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TIME SERIES MODELS FOR REALIZED COVARIANCE MATRICES

BASED ON THE MATRIX-F DISTRIBUTION

By JiayuaN Zuou*, Fervu Jianc', K Zuut anp War Keung Lits

University of Florida*, Tsinghua University,
The University of Hong Kongt and The Education University of Hong Kong

We propose a new Conditional BEKK matrix-F (CBF) model
for the time-varying realized covariance (RCOV) matrices. This CBF
model is capable of capturing heavy-tailed RCOV, which is an im-
portant stylized fact but could not be handled adequately by the
Wishart-based models. To further mimic the long memory feature of
the RCOV, a special CBF model with the conditional heterogeneous
autoregressive (HAR) structure is introduced. Moreover, we give a
systematical study on the probabilistic properties and statistical in-
ferences of the CBF model, including exploring its stationarity, es-
tablishing the asymptotics of its maximum likelihood estimator, and
giving some new inner-product-based tests for its model checking. In
order to handle a large dimensional RCOV matrix, we construct two
reduced CBF models — the variance-target CBF model (for moder-
ate but fixed dimensional RCOV matrix) and the factor CBF model
(for high dimensional RCOV matrix). For both reduced models, the
asymptotic theory of the estimated parameters is derived. The impor-
tance of our entire methodology is illustrated by simulation results

and two real examples.

Keywords and phrases: Factor model; Heavy-tailed innovation; Long memory; Matrix-F distribution;

Matrix time series model; Model checking; Realized covariance matrix; Variance target
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1. Introduction. Modeling the multivariate volatility of many asset returns is crucial
for asset pricing, portfolio selection, and risk management. After the seminal work of
Barndorff-Nielsen and Shephard (2002, 2004) and Andersen et al. (2003), the realized
covariance (RCOV) matrix, estimated from the intra-day high frequency return data, has
been recognized as a better estimator than the daily squared returns for daily volatility.
Consequently, increasing attention has been focused on the modeling and forecasting of
these RCOVs; see, e.g., McAleer and Medeiros (2008), Hansen et al. (2012), Noureldin et
al. (2012), Bollerslev et al. (2016), and many others.

Existing models for the RCOV matrices can be roughly categorized into two types:
transformation-based models and likelihood-based models. Models in the first category
capture the dynamics of the RCOV matrices in an indirect way via transformation. Bauer
and Vorkink (2011) used a factor model for the vectorization of the log transformation
of RCOV matrix; Chiriac and Voev (2011) applied a vector autoregressive fractionally
integrated moving average process to model the Cholesky decomposition of RCOV matrix;
Callot et al. (2017) transformed the RCOV matrix into a large vector by the vech operator,
and then fitted this transformed vector by a vector autoregressive model. In the first two
models, the dimension of RCOV matrix has to be moderate (e.g., less than 6) for a feasible
manipulation. In the third model, the dimension of RCOV matrix is allowed to be 30 in
applications with the help of the LASSO method.

Models in the second category deals with RCOV matrices directly by assuming that
the innovation, which drives the RCOV time series, has a specific matrix distribution
to generate random positive definite matrices automatically without imposing additional
constraints. This important feature results in positive-definite estimated RCOV matri-

ces. Unlike scalar or vector distributions, so far only few matrix distributions have been
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found to have explicit forms. The primary choice for the innovation distribution is Wishart,
leading to the Wishart autoregressive (WAR) model in Gouriéroux et al. (2009), the condi-
tional autoregressive Wishart (CAW) model in Golosnoy et al. (2012), the mixture Wishart
model in Jin and Maheu (2013, 2016), and the generalized CAW model in Yu et al. (2017)
to name a few. The other choice for the innovation distribution is matrix-F, which was
recently adopted by Opschoor et al. (2018). Generally speaking, matrix-F distribution is
the generalization of the usual F distribution, while Wishart distribution is the general-
ization of the x? distribution (see, e.g., Konno (1991) and Opschoor et al. (2018) for more
discussions). Therefore, matrix-F distribution could be more appropriate than Wishart
distribution in capturing the heavy-tailed innovation, which is an important stylized fact
in many applications (see, e.g., Bollerslev (1987), Fan et al. (2014), Zhu and Li (2015),
and Oh and Patton (2017)). These likelihood models have at least three edges over the
transformation-based models. First, the likelihood-based models will preserve the useful
and important matrix structural information, which makes them more interpretable com-
pared with transformation-based models. Second, the number of estimated parameters in
the transformation-based models has order O(n?*), while the one in the likelihood-based
models has order O(n?), where n is the dimension of the RCOV matrix. When n is large,
the likelihood-based models can bring more convenience and a less daunting task in com-
putation. Third, the likelihood-based models make use of the likelihood function of the
RCOV matrices, and hence their statistical inference methods could be easily provided.
This paper contributes to the literature from three aspects. First, we propose a new
Conditional BEKK matrix-F (CBF) model to study the time-varying RCOV matrices. Our
CBF model has matrix-F distributed innovations with two degrees of freedom parameters

v1 and vo. When vy — oo, our CBF model reduces to the CAW model (Golosnoy et
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al., 2012), which has Wishart distributed innovations. Hence, the degrees of freedom s
is designed to capture the heavy-tailedness of the RCOV. Since the RCOV is also well
documented to have long memory phenomenon, we further introduce a special CBF model
which has a similar conditional heterogeneous autoregressive (HAR) structure as in Corsi
(2009). This special model is coined the CBF-HAR model. Although the CBF-HAR model
is not formally a long memory model, it gives rise to persistence in the RCOV time series.
Two real examples demonstrate that our CBF model (especially the CBF-HAR model) can
have a significantly better forecasting performance than the corresponding CAW model,
and hence a simple incorporation of v5 to capture the heavy-tailed RCOV is necessary
from a practical viewpoint.

Second, we provide a systematically statistical inference procedure for the CBF model.
Specifically, we explore its stationarity conditions, establish the strong consistency and
asymptotic normality of its maximum likelihood estimator (MLE), and investigate some
new inner-product-based tests for model diagnostic checking. Moreover, the performance
of our entire methodology is assessed by simulation studies. Compared to the existing
BEKK-type multivariate time series models, our proofs of the entire inference procedure
are much involved, since the CBF model is tailored for matrix time series. Particularly,
our inner-product-based tests seem to be the first diagnostic checking tool for matrix time
series models, and the related idea can be easily extended to other models.

Third, we construct two reduced CBF models — the variance targeted (VT) CBF (VT-
CBF) model and the factor CBF (F-CBF) model, to handle moderately large and high
dimensional RCOV matrix respectively. For both reduced models, the asymptotic theory
of the estimated parameters is derived. The dimension of the RCOV matrix is allowed

to be a moderate but fixed number in the VT-CBF model, while it is allowed to grow
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with the sample size T" and the intra-day sample size in the F-CBF model. Therefore, this
makes the prediction of large dimensional RCOV matrices feasible in many cases. The
importance of both reduced models is illustrated by two real applications.

The remainder of this paper is organized as follows. Section 2 introduces the CBF
model and studies its probabilistic properties. Section 3 investigates the asymptotics of
the MLE. Section 4 presents inner-product-based tests to check the model adequacy. Two
reduced CBF models and their related asymptotic theories are provided in Section 5. Some
simulation studies are carried out in Section 6. Applications are given in Section 7. Section
8 concludes this paper. Proofs of all theorems are relegated to the supplementary material.

Some notations are used throughout the paper. I, is the identity matrix of order n,
and ® represents the Kronecker product. For an n x n matrix A, tr(A) is its trace, A’ is
its transpose, |A| is its determinant, p(A) is its biggest eigenvalue, ||A| = \/tr(A’A) is
its Euclidean (or Frobenius) norm, [|Al|,.. = V/p(A’A) is its spectral norm, vec(A) is a
vector obtained by stacking all the columns of A, vech(A) is a vector obtained by stacking

all columns of the lower triagular part of A, and A®? = A ® A.
2. Model and Properties.

2.1. Model specification. Let Y;* be the integrated volatility matrix of n asset returns
X, at time ¢t = 1,...,T. After the seminal work of Barndorff-Nielsen and Shephard (2002,
2004) and Andersen et al. (2003), the n x n positive definite realized covariance (RCOV)
matrix Y; calculated from the high-frequency return data of X; has been widely applied
to estimate Y,* in the literature; see, e.g., Barndorff-Nielsen et al. (2011), Lunde et al.
(2016), Ait-Sahalia and Xiu (2017), Kim et al. (2018) and references therein. Moreover, Y;

is often viewed as a precise estimate for the conditional variances and covariances of these
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n low-frequency asset returns X;, and hence how to predict Y; by some dynamic models is
important in practice. Motivated by this, a new dynamic model for Y; is proposed in the
current paper.

Let G, = 0(Ys; s < t) be a filtration up to time ¢. We assume that
(2.1) Y =%°A8,

where {A;}1, is a sequence of independent and identically distributed (i.i.d.) nxn positive
definite random innovation matrices with F(A¢|G;—1) = I, each A; follows the matrix-F

distribution F'(v, ”2_11771‘_1]”), and the density of F(v,X) is
|E|_V1/2 |l‘|(yl_n_1)/2
X

(2.2) fl@v,8) = A(v) L, ¢ Sl [

for x € R™*",

where v = (v1, 1) with degrees of freedom v; > n+1and vy > n+1, L is an n x n

positive definite matrix, and

Ln((v1 +12)/2)
T (11/2)T(v2/2)

with I'y(z) = a0/ H Tz + (1 —1)/2);

=1

Alv) =

moreover, E; /2 ¢ G;_1 is the square root of the n x n positive definite matrix >, which

has a BEKK-type dynamic structure (see Engle and Kroner, 1995):

P K Q K
(2.3) Y =0+ Z Z ApiYi i Al + Z Z By By,

i=1 k=1 j=1k=1

where €2, Ay;, Byj are all n x n real matrices, the integers P, Q, K are known as the orders
of the model, and €2 as well as the initial states ¥, ¥ _1, ..., X_g41 are all positive definite.

Under model (2.1),

vo—n—1
(2.4) Yi|Giy ~ F (u, 2&)
vy
with E(Y;|Gi—1) = X4, that is, the conditional distribution of Y; is matrix-F with a BEKK-

type mean structure. In this sense, we call model (2.1) the Conditional BEKK matrix-F

(CBF) model.
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The CBF model is related to the CAW model in Golosnoy et al. (2012), in which A;
follows the Wishart distribution. To see it clearly, we follow Konno (1991) and Leung and

Lo (1996) to re-write Y; in model (2.1) as

-1
(2.5) Y, — (’/2”> V2[Rt 12

141

where L; ~ Wishart(v,I,) and R; ~ Wishart(vs, ;) are independent. As Vzligloo vy 'Ry
= I, in probability, the identity (2.5) implies that when vy — oo, Y;|G;—1 ~ Wishart(vy,
vy lEt), which is exactly the CAW model. Therefore, compared to the CAW model, the
degrees of freedom v5 in the CBF model accommodates the heavy-tailed RCOV, meaning
that each Y; ;; from Y} satisfying (2.4) could have a heavier tail than that from Y} satisfying
Yi|Gioq ~ Wishart(ul,ul_lilt) (see, e.g., Opschoor et al. (2018) for more discussions and
examples). Clearly, the identity (2.5) also guarantees Y; to be symmetric and positive
definite, and it can be used to generate Y; by using Wishart random variables.

Besides the heavy-tailedness, long memory is another well documented feature for the
RCOV, and it has been taken into account by many RCOV models, including the hetero-
geneous autoregressive (HAR) model in Corsi (2009) as a benchmark. Although the HAR
model does not formally belong to the class of long memory models, it is able to reproduce

the persistence of RCOV observed in many empirical data. Inspired by the HAR model,

we consider a special CBF model, which has the following specification for 3;:

(2.6) Xy =Q+ A(d)Y}—LdA/(d) + A(w)Y;&fl,wA,( + A(m)ﬁq,mA/(m),

w)

where ;14 = Y1, Yic10 = (1/5) 2?21 Yi—i, and Y1, = (1/22) 21221 Y;_; are the
daily, weekly, and monthly averages of RCOV matrices, respectively. In this case, we label
model (2.1) as the CBF-HAR model, since we put “HAR dynamics” on ;. Clearly, the

CBF-HAR model is simply a constrained CBF model with P = 22, K = 3 and @ = 0.
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Figure 1 plots the sample autocorrelation functions (ACFs) up to lag 100 of one simulated

data from the CBF-HAR model with v = (20, 10) and

05 02 0.3 07 0 0
Q=102 05 025 |- Ag=| o 065 0 >
0.3 025 0.5 0 0 075
06 0 0 04 0 0
Awy=1 0 06 0 |- Am=| 0 045 0
0 0 0.55 0 0 04

From this figure, we can find that all entries of Y; exhibit long memory phenomenon as

expected.

0 20 40 60 80 100 "o 20 40 60 80 100

Fi1c 1. Sample ACFs of one simulated data from a 3 x 3 CBF-HAR model

Note that when K = 1, sufficient identifiability conditions of model (2.3) are that the
main diagonal elements of {2 and the first diagonal element of each Ay;, By; are positive;
when K > 1, some sufficient identifiability conditions of model (2.3) can be found in Engle

and Kroner (1995). For simplicity, we assume subsequently that model (2.3) is identifiable.
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Of course, the BEKK specification in model (2.3) is not the only way to describe the
dynamics of ;. The multivariate ARCH-type models such as the VEC model in Bollerslev
et al. (1988), the component model in Engle and Lee (1999), the dynamic conditional
correlation model in Engle (2002) and many others can also be adopted to model ;.
Using these models together with the matrix-F distribution to fit and predict the RCOV

matrices could be a promising direction for future study.

2.2. Stationarity. Stationarity is an important issue for most RCOV models, but so

far it has been rarely studied. Denote M = max (P, Q). For i =1,2,--- /M, let

K K

* ®2 * ®2
A=) A3 and Bf =) By’
k=1 k=1

where A;p = 0 for ¢ > P and B;; = 0 for ¢ > @Q. A sufficient condition for the stationarity

of the CBF model is given below, and it works for other general distributions of As.

THEOREM 2.1.  Suppose that {A;} in model (2.1) is a sequence of i.i.d. n X n positive
definite random matrices with E||A¢|| < oo, and
(H1) the distribution of Ay, denoted by I', is absolute continuous with respect to the
Lebesgue measure;
(H2) the point I, is in the interior of the support of I';
(H3) p (S, (45 + B))) < 1.
Then, Y: in model (2.1) is strict stationary with E||Y;|| < oo. Moreover, Y; is positive

Harris recurrent and geometrically ergodic.

REMARK 1.  The results of Theorem 2.1 are similar to those in Boussama et al. (2011),
where the stationarity of the BEKK model is studied. Like Boussama et al. (2011), the
proof of Theorem 2.1 is based on the semi-polynomial Markov chains technique, however,

it is much involved due to the matriz nature of model (2.1).
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As a special case, the results in Theorem 2.1 hold for the CAW model, in which A; fol-
lows the Wishart distribution. Under conditions (H1) and (H2), condition (H3) is necessary
and sufficient for the strict stationarity of Y; with F||Y;|| < co. However, the necessary
and sufficient condition for the higher moments of Y; is still unclear at this stage. Let K2
be the n? x n? permutation matrix such that K,2vec(A) = vec(A’) for any n x n matrix
A. If E||Y;]|? < oo, by similar arguments in Golosnoy et al. (2012), it is not hard to see
() 7= B (vee(Vi)) = [Le = S, (47 + BY) | vee(@):

(ii) vec [E (vec(Yy)vee(Yy)')] = (L + Ia) (La — 3002, <I>Z®2H)71 vec(y) ® vec(y),
where IT = [s1(v) — 1] Lya + [s2(v) ]2 @ (1,2 + K,,2)] [I, ® K2 ® I,] with

(ra —n—1)[vi(ra —n—2)+2]
vi(va —n)(re —n—3)

(ra—n—1)(r1+rva—n—1)
vi(va —n)(ra —n —3)

s1(v) = , So(v) =

)

and &g = I,2, &, = —B;“—FZ;ZI (A;f—i—B;f)(I)i_j for i > 0. Result (ii) above clearly indicates
that the parameters 11 and vo have impact on the second moment of Y; in a non-linear
way. Although a closed form of third moment of Y; is absent, similar impact from 14 and
1o is expected for the third moment of Y; and hence the asymptotic distribution of the

proposed estimator (see Theorem 3.2 below).

3. Maximum Likelihood Estimation. Let § = (7/,7/) € © be the unknown pa-
rameter of model (2.1) with the true value 6y = (v(,1{)’, where © = O, x 0, is the
parametric space with ©, C R™ and ©, C R? ~ = (v,u'), w = vech(), u =
(vee(A11), ...,vec(Akp)', vec(Bi1), ..., vec(Bgg)'), and 71 = $n+[(P+Q) K +3]n?. Below,
we assume that ©, and ©, are compact and 6 is an interior point of ©.

Given the observations {Y;}_; and the initial values {Y;};<o, the negative log-likelihood

function based on (2.4) is

(3.1) L(O) = 7= > u(6),
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where

2z vy —n—1 rn—n-—1
= ‘72 ’—71 Y,
1:(0) 5 log ” () 5 og |Yy|
MY g 1+ — s Yi| + C(v)
&|in vy—n—1 v 1%

with C'(v) = —log A(v) and X;(7) calculated recursively by

P K Q K
(3.2) (1) = Q4D D ApYiiAl + Y Y B (v) Bl
i=1 k=1 J=1k=1

Clearly, ¥¢(v0) = X¢.

As the initial values {Y;}+<o are not observable, we shall modify L(0) as

S|

N 1 Lot
(3.3) L(0) = = > _1u(8),
t=1

where lAt(Q) is defined in the same way as [;(0) with ¥;() being replaced by f]t(fy), and
ft(fy) is calculated in the same way as ¥ () based on a sequence of given constant matrices
h:=A{Yo, -+, Y_nr41,%0, ...y 2 pr41}. The minimizer, = #, 7", of E(G) on O is called
the maximum likelihood estimator (MLE) of 6. That is,

(3.4) 6= (7,7) = argmin L(6).

0cO

To study the asymptotic properties of g, we need two assumptions below.
ASSUMPTION 3.1. Y; is strictly stationary and ergodic.
ASSUMPTION 3.2.  Fory € O,, if v # v, Z¢(7) # Xi(v0) almost surely (a.s.) for all t.

Assumption 3.1 is standard, and Assumption 3.2 which is in line with Comte and Lieber-
man (2003) and Hafner and Preminger (2009) is the identification condition. The following

two theorems give the consistency and asymptotic normality of 5, respectively.
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THEOREM 3.1.  Suppose that Assumptions 3.1-3.2 hold and E||Y|| < co. Then, g ==

0y as T — oo.

THEOREM 3.2.  Suppose that Assumptions 3.1-3.2 hold, E|Y;||> < oo, and

2
(3.5) O=F <6agé99?)> is invertible.

Then, v'T(0 — 6o) 4 N(,07Y) as T — oo.

Based on the observations {Y;}7_; and a sequence of given constant matrices h, we
can use the analytic expression of 9%1;(0)/(000¢") (see Appendix D in the supplementary
material) to estimate O by its sample counterpart. As the univariate ARCH-type models,
the coeflicients in the main diagonal line of 2 are positive to ensure the positive definite of
>¢. Hence, the classical ¢t or Wald test, which is constructed by the estimate of O, can not
be used to detect whether their values are zeros; see Li et al. (2018) for more discussions

on this context.

4. Model Diagnostic Checking. Diagnostic tests are crucial for model checking in
multivariate time series analysis; see, e.g., Li and McLeod (1981), Ling and Li (1997), Tse
(2002) and many others. However, no attempt has been made for the stationary matrix
time series. In this section, we propose some new inner-product-based tests to check the
adequacy of model (2.1).

Let 3:(y) = vec(2;1/2(7)YtZ};1/2(7) — I,) be the vectorized residual for a given v, and
b: i(v) = 33(7)3¢—; () be the inner product of two vectorized residuals at lag j. Then, we

stack by () up to lag [ to construct V;(y), where

1 T

Vi) == Y (b () b2 () b ()

t=I+1
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and [ > 1 is a given integer. Our testing idea is motivated by the fact that if model (2.1)
is adequate, 3:(vp) is a sequence of i.i.d. random vectors with mean zero, and hence the
value of V;(7) is expected to be close to zero. To implement our test, we need study the

asymptotic property of V;(7) in the following theorem.

THEOREM 4.1.  Suppose that Assumptions 3.1-3.2 hold, E|Y;||* < oo, and (3.5) holds.
Then, if model (2.1) is correctly specified, TV, (7) 4 N(0,V) as T — oo, where V =

(11, R1)R2(;, K1) with

3;5—1 (7v0) (93¢ (70) /39/)

3i-2 (70) (831 (20) /96") tr{E*3;(70)3¢(0)]} 1 0

Ry x 07! and Ry =

I
=

0 (@)

31-1(70) (03¢ (0) /00")

Based on Theorem 4.1, we construct the inner-product-based test statistic
(4.1) ) =T,V @A)

to detect the adequacy of model (2.1), where V is the sample counterpart of V. If TI(1) is
larger than the upper-tailed critical value of x?(I), the fitted model (2.1) is not adequate
at a given significance level. Otherwise, it could be deemed as adequate.

Note that if we consider a test based on {3:(7)} directly, the resulting limiting distribu-
tion shall still be chi-squared, but its degrees of freedom increases fast with the dimension
n. To avoid this dilemma, we use the inner product of the residuals to construct our test
I1(1), whose limiting distribution is independent of n. This new idea is different from the
portmanteau test in Ling and Li (1997) in which the test statistic is constructed based
on the auto-correlations of the transformed scale residuals, while our test II(1) is based

on the auto-covariances of the original vectorized residuals. Clearly, our idea can be easily
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extended to the framework in Ling and Li (1997). Meanwhile, our inner-product-based
test II(1) takes the auto-covariances of all entries of 3¢(7) into account, while the idea of
regression-based test in Tse (2002) only considers one entry of 3,(7) at a time. In view of

this, we prefer to use the proposed inner-product idea for testing purpose.

5. The Reduced CBF Models. As the number of parameters in the CBF model is
O(n?), the estimation of the CBF model could be very computationally demanding when
n is large. This section introduces two reduced CBF models, which are feasible in fitting

RCOV matrices with a large n.

5.1. The VT-CBF model. This subsection proposes a reduced CBF model by using
the variance target (VT) technique in Engle and Mezrich (1996). The idea of VT is to re-
parameterize the drift matrix € by using the theoretical mean of Y;, so that the estimation
of  is excluded in the implementation of the maximum likelihood estimation. Other
related studies on the VT time series models can be found in Francq et al. (2011) and
Pedersen and Rahbek (2014).

To define our reduced model, we assume that Y; is strictly stationary with a finite mean

S = E(Y};). By taking expectation on both sides of (2.3), we have

P K Q K
(5.1) QO=8->" ApSA,, —> Y BySB;,

i=1 k=1 j=1 k=1

due to the fact that S = E(Y;) = E(3;). With the help of (5.1), model (2.1) becomes
(5.2) Y =52

where all notations are inherited from model (2.1), except that

K
=5— Z Z ApiSAL Z > Bi;SBy,

i=1 k=1 j=1k=1
K Q K
(53) +D > AwYeidli+) > BBl

i=1 k=1 j=1k=1
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We call model (5.2) the VIT-CBF model. Clearly, this reduced model shares the same
probabilistic properties as the full CBF model. Although the VT-CBF model has the
same amount of parameters as the full CBF model, its two-step estimator given below is
computationally easier than the MLE for the full CBF model.

To present this two-step estimator, we let 6, = (§',1')" € O, be the unknown parameters
of model (5.2) and its true value be 60, = (d(,v())’, where ©, = ©5 x O, is the parametric
space with @5 = O, x O, C R, 7y = [(P + Q)K + 1]n? and ©, C R?. Let 6 = (s, u')’
with s = vec(S), ©5 € R™ and 0, € RI(P+@)ER?] A before, we assume that ©5 and ©,
are compact and 6,¢ is an interior point of ©,,.

In the first step, we estimate s by 5,, where 5, = vec (?t) = vec(% Z?:l Yt) In the
second step, we estimate the remaining parameters ¢ = (u/, /)" by the constrained MLE

based on the following modified log-likelihood function:

T
~ 1 ~
(54) Lv(e’u) N f Zlvt(ev)a
t=1
where
Tu(0y) = 21 ‘l/2_n_1i (5)‘ nmn-n-1, Y|
vt\Yv) — 92 0g il vt 2 og | X
v+ v 41 a-1 ’
log (I, + —————¥"(0)Y; ,
+ A hog |1, + S| + CO)
and ivt(é) is calculated recursively by
R P K Q K
So(d) =8 — AgiSAL; = > By;SBy,
i=1 k=1 j=1 k=1
K Q K R
(5.5) YD ARYiiAl + > Y BriSu(8) By,
i=1 k=1 Jj=1k=1

based on a sequence of given constant matrices h. Clearly, L, (6,) is analogous to E(@) in

(3.3), and it is the modification of the following log-likelihood function:

1 T
(5.6) Lu(0y) = > lu(6y),
t=1
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where [,:(6,) is defined in the same way as Z;t(ﬂv) with ivt((s) being replaced by X,:(9),

and X,:(9) is calculated recursively by

Q K

AgiSAL; = > By;SBy;
j=1k=1

M=

Su(d) =8 ->

(2

K Q K
(5.7) + Z Z Ay i Al + Z Z ByjZut—j(0) By,

i=1 k=1 j=1k=1

P
=1

e
Il
—_

based on the observations {Y;}7_; and the initial values {Y;};<o. The minimizer, Zv =

@, 7, of Ly(3,,¢) on O, x O, is the constrained MLE of (ug, ). That is,

vy Tv

(5.8) (@ ,0) = argmin Ly(3y, C).
(€O X0,

Now, we call 8, = (5,,(.) the two-step estimator of 6, in model (5.2). Let ¥(u) =

_ U(u)vee(Yy — 2(0))
(he =SS, Ar =30 B7) ™ (= S0 B7) and we(6) = ( ). The

Olyt (0,)/0C

following two theorems give the consistency and asymptotic normality of 5@7 respectively.

THEOREM 5.1.  Suppose that Assumptions 3.1-3.2 hold and E|Y;|| < co. Then, 6, £

0o as T — o0.

THEOREM 5.2.  Suppose that Assumptions 3.1-3.2 hold, E|Y;||> < oo, and

8211}15(91)0)

(5.9) leE[ R

] 1s invertible.

Then, \/T(@\U — 0y0) 4 N(0,0,) as T — oo, where

I: 0 I 0

n

!
= E(wpw})
~Jit =gt —J =gt

with Jy = B| L)

and w; = wy(Oyp).

As before, we can use the sample counterpart of the analytic expressions of 0l (6,)/06,

and 0%1,:(0,)/00,00., to estimate O,. Although the VT-CBF model can be estimated by
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the aforementioned two-step estimation procedure, it still has to handle a large number of
estimated parameters with order O(nz) caused by the parameter matrices Ay; and By;.
To make a more parsimonious VT-CBF model, we can further impose some restrictions on
Aj; and Byj. McCurdy and Stengos (1992) and Engle and Kroner (1995) have suggested
to use diagonal volatility models, which not only avoid over-parameterization, but also
reflect the fact that the variances and the covariances rely more on its own past than the
history of other variances or covariances. Motivated by this, we can assume that all Ag;
and Bj; have a diagonal structure, leading to a diagonal VT-CBF model. Clearly, the
number of estimated parameters in the diagonal VT-CBF model has order O(n), which is
feasible to be handled for a moderate large but fixed n.

Next, similar to II(7) in (4.1), we can construct the inner-product-based test statistics to
check the adequacy of model (2.1) based on the two-step estimator 6,. Let 6y = (50, up) s
6o = (3,0, 3u4(6) = vec(E&l/z(é)}QZzﬁl/Q(é) — I,) be the residual vector for a given 4,

byt j(0) = 31,(6)3ut—;(6) be the inner product of the residuals at lag j, and

T
V() = 7 3 (buts (5), b (), s (5))
=i+

t=l+1

The asymptotic property of Vvl(gv) is given in the following theorem.

THEOREM 5.3.  Suppose that Assumptions 3.1-3.2 hold, E|Y;||* < oo, and (5.9) holds.
Then, if model (2.1) is correctly specified, VTV (5y) LN N(0,V,) as T — oo, where

Vo = (1, Rio)Rao (L1, Riy)' with

3e—1 (80) (93wt (60) /08")

30— (00) (034t (00) /00) L2 0
Ri, = F %

—J e =gt

vi—1 (60) (93wt (d0) /06")
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and

tT{EQ [Svt(do)IS'ut((SO)]}Il 0
20 =
0 E(wyw})

By the preceding theorem, we can adopt the test statistic
(5.10) I, (1) = TV}(8,)V, Vau(60)]

to detect the adequacy of model (2.1), where V, is the sample counterpart of V. If I1, (1)
is larger than the upper-tailed critical value of x?(I) at a given significance level, the fitted

model (2.1) is not adequate. Otherwise, it is adequate.

5.2. The factor CBF model. In modern data analysis, the dimension n could be grow-
ing with the sample size T' in many cases, and this makes the CBF (or VT-CBF) models
computationally infeasible. Also, the dimension n may be proportional to m (the average
intra-day sample size across all assets and all days), and then the methods to calculate
Y; used for the fixed n deliver an inconsistent estimator of Y;*; see, e.g., Wang and Zou
(2010) and Tao et al. (2011) for surveys. To overcome this difficulty, we use the threshold-
ing average realized volatility matrix (TARVM) estimator in Tao et al. (2011) to calculate
Y;. The TARVM is built based on the ARVM (Wang and Zou, 2010), which is estimated
by taking the average of the constructed realized volatility matrices according to different
predetermined sampling frequencies. The TARVM further thresholds the elements in each
estimated RCOV matrix from the ARVM method, so that certain sparsity structure is
retained and the resulting estimator is consistent for large n, which can be growing with
(or even larger than) 7. For more recent works in this direction, we refer to Ait-Sahalia
and Xiu (2017), Kim et al. (2018), and the references therein.

Since the dimension of Y; could be very large, it seems hard to study the dynamics of

Y; without imposing some specific structure. Here, we adopt the factor model proposed
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by Tao et al. (2011) by assuming that
(5.11) Yy = FY;F + Y,

where Yy, is an r x r positive definite factor covariance matrix with r being a fixed integer
(much smaller than n), Y is an n x n positive definite constant matrix, and F' is an
n x r factor loading matrix normalized by the constraint F'F = I,.. In model (5.11), the
dynamic structure of Y;* is driven by that of a lower-dimensional latent process Yf*t, while
Y represents the static part of Y;*.

In (5.11), we shall highlight that only the column space of F' can be identified, and F' is
not identified even if F'F = I, is imposed. This is because Y,* is unchanged when F' and
Y]?‘t are replaced by Fy = F'R and thﬁ = R_IYJZ‘tR_I,, respectively, where R is any r X r
matrix satisfying R'R = I,..

Define

and
Y R I .
V=g Y S=7> (-7},

Then, we estimate Y;‘t, Y, and F by

(5.12) Yy =FY,F, Y=Y -FFYFF' and F=(f1,--,f),
respectively, where fl, ,fA} are the eigenvectors of S corresponding to its r largest

eigenvalues. As suggested by Lam and Yao (2012) and Ahn and Horenstein (2013), we
may select r such that the r largest ratios of adjacent eigenvalues are significantly larger.
In order to study the asymptotics of the proposed estimators, we introduce the following

technical assumptions.
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ASSUMPTION 5.1.  All row vectors of F' and Y| satisfy the sparsity condition below.

For an n-dimensional vector (x1,--- ,xy,), we say it is sparse if it satisfies

> lail™ < Un(n),
i=1

where 0, € [0,1), U is a positive constant, and m(n) is a deterministic function of n that

grows slowly in n with typical ezamples m(n) =1 or log(n).

ASSUMPTION 5.2.  The factor model (5.11) has r fized factors, and matrices Yy and

* . * *
Yy, satisfy ||Yy|| < oo and 1I£taug)§r||Yf

1l = Op(B(T)) for j =1,2,--- 1, where Y}, ;. is

Jt.gJ

the j-th diagonal entry of Y,, and 1 < B(T') = o(T).

ASSUMPTION 5.3. max. |V =Y = Op(A(n,m,T)) for some rate function A(n,m,T')

such that A(n,m,T)B>(T) = o(1).

Assumptions 5.1-5.3 are sufficient to prove the consistency of }Afft. For TARVM, we can
take A(n,m,T) = m(n)[em(n*T)YP]* =% log T and B(T) = log T with e,, = m~'/ so that
A(n,m, T)B>(T) = o(1) for large 3; see Tao et al. (2011). Note that Assumptions 5.1-5.3
do not rule out the case that n is larger than 7', as long as n?T grows more slowly than
mP/6. For other estimators, the rate A(n,m,T) may be improved; see Tao et al. (2013)

for more discussions.

THEOREM 5.4.  Suppose that Assumptions 5.1-5.3 and the conditions in Theorem 3.2
hold. Then, as n,m,T go to infinity,

(i) F'F — I, = Op(A(n,m, T)B(T)),

(i1) V1o = Yy = Op(AY2(n,m, T)BY(T)),
where Yy = Y]Zkt + F’YD*F, and F = (f1, -+, fr) with f1,---, fr being the eigenvectors of

S* corresponding to its v largest eigenvalues.
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The above theorem indicates that }/}ft is a consistent estimator of Yy; rather than Y]Zkt.

Next, we assume that Y, satisfies the CBF model, that is,

vy —n—1
(5.13) YilGio1 ~ F <u, ZEft)

141

with E(Y5¢|Gi—1) = X, where Xy, is defined in the same way as Y; in (2.3) with Y;
replaced by Yy, and the remaining notations and set-ups inherent from model (2.1). We
call models (5.11) and (5.13) the factor CBF (F-CBF) model. Particularly, if ¥, has the
HAR dynamical structure as in (2.6), the resulting model is called the factor CBF-HAR
(F-CBF-HAR) model. Based on this model, we have Y;* = F(Yy; — F'YF)F' +Y{. Since
Y: =~ Y/, it implies that we can study the large dimensional matrix Y; by using an r x r
low-dimensional matrix Y7;.

As Yy, is not observable, we should estimate model (5.13) based on }A/ft, and hence we

consider a feasible MLE of 6y in model (5.13) given by

b1y = (314, 01;) = argmin Ly (6),
0O

where Ef(ﬁ) is defined in the same way as L(6) in (3.3) with ¥; and () replaced by
}A/ft and 3 #t(7), respectively. The following theorem shows that 51 ¢ is consistent with the

ideal MLE 9A2 7 based on Y}, where

025 = (A, Dhy) = argmin L (6),
0O

and L¢(0) is defined in the same way as L(6) in (3.1) with Y; and ¥;(v) replaced by Y7,

and X ¢(7), respectively.

THEOREM 5.5. Suppose that the conditions in Theorem 5.4 hold. Then, as n,m,T go

to infinity, 017 — 0oy = Op(B(T)/T) + Op(AY2(n, m, T)B5/2(T)).
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Since the dimension of Yy, is 7 (much smaller than n), the calculation of 6,  is computa-
tionally feasible. In order to further reduce the number of parameters in model (5.13), we
can also assume that Yy; follows a VI-CBF model. This leads to the F-VT-CBF model,
which includes the F-VT-CBF-HAR model as a special case. For this F-VT-CBF model,

we consider its feasible two-step estimator 6; o = (8] For Z{ fv)’ , where

T
~ 1 S o~ ~ -
S1fv = f Zth7 lev = (ullfva lelfv)/ = argmin Lfv(slfmC)a
t=1 CG@uX@V
and L fv(0y) is defined in the same way as EU(HU) in (5.4) with ¥; and ivt(é) replaced
by ?ft and & fot(0), respectively. Similar to Theorem 5.5, 51 fv is consistent with the ideal

two-step estimator o 7o = (55 For Eé fv)/ based on Y}, where

T
1 ~
Sa0 =50 Yo Gopo = (g, Vo) = argmin Ly, (5250, 0),
R o SRl T e e, T

and Ly, (0,) is defined in the same way as L(6,) in (5.6) with Y; and ¥;(d) replaced by

Yy and X, (8), respectively.

THEOREM 5.6. Suppose that the conditions in Theorem 5.4 hold. Then, as n,m,T go
to infinity,
(i) S170 — Sag0 = Op(A?(n,m, T) B**(T)),

(ii) Cipo — Cogo = Op(B(T)/T) + Op(AYV2(n,m, T)BY*(T)).

Particularly, if Yy; follows a diagonal VT-CBF model, the number of estimated parame-
ters in model (5.13) is O(r), which is easy to calculate in practice. In view of model (5.11)
and the fact that F'F = I, we can predict Y; by either ﬁf]ft(%f)ﬁ’ + 170* based on §1f

or ﬁf]fvt(glfv)ﬁ’ + EA/O* based on glfy, where glfv = (8 o Uy gp)"-

6. Simulation. In this section, we first assess the performance of the MLE 0 and the

two-step estimator @\U in the finite sample. We generate 1000 replications of sample size
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T = 1000 and 2000 from the following model:

(6.1) Y, = 212052 with 5, = Qo + AYi 14} + BioSi_1 B,
where
05 02 0.3 04 0 0 04 0 0
Q=102 05 025 [-4w0=| 0 055 0 |:Bwo=| 0o 03 0 |-
0.3 0.25 0.5 0 0 05 0 0 05

{A:} is a sequence of independent F (Vo, m%g_lln) distributed random matrices with
n = 3, and vy = (10,8), (15,10) or (20,10). For each repetition, we calculate 5, 51,, and
their related asymptotic standard deviations. For @,, we report the results related to )
instead of S, and hence the asymptotic standard deviation of the estimated parameters in
Q) is absent in this case.

Table 1 reports the sample bias, the sample standard deviation (SD) and the average
asymptotic standard deviation (AD) of 0 and 0,. From this table, we can see that the
biases of both estimators are small comparing to the magnitude of the parameters, and
they become smaller as the sample size T increases. This assures the accuracy of both
estimators. Furthermore, we find that the SDs are generally close to the ADs for both
estimators, and all of the SDs and ADs become smaller as T increases from 1000 to 2000.
In terms of ADs or SDs, g is generally more efficient than @\v, although this efficiency
advantage is weak for many parameters. However, the estimation time for é\@ is almost
70% of the time for 5, and this computation advantage can be more significant when n
increases.

Next, we examine the performance of the inner-product-based tests II(1) and IL,(l) in

the finite sample. We generate 1000 replications of sample size T" = 1000 and 2000 from
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TABLE 1. The results of the MLE 0

and two-step estimator 0, for model (6.1)

T V1 12 Ar11 A2 Al 33 B B 22 B33 Qi1 Qo1 Q31 Qoo Q3o Q33
Case 1 1000 6 Bias 0.0320 0.0160 -0.0014 -0.0029 -0.0009 -0.0151 -0.0112 -0.0102 -0.0005 0.0028 0.0057 -0.0009 0.0037 0.0053
ESD 0.3914 0.2452 0.0255 0.0249 0.0240 0.1170 0.0964 0.0728 0.0600 0.0188 0.0337 0.0419 0.0248 0.0601
ASD 0.4111 0.2563 0.0258 0.0259 0.0241 0.1103 0.0892 0.0652 0.0586 0.0179 0.0323 0.0402 0.0232 0.0562
%)e Bias -0.0080 0.0382 -0.0005 -0.0030 0.0000 -0.0130 -0.0088 -0.0096 -0.0020 0.0020 0.0047 -0.0030 0.0033 0.0040
ESD 0.3884 0.2607 0.0263 0.0272 0.0255 0.1165 0.0956 0.0728 0.0614 0.0229 0.0366 0.0433 0.0291 0.0615

ASD 0.4024 0.2619 0.0266 0.0282 0.0258 0.1207 0.1046 0.0742
2000 # Bias 0.0188 0.0072 -0.0003 -0.0018 -0.0002 -0.0111 -0.0036 -0.0034 0.0019 0.0014 0.0030 -0.0008 0.0012 0.0014
ESD 0.2767 0.1733 0.0174 0.0179 0.0168 0.0797 0.0633 0.0459 0.0431 0.0130 0.0231 0.0293 0.0169 0.0405
ASD 0.2880 0.1797 0.0181 0.0182 0.0169 0.0767 0.0615 0.0447 0.0417 0.0124 0.0226 0.0287 0.0162 0.0395
w/e Bias -0.0020 0.0196 0.0002 -0.0020 0.0003 -0.0103 -0.0024 -0.0030 0.0010 0.0007 0.0023 -0.0020 0.0008 0.0005
ESD 0.2767 0.1876 0.0181 0.0194 0.0179 0.0800 0.0633 0.0458 0.0438 0.0161 0.0250 0.0304 0.0200 0.0416

ASD 0.2856 0.1871 0.0187 0.0198 0.0180 0.0823 0.0640 0.0458
Case 2 1000 0 Bias 0.0900 0.0132 -0.0017 -0.0021 -0.0010 -0.0159 -0.0075 -0.0092 -0.0023 0.0026 0.0049 -0.0022 0.0031 0.0053
ESD 0.8099 0.3597 0.0240 0.0245 0.0227 0.1242 0.0974 0.0690 0.0626 0.0177 0.0340 0.0418 0.0237 0.0591
ASD 0.8413 0.3598 0.0250 0.0243 0.0227 0.1158 0.0921 0.0672 0.0602 0.0175 0.0328 0.0410 0.0230 0.0578
\%/e Bias 0.0255 0.0353 -0.0011 -0.0019 -0.0009 -0.0154 -0.0067 -0.0089 -0.0027 0.0025 0.0041 -0.0031 0.0023 0.0041
ESD 0.7985 0.3659 0.0244 0.0259 0.0232 0.1239 0.0974 0.0689 0.0632 0.0200 0.0352 0.0430 0.0257 0.0593

ASD 0.8162 0.3585 0.0252 0.0253 0.0234 0.1290 0.1034 0.0724
2000 @x Bias 0.0702 0.0000 -0.0005 -0.0011 0.0000 -0.0074 -0.0021 -0.0041 -0.0008 0.0009 0.0020 -0.0017 0.0010 0.0020
ESD 0.5912 0.2515 0.0173 0.0174 0.0158 0.0801 0.0665 0.0467 0.0434 0.0123 0.0228 0.0299 0.0163 0.0412
ASD 0.5871 0.2517 0.0175 0.0171 0.0159 0.0805 0.0640 0.0461 0.0437 0.0121 0.0230 0.0293 0.0161 0.0406
w/e Bias 0.0384 0.0112 -0.0002 -0.0009 -0.0001 -0.0071 -0.0018 -0.0040 -0.0010 -0.0007 0.0016 -0.0021 0.0005 0.0012
ESD 0.5874 0.2532 0.0175 0.0182 0.0163 0.0800 0.0664 0.0467 0.0437 0.0138 0.0235 0.0305 0.0176 0.0413

ASD 0.5792 0.2537 0.0177 0.0178 0.0163 0.0827 0.0668 0.0472
Case 3 1000 0 Bias 0.1521 0.0294 -0.0013 -0.0021 -0.0007 -0.0165 -0.0092 -0.0082 -0.0023 0.0026 0.0046 -0.0026 0.0032 0.0031
ESD 1.4019 0.3340 0.0237 0.0237 0.0213 0.1253 0.0979 0.0712 0.0615 0.0173 0.0353 0.0418 0.0231 0.0599
ASD 1.4496 0.3442 0.0242 0.0235 0.0220 0.1127 0.0904 0.0654 0.0586 0.0169 0.0319 0.0399 0.0224 0.0463
mxe Bias 0.0433 0.0475 -0.0008 -0.0013 -0.0006 -0.0156 -0.0083 -0.0082 -0.0031 0.0025 0.0040 -0.0031 0.0026 0.0021
ESD 1.3774 0.3416 0.0239 0.0246 0.0220 0.1250 0.0975 0.0725 0.0614 0.0190 0.0358 0.0423 0.0250 0.0605

ASD 1.4084 0.3443 0.0248 0.0246 0.0227 0.1409 0.0996 0.0755
2000 wl Bias 0.0737 0.0190 -0.0006 -0.0009 0.0001 -0.0061 -0.0047 -0.0052 -0.0016 0.0010 0.0018 -0.0010 0.0016 0.0022
ESD 1.0087 0.2469 0.0169 0.0163 0.0149 0.0794 0.0671 0.0480 0.0418 0.0118 0.0227 0.0295 0.0161 0.0418
ASD 1.0057 0.2411 0.0170 0.0165 0.0155 0.0787 0.0630 0.0453 0.0429 0.0117 0.0225 0.0286 0.0157 0.0397
m‘/e Bias 0.0192 0.0286 -0.0004 -0.0004 0.0000 -0.0058 -0.0045 -0.0051 -0.0020 0.0008 0.0013 -0.0012 0.0011 0.0015
ESD 1.0022 0.2511 0.0170 0.0171 0.0153 0.0795 0.0673 0.0480 0.0419 0.0131 0.0231 0.0300 0.0176 0.0418

ASD 0.9923 0.2434 0.0172 0.0173 0.0158 0.0817 0.0652 0.0462

Cases 1-3 correspond to vg = (10, 8), (15,10) and (20, 10), respectively.
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the following model:
6.2) Y, =S2ASY? with By = Qo + AyoYi_1 Al + AsgYi_a Al + BioXi-1Bl,

where the values of g, Ajgp and Bjo are chosen as in (6.1), Ayg = diag{\, A\, A} is a
diagonal matrix with A = 0,0.05,0.1,0.15,0.2, and {A;} is a sequence of independent
F(VO, ”QO%ZHI”) distributed random matrices with n = 3 and vy = (10,8). We fit each
replication by the CBF model with (K, P,Q) = (1,1,1), and use II(l) and II,(l) to check
whether the fitted model is adequate. Here, we set the significance level o = 0.05 and
[ =2,3,4,5,6. The empirical sizes and powers of both tests are reported in Table 2, and
their sizes correspond to the results for the case of A = 0. From Table 2, we can find
that both II(1) and II,(l) always have accurate sizes, although they are slightly oversized
for small T'. For the power of both tests, it is generally as expected. First, all the power
becomes larger as T increases. Second, both tests become more powerful as A becomes
larger. Third, the power of II({) and IL,(l) is comparable, but the former need more
computational time. Note that when vy = (15,10) and (20,10), the testing results are
similar to these for 1y = (10, 8), and hence they are not reported for saving space.
Overall, both estimators 8 and 6, and both tests I1(7) and II,(l) have a good perfor-
mance especially when the sample size T gets larger. When the dimension of Y; is small,
our simulation results show that @, is only slightly less efficient than 9\, and II,(1) is gen-
erally as powerful as II(7). When the dimension of Y; is large, 0, and IT,(l) can enjoy a
faster computation speed than 0 and I1(1), respectively. Based on these grounds, we would

recommend using 6, and II,(I) in practice.

7. Applications. In this section, we consider two applications on the U.S. stock mar-

ket. Application 1 studies the low dimensional RCOV matrix series calculated by composite
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TABLE 2
The results of T1(1) and 1L, (1) for model (6.2)
=2 =3 =4 l=5 =6
A T () T, ) 1, Q) 1,(1) () T, () 1,(1)
0 1000 0.043 0.037 0.048 0.045 0.052 0.054 0.047 0.048 0.049 0.054
2000 0.048 0.056 0.058 0.059 0.053 0.054 0.052 0.059 0.051 0.052

0.05 1000 0.048 0.045 0.051 0.048 0.058 0.053 0.060 0.052 0.061  0.062
2000 0.060 0.063 0.063 0.073 0.064 0.075 0.063 0.076 0.058 0.074

0.1 1000 0.238 0.238 0.210 0.211 0.196 0.199 0.196 0.199 0.179 0.183
2000 0.414 0.408 0.371 0.364 0.350 0.354 0.309 0.328 0.316  0.320

0.15 1000 0.885 0.854 0.847 0.818 0.818 0.793 0.784 0.762 0.768 0.746
2000 0.974 0.956 0.966 0.951 0.956 0.933 0.946 0.925 0.941 0.919

0.2 1000 0.976 0.924 0.972 0.916 0.964 0.893 0.961 0.889 0.956 0.887
2000 0.992 0.951 0.989 0.945 0.987 0.923 0.987 0.914 0.985 0.910

realized kernels (CRK) in Lunde, Shephard and Sheppard (2016). Application 2 studies

the high dimensional RCOV series calculated by TARVM estimator in Tao et al. (2011).

7.1. Application 1. In this application, we revisit the RCOV matrix data of Hewlett-
Packard Development Company, L.P. (HPQ), International Business Machines Corpora-
tion (IBM) and Microsoft Corporation (MSFT) in Lunde, Shephard and Sheppard (2016).
This data set, denoted by {Y; tlff", ranges from January 2006 to December 2011 with 1474
observations in total. Here, two flash crashes are flagged in 6 May, 2010 and 9 August,
2011 and replaced by an average of the nearest five preceding and following matrices.

Figure 2 plots the diagonal and off-diagonal components of {V;}1474 exhibiting that
Y; has a clear clustering feature. Meanwhile, Figure 3 plots their sample autocorrelation
functions (ACFs), which show the significant temporal dependence of Y;. Based on these
facts, we first fit {Y;};27* by a diagonal VT-CBF model with (P,Q, K) = (3,1, 1), where
the order K is taken as one for ease of model identification, and the orders P and @

are selected by the Bayesian information criterion (BIC). Specifically, this diagonal VT-
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CBF model is estimated using the two-step estimation procedure, and the corresponding
estimates are give in Table 3. Second, since the sample ACFs of each component in Figure
3 decay slowly, we also fit {Y;}}47 by a diagonal VT-CBF-HAR model, and the related
estimation results are also listed in Table 3. From this table, we find that the estimates of
the degrees of freedom (especially for 5) in both fitted models are close to each other, and
both estimates of 5 are small indicating the heavy-tailedness of the examined data. For
the estimates of the mean parameter matrix S, its standard errors based on the VI-CBF
model are smaller than those based on the VT-CBF-HAR model. For other estimates of
parameter matrices, the estimated diagonal components in each parameter matrix seem to
have close values, meaning that the examined three stocks possibly have similar temporal
structures. This similarity can also be seen from the values of persistence of each stock
in Table 3, where the persistence of stock s is defined by Zle A2+ Z?Zl B?. _ for

1i,ss 1j,ss

the VT-CBF model and A(zd) s T A%w) ss T A(zm) s for the VT-CBF-HAR model. After

estimation, we then apply our test statistics II, (/) to both fitted models, and the results

summarized in Table 4 imply that both fitted models are adequate at the 5% level.

TABLE 3
The results of the estimated diagonal VT-CBF and VT-CBF-HAR models

Diagonal VT-CBF model

Uy §U Ait,e EH,U Elz,v 313,1; persistence
74.0110 3.1523  1.1099 1.1635 0.7207 0.5358 0.0117 0.4129 0.9771
(10.7545) (1.8844) (0.9031) (0.7705) (0.0223) (0.0365) (0.0176)  (0.0354)
40.5849 1.1099 2.3683 1.0965 0.7200 0.5620 0.0119 0.3800 0.9788
(3.9787)  (0.9031) (2.1165) (0.9209) (0.0246) (0.0289) (0.0177)  (0.0382)
1.1635 1.0965 2.7883 0.7118 0.5579 0.0127 0.3977 0.9762

(0.7705)  (0.9209) (1.3276) (0.0211) (0.0292) (0.0190)  (0.0354)

Diagonal VT-CBF-HAR model
Dy S, g(d) v g(w),v E(m)w persistence

69.0222 3.1523  1.1099 1.1635 0.6954 0.5735 0.3891 0.9639

(6.2261)  (2.2543) (1.0464) (0.8881) (0.0256) (0.0443) (0.0344)
40.4021 1.1099  2.3683 1.0965 0.6884 0.6027 0.3557 0.9637

(2.9408)  (1.0464) (2.3391) (1.0210) (0.0275) (0.0318) (0.0426)
1.1635  1.0965 2.7883 0.6703 0.6041 0.3812 0.9596

(0.8881) (1.0210) (1.4971) (0.0279) (0.0318) (0.0364)

The asymptotic standard errors are given in the parenthesis.
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TABLE 4
The results of I, (1) for the diagonal VT-CBF and VT-CBF-HAR models
Diagonal VT-CBF model Diagonal VT-CBF-HAR model
l 2 3 4 5 6 2 3 4 5 6
11, (1) 1.494 4.170 8.004 9.428 11.513 4.385 6.127 7.004 10.310 11.583
p-value 0.474 0.244 0.091 0.093 0.074 0.112 0.106 0.136 0.067 0.072

Next, we consider the forecasting performance of our proposed diagonal VT-CBF and
VT-CBF-HAR models. Specifically, we compute the 1-step, 5-step and 10-step predictions
of the RCOV matrices, based on a rolling window procedure with window size equal to
To = 800. That is, for Ty < t < T'—tg, we fit models based on Ty observations {Ys}‘;:t_To 15
and forecast ﬁ_f_to with tg = 1,5, 10 and calculate the forecasting error by ?H—to —Yits,. To
examine the importance of v5 in the CBF models, we also apply the diagonal VT-CAW and
VT-CAW-HAR models to do prediction for the purpose of comparison. The diagonal VT-
CAW and VT-CAW-HAR models are defined in the same way as the diagonal VT-CAW
and VT-CAW-HAR models, except that the matrix-F distribution for A; in the latter two
models is replaced by the Wishart distribution. Besides the CAW-type models, we further
include a diagonal VAR-HAR model for comparison, where this VAR model uses an HAR
structure with the diagonal autoregressive parameter matrices to fit y; = vech(Y?).

Table 5 gives the average of forecasting errors in Frobenius and spectral norms for all
models. From this table, we can find that regardless of the prediction horizon, the diagonal
VT-CBF-HAR model always has the smallest forecasting error in both norms. Moreover,
we apply the DM test (Diebold and Mariano, 1995) to examine whether the diagonal VT-
CBF-HAR model has a significant forecasting accuracy over other four competing models.
The corresponding testing results are given in Table 5, and they show that the VT-CBF-
HAR model is significantly better than its four competing models in terms of 5-step and
10-step forecasts. For 1-step forecasts, the VI-CBF-HAR and VT-CBF model models have

comparable forecasting accuracy, and the VI-CBF-HAR model is significantly better than
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TABLE 5
Forecasting errors based on different models and the related DM testing results
1-step 5-step 10-step
Diagonal Model Frobenius Spectral Frobenius Spectral Frobenius Spectral
VT-CBF-HAR 1.5284 1.4607 1.9725 1.8850 2.2108 2.1091
VT-CBF 1.5349 1.4664 1.9955 1.9069° 2.2802" 2.1755"
VT-CAW-HAR 1.5383" 1.4703* 2.0029* 1.9147* 2.2864° 2.1813°
VT-CAW 1.5390 1.4699 2.0253° 1.9351° 2.3364° 2.2286°
VAR-HAR 1.6472° 1.5661° 2.1700° 2.0626° 2.6088° 2.4711°

The DM test is used to compare the prediction accuracy between the diagonal VT-CBF-HAR and the other
four competing models. The result of the each competing model is marked with “t”, “x” or “¢0”, if the DM test
implies the Diagonal VT-CBF-HAR model gives significantly more accurate predictions than this competing
model at level 10%, 5% or 1%, respectively.

the remaining three models at level 10%. Note that the VAR-HAR model always performs
worst in all examined cases, and this is probably because the VAR-HAR model brutally
disentangles the matrix-structure of the RCOV matrices, which may have some intrinsic

and useful value for forecasts.

7.2. Application 2. In this section, we consider intra-day data of 112 stocks from four
major sectors constituting S&P 500 index: 31 stocks from financial sector, 31 stocks from
industrial sector, 25 stocks from health care sector, and 25 stocks from consumer dis-
cretionary sector, see Table 7.2. All intra-day price data are downloaded from Wharton
Research Data Services (WRDS) database, and they are taken from 1 July, 2009 to 30
December, 2016, including 1890 non-missing dates of trading data in total. Based on
100 times log of the price data, the daily RCOV matrices {Y;}{29 are calculated by the
TARVM method in Tao et al. (2011) for each sector.

For each sector, since the dimension of the RCOV matrix is large, we fit the RCOV

matrix data by the diagonal F-VT-CBF and F-VT-CBF-HAR models. To do this, we first

look for the value of r in model (5.11) by plotting the ratios { f"

pv } for each sector in Fig4,

where {)\;} are the eigenvalues of S in descending order. From Fig4, we can choose r = 3
for financial sector, r = 2 for industrial sector, r = 2 for health care sector, and r = 1 for

consumer discretionary sector. To get more information, we also plot the ratios {)\)‘—il} for
X3
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TABLE 6
Symbol of Stocks in Application 2

Number Financial Sector Industrial Sector Health Care Sector =~ Consumer Discretionary Sector

1 AFL BA A AZO
2 AIG CAT ABC BBY
3 ALL FLR ABT BWA
4 AXP FLS AET CCL
5 BAC GD BAX GPC
6 BBT GE BDX GPS
7 BEN GWW BMY HD
8 BK HON BSX HRB
9 BLK IR CAH JWN
10 C IT™ CI KMX
11 CMA LLL CVS KSS
12 COF LMT HUM LEG
13 GS LUV JNJ LEN
14 HIG MAS LH LOW
15 JPM MMM LLY MCD
16 KEY NOC MCK NKE
17 LNC NSC MDT NWL
18 MCO PH MRK PHM
19 MET PNR PFE RL
20 MMC PWR PKI TGT
21 MTB RHI SYK TIF
22 PFG ROK T™MO TJX
23 PGR ROP UNH VEC
24 PNC RSG VAR WHR
25 PRU RTN WAT YUM
26 RF SNA
27 STI SWK
28 STT TXT
29 TMK UNP
30 USB UPS
31 WFC UTX

Note: Full names of selected stocks can be found in https://www.slickcharts.com/sp500

all four pooled sectors in Fig5, from which r = 3 is suggested. This implies that all 112
stocks considered may be driven by 3 latent factors, but among which only two may affect
the industrial and health care sectors, and only one may affect the consumer discretionary
sector. Hence, it is more reasonable to study the RCOV matrix data across sectors rather
than together.

Next, we estimate the diagonal F-VT-CBF and F-VT-CBF-HAR models and choose
the orders by a similar procedure as in Application 1, and the related results are reported
in Table 7. From this table, we can find that except for the mean parameter matrix, the

diagonal components of other parameter matrices seem to have different values, meaning
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that each component of Y}; has a different dynamical structure. Moreover, the values of
persistence for Yy s show clear differences across four sectors, with the largest persistence

in financial sector and the smallest persistence in health care sector. This finding indicates
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that the effect of past stock returns to its current volatility decays very slowly in the

financial sector, while it behaves oppositely in the health care sector.

TABLE 7
The results of the estimated diagonal F-VT-CBF and F-VT-CBF-HAR models

Diagonal F-VT-CBF model

Sector Dy St Ai1,50 Bii,fv Bi2,fo B3, fv Biy4,fv persistence
35.3380 25.7553 0.6808 0.1389 0.7269 0.5118 0.2741  0.3219 0.9601
(2.9679) (11.0314) (2.3577) (0.6519) (0.0348) (0.0518) (0.1014) (0.0606)
Financial | 19-257  0.6808 25799 0.0211 0.6844 0.5382 03172 0.3628 0.9903
(1.0419) (2.3577) (9.6931) (0.1730) (0.0608) (0.1181) (0.1831) (0.0699)
0.1389  0.0211 1.6309 0.7292 0.3010 0.4490  0.3817 0.9696
(0.6519) (0.1730) (1.8857) (0.0732) (0.1468) (0.0897) (0.1201)
24.9287 17.3161 2.1513 0.7277  0.6488 0.9505
) 6.9460) (7.0877) (1.0290 0.0729) (0.0709
Industrial (22.7808) (2.1513) (1.0614) (0.6716) (0.6921) 0.9300
(7.6622) (1.0290) (0.3786) (0.0317) (0.0373)
24.3415 8.6744  3.4402 0.7617 05396 0.1129 0.8841
4.9720) (2.9442) (0.7505 0.1324) (0.0651) (0.6685
Health Care (15.9965) (3.4402) (2.185) (0.7351) (0.5706) (0.0001) 0.8660
(5.1757) (0.7505) (0.4998) (0.1407) (0.1585) (0.8598)
224570 15.3282 0.7516 04517 0.2604  0.1971  0.2666  0.9467
Consumer  (4.0371) (4.9315) (0.0261) (0.0724) (0.1171) (0.1711) (0.1032)
Discretionary 12.2757
(1.4843)

Diagonal F-VT-CBF-HAR model
Sector va §fv g(d),fv A\(w),fv A\(m),fv persistence
38.0409 25.7553  0.6808  0.1389 0.7041 0.5069 0.4573 0.9618
(3.1046) (15.5296) (2.6814) (0.8796) (0.0259) (0.0830) (0.1098)
18.9242  0.6808 2.5799  0.0211 0.6676 0.4588 0.5739 0.9855

Financial  6746) (2.6814) (10.6104) (0.2816) (0.0441) (0.1162) (0.0628)
0.1389  0.0211 1.6309 0.7659 0.2502 0.5476  0.9491
(0.8796) (0.2816) (1.2904) (0.0484) (0.1678) (0.0537)
25.0002 17.3161  2.1513 0.7161 0.5494 03549  0.9406
Industria]  (5:9220) (10.0000) (1.2538) (0.0699) (0.0758) (0.0458)
22.3305 2.1513  1.0614 0.6361 0.6086 0.3283  0.8830
(6.7511) (1.2538) (0.4310) (0.0462) (0.0970) (0.1484)
233766 8.6744  3.4402 0.7250 0.5357 0.1944  0.8625
(3.6648) (3.2870) (0.8134) (0.1095) (0.1141) (0.0369)
Health Care 16 1350 '3.4402 21850 0.6961 0.5689 0.0691  0.8130
(4.6804) (0.8134) (0.5280) (0.0918) (0.1620) (0.2421)
231216 15.3282 0.7285 0.4865 04092  0.9348
Consumer  (3.2789) (6.0954) (0.0299) (0.0599) (0.0502)
Discretionary 11.9375
(1.1630)

The asymptotic standard errors given in the parenthesis are based on process ffft rather than Yy,.

In the end, we examine the forecasting performance of our F-CBF models. As in Appli-
cation 1, five different diagonal factor models (see Table 8) are considered to forecast Yz,
based on a rolling window procedure with window size equal to 1000. Their forecasting
performance is evaluated by the average of forecasting errors in Frobenius and spectral
norms as well as the results of the related DM test in Table 8. From this table, we can

see that except for the health care sector, the diagonal F-VT-CBF-HAR model always
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TABLE 8

Forecasting errors based on different factor models and the related DM testing results

1-step 5-step 10-step
Sector Diagonal Model Frobenius  Spectral Frobenius Spectral Frobenius  Spectral
F-VT-CBF-HAR 8.7701 7.9339 10.4581 9.7229 11.0221 10.3200
F-VT-CBF 8.8116 7.9824% 10.6677* 9.9315° 11.3503* 10.6713°
Financial F-VT-CAW-HAR 8.7865 7.9644* 10.5183 9.8144% 11.1072 10.4575
F-VT-CAW 8.8354* 8.0248° 10.7097* 10.0151* 11.5030° 10.8786°
F-VAR-HAR 8.8878* 8.0662* 11.1055° 10.4644° 11.7725° 11.1745°
F-VT-CBF-HAR 7.9567 7.0936 9.3154 8.5480 9.8270 9.0842
F-VT-CBF 7.9735 7.1169 9.4094 8.6334 9.9837 9.2397
Industrial F-VT-CAW-HAR 7.9680 7.11121 9.4106* 8.6494* 10.0565° 9.3255°
F-VT-CAW 7.9995* 7.1450* 9.4645* 8.7001* 10.1157* 9.3826*
F-VAR-HAR 8.0567* 7.2170* 9.6801° 8.9531° 10.2809° 9.5794°
F-VT-CBF-HAR 6.6253 5.8586 7.4977 6.8076 7.8436 7.1863
F-VT-CBF 6.6628" 5.90191 7.6400* 6.9605* 8.0708° 7.4398°
Health Care F-VT-CAW-HAR 6.6126 5.8559 7.5658* 6.8892* 7.9743¢ 7.3317°
F-VT-CAW 6.7451° 6.0117° 8.0423° 7.3944° 8.3738° 7.7569°
F-VAR-HAR 6.6688 5.8954 7.6163* 6.9389* 7.94571 7.2872
F-VT-CBF-HAR 8.3355 7.0130 9.3278 8.1225 9.6830 8.5081
Consumer  F-VT-CBF 8.3552F 7.0415* 9.4191F 8.2195F 9.8426* 8.6883*
Discretionary F-VT-CAW-HAR 8.3517* 7.0307* 9.3886° 8.1935° 9.7918°¢ 8.6294°
F-VT-CAW 8.3727* 7.0560° 9.4489* 8.2546* 9.9211° 8.7754°
F-VAR-HAR 8.3914* 7.0762* 9.5017* 8.3282* 9.9085° 8.7575°

The DM test is used to compare the prediction accuracy between the diagonal F-VT-CBF-HAR and the other

four competing models. The result of the each competing model is marked with “”, “x” or “¢”, if the DM test

implies the Diagonal F-VT-CBF-HAR model gives significantly more accurate predictions than this competing
model at level 10%, 5% or 1%, respectively.

has the smallest forecasting error and the diagonal F-VAR-HAR model has the largest
forecasting error. For 1-step forecasts in the health care sector, the diagonal F-VT-CAW-
HAR has slightly smaller forecasting error compared with the diagonal F-VT-CBF-HAR
model. In view of the results of DM test, the diagonal F-VT-CBF-HAR model has a sig-
nificantly better performance than the other four competing models in terms of 5-step
and 10-step forecasts, but this advantage is slightly weak in terms of 1-step forecasts, for
which the diagonal F-VT-CBF and F-VT-CAW-HAR models have similar performance in
the industrial sector, and the diagonal F-VT-CAW-HAR and F-VAR-HAR models have

comparative performance in the health care sector.

8. Concluding Remarks. This paper proposes a new CBF model to study the dy-
namics of the RCOV matrix. For this CBF model, we explore its stationarity and moment
properties, establish the asymptotics of its maximum likelihood estimator, and investigate

the inner-product-based tests for its model checking. Hence, a systematic inferential tool
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of this CBF model is available for empirical researchers. In order to deal with large dimen-
sional RCOV matrices, we also construct two reduced CBF models: the VT-CBF model
and the F-CBF model. For both reduced models, the asymptotic theory of the estimated
parameters is derived. Compared with the CAW model with Wishart innovations, the CBF
model with matrix-F innovations is more able in capturing the heavy-tailed RCOV. This
advantage is demonstrated by two real examples on U.S. stock markets. As motivated by
Chiriac and Voev (2011), one obvious future work is to introduce the fractional integration
structure into our CBF models. Another interesting potential future work could extend
the idea of using the matrix-F innovation in a number of ways resulting in a large family

of models, which shall be important to study the positive definite dynamics.

Supplementary Material. The online Supplementary Material contains the proofs

of all theorems, and some useful derivatives.
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