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Abstract: Permutation tests are widely used in practice. However, these tests

either need restrictive assumptions for the validity, or are not applicable to high-

dimensional data. This paper considers permutation tests for high-dimensional

mean comparison, where in order to get round those restrictions, the test statistics

are calculated based on pseudo samples that are generated through a “binning”

procedure. The corresponding permutation tests are proved to be asymptoti-

cally consistent. We also consider a related problem for signal identification and

establish the asymptotic properties. Simulation studies demonstrate favorable

performance of our methods in comparison to existing tests. Finally, the pro-

posed method is applied to a genome-wide association study (GWAS) for seven

complex human diseases to identify possible single nucleotide polymorphisms

(SNPs) associated with the diseases.

Key words and phrases: consistency of test; high-dimensional data; permutation

tests; signal identification; test of mean-difference
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1. INTRODUCTION2

1. Introduction

Testing the equality of means of two random vectors based on random

samples has long been one of the statutory issues in multivariate analysis.

The past two decades have witnessed increasing interest in this problem

in high-dimensional settings. Existing methods could largely be divided

into two categories. Some are based on the sum-of-squares of the sample

mean differences, e.g., Bai and Saranadasa (1996) and Chen and Qin (2010),

and are generally more powerful against dense alternatives, in the sense that

there is a large proportion of small to moderate component-wise differences.

The others are based on the infinity norm of the mean differences, e.g., Cai

et al. (2014), Xu et al. (2016), Chang et al. (2017) and Xue and Yao (2018),

and these are better suited for testing against sparse alternatives, i.e. when

there are only a few but significant component-wise differences.

The focus of this paper is permutation methods, which have always

served as a very useful alternative to traditional methods for hypothesis

testing; see Good (2005) and Ernest (2004) for a comprehensive review. The

basic idea is to generate a reference distribution by recalculating a statistic

for many permutations of the data. To illustrate, suppose p-dimensional

random vectors X1, · · · , Xm are
i.i.d.∼ P1(.) with mean µX and variance
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1. INTRODUCTION3

ΣX , while Y1, · · · , Yn are
i.i.d.∼ P2(.) with mean µY and variance ΣY . Write

N = m + n and suppose that m/N → c for some constant c ∈ (0, 1). Our

interest is to test the null hypothesis

H0 : µX = µY .

Chung and Romano (2013) considered the testing of H0 using permutation

methods for p = 1. The procedure is as follows. Write ZN = {Z1, · · · , ZN},

with Zi = Xi, 1 ≤ i ≤ m; Zm+j = Yj, 1 ≤ j ≤ n. Consider the standard-

ized statistic

SN(ZN) =
N1/2(X̄m − Ȳn)√

N
m
σ̂2
m(ZN) + N

n
ŝ2n(ZN)

, (1.1)

where, X̄m, Ȳn are the sample means of {Z1, · · · , Zm} and {Zm+1, · · · , ZN},

respectively, while σ̂2
m(ZN) and ŝ2n(ZN) are the corresponding sample vari-

ances. Let GN be the set of all permutations of {1, · · · , N}. For any π ∈

GN , let ZN
π denote the rearranged ZN through permutation π, and ZN

π(i), i =

1, · · · , N , be the ith entry of ZN
π . Recompute SN(ZN

π ) ≡ SN(ZN
π(1), · · · , ZN

π(N)),

and let R̂S
N(·) denote the empirical distribution of SN(ZN

π ) evaluated at all

N ! permutations of ZN , i.e.,

R̂S
N(t) =

1

N !

∑
π∈GN

I{SN(ZN
π ) ≤ t}.

This empirical distribution R̂S
N(·), also referred to as the permutation dis-

tribution, is used as an approximation of the null (limiting) distribution of
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1. INTRODUCTION4

statistic (1.1), which in this case is given by Φ(·), the distribution function

of the standard normal N(0, 1). Reject H0, if R̂S
N(SN(ZN)) ≥ 1−α. Chung

and Romano (2013) proved that

sup
t∈R
|R̂S

N(t)− Φ(t)| → 0 in probability,

and in this sense the permutation procedure based on statistic (1.1) is con-

sidered to be consistent (valid). In general, however, the consistency of per-

mutation tests should not be taken for granted. Indeed, Chung and Romano

(2013) showed that the permutation test based on SN(ZN) = X̄m− Ȳn, i.e.

(1.1) without standardization, is inconsistent, unless c = 1/2 or ΣX = ΣY .

Clearly, in the high-dimensional cases where the dimension p could far

exceed the sample sizes, permutation tests based on standardized statistic

(1.1) are no longer applicable. Nor is the prepivoting method of Chung and

Romano (2016) proposed for a multivariate setting computationally feasi-

ble. This paper intends to fill this gap and we shall propose a permutation

procedure which is both asymptotically consistent and easy to implement

even for ultra-high dimensional data.

The rest of this paper is organized as follows. Section 2 begins with the

basic formulation of the problem, followed by the results concerning the

consistency of permutation tests based on the Hotelling’s T 2-type of statis-

tics. As these statistics require the estimation of the inverse of covariance

matrix, which renders their use impractical in high-dimensional setting, an
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2. PERMUTATION TESTS FOR HIGH-DIMENSIONAL MEAN
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alternative is described in details in Section 2.2, where we propose a “bin-

ning” procedure to produce pseudo samples from which the test statistics

are then derived. Section 3 applies the proposed tests to identify variables

which are the sources of the difference of two high-dimensional means, re-

ferred to as signal identification hereafter. Some related theoretical results

are also given. Numerical performance of the proposed methods and other

existing methods are examined in Section 5 through simulation studies.

Section 6 contains an empirical study of genome-wide association for seven

complex diseases using the data from Wellcome Trust Case Control Con-

sortium (WTCCC). Assumptions needed for asymptotic studies are given

in the Appendix, while technical proofs are delegated to a separate online

supplementary file.

2. Permutation tests for high-dimensional mean comparison

We first introduce some notations. For any v = (v1, · · · , vp)> ∈ Rp, let

|v|γ = {(|v1|γ + · · ·+ |vp|γ)/p}1/γ for any γ > 0. In particular, |v|1 = (|v1|+

· · · + |vp|)/p, stands for the L1-norm, and |v|∞ = maxk=1,··· ,p |vk|, the L∞-

norm. Write X̄m = m−1
∑

iXi, Ȳn = n−1
∑

j Yj, δN = (δN,1, · · · , δN,p)> =

N1/2(X̄m − Ȳn), and

Σ̂X
m =

1

m

∑
i

(Xi − X̄m)(Xi − X̄m)>, Σ̂Y
n =

1

n

∑
j

(Yj − Ȳn)(Yj − Ȳn)>.

(2.2)
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2. PERMUTATION TESTS FOR HIGH-DIMENSIONAL MEAN
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Denote by σ̂2
m,k(X1, · · · , Xm), ŝ2n,k(Y1, · · · , Yn), k = 1, · · · , p, the diagonal

elements of Σ̂X
m and Σ̂Y

n , respectively. Write Σ(P̄ ) = cΣX + (1− c)ΣY .

2.1 Permutation tests based on Hotelling’s T 2−type statistics

Write Σ̃ = c−1ΣX + (1 − c)−1ΣY , the variance of δN , and suppose Ω̃N =

Ω̃N(ZN) is an estimator of Ω̃ = Σ̃−1. Then in a manner similar to (1.1),

define eN(ZN) = {Ω̃N}1/2δN and

Hγ(ZN) ≡ |eN(ZN)|γ, γ = 1 or ∞. (2.3)

Xu et al. (2016) considered the use of other values for γ, but in the present

study of permutation tests for high dimensions, we only focus on the cases

where γ = 1 or ∞. In practice these two choices should serve the purposes

well enough, as the use of H1(·) is expected to be more powerful against

dense alternatives, while H∞(·) works better against sparse alternatives.

The latter also finds important applications in signal identification; see,

e.g, Benjamini and Hochberg (1995) and Jin and Cai (2007). Regarding

the permutation tests based on test statistics (2.3), we have

Theorem 1. Suppose conditions (C1)-(C5) of Section 4 hold. Then

under H0, sup
t∈R

∣∣∣ 1

N !

∑
π∈GN

I{H∞(ZN
π ) < t}−Pr

(
H∞(ZN) ≤ t

)∣∣∣ p→ 0, (2.4)

where
p→ stands for convergence in probability. Parallel results hold for

H1(.), if conditions (C1)-(C2), (C3’), (C4)-(C5) of Section 4 hold.
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In other words, the permutation tests based on (2.3) with γ = 1 or γ =

∞ are both consistent. However, in high-dimensional settings, these tests

are difficult to implement due to the challenges with estimating the high-

dimensional precision matrix Ω̃, if at all possible. A naive solution is to

standardize (divide) the entries of δN by their marginal standard error.

Namely, with

v2N,k =
N

m
σ̂2
m,k(X1, · · · , Xm) +

N

n
ŝ2n,k(Y1, · · · , Yn), (2.5)

consider the following test statistics

S1(Zn) = p−1
p∑

k=1

|δN,k/vN,k|, S∞(Zn) = max
1≤k≤p

|δN,k/vN,k|. (2.6)

Theorem 2. If conditions (C1)-(C3) and (C6) of Section 4 hold, then

sup
t∈R

∣∣∣ 1

N !

∑
π∈GN

I{S∞(ZN
π ) < t} − Pr(|Ξ|∞ < t)

∣∣∣ p→ 0, (2.7)

where Ξ is a p-dimensional Gaussian, with covariance matrix given by

[diag(Σ(P̄ ))]−1/2Σ(P̄ )[diag(Σ(P̄ ))]−1/2, the correlation matrix associated with

Σ(P̄ ); on the other hand,

under H0, sup
t∈R

∣∣∣P(S∞(ZN) ≤ t
)
− Pr(|Ξ̃|∞ < t)

∣∣∣→ 0, (2.8)

where Ξ̃ is also a p-dimensional Gaussian, with covariance matrix given

by [diag(Σ̃)]−1/2Σ̃[diag(Σ̃)]−1/2, the correlation matrix given by that of Σ̃.

Parallel results hold for S1(.) under conditions (C1)-(C2), (C3’), and (C6).
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As Σ(P̄ ) = cΣX + (1− c)ΣY , permutation tests based on Sγ(·) are thus in

general inconsistent, except when ΣX = ΣY or c = 1/2; this is also noted

in Chung and Romano (2016) for the finite-dimension case. To correct the

inconsistency associated with statistic (2.6) S∞(.), the permutation tests

in Chung and Romano (2016) are coupled with a pre-pivoting procedure:

for each permutation, bootstrapping is implemented to get an estimate of

a ‘prepivoted’ statistic. Due to the huge amount of computation required,

however, this approach is thus not practically feasible. Moreover, the theo-

retical results therein were only established for the fixed dimensional setting.

Our solution is described in the next section.

2.2 A ‘binning’ procedure and pseudo samples

The purpose of this procedure is to produce two pseudo samples of equal

sizes. Without loss of generality, suppose m > n so that m = K×n+k, for

some nonnegative integers K and k, with 0 ≤ k < n. Thus, K = [c/(1−c)],

the integer part of c/(1− c), and k/n→ c/(1− c)−K. Define

X ′i = Xi − µX , Y ′j = Yj − µX , i = 1, · · · ,m, j = 1, · · · , n; (2.9)

in practice, X̄m could be used as a substitute for µX . The pseudo observa-

tions are then constructed as follows. If k = 0, define

X∗i =
n

m

i×K∑
j=(i−1)K+1

X ′j, i = 1, · · · , n.
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If k > 0, randomly select k from the above defined {X∗i , i = 1, · · · , n} first,

and assign each to one of the left-over X ′K×n+i, i = 1, · · · , k. Specifically

and without loss of generality, define

X∗i := X∗i +
n

m
X ′K×n+i, i = 1, · · · , k. (2.10)

We call {X∗1 , ..., X∗n} and {Y ′1 , ..., Y ′n}, the pseudo samples. Note that al-

though some of the pseudo observations X∗i are derived from K original

Xis, while others are derived from K + 1 original Xis, these X∗i s are nev-

ertheless identically distributed (more explanation given in the proof of

Theorem 3). More importantly, if the null hypothesis H0 holds for the orig-

inal observations Xi and Yj, then it also holds for the pseudo samples, and

vice versa. From now on, all steps involved in the permutation test are

applied to these pseudo samples instead of the original Xis and Yjs.

Write Zn = {Z1, · · · , Z2n}, such that Zi = X∗i , Zn+j = Y ′j , i, j =

1, · · · , n. Recall that X∗1 , · · · , X∗n stand for the first n elements of Zn,

while Y ′1 , · · · , Y ′n are the remaining ones. Let X̄∗ = n−1
∑n

i=1X
∗
i and

Ȳ ∗ = n−1
∑n

j=1 Y
′
j be the two sample means. Write δ∗n = (δ∗n,1, · · · , δ∗n,p)> =

n1/2(X̄∗ − Ȳ ∗), and consider the following simple test statistics:

S1
0(Zn) = |δ∗n|1, S∞0 (Zn) = |δ∗n|∞. (2.11)

Apparently these statistics do not take into account the differences in the
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variations of variables. Thus an arguably improved alternative is such that

S1
1(Zn) = p−1

p∑
k=1

|δ∗n,k/v∗n,k|, S∞1 (Zn) = max
k=1,··· ,p

|δ∗n,k/v∗n,k|, (2.12)

where v∗n,k = {σ̂2
n,k(X

∗
1 , · · · , X∗n) + ŝ2n,k(Y

′
1 , · · · , Y ′n)}1/2 is the estimator of

the variance of δ∗n,k. Denote by Zn
π the rearranged Zn through any given

permutation π ∈ G2n, and Sγ1 (Zn
π ) ≡ S(Zn

π(1), · · · , ZN
π(2n)). The distribution

of Sγ1 (Zn) is then given by the empirical distribution of Sγ1 (Zn
π ) evaluated

at all (2n)! permutations of Zn.

Theorem 3. The permutation tests based on S∞0 (·) of (2.11) are consistent,

under conditions (C1)-(C3) of Section 4. Similarly, the permutation test

based on S1
0(·) is consistent under conditions (C1)-(C2), and (C3’). The

same conclusions hold for permutation tests based on S∞1 (·) or S1
1(·), if

condition (C6) of Section 4 is also true.

Numerical evidence suggests that in terms of Type-I error control, the tests

based on Sγ0 (·) are more stable than those based on Sγ1 (·), especially when

p is large. However, it should also be noted that the latter in general posses

better power as they take into account the possibility of different marginal

standard errors.
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3. SIGNAL IDENTIFICATION 11

3. Signal identification

Write δ0 = (δ01, · · · , δ0p)> = µX − µY . Denote by I0 ⊆ {1, ..., p}, such that

|δ0k| > 0, ∀k ∈ I0; quad|δ0k| = 0, ∀k /∈ I0.

This is referred to as the set of signals. The number of signals, i.e., the

cardinality of I0, could increase with p.

Let t̃n,p(·) stand for the permutation distribution function of S∞1 =

max1≤k≤p |δ∗n,k/v∗n,k|, and t̃−1n,p(.), its inverse. The significance level αn is

chosen so that qαn/(2 ln p)1/2 → 1, where qα = − ln(π)− 2 ln(− ln(1− α)),

is the (1 − α) quantile of the type-I extreme value distribution F (x) =

exp(− exp{−(lnπ + x)/2}). In other words, αn is such that

ln{− ln(1− αn)}/(ln p)1/2 → −
√

2/2. (3.13)

Consequently, the estimated set of signals is defined as

În = {k : |δ∗n,k/v∗n,k| > t̃−1n,p(1− αn), k = 1, · · · , p}.

Theorem 4. Suppose conditions (C1)-(C3) and (C6) in Section 4 hold. If

lim inf
n,p→∞

(c/s1)
1/2n1/2(ln p)−1/2 min

k∈I0
|δ0k| ≥ 2

√
2, (3.14)

where s1 is as given in (C2), and αn satisfies (3.13), then as n, p→∞,

P r(În = I0)→ 1.
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In other words, if the strength of the signals, measured through mink∈I0 |δ0k|,

is strong enough, the set of signals could be correctly identified in proba-

bility.

4. Notations and assumptions

For any square matrix M = [mij], ‖M‖(1,1) = max
j

∑
i

|mij|, while λmax(M)

and λmin(M) denote the largest and smallest absolute eigenvalue of M ,

respectively. We assume the following conditions

(C1) lim
m→∞

m/N = c ∈ (0, 1) and c−m/N = O(N−1/2).

(C2) There exists some constant s1 > s0 > 0, such that s0 ≤ σ2
kk, s

2
kk ≤ s1.

(C3) ln(p) = O(nα), α < 1/7; there exist finite constants c1, c2 > 0 such

that

E[|Xi,k|2+l)] ≤ cl1, E[|Yj,k|2+l)] ≤ cl2, k = 1, · · · , p, l = 1, 2;

E{exp(Xi,k/c1)} ≤ 2, E{exp(Yj,k/c2)} ≤ 2, k = 1, · · · , p.

(C3’) p = O(nα), α < 1/7; for ν = {p−1/2(v1, v2, · · · , vp)> : vj = 1 or −1},

and X̃i = (v>Xi)v∈ν , Ỹj = (v>Yj)v∈ν , i = 1, · · · ,m, j = 1, · · · , n,

there exist finite constants c̃1 > 0, c̃2 > 0 such that

E[|X̃i,k|2+l)] ≤ c̃l1, E[|Ỹj,k|2+l)] ≤ c̃l2, k = 1, · · · , 2p−1, l = 1, 2;

E{exp(X̃i,k/c̃1)} ≤ 2, E{exp(Ỹj,k/c̃2)} ≤ 2, k = 1, · · · , 2p−1.
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(C4) The eigen-values of ΣX and ΣY are bounded from both below and

above by some constants 0 < c3 < c4.

(C5) Ω̃N is an estimate of Ω̃ = Σ̃−1 which satisfies the following condition

‖{Ω̃N}1/2 − {Ω̃}1/2‖(1,1) = op({ln p}−1); (4.15)

similarly for Ω̃N = Ω̃N(Z1, · · · , ZN), with Z1, · · · , ZN
i.i.d.∼ P̄ = cP1(.)+

(1− c)P2(.) (the mixture distribution), we have

‖{Ω̃N}1/2 − {Σ(P̄ )/c(1− c)}−1/2‖(1,1) = op({ln p}−1) (4.16)

(C6) σ̂2
m,k and ŝ2n,k, k = 1, · · · , p, defined in (2.2) are consistent and

max
1≤k≤p

|
σ̂2
m,k

σ2
kk

− 1| = op(
1

ln p
), max

1≤k≤p
|
ŝ2n,k
s2kk
− 1| = op(

1

ln p
); (4.17)

in a sense similar to (4.16), (4.17) also holds for the same statistic

based on i.i.d. observation from the mixture distribution P̄ = cP1(.)+

(1− c)P2(.).

Remarks. (C1) is taken from Chung and Romano (2013). (C2) and

(C3) are found in Chernozhukov et al. (2017) to obtain a uniform bound

over probabilities concerning hyperrectangles (see Proposition 2.1 therein);

while assumption (C3’) corresponds to those conditions in their Proposition

3.1 which concerns a uniform bound for probabilities over simple convex

sets. Note that for the latter case, it requires a stricter rate on how large
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p could be relative to n. For simplicity, c1 and c2 are taken to be finite

here, but it is possible to allow for infinite c1 and c2, but then compromise

must be made on how large ln p could be relative to n; refer to equation

(9) of Chernozhukov et al. (2017) for an explicit expression which relates

these two cases. (C4) is necessary for the anti-concentration inequality,

e.g., Proposition 4. Conditions (4.15) and (4.17) have been adopted in Cai

et al. (2014) to derive the asymptotic power of the data-driven statistics

including H∞(·) of (2.3) and S∞(·) of (2.11) for two Gaussian populations.

Kosorok and Ma (2007) gave sufficient conditions for (4.17) to hold, among

them ln(p) = o(nα) with α ∈ (0, 1/3].

5. Simulation study

As far as permutation tests are concerned, we choose to exclude those based

on the Hotelling’s T 2−type statistics of (2.3) from our numerical studies

due to the heavy computational burden. The method of Chung and Ro-

mano (2016) is also excluded for the same reason. Instead, we focus on the

permutation tests based on statistics calculated for pseudo samples gener-

ated through the binning procedures: Sγ1 (·) and Sγ0 (·) in (2.12) and (2.11),

respectively. Other existing methods included in our comparison studies

are : Chen and Qin (2010) (CQ), Cai et al. (2014)(CAI), Xu et al. (2016)

(XLWP) and Xue and Yao (2018) (XY). R package ’highmean’ is used for
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computations related to CQ, CAI, XLWP and XY. Note that CQ only uses

L2-norm and CAI only L∞-norm. For signal identification, our method

based on S∞1 is also compared with Benjamini and Yekutieli (2001).

Sample sizes range from relatively small (m = 75, n = 50), to medium

(m = 300, n = 200), to large (m = 600, n = 400); while for dimensionality,

p = 10, 100, or 1,000. As it is computationally infeasible to evaluate for all

possible permutations, random permutations are usually used in practice,

which is first proposed by Dwass (1957). In our case, the permutation

distribution is evaluated based on 2,500 (random) permutations. Also, the

empirical sizes of tests are calculated based on 10,000 replications, while

the empirical powers are based on 2,000 replications.

The simulated data are generated according to the following model,

Xi = (xi,1, ..., xip)
> + µX , and Yj = (yi,1, ..., yip)

> + µY ; (5.18)

here µX and µY are two constant vectors; and for any given i = 1, · · · ,m,

j = 1, · · · , n, {xi,k, k = 1, 2, · · · } and {yj,k, k = 1, 2, · · · } are stationary

times series such that

xi,k+1 = aixi,k + ξk, yj,k+1 = bjyj,k + ηk, k = 1, 2, · · · , (5.19)

where ξk, ηk are independent random errors, {ai}mi=1, {bj}nj= are hyper pa-

rameters, either fixed or random. This is implemented independently for

all i = 1, · · · ,m, j = 1, · · · , n. With different specifications for ai, bj and
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ξk, ηk , we come up with the following three models.

Model 1. ai, bk, i = 1, · · · ,m, k = 1, · · · , n are i.i.d., following a uniform

distribution on [0, 0.95]; ξk
i.i.d.∼ N(0, 1), ηk

i.i.d.∼ N(0, 4). In this model,

Xis are distinctly distributed and so do the Yis. However, The ele-

ments in Xi still have the same variance, and so do Yj.

Model 2. The same as Model 1, but the even-indexed elements of Xi and

Yi are multiplied by 2. Thus elements in Xi have different variances,

and so do Yi.

Model 3. ai ≡ −0.2, bj ≡ 0.7, and ξk ∼ t(3), ηk ∼ 2t(3), where t(3) is the

t-distribution. Thus the generated data are heavy-tailed.

In the study of empirical sizes, µX = µY = 0; when comparing the empirical

power of various tests, we keep µY = 0 and consider two different designs

for µX = (µX1 , ..., µ
X
p )>.

(i) Dense alternatives: µX1 , ..., µ
X
p

i.i.d.∼ uniform [0, cn,p], with cn,p = s/(p0.25×

min(m,n)0.5), and s = 6, 9, 11, 14, which specifies the overall signal-

to-noise ratio.

(ii) Sparse alternatives: with s = 7, 8, 9, 10, randomly select 0.2 × p0.5

elements from {µX1 , ..., µXp }, and assign to them the value cn,p =

s/min(m,n)0.5, while the entries unselected remain zero.
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Note that the strength of the signals varies with sample sizes as well as

the dimension; we adopt such design so that we could evaluate how the

empirical power of various tests are affected by different sample sizes and

dimension.

The empirical sizes of various tests, are summarized in Tables 1 (signifi-

cance level 1%). For the two columns under the label Sγ0 (·), L1 corresponds

to γ = 1, while L∞ corresponds to γ = ∞. The same format also applies

to the columns under XLWP and Sγ1 (·). In both tables, numbers in small

bold font stand for empirical sizes which deviate from the nominal level by

more than 20%. The first thing to note is that permutation tests, based

on either Sγ1 (·) or Sγ0 (·), are able to control the type-I error better than

all other methods for nearly all models, and especially so when the sample

size is small (n = 50 or n = 75). Furthermore, we also observe that the

performance of Sγ1 (·) is slightly hampered by low efficiency in variance esti-

mation when p is large while n is small; this is consistent with the remarks

we made after Theorem 3.

On the other hand, CQ is also able to control type-I error quite well

at 5% significance level (not reported here), but much less so with nominal

level at 1% unless the sample size is big enough; see Table 1. As p increases

to 1,000, the performance of CQ improves, which is consistent with the fact

that its asymptotic (null) distribution is derived for when p → ∞. The

performance of XLWP with the L2-norm is similar to that of CQ while
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Table 1: Empirical sizes (%) of different methods (nominal sizes = 1%)

CQ XLWP XY Sγ0 Sγ1
model n p L2 L2 L∞ L∞ L1 L∞ L1 L∞

10 2.09 3.10 0.60 0.91 0.94 0.95 0.97 0.98
50 100 1.20 1.64 0.67 0.63 1.01 0.82 1.01 0.98

1,000 1.04 1.68 0.81 0.52 1.22 0.96 1.21 0.95

10 2.02 2.91 0.60 1.07 1.05 0.99 1.07 0.99
1 200 100 1.23 1.55 0.60 0.86 0.94 0.96 0.98 0.84

1,000 0.98 1.12 0.52 0.82 1.11 1.04 1.08 0.97

10 1.79 3.59 0.55 0.72 0.95 0.76 0.92 0.76

400 100 1.19 2.19 0.62 0.97 0.94 0.96 0.91 1.03
1,000 1.10 1.28 0.84 0.91 1.11 0.92 1.08 0.98

10 2.42 4.63 0.80 0.90 1.03 0.86 1.04 0.93
50 100 1.47 3.30 0.98 0.83 1.13 0.99 1.32 1.30

1,000 1.17 5.34 1.43 0.62 1.27 0.84 1.68 1.39

10 2.46 3.05 0.54 1.06 0.87 0.95 1.06 1.08
2 200 100 1.46 2.31 0.64 0.95 1.04 0.96 0.99 1.02

1,000 1.10 1.21 1.09 1.03 1.09 1.17 1.05 1.00

10 2.10 3.63 0.55 0.73 0.86 0.72 0.87 0.71

400 100 1.43 2.22 0.62 0.88 0.98 0.86 1.01 0.96
1,000 1.12 1.26 0.84 1.05 1.18 1.01 1.12 1.07

10 2.55 3.18 0.65 0.76 1.08 1.02 1.18 1.18
50 100 1.54 1.84 1.12 0.19 1.20 1.08 1.51 1.35

1,000 0.97 3.56 2.14 0.01 1.02 1.03 1.55 1.67

10 2.22 3.26 0.64 0.80 0.95 1.07 0.88 0.94
3 200 100 1.46 2.20 0.74 0.31 1.04 0.98 1.07 1.01

1,000 1.04 1.16 1.09 0.01 1.00 0.99 1.25 1.23

10 2.38 3.12 0.49 0.94 1.01 1.12 1.01 1.06
400 100 1.42 2.36 0.52 0.56 1.04 1.12 0.95 1.02

1,000 0.87 1.03 0.63 0.00 0.91 0.87 1.01 1.18

* CAI and L∞ of XLWP are almost identical and thus are not reported. Values that

deviate more than 20% from the nominal level are highlighted in small bold font.
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the performance of XLWP with L∞-norm is mostly too conservative. Even

though XY can produce reasonable type-I error, it does not fare well with

heavy-tailed distributions (Model 3) and moderate dimensions. In addition,

one can observe from Table 1 that the type-I error of XLWP with the L2-

norm tends to be inflated when p is small or moderate, e.g., 10 or 100.

Thus, it is no surprising XLWP possesses a higher empirical power than

other methods do in these settings as seen in Figures 1 and 2 for Model 2.
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Figure 1: Simulation results with dense signals. In each panel, grey dash-dot

line with cross represents CQ, black dash line with triangle represents XLWP

with L2-norm, red solid-line with circle S1
0 , and blue solid-line with diamond S1

1 .

Figure 1 shows the statistical power of various tests against dense alter-

natives with p varying from 10 to 1000 at significance level of 5%. We could
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draw the following conclusions. The performance of XLWP differs dramati-

cally across different models. Specifically, it has decent powers with Models

2 and 3, but has very low power for Model 1. Recall that XLWP incurs

excessive type-I errors when dimension p is small (10 or 100). Therefore,

we should be cautious with the high power of XLWP with Models 2 and 3,

as very likely this comes at the price of an inflated type-I error. In contrast,

the permutation test based on S1
1(·) is always among the best performers

across all the models.

10 100 1000

0.7

0.8

0.9

model 1 with n=50

10 100 1000

0.7

0.8

0.9

model 1 with n=200

10 100 1000

p

0.7

0.8

0.9

model 1 with n=400

10 100 1000

0.2

0.4

0.6

0.8

1
model 2 with n=50

10 100 1000

0.2

0.4

0.6

0.8

1
model 2 with n=200

10 100 1000

p

0.2

0.4

0.6

0.8

model 2 with n=400

10 100 1000

0.2

0.4

0.6

model 3 with n=50

10 100 1000

0.2

0.4

0.6

model 3 with n=200

10 100 1000

p

0.2

0.4

0.6

model 3 with n=400

Figure 2: Simulation results with sparse signals. In each panel, grey dash-dot

line with cross represents XLWP with L∞-norm (or CLX), black dash line with

triangle represents XY, red solid line with circle S∞0 , and blue solid line with

diamond S∞1 .
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Figure 2 depicts the changes in powers for all four tests against sparse

alternatives, for which the L∞-norm is expected to fare better. Since the

powers of CAI and XLWP with the L∞-norm are very similar in all the

settings considered, we only report those of XLWP. For Models 1 and 2,

the performances of the various methods are nearly indistinguishable, ex-

cept for XY which is significantly worse than the other three when p is less

than 100. Note that the high statistical power of XLWP is the consequence

of the aforementioned unduly high type-I error. Similar to Sγ1 (·), CAI and

XLWP also take into account of the possible difference across the variances;

yet to our surprise, their performances for Model 3 seems to contradict con-

clusions drawn about their theoretical properties, especially when they are

compared with Sγ1 (·). CAI and XLWP also suffer from the low power for

Model 3, possibly due to the difficulty in estimating covariance matrices

for heavy-tailed data. As for Model 3, the powers of XY and S∞1 substan-

tially outperform that of XLWP and S∞0 . However, XY achieves the same

statistical power compared to S∞1 at the expense of inflated type-I error.

Overall, the permutation tests based on Sγ0 (·) and Sγ1 (·), with γ = 1

against dense alternatives and γ = ∞ against sparse alternatives, deliver

better results than the other methods in terms of both empirical sizes and

powers. Between Sγ0 (·) and Sγ1 (·), the former has a better control over the

type-I error especially when the sample size is small, but the later usually

achieves higher power.
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Table 2: The average of true discovers (and FDR in the parenthesis) based

on 10,000 replications at significance level 5%.

#I0 = 0 #I0 = 8

model p n BY S∞1 BY S∞1

200 –(0.0097) –(0.0502) 0.8760(0.0098) 1.2690(0.0322)

100 500 –(0.0105) –(0.0486) 0.8710(0.0074) 1.2610(0.0330)

1 1,000 –(0.0104) –(0.0486) 0.8700(0.0086) 1.2220(0.0232)

(δ = 5) 200 –(0.0056) –(0.0544) 0.8070(0.0082) 1.2900(0.0320)

10,000 500 –(0.0054) –(0.0530) 0.8020(0.0080) 1.3170(0.0252)

1,000 –(0.0050) –(0.0494) 0.7810(0.0024) 1.2570(0.0239)

200 –(0.0079) –(0.0495) 1.6180(0.0081) 2.0770(0.0323)

100 500 –(0.0076) –(0.0503) 1.3880(0.0097) 1.8670(0.0311)

3 10,000 –(0.0079) –(0.0511) 1.3880(0.0088) 1.8540(0.0228)

(δ = 10) 200 –(0.0039) –(0.0596) 1.7910(0.0049) 2.5190(0.0205)

10,000 500 –(0.0044) –(0.0520) 1.5750(0.0028) 2.2860(0.0214)

1,000 –(0.0042) –(0.0505) 1.5380(0.0033) 2.2620(0.0233)

– no true signals

Next, we evaluate the performance of the permutation tests based on

S∞1 in signal identification as described in Section 3. If the set of signals is

empty, the empirical false discovery rate should be no more than a pre-set

value, α (set to be 5% in this case). Otherwise, fix #I0 = 8 with the exact

locations of the eight signals randomly distributed amongst {1, ..., p} and

the strength of signals given by

δ × ln(log(p))/
√
n,
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which changes with n and p. We compare our method S∞1 with Benjamini

and Yekutieli (2001), denoted as BY. When #I0 = 0 (the first two columns

of Table 2), it is obvious that our method S∞1 has a very good control over

the false discovery rate, while BY tends to be over conservative. On the

other hand, when #I0 = 8 (the last two columns of Table 2), our method

S∞1 is able to identify more true signals than BY.

6. Analysis of WTCCC dataset

Genome-wide association studies (GWAS) are widely used to identify the

risk genetic variants by genotyping millions of single nucleotide polymor-

phisms (SNPs) in large cohorts. The traditional GWAS analysis proceeds by

a single-variant analysis that does account LD structure among SNPs and

suffers from the heavy burden of multiple testing. Thus, the results from

such analyses are usually conservative. As the proposed method is based

on S∞1 , it can explicitly control false discovery rate (FDR). We applied S∞1

to seven traits from Wellcome Trust Case Control Consortium (WTCCC)

including bipolar disorder (BPD), coronary artery disease (CAD), Crohn’s

disease (CD), hypertension (HT), rheumatoid arthritis (RA), type 1 dia-

betes (T1D), and type 2 diabetes (T2D) (WTCCC, 2007). We performed

strictly quality control on the samples from WTCCC using PLINK (Purcell

et al., 2007) and GCTA (Yang et al., 2011). First, we removed individuals
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with missing genotypes higher than 0.02. For each trait case and two shared

control datasets, we removed SNPs with minor alleles frequencies less than

0.05 and SNPs with missing rate larger than 0.01. Then, we combined cases

with controls for each trait and removed SNPs with p-values less than 0.001

for Hardy-Weinberg equilibrium test. Pairs of subjects with estimated re-

latedness greater than 0.025 were identified and one subject from these pairs

is removed. After quality control, we have 1,959 cases and 2,992 controls

over 308,093 SNPs for CAD, 1,970 cases and 2,992 controls over 307,741

SNPs for CD, 1,994 cases and 2,992 controls over 307,357 SNPs for T1D,

and 1,969 cases and 2,992 controls over 305,394 SNPs for T2D. We applied

the permutation test with S∞1 to the data, and the resulting Manhattan

plots are shown in Figure 3. The analysis for each disease can be done

around 16 minutes on a Windows console with 2.30GHz intel Xeron CPU

E5-2697.

With significance level 1%, we summarize our findings as follows.For

CAD, S∞1 identified 15 SNPs and all of them are from genes AL359922.1

and CDKN2B-AS1 within band 9p21.3. These two genes have previously

been reported to be associated with CAD (van der Harst and Verweij , 2018;

Lee et al., 2013). For CD, S∞1 identified 39 SNPs. Among these identified

SNPs, 21 SNPs are within six gene regions, where all six genes were reported

to be associated with CD in previous studies (Julià et al., 2013; de Lange et

al., 2017; Liu et al., 2015). For T1D, S∞1 identified 369 SNPs and 173 SNPs
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Figure 3: For each of seven diseases -log10 of the test p-value for quality-control-

positive SNPs, (values bigger than 20 are censored at 20) are plotted against

position of SNPs that arranged in according to the chromosomes in black and

grey.
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were within 83 genes, among which 23 genes were previously reported to

be associated with T1D, including ERBB3, CLEC16A and DDR1 (Plagnol

et al., 2011; Hakonarson et al., 2007; Tomer et al., 2015). For T2D, S∞1

identified 13 SNPs within two gene regions and both genes have previously

been reported, i.e., TCF7L2 and FTO (Hackinger et al., 2018; Tabassum

et al., 2013).

Interestingly, in the analysis of the seven diseases using WTCCC data,

we identified many “new” SNPs which were not reported in the original

study of WTCCC (2007), but were detected in later studies. These SNPs

and their corresponding studies are listed in Table S1 in the supplementary

file. Statistically, it is more interesting to notice that those studies are

based on either much larger cohorts or other populations. This indicates

clearly the efficiency of our method in identifying the weak signals (SNPs)

associated with the diseases.
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