corresponding α-likelihood function as

q(α)
n (xn|θ) =

n∑
t=1

[
1

α
fαθ (xt|Ft−1)− 1

1 + α

∫
f1+α
θ (x|Ft−1)dx

]
− n

α
. (9)

We have q
(0)
n (xn|θ) =

∑n
i=1 (log(fθ(xt|Ft−1))− 1), which satisfies the required Condition (4). Robust

R(α)-posterior inference about θ can be developed using this α-likelihood function. �

Example 2.4 [Markov Process]:

Example 2.3 can be easily generalized to Markov processes with stationary transitions. Consider the

random variables X1, . . . , Xn defined on the underlying true probability space (Ω,BΩ, P ) having true

transition probabilities g(Xk+1|Xk), k = 0, 1, 2, . . . , n−1, withX0 being the initial value of the process.

We model it by a parametric family of stationary probabilities fθ(Xk+1|Xk) depending on some

unknown parameter θ ∈ Θ ⊆ Rp. Then, the α-likelihood function given the sample xn = (x1, . . . , xn)

can be defined as q
(α)
n (xn|θ) =

∑n
k=1

[
1
αf

α
θ (xk+1|xk)− 1

1+α

∫
f1+α
θ (x|xk)dx

]
− n

α . Clearly it satisfies

Condition (4) and it is possible to perform robust R(α)-Bayes inference about θ under this set-up. �

Example 2.5 [Diffusion Process]:

Consider again a (true) probability space (Ω,BΩ, P ) and an index set T . A measurable random
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variable Xt defined on T follows a diffusion process if dXt = a(Xt,µ)dt + b(Xt, σ)dWt, t ≥ 0, with

X0 = x0 and two known functions a and b, where {Wt : t ≥ 0} is a standard Wiener process and the

parameter of interest is θ = (µ, σ)T ∈ Θ, a convex compact subset of Rp×R+. This model has impor-

tant applications in finance, where some inference about θ is desired based on discretized observations

Xtni
, i = 1, . . . , n, from the above diffusion process. We generally assume tni = ihn with hn → 0 and

nhn →∞ as n→∞. Robust (frequentist) MDPDEs of θ based on such observations are developed

for two of its special cases, a(Xt, µ) = a(Xt) and b(Xt, σ) = σ, respectively, by [55] and [43]. However,

whenever we have some prior knowledge about θ, quantified through a prior π(θ), one would apply the

Bayesian approach. A robust Bayes inference can be done by using our R(α)-posterior. For this pur-

pose, we note thatXtni
= Xtni−1

+a(Xtni−1
,µ)hn+b(Xtni−1

, σ)
√
hnZn,i+∆n,i, i = 1, . . . , n, where ∆n,i =∫ tni

tni−1

[
a(Xs,µ)− a(Xtni−1

,µ)
]
ds+

∫ tni
tni−1

[
b(Xs, σ)− b(Xtni−1

, σ)
]
dWs and Zn,i = h

−1/2
n

(
Wtni
−Wtni−1

)
.

Clearly, Zn,i are IID standard normal variables for i = 1, . . . , n. Therefore, whenever ∆n,i can be

ignored in P -probability, for large enough n, Xtni
|Gni−1, i = 1, . . . , n, behave as INH variables with

densities fi,θ(·|Gni−1) ≡ N
(
Xtni−1

+ a(Xtni−1
,µ)hn, b(Xtni−1

, σ)2hn

)
, where Gni−1 is the σ-field gener-

ated by {Ws : s ≤ tni }. Then, the corresponding α-likelihood function based on the observed data

xn = (xtn1 , . . . , xtnn) can be derived as in Example 2.3. It satisfies the general requirement (4) and has

the simplified form, q
(α)
n (xn|θ) =

∑n
i=1 q

(α)
i,θ (xtni ), with

q
(α)
i,θ (xtni ) =


1(

2πb(xtn
i−1

,σ)2hn
)α/2

 1
αe
−
α

(
xtn
i
−xtn

i−1
−a(xtn

i−1
,µ)hn

)2

2b(xtn
i−1

,σ)2hn − 1
(1+α)3/2

− 1
α , if α > 0,

−
α
(
xtn
i
−xtn

i−1
−a(xtn

i−1
,µ)hn

)2

2b(xtn
i−1

,σ)2hn
− 1

2 log
(

2πb(xtni−1
, σ)2hn

)
− 1, if α = 0.

The robust R(α)-posterior can be easily obtained using this α-likelihood function. �

3 Exponential Convergence Results under the General Set-up

Exponential consistency is an important property of posterior (Bayes) inference; it was first demon-

strated in [6] and later refined by several authors [see 24, 25, 56, 58, among others]. We follow the
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approach of [6] to show that of our new robust R(α)-posterior probabilities and the corresponding

parameter estimates also enjoy such asymptotic optimality properties.

3.1 Properties of the Joint and Marginal R(α)-Bayes distributions

Let us recall the general set-up of Section 2 along with the α-modified model and prior densities

q̃
(α)
n (·|θ) and π̃

(α)
n (θ) as defined in Remark 2.1. Consider the Kullback-Leibler divergence between

two absolutely continuous densities f1 and f2 with respect to the common σ-finite measure λ defined

as KLD(f1, f2) =
∫
f1 log

(
f1

f2

)
dλ, and put D

(α)
n (θ) = 1

nKLD
(
gn(·), q̃(α)

n (·|θ)
)

. We define a joint

(frequentist) law of θ andX given by L
∗(α)
n (dθ, dxn) = π

∗(α)
n (dθ)Gn (dxn), where the probability dis-

tribution π
∗(α)
n of θ on Θn is defined as π

∗(α)
n (dθ) = e−nD

(α)
n (θ)π̃

(α)
n (dθ)

cn
, with cn =

∫
e−nD

(α)
n (θ)π̃

(α)
n (dθ).

We show that this joint law L
∗(α)
n provides a frequentist large-deviation approximation to the joint

R(α)-Bayes distribution (6) of θ and Xn; to quantify their closeness we consider the concept of

“merging” of probability distributions [6].

Definition 3.1. Consider two probability distributions Gn1 and Gn2 of Xn, having densities gn1 and

gn2 respectively with respect to λn.

• They are said to merge in probability if for all ε > 0, lim
n→∞

P
(
gn2 (Xn)
gn1 (Xn) > e−nε

)
= 1.

• They merge with probability one if for every ε > 0, P
(
gn2 (Xn)
gn1 (Xn) > e−nε for all large n

)
= 1.

An application of Markov’s inequality shows that Definition 3.1 is equivalent to the conditions

lim
n→∞

1
n log

gn2 (Xn)
gn1 (Xn) = 0 in probability or with probability one, respectively. See Barron [6, Section 4]

for more results on merging. Additionally we assume the following condition.

Assumption (M1): For any ε, r > 0, there exists a positive integer N such that

π̃
(α)
n

({
θ : D

(α)
n (θ) < ε

})
≥ e−nr, for all n ≥ N .

Theorem 3.1. Under Assumption (M1), we have the following results.

a) lim
n→∞

1
nKLD

(
L
∗(α)
n , L

(α)Bayes
n

)
= 0, and lim

n→∞
1
nEGn

[
KLD

(
π
∗(α)
n (·), π(α)

n (·|Xn)
)]

= 0.
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c) lim
n→∞

1
nKLD(gn,m

(α)
n ) = 0, so that Gn and M

(α)
n merge in probability.

Although Assumption (M1) might look a bit complicated, it can be further simplified in terms of

the common notion of information denseness of priors πn with respect to a suitable family of model

densities. This notion of information denseness is frequently used in large sample analyses of usual

Bayesian methods and is precisely defined below for our context.

Definition 3.2. Suppose Θn = Θ is independent of n and we define D̄(α)(θ) = lim sup
n→∞

D
(α)
n (θ). Then,

the prior sequence πn is said to be information dense at Gn with respect to Fn,α =
{
q̃

(α)
n (·|θ) : θ ∈ Θn

}
if there exists a finite measure π̃ such that π̃

({
θ : D̄(α)(θ) < ε

})
> 0, for all ε > 0, and

lim inf
n→∞

enr
dπ̃

(α)
n

dπ̃
(θ) ≥ 1, for all r > 0,θ ∈ Θ. (10)

Theorem 3.2. If the prior is information dense with respect to Fn,α as in Definition 3.2, then

Assumption (M1) holds and hence the three results of Theorem 3.1 also hold.

3.2 Consistency of the R(α)-Posterior Probabilities

We now prove the exponential convergence results for our robust R(α)-posterior probabilities. For

measurable sets An, Bn, Cn ⊆ Θn and constants bn, cn, we assume the following.

(A1) An, Bn and Cn together complete Θn, i.e., An ∪Bn ∪ Cn = Θn, for each n ≥ 1.

(A2) Bn satisfies π̃
(α)
n (Bn) = M

(α)
n (χn,Bn)

M
(α)
n (χn,Θn)

≤ bn, for each n ≥ 1.

(A3) {Cn} is such that there exists Sn ∈ Bn satisfying lim
n→∞

Gn (Sn) = 0, sup
θ∈Cn

Q
(α)
n (Scn|θ)

Q
(α)
n (χn|θ)

≤ cn.

(A3)∗ {Cn} is such that there exists Sn ∈ Bn satisfying P (Xn ∈ Sn i.o.) = 0 and

sup
θ∈Cn

Q
(α)
n (Scn|θ)

Q
(α)
n (χn|θ)

≤ cn, where i.o. denotes “infinitely often”.

Here we need either Condition (A3) or Condition (A3)∗ which, respectively, help us to prove the

convergence results in probability or with probability one. Condition (A3)∗ is stronger and imply

(A3), but (A3) is sufficient in most practices yielding a convergence in probability type result. Also,

if Condition (A3) holds with cn = e−nr for some r > 0, then it ensures the existence of a uniformly
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exponentially consistent (UEC) test for Gn against the family of α-modified probability distributions{
Q

(α)
n (·|θ)

Q
(α)
n (χn|θ)

: θ ∈ Cn
}

corresponding to the α-modified model density q̃
(α)
n (·|θ) defined in Remark 2.1.

Although complex looking, these conditions are straightforward extensions of the conditions used by

[6] for proving the exponential convergence of ordinary Bayes posterior probabilities; they indeed

coincide at α = 0. In particular, at α = 0, Condition (A2) simplifies to πn(Bn) ≤ bn, i.e., Bn have

negligible prior probabilities if bn → 0, and (A3) assumes the existence of a UEC test against the

models with θ ∈ Cn. Under these conditions, along with the concept of merging (Subsection 3.1), we

have the following main theorem.

Theorem 3.3. [Exponential Consistency of R(α)-posterior probabilities]

(1) Suppose that Gn and M
(α)
n (·) merge in probability and let An ∈ BΘn be any sequence of sets.

Then, lim sup
n→∞

P
(
π

(α)
n (Acn|Xn) < e−nr

)
= 1, for some r > 0, if and only if there exist r1, r2 > 0

and sets Bn, Cn ∈ BΘn such that (A1)–(A3) are satisfied with bn = e−nr1 and cn = e−nr2.

(2) Suppose that Gn and M
(α)
n (·) merge with probability one and let An ∈ BΘn be any sequence

of sets. Then, P
(
π

(α)
n (Acn|Xn) ≥ e−nr i.o.

)
= 0, for some r > 0, if and only if there exists

constants r1, r2 > 0 and sets Bn, Cn ∈ BΘn such that Assumptions (A1), (A2) and (A3)∗ are

satisfied with bn = e−nr1 and cn = e−nr2.

Note that, for α = 0, Theorem 3.3 coincides with the classical exponential convergence results

of ordinary Bayes posterior probabilities as proved in [6]. Our theorem generalizes it for the robust

R(α)-posterior probabilities under suitable conditions. Hence, the R(α)-posterior distribution, besides

yielding robust results under data contamination, is asymptotically optimal in exactly the same

exponential rate as the ordinary posterior for all α ≥ 0.

3.3 Consistency of the R(α)-Bayes Estimators

Let us now examine the asymptotic properties of the R(α)-Bayes estimators associated with the R(α)-

posterior distribution (5) under the general set-up of Section 2. In the decision-theoretic framework,
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we consider the problem of estimation of a functional φP := φ(P ) of the true probability P ; for

example φP could be the probability density of P , or any summary measure (like mean) of P .

For the given parametric family Fn(·|θ), let us denote φθ := φFn(·|θ). Then, our action space is

Φ = {φQ : Q is a probability measure on (Ω,BΩ)}. Consider a non-negative loss function Ln(φ, φ̂) on

Φ× Φ denoting the loss in estimating φ by φ̂; let Ln(φθ, φ) is BΘn measurable for each φ ∈ Φ. Then

the general R(α)-Bayes estimator φ̂ = φ̂(·;xn) of φ is defined as

φ̂ = arg min
φ∈Φ

∫
Ln(φθ, φ)π(α)

n (dθ|xn) , (11)

provided the minimum is attained. In particular, the R(α)-Bayes estimator of φθ = θ is the mean

of the R(α)-posterior distribution for squared error loss provided it exists finitely, or a median of the

R(α)-posterior distribution for absolute error loss.

However, if the minimum in (11) is not attained, we may define the approximate R(α)-Bayes

estimator φ̂ of φ through the relation
∫
Ln(φθ, φ̂)π

(α)
n (dθ|xn) ≤ inf

φ∈Φ

∫
Ln(φθ, φ)π

(α)
n (dθ|xn) + δn,

with lim
n→∞

δn = 0. An useful example is the approximate mode of the R(α)-posterior for discrete

parameter space, which is an approximate R(α)-Bayes estimator under 0-1 loss. Also, note that, if

the R(α)-Bayes estimator exists, it is also an approximate R(α)-Bayes estimator.

Definition 3.3. A loss function Ln on Φ× Φ is said to be bounded if there exists L̄ < ∞ such that

Ln(φθ, φP ) ≤ L̄ for all n and all θ ∈ Θn.

Definition 3.4. A loss Ln on Φ×Φ is said to be equivalent to a pseudo-metric dn on Φ×Φ if there exist

two strictly increasing functions h1 and h2 on [0,∞) that are continuous at 0 with h1(0) = h2(0) = 0

and satisfy Ln ≤ h1(dn) and dn ≤ h2(Ln) on Φ× Φ and for all n.

Note that, Definition 3.4 indicates lim
n→∞

Ln(φn, φ̂n) = 0 if and only if lim
n→∞

dn(φn, φ̂n) = 0. As an

example, the squared Hellinger loss is bounded and equivalent to the L1-distance. Also, the absolute

error (L1) loss is equivalent to itself and bounded by twice the Hellinger loss.

We now establish the asymptotic consistency of R(α)-Bayes and approximate R(α)-Bayes estima-

tors of φθ to the true value φP for such loss. The proof mimics that of Lemma 12 in [6].
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Theorem 3.4 (Consistency of R(α)-Bayes Estimators). Given any sample data xn, let φ̂n = φ̂(·;xn)

be an approximate R(α)-Bayes estimator (or the R(α)-Bayes estimator) of φP with respect to a loss

function Ln that is bounded and equivalent to a pseudo-metric dn. Also, for any ε > 0, define Aε,n =

{θ : dn(φP , φθ) ≤ ε}. Then, we have dn(φP , φ̂n) ≤ ε + h2

 ε+L̄π
(α)
n

(
Ac
h−1

1 (ε),n
|xn
)

1−π(α)
n (Acε,n|xn)

 . Consequently, if

lim
n→∞

π(α)
n

(
Acε,n|Xn

)
= 0 in probability or with probability one for all ε > 0, then lim

n→∞
dn(φP , φ̂n) = 0

in probability or with probability one, respectively.

In simple language, Theorem 3.4 states that whenever the target φP is close enough to the model

value φθ in the pseudo-metric dn asymptotically under the R(α)-posterior probability, the correspond-

ing R(α)-Bayes estimator with respect to Ln is asymptotically consistent for φP in dn. But, Theorem

3.3 yields lim
n→∞

π(α)
n

(
Acε,n|Xn

)
= 0 under appropriate conditions and hence the corresponding R(α)-

Bayes estimators are consistent in suitable dn. In particular, Theorem 3.4 applies to the R(α)-Bayes

estimators with respect to the squared Hellinger loss and the L1-loss. to deduce their L1 consistency.

4 Application (I): Independent Stationary Models

4.1 R(α)-Posterior Convergence

Consider the set-up of the independent stationary model as in Example 2.1. Let us study the

conditions required for the exponential convergence of the R(α)-posterior for this particular set-

up. First, to verify the merging of Gn and M
(α)
n , we define the individual α-modified density as

q̃(α)(·|θ) = exp
(
q

(α)
θ (·)

)
/Q(α)(χ|θ) and the α-modified prior π̃

(α)
n as in Remark 2.1 with πn = π.

Then we consider the information denseness of the prior π under independent stationary models with

respect to Fα =
{
q̃(α)(·|θ) : θ ∈ Θ

}
defined as follows.

Definition 4.1. The prior π under the IID model is information dense at G with respect to Fα if

there exists a finite measure π̃ satisfying (10) and π̃
({
θ : KLD(g, q̃(α)(·|θ)) < ε

})
> 0 for all ε > 0.

Note that, the above definition is equivalent to the general notion of information denseness given

in Definition 3.2. Thus, in view of Theorem 3.2, it implies the merging of Gn and M
(α)
n in probability

for independent stationary models. Then, Theorem 3.3 may be restated as follows.
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Proposition 4.1. Consider the set-up of independent stationary models and assume that the prior

π is independent of n and is information dense at g with respect to Fα as per Definition 4.1. Take

any sequence of measurable parameter sets An ⊂ Θ. Then, π
(α)
n (Acn|Xn) is exponentially small with

P -probability tending to one, if and only if there exists constants r1, r2 > 0 and sets Bn, Cn ∈ BΘ

such that such that (A1)–(A3) are satisfies with bn = e−nr1 and cn = e−nr2.

Next note that, for the present case, (A3) holds under the assumption of the existence of a

UEC test for G against the family
{
Q(α)(·|θ)

Q(α)(χ|θ)
: θ ∈ Cn

}
. We can further simplify it by using a

necessary and sufficient condition for the existence of UEC from [7] which states that, “for every

ε > 0 there exists a sequence of UEC tests for the hypothesized distribution P versus the family of

distributions {Q : dTn(P,Q) > ε/2} if and only if the sequence of partitions Tn has effective cardinality

(eff. card.) of order n with respect to P”; here, for any measurable partition T , dT denotes the

T -variation norm dT (P,Q) =
∑

A∈T |P (A)−Q(A)|. Using this, we show that the R(α)-posterior

asymptotically concentrates on the L1 model neighborhood of the true density g. Define, for any

density p and any partition T , the “theoretical histogram” density pT as pT (x) = 1
λ(A)

∫
A p(y)λ(dy),

for x ∈ A ∈ T, whenever λ(A) 6= 0, and pT = 0 otherwise. We call a sequence of partitions Tn to

be “rich” if the corresponding sequence of densities gTn converges to g in L1-distance. Also, define

BTn
ε =

{
θ : d1

(
fθ, q̃

(α)Tn(·|θ)
)
> ε
}

for any ε > 0 and sequence of partition Tn, where d1 denotes the

L1 distance, and consider the following assumption.

Assumption (B): For ε > 0, π̃
(α)
n (BTn

ε ) = M
(α)
n (χn,B

Tn
ε )

M
(α)
n (χn,Θ)

is exponentially small for a rich sequence of

partitions Tn with eff. card. of order n.

Note that, Assumption (B) implies Assumption (A2) for BTn
ε , or any smaller subset of it. So,

applying it with Bn =
{
θ : d1(g, fθ) ≥ ε, dTn

(
G, Q

(α)(·|θ)

Q(α)(χ|θ)

)
< ε/2

}
⊂ BTn

ε/4 and the existence result of

UEC tests with Cn =
{
θ : dTn

(
G, Q

(α)(·|θ)

Q(α)(χ|θ)

)
> ε/2

}
, Proposition 4.1 yields the asymptotic exponen-

tial concentration of the R(α)-posterior probability in the L1-neighborhood An = {θ : d1(g, fθ) < ε}.

Note that, clearly An ∪Bn ∪ Cn = Θn for these choices.

Theorem 4.2. Consider the set-up of IID models and assume that the prior π is independent of n
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and information dense at g with respect to Fα as per Definition 4.1. If Assumption (B) holds then,

for every ε > 0, π
(α)
n ({θ : d1(g, fθ) ≥ ε} |Xn) is exponentially small with P -probability one.

Note that the final Assumption (B) is easy to verify for model and priors belonging to the standard

exponential family of distributions with exponentially decaying tails. However, if Assumption (B)

does not hold, we can deduce a weaker conclusion in terms of Tn-variance distance in place of the L1

distance. The idea goes back to [6] for a similar result in case of the ordinary posterior; an extended

version for the R(α)-posterior is given in the following.

Theorem 4.3. Consider the set-up of IID models and assume that the prior π is independent of n and

information dense at g with respect to Fα as per Definition 4.1. Then, for any sequence of partitions

Tn with effective card. of order n, π
(α)
n

({
θ : dTn

(
G, Q

(α)
n (·|θ)

Q
(α)
n (χn|θ)

)
≥ ε
} ∣∣∣∣Xn

)
is exponentially small

with P -probability one.

4.2 The Cases of Discrete Priors: Maximum R(α)-Posterior Estimator

We can derive the exponential consistency of the R(α)-Bayes estimators with respect to the bounded

loss functions from Theorem 3.4 along with Proposition 4.1–4.3. Let us now consider, in more detail,

the particular case of discrete priors and the maximum R(α)-posterior estimator.

Consider the set-up of IID models, but now with a countable Θ. On this countable parameter

space, we consider a sequence of discrete priors πn(θ) which are sub-probability mass functions, i.e.,∑
θ πn(θ) ≤ 1. The most common loss-function to consider under this set-up is the 0-1 loss function,

for which the resulting R(α)-Bayes estimator is the (global) mode of the R(α)-posterior density; we

call this estimator of θ as the “maximum R(α)-posterior estimator (MRPE)”. When this mode is

not attained, we consider an approximate version θ̂α, to be referred to as an “approximate maximum

R(α)-posterior estimator (AMRPE)”, defined by the relation

π̃(α)
n (θ̂α)q̃(α)

n (xn|θ̂α) > sup
θ
π̃(α)
n (θ)q̃(α)

n (xn|θ)e−nδn , (12)

with limn→∞ δn = 0 where q̃
(α)
n (·|θ) and π̃

(α)
n (θ) are the α-modified model and prior densities (see
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Remark 2.1). This definition follows from the fact that the R(α)-posterior density is proportional

to π̃
(α)
n (θ)q̃

(α)
n (xn|θ). Note that, if the MRPE exists, then it is also an AMRPE. Assume that this

estimator θ̂α = θ̂α(xn), as a function of data xn, is measurable, and consider such prior sequence

that satisfies
lim inf
n→∞

enrπ̃(α)
n (θ) ≥ 1, for all r > 0, θ ∈ Θ. (13)

Assumption (13) signifies that the (α-modified) prior probabilities are not exponentially small any-

where in Θ. Then, we have the following theorems.

Theorem 4.4. Consider the set-up of IID models with fixed countable Θn = Θ and discrete prior

sequence πn satisfying Assumption (13). Suppose πn is information dense at the true probability

mass function g with respect to Fα as in Definition 4.1 and π
(α)
n (Acn|Xn) is exponentially small with

probability one for a sequence of measurable subsets An ⊆ Θ. Then any AMRPE θ̂α ∈ An for all

sufficiently large n with probability one.

Theorem 4.5. Consider the set-up of stationary independent models with fixed countable Θn = Θ

and a discrete prior sequence πn satisfying Assumption (13). Then, for any true density g which

is an information limit of the (countable) family
{
q̃(α)(·|θ) : θ ∈ Θn

}
and for any ε > 0, we have

π
(α)
n ({θ : d1(g, fθ) ≥ ε} |Xn) is exponentially small with probability one. So lim

n→∞
d1(g, f

θ̂α
) = 0, with

probability one for any AMRPE θ̂α.

Remark 4.1. Theorem 4.5, in a special case α = 0, yields a stronger version of Theorem 15 of [6].

Our result requires fewer assumptions than required by Barron’s result.

5 Application (II): Independent Non-homogeneous Models

5.1 Convergences of R(α)-Posterior and R(α)-Bayes estimators

Let us now consider the set-up of independent but non-homogeneous (INH) models as described in

Example 2.2 of Section 2, and simplify the exponential convergence results for the R(α)-posterior prob-

abilities under this INH set-up. Note that, in this case, q
(α)
n (xn|θ) =

∑n
i=1 q

(α)
i,θ (xi) for any observed

data xn = (x1, . . . , xn), and hence Q
(α)
n (Sn|θ) =

∏n
i=1Q

(i,α)(Si|θ) for any Sn = S1×S2×· · ·×Sn ∈ Bn
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with Si ∈ Bi for all i and Q(i,α)(Si|θ) =
∫
Si exp(q

(α)
i,θ (y))dy. Assume that Θn = Θ and πn = π are

independent of n. Then, we have q̃
(α)
n (xn|θ) =

∏n
i=1 exp

(
q
(α)
i,θ (xi)

)
Q

(α)
n (χn|θ)

=
∏n
i=1 q̃

(i,α)(xi|θ) with q̃(i,α)(xi|θ) =

exp
(
q
(α)
i,θ (xi)

)
Q(i,α)(χi|θ)

. Thus, in the notation of Section 3.1, we have D
(α)
n (θ) = 1

n

∑n
i=1KLD

(
gi, q̃

(i,α)(·|θ)
)
,

and hence the definition of information denseness can be simplified for the INH models as follows.

Definition 5.1. The prior π under the INH model is said to be information dense at Gn = (G1, . . . , Gn)

with respect to Fn,α = ⊗ni=1F iα, if there exists a finite measure π̃ satisfying (10) such that

π̃
({
θ : lim supn→∞

1
n

∑n
i=1KLD

(
gi, q̃

(i,α)(·|θ)
)
< ε
})

> 0, for all ε > 0.

When fi,θ = fθ is independent of i, then the INH set-up coincides with the IID set-up and the

information denseness in Definition 5.1 coincides with that in Definition 4.1. Further, Definition 5.1 is

also equivalent to the general Definition 3.2 and hence implies that Gn and M
(α)
n merge in probability.

Then, we have the following simplified results for the INH set-up.

Proposition 5.1. Consider the set-up of INH models with Θn = Θ and assume that the prior π

is independent of n and information dense at Gn with respect to Fn,α as per Definition 5.1. Then,

for any sequence of measurable parameter sets An ⊂ Θ, π
(α)
n (Acn|Xn) is exponentially small with

P -probability one, if and only if there exists sequences of measurable parameter sets Bn, Cn ⊂ Θ

such that An ∪ Bn ∪ Cn = Θ, M
(α)
n (χn,Bn)

M
(α)
n (χn,Θn)

≤ e−nr for r > 0 and a UEC test for Gn against{
Q

(α)
n (·|θ)/Q

(α)
n (χn|θ) : θ ∈ Cn

}
exists.

However, the existence of the required UEC in Proposition 5.1 is equivalent to the existence of

a UEC test for Gi against
{

Q(i,α)(·|θ)

Q(i,α)(χi|θ)
: θ ∈ Cn

}
uniformly over i = 1, . . . , n. Following the discussions

of Section 4.1, this holds if Assumption (B) is satisfied for B̃Tn
ε =

{
θ : 1

n

∑n
i=1 d1(fi,θ, q̃

(i,α)(·|θ)Tn) > ε
}

in place of BTn
ε . This leads to following simplification.

Theorem 5.2. Consider the INH models with Θn = Θ and assume that the prior π is independent of

n and information dense at Gn with respect to Fn,α as per Definition 5.1. If Assumption (B) holds for

B̃Tn
ε in place of BTn

ε for every ε > 0, the R(α)-posterior probability π
(α)
n

({
θ : 1

n

∑n
i=1 d1(gi, fi,θ) ≥ ε

}
|xn
)

is exponentially small with P -probability one for ε > 0.
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We note that the Bernstein-von Mises type asymptotic results for the R(α)-posterior distribution

under the INH set-up would be extremely important to provide contraction rates for our new robust

pseudo-posterior; similar results for IID models were discussed in [28]. However, considering the

length of the present paper and to keep its focus clear on the exponential convergence results, we

propose to present the results on contraction rates for INH models in a sequel paper; for the time

being, they are made available in the ArXiv version [44].

5.2 Robust Bayes Estimation under Fixed Design Regression Models

As noted in Example 2.2, the most common example of the general INH set-up is the fixed design

regression models. We consider the important example of model (7) with n fixed k-variate design

points t1, . . . , tn and fi,θ(x) = 1
σf
(
x−ψ(ti,β)

σ

)
for some univariate density f . The corresponding

α-likelihood is given by q
(α)
n (xn|(β, σ)) =

∑n
i=1 q

(α)
i,(β,σ)(xi) with q

(α)
i,(β,σ)(xi) = 1

ασα f
(
xi−ψ(ti,β)

σ

)α
−

Mf,α

(1+α)σα −
1
α , where Mf,α =

∫
f1+α. Consider a prior density π(β, σ) for the parameters (β, σ) over

the space Θ = Rk × (0,∞) [p = k + 1]. This prior can be chosen to be the conjugate prior or any

subjective or objective prior; a common objective prior is the Jeffrey’s prior given by π(β, σ) = σ−1.

Then, the R(α)-posterior density of (β, σ) is given by (5) which now simplifies as

π(α)
n ((β, σ)|xn) =

∏n
i=1 exp

[
1

ασα f
(
xi−ψ(ti,β)

σ

)α
− Mf,α

(1+α)σα

]
π(β, σ)∫ ∫ ∏n

i=1 exp
[

1
ασα f

(
xi−ψ(ti,β)

σ

)α
− Mf,α

(1+α)σα

]
π(β, σ)dβdσ

. (14)

If σ is known as in the Poisson or logistic regression models (or can be assumed to be known with

properly scaled variables), we consider a prior only on β given by, say, π(β) which is either the

objective uniform prior or the conjugate prior or some other proper prior. In such cases, we can get

the simplified form for the R(α)-posterior density of β as given by

π(α)
n (β|xn) =

∏n
i=1 exp

[
1

ασα f
(
xi−ψ(ti,β)

σ

)α]
π(β)∫ ∏n

i=1 exp
[

1
ασα f

(
xi−ψ(ti,β)

σ

)α]
π(β)dβ

. (15)

One can obtain the R(α)-Bayes estimators of β, σ under any suitable loss. We now study the exponen-

tial convergence for some regression examples providing simplifications for the required assumptions.
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5.3 Example: Normal Linear Regression Model with known variance

We consider the normal regression model, a particular member of the class of regression models con-

sidered in Section 5.2, where ψ(ti,β) = tTi β with f being a standard normal density. For simplicity,

here we assume that the error variance σ is known; the unknown σ case is considered later. In this

case, we can simplify the R(α)-posterior from (15) and compute the expected R(α)-posterior estimator

(ERPE) of β; however the resulting R(α)-posterior has no explicit form and hence the corresponding

ERPE needs to be computed numerically (see Sections 6, 7).

However, being a particular case of the INH set-up, the exponential consistency of the R(α)-

posterior of β directly holds under the assumptions of Proposition 5.1. We now verify the required

conditions for this present case normal linear regression models with known σ. For this purpose, let

us denote D = [t1, . . . , tn]T , the fixed-design matrix, and x = (x1, . . . , xn)T . Recall that, provided D

has full column rank, the ordinary least square estimate of β is β̂ = (DTD)−1DTx, which is also the

ordinary Bayes estimator under the uniform prior and has the variance n−1(DTD)−1. We assume

the following intuitive assumptions on the fixed design matrix D of the linear regression models.

(R1) The design points ti = (ti1, . . . , tik)
T , i = 1, . . . , n, are such that, for all j, l, s = 1, . . . , k,

sup
n>1

max
1≤i≤n

|tij | = O(1), max
1≤i≤n

|tij ||til| = O(1),
1

n

n∑
i=1

|tijtiltis| = O(1). (16)

(R2) The matrix D satisfies inf
n

[min eigenvalue of n−1(DTD)] > 0, which also implies the matrix

D has full column rank, and max
1≤i≤n

[tTi (DTD)−1ti] = O(n−1).

Note that these Assumptions (R1)–(R2) imply the (weak) consistency of the corresponding (fre-

quentist) MDPDE of β obtained by minimizing the negative of the associated α-likelihood function

[26]. They are easy to verify for any given design matrix; in particular they hold if ti’s are generated

from some non-singular k-variate distributions. It is shown in [44] that these two conditions indeed

ensure a Bernstein-von Mises type result for the associated R(α)-posterior.

It is really fascinating to see that, despite the complex natures of our earlier assumptions for
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general INH models, these two simple Assumptions (R1)–(R2) imply the exponential consistency of

the R(α)-posterior probability at any α ≥ 0 for the example of linear regression (along with some

mild conditions on the prior). The result is presented in the following theorem.

Theorem 5.3. Consider the normal linear regression set up with known error variance. Assume that

the true parameter value is β0, i.e., gi = fi,β0
for all i, and the prior on β is continuous and positive

at β0. Take any α ≥ 0. Then, under Assumptions (R1)–(R2), given any ε > 0, there exists r > 0

such that
lim
n→∞

P

[
π(α)
n

({
β :

1

n

n∑
i=1

d1(gi, fi,β) ≥ ε

}∣∣∣∣xn
)
< e−nr

]
= 1,

or equivalently, lim
n→∞

P

[
π(α)
n

({
β :

1

n

n∑
i=1

tTi |β − β0| ≥ ε

}∣∣∣∣xn
)
< e−nr

]
= 1,

i.e., the R(α)-posterior probabilities asymptotically concentrates on the neighborhoods of the true re-

gression line at a exponential rate of convergence.

5.4 Example: Normal Linear Regression Model with unknown variance

We now consider an extended version of the previous example of normal linear regression with un-

known error variance. Consider the set-up and notation of the previous subsection with ψ(ti,β) = tTi β

and f being a normal density with mean 0 and variance σ; but now we consider σ2 to be also an

unknown parameter along with the regression coefficient β. Given a prior π(β, σ) in this case, the

R(α)-posterior distribution is given by (14) with Mf = (2π)−α/2(1 + α)−1/2.

In this case as well, we have simplified the required conditions for the exponential convergence of

the R(α)-posterior probabilities, which is presented in the following theorem; interestingly, the same

sets of conditions as in the known σ case suffice.

Theorem 5.4. Consider the normal linear regression set up with unknown error variance. Assume

that the true parameter value is θ0 = (β0, σ
2
0), i.e., gi = fi,θ0 for all i, and the prior on θ is continuous

and positive at θ0. Take any α ≥ 0. Then, under Assumptions (R1)–(R2), given any ε > 0, there

exists r > 0 such that

lim
n→∞

P

[
π(α)
n

({
θ :

1

n

n∑
i=1

d1(gi, fi,θ) ≥ ε

}∣∣∣∣xn
)
< e−nr

]
= 1.
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5.5 Example: Logistic Regression Model

We now consider the important logistic regression model, which does not belong to the class of

location-scale type regressions in Section 5.2. In the notation of Example 2.2, given fixed-design

points t1, . . . , tn, the logistic regression model considers binary response variables xi, respectively,

having Bernoulli distribution with expectation ψ(ti,β) =
et
T
i β

1 + et
T
i β

, for i = 1, . . . , n. As in Example

2.2, this model clearly belongs to the INH set-up with the only parameter being the regression

coefficient θ = β; there is no scale parameter here. Thus, the α-likelihood q
(α)
n (xn|β) of β is given by

(8) with fi,θ being the probability mass function of Bernoulli(ψ(ti,β)) distribution and the integral

being the sum over its support χi = {0, 1}; the underlying measure is the counting measure. The

R(α) is obtained by using (5) given any prior π(β), which does not have a closed form and needs to

be computed numerically; see Section 6 for illustrations.

Let us now simplify the conditions required for the exponential consistency of the R(α)-posterior

for the logistic regression model. For this purpose, we recall the Assumption (R1) on the fixed design

points and consider the new condition (R3) in terms of the matrix Ψn(β) = n−1Egi

[
∂2

∂β∂βT
q

(α)
n (xn|β)

]
.

(R3) inf
n

[min eigenvalue of Ψn(β)] > 0, for all β.

The matrix Ψn(β) appears in the asymptotic variance of the (frequentist) MDPDE of β under

the fixed-design logistic regression model [29], as well as in the Bernstein-von Mises type results for

the corresponding R(α)-posterior distribution [44]. Thus, in view of those results, Assumption (R3) is

extremely intuitive and easy to verify for any given design-matrix. We have shown that, Assumptions

(R1) and (R3) also imply the exponential convergence of our generalized R(α)-posterior probability

in this logistic regression set-up, as presented in the following theorem.

Theorem 5.5. Consider the fixed-design regression set up as above. Assume that the true parameter

value is β0, i.e., gi = fi,β0
for all i, and the prior π(β) is continuous and positive at β0. Take any

α ≥ 0. Then, under Assumptions (R1) and (R3), given any ε > 0, there exists r > 0 such that

lim
n→∞

P

[
π(α)
n

({
θ :

1

n

n∑
i=1

d1(gi, fi,β) ≥ ε

}∣∣∣∣xn
)
< e−nr

]
= 1.
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6 Numerical Illustrations: Simulations

6.1 Performance of ERPE in Normal Linear Regression Model

Let us now reconsider the regression model described in Sections 5.3–5.4, and examine the finite

sample performance of the expected R(α)-posterior estimator (ERPE) of the parameters.

We first assume that the error variance σ is known and equals one. The corresponding R(α)-

posterior is given by (15), as discussed in Section 5.3, and has no closed form solution. So, we have

computed the ERPE through an importance sampling Monte-Carlo. We first simulate n observations

t11, . . . , t1n independently from N(5, 1) to fix the predictor values ti = (1, t1i)
T . Then, n independent

error values ε1, . . . , εn are generated from N(0, 1) (note σ = 1) and the responses are obtained

through the linear regression structure xi = tTi β + εi for i = 1, . . . , n, with the true value of β being

β0 = (5, 2)T . We have considered different sample sizes n = 20, 50, 100, and different contamination

proportions εC =0% (pure data), 5%, 10%, 20% to examine the finite sample robustness properties

of our proposal. For contaminated samples, [nεC ] error values are contaminated by generating them

from N(5, 1) instead of N(0, 1). In each case, given a prior, the ERPE at different α ≥ 0 are

computed using 20000 steps in the importance sampling Monte-Carlo with the proposal density

Nk

(
β̂, n−1(DTD)−1

)
. We replicate the above procedure 1000 times to compute the empirical bias

and MSE of the ERPE for two different priors, namely the non-informative uniform prior and the

conjugate normal prior, which are presented in the Online Supplement (Figures 1 and 2) due to

page restriction. The figures show that, under pure data, the bias and the MSE are the least for

the usual Bayes estimator of β at α = 0, but their inflations are not very significant for the ERPEs

with moderate α > 0. Under contamination, the usual Bayes estimator (at α = 0) has severely

inflated bias and MSE and becomes highly unstable. Our ERPEs with α > 0 are much more stable

under contamination in terms of both bias and MSE; the maximum stability is observed for tuning

parameters α ∈ [0.4, 0.6] yielding significantly improved robust Bayes estimators.

Next we consider the case of unknown error variance σ in the above linear regression model, as
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discussed in Section 5.4. We repeat the above simulation exercise for the unknown σ case as well,

by taking the true value of σ0 = 1 and the conjugate prior on (β, σ) given by π(β, σ) = π(β|σ)π(σ),

where π(β|σ) is taken to be N2(β0, σ
2I2) density and π(σ) is the density of the square root of Inverse

chi-square distribution with 5 degrees of freedom (i.e., prior for σ2 is Inverse-χ2
5). However, in this

case the computation of the ERPE could not be done efficiently using the simple importance sampling

method as in the case of known σ; alternatively we have used the Metropolis-Hastings algorithm.

Algorithm 1: Computation of ERPE in LRM with unknown variance:

We generate 20000 sample observation from R(α) posterior distribution of θ = (β, σ) as follows.

Step 1. Start with θ(0) = (0, 0, 2)T . Set k = 1.

Step 2. After generating θ(k−1) = (β(k−1), σ(k−1)) in the (k−1)-th step, at the kth step, generate β∗ and

σ∗ from the proposal densities g1 ≡ N2(β(k−1), I2) and g2 ≡Exponential(σ(k−1)), respectively.

Step 3. Generate U ∼ U(0, 1) and compute γ =
exp[q

(α)
n (xn|β∗,σ∗)g1(β∗)g2(σ∗)

exp[q
(α)
n (xn|β(k−1),σ(k−1))g1(β(k−1))g2(σ(k−1))

.

Step 4. If U < γ, set β(k) = β∗ and σ(k) = σ∗. Otherwise, set β(k) = β(k−1) and σ(k) = σ(k−1).

Step 5. Set k = k + 1, and go to Step 2.

In each cases, the first 5000 values generated are rejected as burn-in and the remaining 15000 param-

eter values are averaged to get a good approximation of the ERPE of (β, σ). �

The process is replicated 1000 times to compute the empirical biases and MSEs of the ERPEs of

β and σ at different α for the previous simulation set-up. The resulting values of total absolute bias

and the total MSE over the two components of β as well as the absolute bias and MSE of the ERPE

of σ are presented in Figures 1 and 2, respectively.

The performances of the ERPE of regression coefficient and error variance are again the same

as before in that the proposed ERPE with larger α provide extremely stable estimates even under

contamination up to 20%. Under pure data the usual Bayes estimators give minimum absolute bias

and MSEs, but the ERPEs with α > 0 are also not very far away. However, under data contamination,

the usual Bayes estimates (at α = 0) become extremely non-robust yielding significantly higher
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(a) n = 20 (b) n = 50 (c) n = 100

Figure 1: Empirical total absolute bias and total MSE of the ERPE of β in the linear regression
model with unknown σ and the conjugate priors. [Dotted line: εC = 0%, Dash-Dotted line: εC = 5%,
Dashed line: εC = 10%, Solid line: εC = 20%] (See additional discussions in the Online Supplement)

bias and MSEs even though we are using strong conjugate prior. As the contamination proportion

increases, we need larger values of α in the proposed ERPE to produce smaller biases and MSEs close

to the pure data scenarios; in particular, α ≥ 0.5 always has excellent robust performance.

(a) n = 20 (b) n = 50 (c) n = 100

Figure 2: Empirical absolute bias and MSE of the ERPE of σ in the linear regression model with
unknown σ and the conjugate priors. [Dotted line: εC = 0%, Dash-Dotted line: εC = 5%, Dashed
line: εC = 10%, Solid line: εC = 20%] (See additional discussions in the Online Supplement)
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6.2 Performance of ERPE in Logistic Regression Model

We now consider the fixed-design logistic regression model as in Section 5.5 and study the finite

sample properties of the ERPE, the expectation of the regression coefficient β under the proposed

R(α)-posterior distribution. Since the corresponding R(α)-posterior has no closed form solution, we

have computed the ERPE numerically in our simulation exercise.

We first simulate n values t11, . . . , t1n independently from U(−5, 5) and fix the design points as

ti = (1, t1i)
T . Then, the n response values x1, . . . , xn are obtained through the logistic regression

structure with xi generated from Bernoulli distribution with mean parameter ψ(ti,β) =
et
T
i β

1 + et
T
i β

for each i = 1, . . . , n; the true parameter value is taken as β0 = (0, 5)T . Again we have considered

different sample sizes n = 20, 50, 100, and different contamination proportions εC =0% (pure data),

5%, 10%, 20%. The contaminated observations, [nεC ] many in a sample of size n, are forced through

misspecification of the response values, i.e., by changing xi to (1 − xi), and the prior is taken as

the (bivariate) normal distribution as π(β) ≡ N2(β0, I2). However, in this case also, the importance

sampling is seen to fail to provide a good approximation to the ERPE and we have alternatively

used the Metropolis-Hastings method. Note that, the target density, i.e R(α) posterior density here

is proportional to g(β) = exp[q
(α)
n (xn|β)]π(β)dβ.

Algorithm 2: Computation of ERPE in logistic Regression:

We generate 20000 sample observation from R(α) posterior distribution of β as follows.

Step 1. Start with β(0) = (0, 0)T .

Step 2. After generating β(k−1) in the (k− 1)-th step, at the kth step, generate β∗ from N2(β(k−1), I2).

Step 3. Generate U ∼ U(0, 1) and compute γ = g(β∗)/g(β(k−1)).

Step 4. If U < γ, set β(k) = β∗. Otherwise, set β(k) = β(k−1).

Step 5. Set k = k + 1, and go to Step 2.

In each case, the first 5000 values generated are rejected as burn-in and the remaining 15000 parameter

values are averaged to get a good approximation of the ERPE. �
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(a) n = 20 (b) n = 50 (c) n = 100

Figure 3: Empirical total absolute bias and total MSE of the ERPE of β in the logistic regression
model with normal prior. [Dotted line: εC = 0%, Dash-Dotted line: εC = 5%, Dashed line: εC = 10%,
Solid line: εC = 20%] (See additional discussions in the Online Supplement)

The simulation exercise is replicated 1000 times to compute 1000 ERPEs of β. Their empirical

biases and MSEs are presented in Figure 3. Here also, it is clearly observed that the moderately

larger values of α produce highly robust estimates under contaminations with only a slight loss in

efficiency under pure data. Under contamination, the MSE of the ERPEs remain stable for α ≥ 0.5;

however, we need slightly larger α ≥ 0.7 to get smaller biases under heavy contamination of 20%.

7 Practical Aspects

7.1 On the Computation of the R(α)-Bayes Estimators

A complex and challenging aspect of the proposed R(α)-Bayes estimators is their computation. This is,

in fact, a common problem with all pseudo-posteriors that replace the likelihood with some robust loss

function. In a frequentist sense, using a suitable optimization algorithm to derive a point estimator

from some robust loss function results in scalable computation for many applications. In contrast, the

computation of the whole pseudo-posterior is challenging for complicated models and needs careful

attention (even for the usual Bayes methods).
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For our R(α)-posterior also, no closed form expressions exist in most applications and hence we

need to compute the corresponding R(α)-Bayes estimators numerically. One such possible approach

could be the use of the importance sampling technique, which is seen to work well in our illustrations

for normal means ([28]) or linear models with known σ (Section 6.1). But, this simple approach can be

useful only when it is possible to utilize some conjugacy structure; in our cases, the standard posterior

distribution is used as the proposal distribution due to their conjugacy. However, when the model

is more complicated and we do not have a good proposal distribution, importance sampling fails to

provide good approximations to the proposed R(α)-Bayes estimators; this is because the α-likelihood

parts do not enjoy some conjugacy when the model is little bit more complicated, for example, the

linear regression with unknown variance or the logistic regression models. In such cases, we propose

to use a suitable Metropolis-Hastings algorithm that is seen to work very well for the computations of

the proposed ERPE under the above-mentioned two cases; the corresponding algorithms are given in

Sections 6.1 and 6.2, respectively. We have also supplied the relevant R codes for the computations

of the ERPEs for our examples in the Online Supplement.

We hope that, with the advance in modern computers, it would be possible to develop similar

algorithms for the computation of the R(α)-posterior and the R(α)-Bayes estimators for other useful

models. However, if the model becomes too complex, the usual Bayes computation also becomes chal-

lenging and we have to develop appropriate computation algorithms more carefully. An alternative

approach can be to approximate the R(α)-Bayes estimators for larger sample sizes using asymptotic

expansions like Laplace’s one; such an approximation for our R(α)-posterior and its expectations are

provided in [44] for general non-homogeneous (but independent) observations. These computational

aspects of our robust pseudo-posterior would surely form a sequence of interesting future works.

7.2 On the Choice of the tuning parameter α

We have proposed a class of robust pseudo-posteriors, indexed by the tuning parameter α > 0, which

coincides with the non-robust but (asymptotically) most efficient ordinary Bayes posterior as α→ 0.
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In all our illustrations in Section 6 it is observed that, with increasing values of α > 0, the asymptotic

performance of the proposed R(α)-Bayes estimators deteriorate slightly under pure data, but their

robustness under data contamination improves significantly compared to the usual Bayes estimates

(at α = 0). Thus, a natural and practical question arises – which α should one use for a given data

set? As we have observed numerically that, with conjugate prior, any α ≥ 0.5 provides extremely

robust inference under contamination, whereas the empirically suggested range for the cases with

uniform prior is α ∈ (0.4, 0.07); thus, from our simulations presented here (along with numerous

others not presented for brevity) α ≈ 0.5 seems to be a good choice in most cases.

However, a more systematic procedure for selection of this tuning parameter depending on the

given data at hand would surely be useful for reliable applications of our proposal. In this regard,

we note that the asymptotic distribution of the proposed ERPE at any α ≥ 0 is the same as that of

the corresponding frequentist MDPDE for both IID and INH cases [28, 44]. Therefore, finding the

optimal tuning parameter for the ERPE becomes an asymptotically equivalent problem of choosing

an α for the optimal control between robustness and efficiency of the MDPDE. The second one has

received some attention in the literature; one such approach chooses α by minimizing an asymptotic

MSE of the MDPDE, with respect to α ∈ [0, 1], given by

ÂMSE(α) = (θ̂α − θP )T (θ̂α − θP ) +
1

n
Trace(Σα(θ̂α)), (17)

where θ̂α is the MDPDE at α, Σα is the asymptotic variance of
√
nθ̂α and θP is some suitable pilot

estimator. The details can be found in [60] and [27] for IID and INH set-ups, respectively, where

some suggestions regarding the choice of pilot θP are also provided.

Since the asymptotic MSE of the MDPDE is indeed the same as the frequentist MSE of our

ERPE, the same process can be used to chose optimum α for the ERPE here when using improper

non-informative priors with θ̂α being replaced by the corresponding ERPE, say θ̂
∗
α, at any given

α. However, if we have a proper subjective prior, say π(θ), then we can improve this approach

appropriately by taking the pilot θP as a random variable following π(θ) and then taking expected

bias in (17); the modified criterion is then given by
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ÂMSE
∗
(α) =

∫
(θ̂
∗
α − θ)T (θ̂

∗
α − θ)π(θ)dθ +

1

n
Trace(Σα(θ̂

∗
α)), (18)

which we can minimize with respect to α, possibly through a grid search over [0, 1], to chose an ap-

propriate tuning parameter value. However, this proposal clearly needs further detailed investigation

which, considering the length of the current paper, we hope to do in a future work.

8 Real Data Applications

8.1 Hertzsprung-Russell star cluster data

As our first application, let us consider the famous star cluster (CYG OB1) data from the Hertzsprung-

Russell diagram about the logarithms of the light intensity (L/L0) and the effective temperature (Te)

at the surface of 47 stars in the direction of Cygnus (Table 3, Chapter 2, [51]). These data are

studied by several authors (e.g., [26, 51]) for demonstration of robust methods through a simple

linear regression with (L/L0) being the response and Te as the covariate; it has been observed there

that four stars in the data (with indices 11, 20, 30 and 34) are indeed significantly different from the

remaining stars and produce the non-robust outlier effects while using classical estimation methods.

Here we have performed the Bayesian analyses of the simple linear regression model with different

conjugate and improper priors. As in the common practice, we assume the error variance σ2 to be

unknown. For brevity, we present only the results for the extreme case of uniform priors π(β, σ) =

σ−1; the resulting values of the ERPE (with and without the outliers) are presented in Table 1. It can

Table 1: The ERPEs of the coefficients and error variance σ2 in the simple linear regression models
for the Hertzsprung-Russell data with uniform prior.

Original Data Without Four Outliers

α Intercept Slope σ Intercept Slope σ

0 7.33 −0.54 0.55 −3.38 1.89 0.41
0.1 6.83 −0.42 0.58 −4.90 2.24 0.42

0.25 −8.91 3.14 0.41 −5.78 2.43 0.41
0.4 −6.13 2.51 0.42 −8.73 3.10 0.39
0.5 −6.60 2.62 0.43 −7.75 2.88 0.38
0.6 −7.19 2.75 0.41 −9.68 3.31 0.39
0.8 −7.22 2.76 0.42 −7.76 2.88 0.42
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be clearly observed that the usual Bayes estimates (at α = 0) are extremely non-robust producing

regression coefficients of opposite sign due to the presence of outliers. however, our proposed R(α)-

Bayes approach and the corresponding ERPEs remain extremely stable for moderately large values

of α and successfully counter the effect of outliers.

8.2 Skin Data

Let us now consider another popular example of logistic regression models having outlier issue, namely

a controlled study on the occurrence of “vaso constrictions” in the skin of digits due to air inspiration

after a single deep breath [21]. This Skin dataset was analyzed by several authors including the recent

work by [29] where the logistic regression parameters are robustly estimated by the MDPDEs. Here

the important covariates to model the vaso constriction occurrences are the logarithms of the volume

of inspired air (“log.Vol”) and the rate of inspiration (“log.Rate”). One can observe by plotting these

data (see, for example, [29]) that the 4-th and 18-th observations are indeed the outliers making it

difficult to separate the responses; the MLE of the corresponding regression coefficients in the logistic

regression model also changes significantly to have the values (−2.88, 4.56, 5.18) in the presence of

outliers and (−24.58, 31.94, 39.55) after removal of the outliers.

Here we have considered the Bayesian modeling of the same regression model with different types

of priors. Again for brevity, we present only the case of uniform prior over the cube [−50, 50]3 having

the most extreme effect of outliers. The resulting ERPE for different values of α under the full data

(including outliers) as well as under the outlier deleted data are given in Table 2; note that the values

Table 2: The ERPEs of the coefficients in a logistic regression for the Skin data with uniform prior.

Original Data Without Outliers (4th and 18th obs.)

α Intercept log(Rate) log(Vol) Intercept log(Rate) log(Vol)

0 −4.68 7.26 7.23 −22.35 35.17 29.58
0.1 −5.73 9.02 8.46 −22.32 34.96 29.62

0.25 −19.45 30.21 26.03 −22.53 34.91 30.02
0.4 −22.38 34.15 29.94 −22.91 34.92 30.61
0.5 −22.94 34.54 30.72 −23.18 34.88 31.02
0.6 −23.29 34.61 31.20 −23.41 34.79 31.37
0.8 −23.63 34.45 31.72 −23.71 34.54 31.80
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corresponding to α = 0 gives the usual Bayes estimator (posterior mean). Clearly, the usual Bayes

estimates get highly affected by the presence of only two outliers whereas our R(α)-Bayes estimators,

the ERPEs, with α around 0.5 provides extremely stable results even in the presence of outliers.

9 Concluding Remark

This paper presents a general Bayes pseudo-posterior under general parametric set-up that produces

pseudo-Bayes estimators which incorporate prior belief in the general spirit of Bayesian philosophy

but are also robust against data contamination. The exponential consistency of the proposed pseudo-

posterior probabilities and the corresponding estimators are proved and illustrated for the cases

of independent stationary and non-homogeneous models; separate attention is given to the case of

discrete priors with stationary models. Further applications of the proposed pseudo-Bayes estimators

are described in the context of linear and logistic regression models. All results of [6] turn out to be

special cases of our results when the tuning parameter α is set to 0.

On the whole, we trust that this paper opens up a new and interesting area of research on robust

hybrid inference that has the flexibility to incorporate prior belief and inherits optimal properties from

the Bayesian paradigm along with the frequentists’ robustness against data contamination and hence

could be very helpful in different complex practical problems. In this sense, all Bayesian inference

methodologies can be extended with this new pseudo-posterior. In particular, a detailed study of

the examples discussed in Section 2 should be an interesting future work for different applications.

Extended versions of the Bayes testing and model selection criteria based on this new pseudo-posterior

can also be developed to achieve greater robustness for inference under data contamination.
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