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A UNIFIED FRAMEWORK FOR MINIMUM ABERRATION

Ming-Chung Chang

National Central University

Abstract: Minimum aberration has been ubiquitously adopted for selecting frac-

tional factorial designs. Much work has been done on its various extensions,

from which many fields of experimental design have benefited, including multi-

stratum designs, multi-group designs, and multi-platform designs. However, most

of these extensions are ad hoc and are developed on case-by-case bases without

strong statistical justifications and a unified rationale. In this paper, we pro-

vide a new perspective to minimum aberration through a Bayesian approach.

Our theory not only features a unified framework for minimum aberration and is

easily applied to many situations but also enables experimenters to derive their

own aberration criteria. Several theoretical results as well as three numerical

illustrations are provided.

Key words and phrases: Bayesian, Fractional factorial, Multi-stratum, Multi-

platform, Multi-group, Mixed-level, Blocking, Split-plot, Strip-plot.
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1. Introduction

Minimum aberration has been well-known for decades. The first aberration

criterion was proposed by Fries and Hunter (1980) and has been popular

for assessing fractional factorial designs. It is especially beneficial when

experimenters have little knowledge about the potentially important facto-

rial effects. This criterion was originally developed for evaluating regular

fractional factorial designs with unstructured experimental units. Readers

can refer to Wu and Hamada (2009) and Cheng (2014) for a comprehensive

account.

In the past two decades, several modifications of the aberration crite-

rion in Fries and Hunter (1980) have been proposed for many sophisticated

scenarios, including those for nonregular designs, block designs, and split-

plot designs (Dean et al., 2015). Sitter, Chen, and Feder (1997), Chen and

Cheng (1999), and Cheng and Wu (2002) developed aberration criteria for

blocked two-level regular fractional factorial designs. Cheng, Li, and Ye

(2004) proposed a version for blocked two-level nonregular fractional facto-

rial designs. Lin (2014) extended the results in Cheng, Li, and Ye (2004)

to blocked mixed-level orthogonal arrays. In addition to block designs, the

minimum aberration has been used or modified to split-plot designs as well.

Huang, Chen, and Voelkel (1998), Bingham and Sitter (1999), and Bing-
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ham, Schoen, and Sitter (2004) used it to compare two-level split-plot de-

signs. Tichon, Li, and Mcleod (2012) considered selecting split-plot designs

under five scenarios, each associated with a modified aberration criterion.

Yang and Lin (2017) utilized the same approach as in Lin (2014) to develop

an aberration criterion for mixed-level split-plot designs.

An aberration criterion is mathematically formulated by a wordlength

pattern, which requires an order of desirability among pertinent words. In

the literature, however, most wordlength patterns are ad hoc modifications

of that of Fries and Hunter (1980) and lack strong statistical justifications.

For block designs, one needs to argue an order between block defining words

and treatment defining words, while three distinct orders were individually

proposed by Sitter, Chen, and Feder (1997), Chen and Cheng (1999), and

Cheng and Wu (2002). Apart from the difficulty of judging an appropriate

order, the lengths of defining words do not provide enough information for

ranking designs for many situations, such as blocked nonregular designs,

because designs that can estimate the same number of models may have

different estimation efficiencies, not to mention to account for the structures

of experimental units.

In this paper, we aim at developing a unified theory of aberration crite-

ria for various scenarios in the literature based on a statistically meaningful
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framework. Moreover, our theory yields a systematic method for exper-

imenters to derive aberration criteria appropriate for specific experimen-

tal conditions. Another work relevant to ours is Cheng and Tang (2005),

in which the notion of minimizing contamination was adopted. However,

Cheng and Tang (2005) studied two-level factorial designs with unstruc-

tured experimental units. Our theory, by means of a Bayesian approach,

has a sound statistical rationale and can be used to assess and compare

mixed-level fractional factorial designs with experimental units that have

complex structures.

In our work, the treatment factors are allowed to have multiple groups

in the sense that those in the same group are assumed to have (nearly)

equal importance on the response. This setting has been considered in the

literature, such as control factors and noise factors in robust parameter de-

signs (Taguchi, 1987). Zhu (2003) studied two-level factorial designs with

multiple groups of treatment factors. Tichon, Li, and Mcleod (2012) in-

vestigated optimal split-plot designs with two groups of treatment factors,

separately corresponding to the whole-plot and subplot strata. Recently, an

application of multi-group treatment factors was studied in multi-platform

experiments (Sadeghi, Qian, and Arora, 2016, 2017), where the sliced fac-

tor itself is in one group and has higher importance than the other factors.
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Li, Zhou, and Zhang (2015) and Li, Mee, and Zhou (2018) proposed new

aberration criteria for factorial designs with multiple groups of treatment

factors. We discuss applying our work to multi-platform experiments in

Section S5 of the supplementary material.

This paper is organized as follows. Section 2 provides necessary pre-

liminaries. Section 3 gives the theoretical results of our work and intro-

duces a general aberration criterion with some applications. Section 4 il-

lustrates minimum aberration designs under three settings: unstructured

units, blocked mixed-level orthogonal arrays, and three-stage manufactur-

ing processes. Finally, Section 5 concludes this paper. All proofs are de-

ferred to the supplementary material.

2. Preliminaries

2.1 Unit factors and block structures

The experimental units considered in this paper have a structure, which is

hereafter referred to as a block structure. Many common block structures,

such as block designs, split-plot designs, strip-plot designs, and block strip-

plot designs, belong to a specific class of block structures: simple block

structures (Nelder, 1965a,b). A larger class of block structures, covering

simple block structures and most block structures commonly encountered in
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2.1 Unit factors and block structures6

practice, is the orthogonal block structures (Speed and Bailey, 1982; Bailey,

1985). Readers can refer to Bailey (2008) and Cheng (2014) for details.

We denote the number of experimental units by N . A block structure

can be described by a set of unit factors defined on the experimental units.

An nF -level unit factor F can be thought of as a partition of the N units

into nF disjoint subsets. Each subset is called an F -class and consists of

units that have the same level of F . A unit factor is said to be uniform if all

of its classes are of the same size. For two different unit factors F1 and F2,

we say that F1 is nested in (or finer than) F2, denoted by F1 ≺ F2, if two

units in the same F1-class implies that they are in the same F2-class. The

expression F1 � F2 stands for either F1 ≺ F2 or F1 = F2. The finest unit

factor, denoted by E , has N levels, with each class consisting of one single

unit. On the other hand, U denotes the unit factor that has a single level

with all units in the same class. A split-plot design has the block structure

{U ,P , E}, where P partitions the N units into nP whole-plots. We always

include U and E into every block structure. A set of unstructured units can

be treated as having the block structure {U , E}.

In this paper, we consider block structures that satisfy conditions (i),

(ii), (iii), (v), and (vi) in Definition 12.4 in Cheng (2014, p. 233), which cover

orthogonal block structures. To save space, these five conditions, denoted
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2.2 Treatment factorial effects7

by (S1.1)-(S1.5), and their importance for the theoretical results in our

work are given in Section S1 of the supplementary material. We note that

the block structures of most experiments encountered in practice, such as

blocked, split-plot, or strip-plot factorial experiments, satisfy (S1.1)-(S1.5).

2.2 Treatment factorial effects

Suppose there are n treatment factors with levels p1, ..., pn, and denote∏n
i=1 pi by Ξ. Let β0 be the intercept and β1, ..., βΞ−1 be the Ξ− 1 factorial

effects. Denote the Ξ× 1 vector of all βj’s by βββ. Let ααα be the Ξ× 1 vector

of the effects of all Ξ treatment combinations. Then, ααα can be expressed

as ααα = Pβββ, where P is a Ξ × Ξ full model matrix for a complete factorial

experiment with PTP = IΞ. It follows that P−1 = PT and βββ = PTααα.

The matrix P can be systematically constructed based on Kurkjian

and Zelen (1962) as follows. For each factor i = 1, ..., n, define a pi ×

pi orthogonal matrix Pi with the first column proportional to the all-one

vector. Then, let the remaining pi − 1 columns define pi − 1 treatment

contrasts of the main effects of factor i. If p1 = 3, for example, a choice

of P1 is


1/
√

3 −1/
√

2 1/
√

6

1/
√

3 0 −2/
√

6

1/
√

3 1/
√

2 1/
√

6

, in which the first column represents

the intercept, the second column represents the linear main effect, and the
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2.2 Treatment factorial effects8

third column represents the quadratic main effect. Once P1, ...,Pn have

been constructed, one can obtain P by

P = P1 ⊗ · · · ⊗Pn, (2.1)

where ⊗ denotes the Kronecker product operator.

The components of βββ can be divided into 2n groups in terms of the

treatment factors involved. Let S be a subset of {1, ..., n}, where the empty

set is denoted by φ. Each S represents one such group and corresponds

to certain βj’s. For example, S = φ corresponds to the intercept; S = {i}

corresponds to the pi−1 main effects of factor i; S = {i1, ..., ik} corresponds

to the (pi1 − 1) · · · (pik − 1) k-factor interactions among factors i1, ..., ik.

In this paper, we adopt a Bayesian framework for βββ. To specify the

prior distribution of βββ, we assume that βββ comprises uncorrelated random

variables and follows a zero-mean multivariate normal distribution with

var(βl) = var(βj) if both βl and βj are associated with the same S. Hence,

there are at most 2n distinct values of var(βi)’s. These values are denoted

by vS, S ⊆ {1, ..., n}. Furthermore, we require

vS ≥ vS′ if S ⊂ S ′. (2.2)

This requirement, referred to as the property of nested decreasing interac-

tion variances in Kerr (2001), is consistent with the effect heredity principle
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(Yates, 1935; Wu and Hamada, 2009, p. 172). This Bayesian framework is

inspired by Mitchell, Morris, and Ylvisaker (1995), Kerr (2001), Joseph

(2006), and Joseph and Delaney (2007). A common technique of their

approaches is to induce the prior distribution of βββ from ααα, where ααα is as-

sumed to be a realization of a stationary Gaussian process. Some results

of the prior distribution of βββ are given in Section S2 of the supplementary

material.

2.3 Statistical model

Suppose N experimental units have a block structure B = {F0,F1, ...,Fm},

where F0 = U and Fm = E . For each Fi ∈ B, let XFi
be an N × nFi

incidence matrix that describes the relationship between the units and the

levels of Fi. Each entry of XFi
is 0 or 1 such that the ljth entry of XFi

is

1 if and only if the lth unit is in the jth Fi-class.

Under a fractional factorial design d with N treatment combinations,

let

y = Uβββ +
m∑
i=0

XFi
γγγFi ,

where y is a vector of responses, U is the N × Ξ full model matrix under

d (composed of N corresponding rows from P) and γγγFi = (γFi
1 , . . . , γFi

nFi
)T

with γFi
j being the effect of the jth level of unit factor Fi (e.g., block
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2.3 Statistical model10

effects, whole-plot effects, and subplot effects). We assume that the γFi
j ’s are

uncorrelated, with each γFi
j following a zero-mean normal distribution with

variance σ2
Fi

, and that they are independent of βββ. Then, the conditional

distribution of y given βββ is the multivariate normal distribution:

y|βββ ∼ N(Uβββ,
m∑
i=0

σ2
Fi

XFi
XT
Fi

). (2.3)

Let V =
∑m

i=0 σ
2
Fi

XFi
XT
Fi

. If B satisfies conditions (S1.1)-(S1.5), then

V has m+1 eigenspaces WF0 , . . . ,WFm , with one eigenspace associated with

each of the m + 1 unit factors, where WF0 = WU is the one-dimensional

space consisting of all the vectors with constant entries, and each other

eigenvector defines a unit contrast (Cheng, 2014, p. 237). It follows that∑m
i=0 PWFi

= IN , where PWFi
is the orthogonal projection matrix onto WFi

.

Let the corresponding eigenvalues be ξF0 , . . . , ξFm . Here, WFi
and ξFi

are

called a stratum and stratum variance, respectively. It can be shown that

ξFi
≤ ξFj

if Fi � Fj (Cheng, 2014, p. 246). The case where γFi
1 , . . . , γFi

nFi

are unknown constants (fixed effects) can be treated by letting σ2
Fi

= ∞,

leading to ξFj
=∞ if Fi � Fj.

A systematic method to construct PWF is as follows. Define VF as the

column space of XF for each F ∈ B. The orthogonal projection matrix

onto VF is PVF = XF(XT
FXF)−1XT

F . It can be shown that PWF = PVF −∑
G∈B:F≺G PWG . Thus, one can obtain every PWF by starting from PWU =
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1
N

1N1TN . More details can be found in Cheng (2014, p. 243).

3. A general aberration criterion

In this section, we propose an aberration criterion for design assessment

and selection based on the Bayesian approach. This criterion is capable

of handling mixed-level treatment factors as well as complex structures

of experimental units. In addition, it is easily modified according to ex-

perimenters’ beliefs about important factorial effects. Sections 3.1 to 3.3

illustrate its three common applications.

From (2.2) and (2.3), the posterior distribution βββ|y is multivariate

normal with a mean vector and the covariance matrix cov(βββ|y) = Σβ −

ΣβU
T (UΣβU

T + V)−1UΣβ, where Σβ is the (prior) covariance matrix

of βββ. Let M = cov(βββ|y)−1. A commonly used design selection criterion,

Bayesian D-optimality, is to maximize det[M]. While the D-optimality

has good statistical interpretation, it is not easily manageable. A good

surrogate for the D-optimality, referred to as the (M.S)-optimality due to

Eccleston and Hedayat (1974), is to first maximize tr[M] and then minimize

tr[M2] among the designs that maximize tr[M].

For each S ⊆ {1, ..., n}, let US be composed of the columns in U

associated with S. If S = {1, 2} with p1 = 2 and p2 = 3, for example, then
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US consists of (2 − 1)(3 − 1) = 2 columns, each representing a treatment

contrast of the two-factor interaction between factors 1 and 2 under the

given design.

Define

Φ1(d;ξξξ,v) =
m∑
i=0

∑
S⊆{1,...,n}

vS
ξFi

tr
[
UT
SPWFi

US

]
,

Φ2(d;ξξξ,v) =
m∑
i=0

1

ξ2
Fi

tr
[
(ΣβU

TPWFi
U)2

]
+ 2

∑
0≤l<s≤m

1

ξFl
ξFs

tr
[
(ΣβU

TPWFl
U)(ΣβU

TPWFs
U)
]
,

where v and ξξξ are the vectors of vS’s and ξFi
’s. We have the following result

for the Bayesian (M.S)-optimality.

Theorem 1. The Bayesian (M.S)-optimality involves to first maximize

Φ1(d;ξξξ,v) and then minimize Φ2(d;ξξξ,v) among the designs that maximize

Φ1(d;ξξξ,v).

To get a more structured form of Φ1(d;ξξξ,v), we need Lemmas 1 and

2 in Section S3 of the supplementary material, which jointly state that

tr
[
UT
SUS

]
does not depend on the choice of designs and orthogonal-column-

bases of the column space of P. We summarize these as a theorem.

Theorem 2. For an S ⊆ {1, ..., n}, tr
[
UT
SUS

]
is a constant for any choice

of N-run designs as well as for any choice of orthogonal-column-bases in
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P.

With Theorem 2 and the property
∑m

i=0 PWFi
= IN , maximizing Φ1(d;ξξξ,v)

is reduced to minimizing

Φ∗1(d;ξξξ,v) =
m−1∑
i=0

∑
S⊆{1,...,n}

vS

(
1

ξFm

− 1

ξFi

)
tr
[
UT
SPWFi

US

]
.

by replacing PWFm
with IN −

∑m−1
i=0 PWFi

.

In addition to the choice of designs, Φ∗1(d;ξξξ,v) and Φ2(d;ξξξ,v) depend

on unknown parameters v and ξξξ. The following result serves as a useful

tool for searching for optimal designs with respect to minimizing Φ∗1(d;ξξξ,v)

for all feasible v and ξξξ. In this paper, v and ξξξ are said to be feasible if v

satisfies (2.2) and Fi ≺ Fj implies ξFi
≤ ξFj

.

Theorem 3. Suppose B is a block structure satisfying conditions (S1.1)-

(S1.5). Then, a necessary and sufficient condition for a design to minimize

Φ∗1(d;ξξξ,v) for all feasible v and ξξξ is that it minimizes

∑
S∈S

∑
i:Fi∈G

tr
[
UT
SPWFi

US

]
for all nonempty subsets S ⊆ 2{1,...,n} \ {φ} and G ⊆ B \ {Fm} such that

S ∈ S, S ′ ∈ 2{1,...,n} \ {φ}, and S ′ ⊂ S ⇒ S ′ ∈ S, (3.4)

F ∈ G,F ′ ∈ B, and F ≺ F ′ ⇒ F ′ ∈ G. (3.5)

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



14

We illustrate Theorem 3 with a simple scenario. Suppose n = 2 and

B = {F0,F1,F2} with F2 ≺ F1 ≺ F0. All subsets of 2{1,2} \ {φ} =

{{1}, {2}, {1, 2}} that satisfy (3.4) are S1 = {{1}}, S2 = {{2}}, S3 =

{{1}, {2}}, S4 = {{1}, {2}, {1, 2}}. Likewise, all subsets of B \ {F2} that

satisfy (3.5) are G1 = {F0}, G2 = {F0,F1}. By Theorem 3, if a design

minimizes
∑

S∈Si

∑
j:Fj∈Gl

tr
[
UT
SPWFj

US

]
for i = 1, ..., 4 and l = 1, 2,

then it minimizes Φ∗1(d;ξξξ,v) for all feasible v and ξξξ.

Theorem 3 extends Theorem 5.1 in Chang and Cheng (2018) in two

ways. First, Chang and Cheng (2018) is limited to two-level designs, while

here we are able to deal with the case of mixed-level treatment factors.

Second, Theorem 3 provides a sufficient and necessary condition for a design

to be optimal for all feasible v and ξξξ, while Theorem 5.1 in Chang and Cheng

(2018) requires the values of v.

Similar to Chang and Cheng (2018), Theorem 3 is able to eliminate in-

ferior designs. For two designs d1 and d2, if
∑

S∈S
∑

i:Fi∈G tr
[
UT
SPWFi

US

]
of d1 is no greater than that of d2 under every combination of S and G,

with strict inequality for at least one combination, then d2 is worse than

d1 and is said to be inadmissible. Eliminating inadmissible designs yields

a considerable reduction of designs that need to be considered. If there

remains one design (up to isomorphism), it minimizes Φ∗1(d;ξξξ,v) for all fea-
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sible v and ξξξ. Usually, using Φ∗1(d;ξξξ,v) is enough to distinguish designs.

If there remain more than one nonisomorphic designs, one can use either

Φ2(d;ξξξ,v) or the actual Bayesian D-optimal criterion to assess them.

In the remaining part of this section, we illustrate equivalent forms of

minimizing Φ∗1(d;ξξξ,v) under several specific scenarios. Some are reduced to

well-known aberration criteria. To define an aberration criterion, one needs

a desirability order about the importance of factorial effects. This can be

achieved under appropriate settings of the values of v.

If it is known that the 2n subsets of {1, ..., n} can be divided into J

groups H1, ...,HJ , such that vS = vS′ for S, S ′ in the same group and vS > vS′

for S ∈ Hl and S ′ ∈ Hl′ with l < l′, then, since Φ∗1(d;ξξξ,v) is linear in vS’s,

the following wordlength pattern is induced:

m−1∑
i=0

{(
1

ξFm

− 1

ξFi

)(∑
S∈H1

tr
[
UT
SPWFi

US

]
, . . . ,

∑
j∈HJ

tr
[
UT
SPWFi

US

])}
.

(3.6)

An aberration criterion can be defined as sequentially minimizing this wordlength

pattern. Since tr
[
UT
SPWFi

US

]
= tr

[
USUT

SPWFi

]
, it follows from the proof

of Lemma 2 (in the supplementary material) that (3.6) does not depend on

orthogonal bases in P.

If, on the other hand, the information about important factorial effects

is vague, then the effect hierarchy principle in Wu and Hamada (2009,
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p. 172) is often assumed, especially for screening experiments (Dean and

Lewis, 2006). Under the Bayesian framework, this principle is basically

consistent with choosing Hl = {S ⊆ {1, ..., n} : |S| = l}, l = 1, ..., n; or

equivalently,

(i) vS = vS′ if |S| = |S ′|,

(ii) vS > vS′ if |S| < |S ′|. (3.7)

It is obvious that (3.7) satisfies (2.2). By replacing “S ′ ⊂ S” in (3.4)

with “vS′ ≥ vS”, we can establish another version of Theorem 3, which is

tailored to the setting in (3.7).

Theorem 4. Suppose B is a block structure satisfying conditions (S1.1)-

(S1.5). Then, under (3.7), a necessary and sufficient condition for a design

to minimize Φ∗1(d;ξξξ,v) for all v that satisfy (3.7) and feasible ξξξ is that it

minimizes

∑
S∈S

∑
i:Fi∈G

tr
[
UT
SPWFi

US

]
for all nonempty subsets G ⊆ B \ {Fm} satisfying (3.5) and S ⊆ 2{1,...,n} \

{φ} satisfying

S ∈ S, S ′ ∈ 2{1,...,n} \ {φ}, and vS′ ≥ vS ⇒ S ′ ∈ S. (3.8)
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For n = 3, all nonempty subsets of 2{1,2,3}\{φ} = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

that satisfy (3.8) are Sk = {S ⊆ {1, ..., n} : 0 < |S| ≤ k}, k = 1, 2, 3, each

corresponding to main effects, effects up to two-factor interactions, or effects

up to the three-factor interaction.

When (3.7) holds, with an additional requirement that vS � vS′ if

|S| < |S ′| (i.e., lower-order effects are much more important than higher-

order ones), minimizing Φ∗1(d;ξξξ,v) is equivalent to sequentially minimizing

W =
m−1∑
i=0


(

1

ξFm

− 1

ξFi

) ∑
S:|S|=1

tr
[
UT
SPWFi

US

]
, . . . ,

∑
S:|S|=n

tr
[
UT
SPWFi

US

] .

The W can be regarded as a wordlength pattern and induces an aberration

criterion for complex block structures. This criterion, not an ad hoc one, is

developed based on good properties of a statistical model. If ξξξ are known,

their values can be inserted. Otherwise, based on Theorem 4, a design

sequentially minimizes W for all feasible ξξξ provided that it sequentially

minimizes

WG =

 ∑
i:Fi∈G

∑
S:|S|=1

tr
[
UT
SPWFi

US

]
, . . . ,

∑
i:Fi∈G

∑
S:|S|=n

tr
[
UT
SPWFi

US

]
for all G ⊆ B \ {Fm} satisfying (3.5).

We note that each WG can be regarded as a wordlength pattern and

induces an aberration criterion for the block structure G∪{Fm}, where all

unit effects are fixed effects; that is, ξF = ∞ if F ∈ G, because under the
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block structure G ∪ {Fm},

lim
ξF→∞:F∈G

Φ∗1(d;ξξξ,v) ∝
∑
i:Fi∈G

∑
S⊆{1,...,n}

vStr
[
UT
SPWFi

US

]
.

Consequently, if a design has minimum aberration under each case of fixed

unit effects (i.e., WG with G satisfying (3.5)), then it has minimum aber-

ration under random unit effects (i.e., W).

The aberration criterion induced by W can be applied to any block

structure that satisfies conditions (S1.1)-(S1.5). In Sections 3.1 to 3.3, we

introduce three common applications.

As a remark, if a finer hierarchy exists among βj’s such that all the

βj’s can be divided into K groups I1, ...,IK , with those in the same group

having equal variance and var(βj) > var(βj′) for βj ∈ Il and βj′ ∈ Il′ with

l < l′, then a more flexible version of (3.6) is

m−1∑
i=0

{(
1

ξFm

− 1

ξFi

)(
tr
[
UT

1 PWFi
U1

]
, . . . , tr

[
UT
KPWFi

UK

])}
, (3.9)

where Ul is composed of the columns in U associated with the βj’s belonging

to Il. The above one is useful for certain situations, such as multi-platform

experiments and experiments with quantitative treatment factors.
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3.1 Unstructured units

For unstructured experimental units, the block structures are denoted by

{F0,F1} with F0 = U and F1 = E . Since WF0 is spanned by the vector

of ones, we have PWF0
= 1

N
1N1TN and PWF1

= IN − PWF0
. It follows that

sequentially minimizing W is equivalent to sequentially minimizing

W0 =

 ∑
S:|S|=1

(1TNUS)(1TNUS)T , . . . ,
∑

S:|S|=n

(1TNUS)(1TNUS)T

 . (3.10)

As given by Cheng (2014, p. 340), the wordlength pattern of the gener-

alized aberration criterion proposed by Xu and Wu (2001) takes the form:

Ξ
N2

∑
S:|S|=k(1

T
NUS)(1TNUS)T , k = 1, ..., n. Thus, it is equivalent to sequen-

tially minimizing W0. Moreover, it follows from Theorem 4 that if a design

minimizes
∑

S:0<|S|≤k(1
T
NUS)(1TNUS)T for all k = 1, ..., n, then it minimizes

Φ∗1(d;ξξξ,v) for all v satisfying (3.7); based on this, a generalized minimum

aberration design must not be inadmissible. The following result implies

that a design cannot minimize Φ∗1(d;ξξξ,v) for all v satisfying (3.7) if it has

replication.

Theorem 5. If an N-run design consists of m replicates, then

n∑
k=0

∑
S:|S|=k

(1TNUS)(1TNUS)T = N + 2m.

Theorem 5 discloses a disadvantage of using designs with replicates

in terms of estimating factorial effects. By Theorem 5, for two designs
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3.2 A chain of nested unit factors20

with the same run size, the one with more replicates has a larger value of∑n
k=0

∑
S:|S|=k(1

T
NUS)(1TNUS)T . Thus, it does not reach the necessary and

sufficient condition in Theorem 4 and cannot minimize Φ∗1(d;ξξξ,v) for all v

satisfying (3.7). This is not surprising since replicates do not provide any

information about factorial effects.

3.2 A chain of nested unit factors

In many real applications, the experimental units are partitioned by a chain

of nested unit factors, such as block designs, split-plot designs, and split-

split plot designs.

Without loss of generality, suppose the block structure is {F0,F1, ...,Fm}

with Fi ≺ Fj if i > j, where block designs or split-plot designs correspond

to m = 2 and split-split plot designs correspond to m = 3. Since the G’s

that satisfy (3.5) are {F0}, {F0,F1},..., {F0,F1,F2, ...,Fm−1}, it follows

from Theorem 4 that a design sequentially minimizes W for all feasible ξξξ

provided that it sequentially minimizes

Wl =

 l∑
i=0

∑
S:|S|=1

tr
[
UT
SPWFi

US

]
, . . . ,

l∑
i=0

∑
S:|S|=n

tr
[
UT
SPWFi

US

]
for all l = 0, 1, ...,m− 1.

For block or split-plot experiments, we have m = 2 and F1 partitions

the units into blocks or whole-plots. In this case, we have PWF0
= 1

N
1N1TN ,
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PWF1
= PVF1

−PWF0
, PWF2

= IN − (PWF0
+ PWF1

), and

W =
∑
i=0,1


(

1

ξF2

− 1

ξFi

) ∑
S:|S|=1

tr
[
UT
SPWFi

US

]
, . . . ,

∑
S:|S|=n

tr
[
UT
SPWFi

US

] .

Then, we have that if a design sequentially minimizes W0 and W1, respec-

tively, then it sequentially minimizes W for all feasible ξξξ.

Under a block design, W1 defines an aberration criterion for models

with fixed block effects. By letting

W1,i =

 ∑
S:|S|=1

tr
[
UT
SPWFi

US

]
, . . . ,

∑
S:|S|=n

tr
[
UT
SPWFi

US

] , i = 0, 1,

we have W1 = W1,0 + W1,1. It can be seen that W1,0 = 1
N
W0, which

is proportional to the generalized wordlength pattern; also, W1,1 defines

a wordlength pattern proportional to the block wordlength pattern in the

literature (e.g., Cheng, Li, and Ye (2004)). Thus, W1 combines the treat-

ment wordlength pattern and block wordlength pattern through W1 =

W1,0 + W1,1, which is different from those in previous works, such as Chen

and Cheng (1999); Cheng, Li, and Ye (2004); Lin (2014). For example,

Cheng, Li, and Ye (2004) and Lin (2014) proposed two aberration criteria

for blocked nonregular designs by arguing two types of desirability between

treatment defining words and block defining words. The two wordlength
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patterns in Cheng, Li, and Ye (2004) are proportional to

W1 = (δ1,0, δ2,0, δ1,1, δ3,0, δ4,0, δ2,1, δ5,0, δ6,0, δ3,1, δ7,0, . . .) ,

W2 = (δ1,0, δ1,1, δ2,0, δ3,0, δ2,1, δ4,0, δ5,0, δ3,1, δ6,0, δ7,0, . . .) ,

with δk,i =
∑

S:|S|=k tr
[
UT
SPWFi

US

]
. Those defined in Lin (2014) possess

the same patterns but were under (3.9) with Il consisting of the βj’s of the

same polynomial degree l. It can be seen that δk,1 precedes δ2k,0 in W2, while

δ2k,0 precedes δk,1 in W1. Since W1 ∝ limξF1→∞W, we expect W1 would

produce similar designs to W2 than to W1 because W2 regards confounding

treatments with blocks more severe than W1. However, deciding to use

which of W1 and W2 heavily relies on subjective judgment. In our work,

the use of W1 is justified by the Bayesian (M.S)-optimality. In addition, it

can be shown that W1 tends to maximize D-efficiency under certain fixed-

effect models. More details can be found in Section S7 of the supplementary

material. A numerical comparison of W1, W1, and W2 is given in Section

4.2.

3.3 Experiments with multiple processing stages

For experiments with multiple processing stages, the experimental units are

partitioned into disjoint classes at each stage. For the treatment factors at

some stage, the levels of each of them are randomly assigned to the classes of
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the partition, with the same level assigned to all the units in the same class.

Many industrial experiments have a sequence of processing stages (Mee and

Bates, 1998; Butler, 2004; Bingham et al., 2008; Antolino et al., 2009a,b;

Ranjan, Bingham, and Dean, 2009; Cheng and Tsai, 2011; Yuangyai and

Lin, 2013).

In an experiment with multiple processing stages, the partition of the

experimental units at the ith stage defines a unit factor Fi. As mentioned

in Cheng and Tsai (2011), the resulting block structure may not satisfy

conditions (S1.1)-(S1.5). Cheng and Tsai (2011) proved that if the Fi’s

(except U and E) are uniform, mutually orthogonal, and are not nested in

one another, then the resulting block structure satisfies the five conditions

if and only if these Fi’s define an orthogonal array of strength two.

Here we consider block structures B = {U , E ,F1, ...,Fh}, where F1, ...,Fh

define an orthogonal array of strength two on the experimental units. Be-

cause E ≺ F1, ...,Fh ≺ U and the Fi’s are not nested in one another, the

G’s that satisfy (3.5) are {U}, {U ,Fi} with 1 ≤ i ≤ h, {U ,Fi,Fj} with

1 ≤ i, j ≤ h,..., {U ,F1, ...,Fh}. There are 2h such subsets to be considered.

It follows that PWU = 1
N

1N1TN and PWFi
= PVFi

−PWU for i = 1, ..., h.

The split-lot designs in Mee and Bates (1998) belong to this category.

Suppose 16 batches of material are to be arranged into four groups of equal
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size at each of three stages (h = 3). From Theorem 4, a design sequentially

minimizes W for all feasible ξξξ provided that it sequentially minimizes

WI =

∑
F∈I

∑
S:|S|=1

tr
[
UT
SPWFUS

]
, . . . ,

∑
F∈I

∑
S:|S|=n

tr
[
UT
SPWFUS

]
(3.11)

for all I = {U}, {U ,F1}, {U ,F2}, {U ,F3}, {U ,F1,F2}, {U ,F1,F3}, {U ,F2,F3},

and {U ,F1,F2,F3}. We note that this is a scenario of orthogonal block

structures but not simple block structures.

4. Examples: minimum aberration designs under three scenarios

In this section, we apply the aberration criteria developed in Section 3 under

(3.7) to three block structures. For the situations where v does not satisfy

(3.7), it is easy to derive appropriate aberration criteria based on the results

in Section 3 (e.g., (3.9)).

4.1 Eighteen-run nonregular designs

Suppose there are 18 unstructured experimental units. We have the block

structure {U , E}. Consider a three-level 18-run orthogonal array of strength

two in columns 2 to 8 of Table 8C.2 of Wu and Hamada (2009), also given

in Section S6 of the supplementary material. Many three-level 18-run non-

regular designs with fewer factors can be obtained by column deletion from
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the array.

For n = 3, Wang and Wu (1995) showed that there are three noni-

somorphic designs. Xu and Wu (2001) gave their generalized wordlength

patterns, which are (0, 0, 0.5), (0, 0, 1), (0, 0, 2). The first one has gen-

eralized minimum aberration and, by Theorem 4, minimizes Φ∗1(d;ξξξ,v)

for all v satisfying (3.7). Moreover, since the sums of the generalized

wordlengths of the three designs are 0.5, 1, 2, respectively, it follows from

(1TNUφ)(1TNUφ)T = N2

Ξ
= 12 and Theorem 5 that 33

182
{(18 + 2m)− 12} = l

with l = 0.5, 1, 2 for the three designs. We have m = 0, 3, 9, respectively.

Therefore the first design does not have replicates, while the other two

designs separately have 3 and 9 replicates.

For n = 4, Xu and Wu (2001) gave the generalized wordlength patterns

of the only four nonisomorphic designs, which are (0, 0, 2, 1.5), (0, 0, 2.5, 1),

(0, 0, 3.5, 0), (0, 0, 3.5, 0). The first one has generalized minimum aberration

and, by Theorem 4, minimizes Φ∗1(d;ξξξ,v) for all v satisfying (3.7). The

sums of the generalized wordlengths are all equal to 3.5. By Theorem 5, we

have 34

182
{(18 + 2m)− 4} = 3.5. Thus m = 0 and these four designs have no

replicates.
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4.2 Blocked mixed-level orthogonal arrays

Lin (2014) studied blocked mixed-level orthogonal arrays and listed several

minimum aberration designs in terms of W1 and W2. We consider a scenario

in their study: 18-run blocked orthogonal arrays with 3 blocks of size 6 and

4 treatment factors, consisting of 1 two-level factor and 3 three-level factors.

Each blocked orthogonal array is constructed by selecting five columns in

Table 8C.2 of Wu and Hamada (2009), also given in Section S6 of the

supplementary material, where one is the two-level column, one is a three-

level column for blocking, and the others are three-level columns. There

are 7× C6
3 = 140 candidate designs.

A complete search shows that no design has minimum aberration with

respect to both W0 and W1. The minimum aberration design with respect

to W1, denoted by d∗, is constructed by selecting the 8th column for block-

ing, the 1st column for the two-level treatment factor, the 2nd, 4th, 5th

columns for the three-level treatment factors. It has W1 = (0, 0.125, 0.708, 1, 0.75, 0.042, 0).

Figure 1 gives the ranking of all 140 candidate designs in terms of W1, where

each point represents a design and the x-axis is their rank values (average

if tied, smaller the better). The black dot is d∗, with rank value 1. The

red and blue dots represent those with minimum aberration in terms of

W1 and W2, respectively. We can see that the three minimum aberration
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designs under the three different aberration criteria do not coincide. As

what we suspect in Section 3.2, the one obtained using W2 is closer to that

using W1. Besides, d∗ has maximum D-efficiency under certain fixed-effect

models. Refer to Section S7 of the supplementary material for details.

Figure 1: Comparison of W1, W1, and W2

4.3 Three-stage manufacturing process

Butler (2004) mentioned a three-stage manufacturing process with a few

treatment factors in each stage. Suppose there are 36 experimental units

and each stage consists of 2 three-level treatment factors. The 36 units

are divided into 6 groups of equal size in each stage. We have the block

structure {U ,F1,F2,F3, E}, where each Fi is a unit factor for one stage and
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partitions the 36 units into 6 classes. We also require F1,F2,F3 define an

orthogonal array of strength two that can be represented by the following

Latin square (Wu and Hamada, 2009, p. 151):

A B C D E F

B C F A D E

C F B E A D

D E A B F C

E A D F C B

F D E C B A

where each row, column, and letter represent a group of the first, second,

and third stages, respectively. To reduce the computational burden, we

assume that all the interactions of treatment factors across different stages

are negligible.

A complete search shows that the design given in Table 1 has minimum

aberration with respect to (3.11) for all I = {U}, {U ,F1}, {U ,F2}, {U ,F3},

{U ,F1,F2}, {U ,F1,F3}, {U ,F2,F3}, and {U ,F1,F2,F3}, with wordlength

patterns (0, 6), (16, 20), (16, 20), (16, 20), (32, 34), (32, 34), (32, 34), and

(48, 48). Thus it has minimum aberration with respect to W for all feasible

ξξξ. The three stages share the same design settings, balance and without

replicates.
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Stage 1 Stage 2 Stage 3

0 0 0 0 0 0

0 1 0 1 0 1

1 0 1 0 1 0

1 2 1 2 1 2

2 1 2 1 2 1

2 2 2 2 2 2

Table 1: Minimum aberration design: three-stage manufacturing process

5. Concluding remarks

In this paper, we develop a unified theory of aberration criteria through

a Bayesian perspective. Our theory provides various applications to the

cases of mixed-level/multi-group treatment factors, nonregular designs, as

well as orthogonal block structures. Given design situations, experimenters

can create suitable aberration criteria based on our theory. In addition, we

provide a useful result to screen out inadmissible designs.

The block structures we consider in this paper require uniform unit

factors. In real applications, however, this may not be feasible. For instance,

this is impossible if the number of experimental units is not a multiple of the

number of levels of some unit factor. Since this assumption is crucial to our
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theory, developing a more general theory is needed and will be considered

in future work.

Supplementary Material

The supplementary material contains all proofs and additional expla-

nation for this paper.
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