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A proximal dual semismooth Newton method for

zero-norm penalized quantile regression estimator

Dongdong Zhang, Shaohua Pan and Shujun Bi

School of Mathematics, South China University of Technology, Guangzhou.

Abstract: This paper is concerned with the computation of the high-dimensional

zero-norm penalized quantile regression estimator, defined as a global minimizer

of the zero-norm penalized check loss function. To seek a desirable approxima-

tion to the estimator, we reformulate this NP-hard problem as an equivalent

augmented Lipschitz optimization problem, and exploit its coupled structure to

propose a multi-stage convex relaxation approach (MSCRA PPA), each step of

which solves inexactly a weighted `1-regularized check loss minimization problem

with a proximal dual semismooth Newton method. Under a restricted strong

convexity condition, we provide the theoretical guarantee for the MSCRA PPA

by establishing the error bound of each iterate to the true estimator and the

rate of linear convergence in a statistical sense. Numerical comparisons on some

synthetic and real data show that MSCRA PPA not only has comparable even

better estimation performance, but also requires much less CPU time.

Key words and phrases: High-dimension, Zero-norm penalized quantile regres-

sion, Variable selection, Proximal dual semismooth Newton method.
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1. Introduction

Sparse penalized regression has become a popular approach for high-

dimensional data analysis. In the past two decades, many classes of sparse

penalized regressions have been developed by imposing a suitable penalty

term on the least squares loss such as the bridge penalty in Frank and

Friedman (1993), Lasso in Tibshirani (1996), SCAD in Fan and Li (2001),

elastic net in Zou and Hastie (2005), adaptive lasso by Zou (2006), and so

on. We refer to the survey papers by Bickel and Li (2006) and Fan and Lv

(2010) for the references. These penalties, as a convex surrogate (say, `1-

norm) or a nonconvex approximation (say, the bridge penalty) to the zero-

norm, essentially try to capture the performance of the zero-norm, first used

in the best subsect selection by Breiman (1996). The sparse least squares

regression approach is useful, but it only focuses on the central tendency of

the conditional distribution. It is known that a certain covariate may not

have significant influence on the mean value of the response but may have

a strong effect on the upper quantile of the conditional distribution due to

the heterogeneity of data. It is likely that a covariate has different effects at

different segments of the conditional distribution. As illustrated by Koenker

and Bassett (1978), for non-Gaussian error distributions, the least squares

regression is substantially out-performed by the quantile regression (QR).
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Inspired by this, many researchers recently have considered the QR in-

troduced by Koenker and Bassett (1978) for high-dimensional data analysis,

owing to its robustness to outliers and its ability to offer unique insights

into the relation between the response variable and the covariates; see, e.g.,

Wu and Liu (2009); Belloni and Chernozhukov (2011); Wang et al. (2012);

Wang (2013); Fan et al. (2014a,b). Belloni and Chernozhukov (2011) fo-

cused on the theory of the `1-penalized QR and showed that this estimator

is consistent at the near-oracle rate and provided the conditions under which

the selected model includes the true model; Wang (2013) studied the `1-

penalized least absolute derivation (LAD) regression and verified that the

estimator has near oracle performance with a high probability; and Fan et

al. (2014a) studied the weighted `1-penalized QR and established the model

selection oracle property and the asymptotic normality for this estimator.

For nonconvex penalty-type QRs, Wu and Liu (2009) under mild conditions

achieved the asymptotic oracle property of the SCAD and adaptive-Lasso

penalized QRs, and Wang et al. (2012) showed that with probability ap-

proaching one, the oracle estimator is a local optimal solution to the SCAD

or MCP penalized QRs of ultra-high dimensionality. We notice that the

above results are all established for the asymptotic case n→∞.

Besides the above theoretical works, there are some works concerned
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with the computation of (weighted) `1-penalized QR estimators which, com-

pared to the (weighted) `1-least-squares estimator, requires more sophisti-

cated algorithms due to the piecewise linearity of the check loss function.

Although the `1-penalized QR model can be transformed into a linear pro-

gram (LP) by introducing additional variables and one may use the in-

terior point method (IPM) softwares such as SeDuMi in Sturm (1999) to

solve it, this is limited to the small or medium scale case; see Figure 1-2

in Section 5. Inspired by this, Wu and Lange (2008) proposed a greedy

coordinate descent algorithm for the `1-penalized LAD regression, Yi and

Huang (2017) proposed a semismooth Newton coordinate descent algorithm

for the elastic-net penalized QR, and Gu et al. (2018) recently developed a

semi-proximal alternating direction method of multipliers (sPADMM) and

a combined version of ADMM and coordinate descent method (which is

actually an inexact ADMM) for solving the weighted `1-penalized QR. In

addition, for nonconvex penalized QRs, Peng and Wang (2015) developed

an iterative coordinate descent algorithm and established the convergence

of any subsequence to a stationary point, and Fan et al. (2014b) provided

a systematic study for folded concave penalized regressions, including the

SCAD and MCP penalized QRs as special cases, and showed that with

high probability the oracle estimator can be obtained within two iterations
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of the local linear approximation (LLA) approach proposed by Zou and Li

(2008). We find that Peng and Wang (2015) and Fan et al. (2014b) did not

establish the error bound of the iterates to the true solution.

This work is interested in the computation of the high-dimensional zero-

norm penalized QR estimator, a global minimizer of the zero-norm regu-

larized check loss. To seek a high-quality approximation to this estimator,

we reformulate this NP-hard problem as a mathematical program with an

equilibrium constraint (MPEC), and obtain an equivalent augmented Lip-

schitz optimization problem from the global exact penalty of the MPEC.

This augmented problem not only has a favorable coupled structure but

also implies an equivalent DC (difference of convex) surrogate for the zero-

norm regularized check loss minimization; see Section 2. By solving the

augmented Lipschitz problem in an alternating way, we propose in Section

3 an MSCRA to compute a desirable surrogate for the zero-norm penalized

QR estimator. Similar to the LLA method owing to Zou and Li (2008), the

MSCRA solves in each step a weighted `1-regularized check loss minimiza-

tion, but the subproblems are allowed to be solved inexactly. Under a mild

restricted strong convexity condition, we provide its theoretical guarantee

in Section 4 by establishing the error bound of each iterate to the true

estimator and the rate of linear convergence in a statistical sense.
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Motivated by the recent work Tang et al. (2019), we also develop a

proximal dual semismooth Newton method (PDSN) in Section 5 for solving

the subproblems involved in the MSCRA. Different from the semismooth

Newton method by Yi and Huang (2017), this is a proximal point algorithm

(PPA) with the subproblems solved by applying the semismooth Newton

method to their duals, rather than to a smooth approximation to the elastic-

net penalized check loss minimization problem. Numerical comparisons are

made on some synthetic and real data for MSCRA PPA, MSCRA IPM and

MSCRA ADMM, which are the MSCRA with the subproblems solved by

PDSN, SeDuMi in Sturm (1999) and semi-proximal ADMM in Gu et al.

(2018), respectively. We find that MSCRA IPM and MSCRA ADMM have

very similar performance, while MSCRA PPA not only has a comparable

estimation performance with the two methods but also requires only one-

fifteenth of the CPU time required by MSCRA ADMM and MSCRA IPM.

Throughout this paper, I and e denote an identity matrix and a vector

of all ones, whose dimensions are known from the context. For an x ∈ Rp,

write |x| := (|x1|, . . . , |xp|)T and sign(x) := (sign(x1), . . . , sign(xp))
T, and

denote by ‖x‖1, ‖x‖ and ‖x‖∞ the l1-norm, l2-norm and l∞-norm of x,

respectively. For a matrix A ∈ Rn×p, ‖A‖, ‖A‖max and ‖A‖1 respectively

denote the spectral norm, element-wise maximum norm, and maximum
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column sum norm of A. For a set S, IS means the characteristic function

on S, i.e., IS(z) = 1 if z ∈ S, otherwise IS(z) = 0. For given a, b ∈ Rp with

ai ≤ bi for i = 1, . . . , p, [a, b] means the box set. For an extended real-valued

function f : Rp → (−∞,+∞], write dom f := {x ∈ Rp | f(x) < ∞}, and

denote Pγf and eγf for a given γ > 0 by the proximal mapping and Moreau

envelope of f , defined as Pγf(x) := arg minz∈Rp
{
f(z) + 1

2γ
‖z − x‖2

}
and

eγf(x) := minz∈Rp
{
f(z) + 1

2γ
‖z−x‖2

}
. In the sequel, we write Pf for P1f .

When f is convex, Pγf : Rp → Rp is a Lipschitz mapping with modulus 1,

and eγf is a smooth convex function with ∇eγf(x) = γ−1(x− Pγf(x)).

2. Zero-norm penalized quantile regression and equivalent dif-

ference of convex model

Quantile regression is a popular method for studying the influence of a set

of covariates on the conditional distribution of a response variable, and has

been widely used to handle heteroscedasticity; see Koenker and Bassett

(1982) and Wang et al. (2012). For a univariate response Y and a vector of

covariates X ∈ Rp, the conditional cumulative distribution function of Y is

defined as FY(t|x) := Pr(Y ≤ t | X = x), and the τth conditional quantile

of Y is given by QY(τ |x) := inf
{
t : FY(t|x) ≥ τ

}
. Let X= [x1 · · · xn]T be
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an n× p design matrix on X. Consider the linear quantile regression

y = Xβ∗ + ε (2.1)

where y = (y1, . . . , yn)T ∈ Rn is the response vector, ε = (ε1, . . . , εn)T is the

noise vector whose components are independently distributed and satisfy

Pr(εi ≤ 0|xi) = τ for some known constant τ ∈ (0, 1), and β∗ ∈ Rp is

the true but unknown coefficient vector. This quantile regression model

actually assumes that QY(τ |xi) = xTi β
∗ for i = 1, . . . , n. We are interested

in the high-dimensional case where p > n and the sparse model in the sense

that only s∗(� p) components of the unknown true β∗ are nonzero.

For τ ∈(0, 1), let fτ : Rn → R be the check loss function of (2.1), i.e.,

fτ (z) := n−1
∑n

i=1θτ (zi) with θτ (u) := (τ − I{u≤0})u (2.2)

which was first introduced by Koenker and Bassett (1978). To estimate the

unknown true β∗ in (2.1), we consider the zero-norm regularized problem

β̂(τ) ∈ arg min
β∈Rp

{
νfτ (y −Xβ) + ‖β‖0

}
(2.3)

where ν > 0 is the regularization parameter, and ‖β‖0 denotes the zero-

norm of β (i.e., the number of nonzero entries of β). By the expression of fτ ,

fτ is nonnegative and coercive (i.e., fτ (β
k) → +∞ whenever ‖βk‖ → ∞).

By Lemma 3 in Appendix A, the estimator β̂(τ) is well defined. Since β̂(τ)
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depends on τ , there is a great possibility for model (2.3) to monitor different

“locations” of the conditional distribution, and then the heteroscedasticity

of the data, when existing, can be inspected by solving (2.3) with different

τ ∈ (0, 1). For the simplicity, in the sequel we use β̂ to replace β̂(τ), and

for a given τ ∈ (0, 1), write τ := min(τ, 1−τ) and τ := max(τ, 1−τ).

Due to the combination of the zero-norm, the computation of β̂ is NP-

hard. To design an algorithm in the next section for seeking a high-quality

approximation to β̂, we next derive an equivalent augmented Lipschitz op-

timization problem from a primal-dual viewpoint, and to demonstrate that

such a mechanism provides a unified way to yield equivalent DC surrogates

for the zero-norm regularized problem (2.3), we introduce a family of proper

lsc convex functions on R, denoted by L , satisfying the conditions:

int(domφ) ⊇ [0, 1], t∗ := arg min
0≤t≤1

φ(t), φ(t∗) = 0 and φ(1) = 1. (2.4)

With a φ ∈L , clearly, the zero-norm ‖z‖0 is the optimal value function of

min
w∈Rp

{∑p
i=1φ(wi) s.t. 〈e− w, |z|〉 = 0, 0 ≤ w ≤ e

}
.

This characterization of zero-norm shows that model (2.3) is equivalent to

min
β∈Rp,w∈Rp

{
νfτ (y −Xβ) +

p∑
i=1

φ(wi) s.t. 〈e− w, |β|〉 = 0, 0 ≤ w ≤ e
}

(2.5)

in the following sense: if β is globally optimal to (2.3), then (β, sign(|β|)) is a

global optimal solution of problem (2.5), and conversely, if (β, w) is a global
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optimal solution of (2.5), then β is globally optimal to (2.3). Problem (2.5)

is a mathematical program with an equilibrium constraint e−w ≥ 0, |β| ≥ 0,

〈e−w, |β|〉 = 0 (abbreviated as MPEC). The equivalence between (2.3) and

(2.5) shows that the difficulty of model (2.3) arises from the hidden equilib-

rium constraint. It is well known that the handling of nonconvex constraints

is much harder than that of nonconvex objective functions. Then it is nat-

ural to consider the penalized version of problem (2.5)

min
β∈Rp,w∈[0,e]

{
νfτ (y −Xβ) +

[∑p
i=1φ(wi) + ρ〈e− w, |β|〉

]}
(2.6)

where ρ > 0 is the penalty parameter. Since β 7→ fτ (y −Xβ) is Lipschitz

continuous, the following conclusion holds by Section 3.2 of Liu et al. (2018).

Theorem 1. The problem (2.6) associated to each ρ > ρ :=
φ′−(1)(1−t∗)τν‖X‖

1−t0

has the same global optimal solution set as the MPEC (2.5) does, where t0

is the minimum element in [t∗, 1) such that 1
1−t∗ ∈ ∂φ(t0).

Theorem 1 states that problem (2.6) is a global exact penalty of (2.5)

in the sense that there is a threshold ρ > 0 such that the former associ-

ated to every ρ > ρ has the same global optimal solution set as the latter

does. Together with the equivalence between (2.3) and (2.5), model (2.3)

is equivalent to problem (2.6). Notice that the objective function of (2.6)

is globally Lipschitz continuous over its feasible set and its nonconvexity
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is owing to the coupled term 〈e−w, |β|〉 rather than the combination. So,

problem (2.6) provides an equivalent augmented Lipschitz reformulation

for the zero-norm problem (2.3). In fact, problem (2.6) associated to every

ρ > ρ implies an equivalent DC surrogate for (2.3). To illustrate this, let

ψ(t) = φ(t) if t ∈ [0, 1] and otherwise φ(t) = +∞. Then, with the conjugate

ψ∗(s) := supt∈R{st− ψ(t)} of ψ, one may check that (2.6) is equivalent to

min
β∈Rp

{
Θν,ρ(β) := fτ (y −Xβ) + ν−1

∑p
i=1

[
ρ|βi| − ψ∗(ρ|βi|)

]}
. (2.7)

Since ψ∗ is a nondecreasing finite convex function on R, the function s 7→

ψ∗(ρ|s|) is convex, and problem (2.7) is a DC program. To sum up the

above discussions, problem (2.7) associated to every ρ > ρ provides an

equivalent DC surrogate for (2.3). Moreover, Hρ(β) :=
∑p

i=1 hρ(βi) with

hρ(t) := ρ|t| − ψ∗(ρ|t|) for t ∈ R is a DC surrogate for the zero-norm. To

close this section, we present some examples of φ ∈ L .

Example 1. Let φ(t) = t for t ∈ R. After a simple computation, we have

ψ∗(s) =


0 if s ≤ 1,

s− 1 if s > 1

and hρ(t) =


ρ|t| if |t| ≤ 1

ρ
,

1 if |t| > 1
ρ
.

It is immediate to see that the function ν−1hρ(t) will reduce to the capped

`1-function t 7→ λmin(|t|, α) in Zhang (2010) with ν = ρ/λ and ρ = α−1.
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Example 2. Let φ(t) := a−1
a+1

t2 + 2
a+1

t (a > 1) for t ∈ R. One can calculate

ψ∗(s) =


0 if s ≤ 2

a+1
,

((a+1)s−2)2

4(a2−1)
if 2

a+1
< s ≤ 2a

a+1
,

s− 1 if s > 2a
a+1

;

(2.8)

hρ(t) =


ρ|t| if |t| ≤ 2

(a+1)ρ
,

ρ|t| − ((a+1)ρ|t|−2)2

4(a2−1)
if 2

(a+1)ρ
< |t| ≤ 2a

(a+1)ρ
,

1 if |t| > 2a
(a+1)ρ

.

It is not hard to check that ν−1hρ(t) will reduces to the SCAD function

ρλ(t) in Fan and Li (2001) when ν = 2
(a+1)λ2

and ρ = 2
(a+1)λ

.

Example 3. Let φ(t) := a2

4
t2− a2

2
t+at+ (a−2)2

4
(a > 2) for t ∈ R. We have

ψ∗(s) =


− (a−2)2

4
if s ≤ a− a2/2,

1
a2

(a(a−2)
2

+ s)2 − (a−2)2

4
if a− a2/2 < s ≤ a,

s− 1 if s > a;

hρ(t) =


ρ|t| − 1

a2
(a(a−2)

2
+ ρ|t|)2 + (a−2)2

4
if |t| ≤ a/ρ,

1 if |t| > a/ρ.

The ν−1hρ(t) will reduce to the MCP in Zhang (2010) if ν = 2
aλ2
, ρ = 1

λ
.

3. Multi-stage convex relaxation approach

From the last section, to compute the estimator β̂, we only need to solve a

single penalty problem (2.6) that is much easier than the zero-norm problem
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(2.3) because its nonconvexity only arises from the coupled term 〈w, |β|〉.

Observe that (2.6) becomes a convex program when either of w and β is

fixed. So, we solve it in an alternating way and propose the following multi-

stage convex relaxation approach (MSCRA) with φ in Example 2.

Algorithm 1 (MSCRA for computing β̂)

Initialization: Choose τ ∈ (0, 1), ν > 0, ρ0 = 1, w0∈ [0, 1
2
e]. Set λ = ρ0

ν
.

for k = 1, 2, . . . .

1. Seek an inexact solution to the weighted `1-regularized problem

βk ≈ arg min
β∈Rp

{
fτ (y −Xβ) + λ

∑p
i=1(1−wk−1

i )|βi|
}
. (3.1)

2. When k = 1, select a suitable ρ1 ≥ ρ0 in terms of ‖β1‖∞. If k = 2, 3,

select ρk such that ρk ≥ ρk−1; otherwise, set ρk = ρk−1.

3. For i = 1, 2, . . . , p, compute the following minimization problem

wki = arg min
0≤wi≤1

{
φ(wi)− ρkwi|βki |

}
. (3.2)

end for

Remark 1. (i) Step 1 of Algorithm 1 is solving problem (2.6) with w fixed

to be wk−1, while Step 3 is solving this problem with β fixed to be βk;

that is, Algorithm 1 is solving the nonconvex penalty problem (2.6) in an

alternating way. In the first stage, since there is no any information on

estimating the nonzero entries of β∗, it is reasonable to impose an unbiased
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weight on each component of β. Motivated by this, we restrict the initial

w0 in [0, 0.5e], a subset of the feasible set of w. When w0 = 0, the first

stage is precisely the minimization of the `1-penalized check loss function.

Although the threshold ρ is known when the parameter ν in (2.3) is given,

we select a varying ρ for (3.2) since it is just a relaxation of (2.6).

(ii) By the optimality condition of (3.2), ρk|βki | ∈ ∂ψ(wki ) for each i, which

by Theorem 23.5 in Rockafellar (1970) and (2.8) is equivalent to saying

wki = min
[
1,max

(
0,

(a+ 1)ρk|βki | − 2

2(a− 1)

)]
for i = 1, . . . , p. (3.3)

Clearly, when ρk|βki | is close to 0, (1−wki ) in (3.3) may not equal 1 though

close to 1; when ρk|βki | is very larger, (1−wki ) in (3.3) may not equal 0

though close to 0. To achieve a high-quality solution with Algorithm 1, the

last term of (3.1) implies that a smaller (1−wk−1
i ) but not 0 is expected for

those larger |βi|, and a larger (1−wk−1
i ) instead of 1 is expected for those

smaller |βi|. Thus, the function φ in Example 2 is desirable especially for

those problems whose solutions have small nonzero entries. The weight wk

associated to the function φ in Example 3 has a similar performance, but

the weight wk associated to the function φ in Example 1 is different since

wki = 0 if ρk|βki | < 1, wki = 1 if ρk|βki | > 1, otherwise wki ∈ [0, 1].

(iii) Algorithm 1 is actually an inexact majorization-minimization (MM)

method (see Lange et al. (2000)) for solving the equivalent DC surrogate
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(2.7) with a special starting point. Indeed, for a given β′ ∈ Rp, the convexity

and smoothness of ψ∗ implies that with wi = (ψ∗)′(ρ|β′i|) for i = 1, . . . , p,

p∑
i=1

ψ∗(ρ|βi|) ≥
p∑
i=1

ψ∗(ρ|β′i|) + ρ〈w, |β| − |β′|〉 ∀β ∈ Rp. (3.4)

Notice that each wi ∈ [0, 1] by the expression of ψ∗. Hence, the function

fτ (y −Xβ) + λ
∥∥(e−wk−1) ◦ β

∥∥
1
− λ
[ p∑
i=1

ψ∗(ρ|βk−1
i |) + ρ〈wk−1, |βk−1|〉

]
is a majorization of Θλ,ρ at βk−1 and the subproblem (3.1) is the inexact

minimization of this majorization function. Also, for any given ρ0 > 0,

when ‖β0‖∞ ≤ 2
(a+1)ρ0

, we have w0
i = (ψ∗)′(ρ0|β0

i |) = 0 by (2.8). Thus, the

first stage of Algorithm 1 with w0 = 0 is precisely the inexact MM method

for (2.7) with β0 satisfying ‖β0‖∞ ≤ 2
(a+1)ρ0

. In addition, Algorithm 1 can

be regarded as an inexact inversion of the LLA method proposed by Zou and

Li (2008) for (2.7), but it is different from the DC algorithm by Wu and Liu

(2009) since the latter depends on the majorization of β 7→
∑p

i=1ψ
∗(ρ|βi|)

at βk and the obtained approximation is lack of symmetry.

(iv) Considering that practical computation always involves deviation, we

allow the problem in (3.1) to be solved inexactly with the accuracy measured

in the following way: ∃δk ∈ Rp and rk ≥ 0 with ‖δk‖ ≤ rk such that

δk ∈ ∂
[
fτ (y −Xβ) + λ‖(e−wk−1) ◦ β‖1

]
β=βk

= −XT∂fτ (y−Xβk) + λ
[
(1−wk−1

1 )∂|βk1 | × · · · × (1−wk−1
p )∂|βkp |

]
(3.5)
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where the equality is by Theorem 23.8 in Rockafellar (1970). Notice that

the first-order optimality conditions of (2.6) take the following form

u ∈ ∂fτ (z); ρ|βi| ∈ ∂ψ(wi) for i = 1, . . . , p; y −Xβ − z = 0;

XTu ∈ λ
[
(1−w1)∂|β1| × · · · × (1−wp)∂|βp|

]
,

where u ∈ Rn is the Lagrange multiplier associated to y −Xβ − z = 0. By

Step 2 of Algorithm 1, ρk|βk| ∈ ∂ψ(wk1)× · · · × ∂ψ(wkp). In view of this, we

measure the KKT residual of (2.6) associated to ρk at (βk, zk, uk) by

Errk :=

√
‖∆1‖2 + ‖∆k

2‖2 + ‖y −Xβk −zk‖2

1 + ‖y‖
≤ tol (3.6)

where ∆k
1 := zk − Pfτ (zk + uk) and ∆k

2 := XTuk − Phk(XTuk + βk) with

hk(β) := ‖λ(e−wk) ◦ β‖1 for β ∈ Rp. (3.7)

4. Theoretical guarantees of Algorithm 1

We denote by S∗ the support of the true vector β∗, and define the set

C(S∗) :=
⋃

S∗⊂S,|S|≤1.5s∗

{
β ∈ Rp : ‖βSc‖1 ≤ 3‖βS‖1

}
.

The matrix X is said to have the κ-restricted strong convexity on C(S∗) if

κ > 0 and
1

2n
‖X∆β‖2 ≥ κ‖∆β‖2 for all ∆β ∈ C(S∗). (4.8)

The RSC is equivalent to the restricted eigenvalue condition of the Gram

matrix 1
2n
XTX due to van de Geer and Bühlmann (2009) and Bickel et al.
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(2009). Notice that C(S∗) ⊇
{
β ∈ Rp : ‖β(S∗)c‖1 ≤ 3‖βS∗‖1

}
. This RSC

is a little stronger than the one used by Negahban et al. (2012) for the

`1-regularized smooth loss minimization. In this section, we shall provide

the deterministic theoretical guarantees for Algorithm 1 under this RSC,

including the error bound of the iterate βk to the true β∗ and the decrease

analysis of the error sequence. The proofs are all included in Appendix B.

We need the following assumption on the optimality tolerance rk of βk:

Assumption 1. There exists ε > 0 such that for each k ∈ N, rk ≤ ε.

First, by Lemma 4 in Appendix B, we have the following error bound.

Theorem 2. Suppose that Assumption 1 holds, that X has the κ-RSC over

C(S∗), and that the noise vector ε is nonzero. If ρ3 and λ are chosen such

that ρ3 ≤ 8
9
√

3cτλ‖ε‖∞
and λ ∈

[
16τ‖X‖1

n
+ 8ε, τ

2κ−c−1−3τ‖X‖max(2n−1τ‖X‖1+ε)s∗

3τ‖X‖maxs∗

]
for some constant c ≥ 1

τ2κ−27τ‖X‖max(2n−1τ‖X‖1+ε)s∗
, then for every k ∈ N

‖βk − β∗‖ ≤ 9cτλ
√

1.5s∗

8
‖ε‖∞.

Remark 2. (i) For the `1-regularized least squares smooth loss estimator

βLS ∈ arg minβ∈Rp
{

1
2n
‖y−Xβ‖2 +λn‖β‖1

}
, the error bound ‖βLS− β∗‖ =

O(σ
√
s∗ log p/n) was obtained in Corollary 2 of Negahban et al. (2012) by

taking λn =
√

log p/n, where σ > 0 represents the variance of the noise. By

comparing with this error bound, the error bound in Theorem 2 involves
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the infinite norm ‖ε‖∞ of noise ε rather than its variance, and moreover, it

still has the same order O(
√
s∗ log p/n) when the parameter λ = O(1) in

our model is rescaled to be λn.

(ii) For the following `1-regularized square-root nonsmooth loss estimator

βsr ∈ arg minβ∈Rp
{

1√
n
‖y −Xβ‖ + λ′

n
‖β‖1

}
, the error bound ‖βsr−β∗‖ =

O
(
σ
√
s∗λ′$
n

)
with $ ≥ 1√

n
‖ε‖ was achieved in Theorem 1 of Belloni et al.

(2011) by setting λ′ = O(n). By considering that fτ (y−Xβ) = O(
√
n‖y−

Xβ‖), the parameter λ in our model corresponds to λ′/n. Thus, the error

bound in Theorem 2 corresponds to O(
√
s∗λ′‖ε‖∞

n
), which has the same order

as O
(
σ
√
s∗λ′$
n

)
since ‖ε‖∞ = O( 1√

n
‖ε‖).

(iii) To ensure that the constant c > 0 exists, the constant κ needs to

satisfy κ > 54τ2s∗‖X‖max‖X‖1
nτ2

and the inexact accuracy ε of βk needs to satisfy

0 ≤ ε < nτ2κ−54τ2s∗‖X‖max‖X‖1
27nτs∗

. Since ‖X‖1 = O(n), it is necessary to solve

the subproblem (3.1) with a very small inexact accuracy ε.

Theorem 2 establishes an error bound for every iterate βk, but it does

not tell us if the error bound of the current βk is better than that of the

previous βk−1. In order to seek the answer, we study the decrease of the

error bound sequence by bounding maxi∈S∗(1−wki ). For this purpose, write
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F 0 := S∗ and Λ0 := {i : |β∗i | ≤ 4a
(a+1)ρ0

}, and for each k ∈ N define

F k :=
{
i :
∣∣|βki | − |β∗i |∣∣ ≥ 1

ρk

}
and Λk :=

{
i : |β∗i | ≤

4a

(a+1)ρk

}
. (4.9)

From Lemma 6 in Appendix B, the value maxi∈S∗(1−wki ) is upper bounded

by maxi∈S∗ max(IΛk(i), IFk(i)). By this, we have the following conclusion.

Theorem 3. Suppose that Assumption 1 holds, that X has the κ-RSC over

C(S∗), and that the noise ε is nonzero. If λ is chosen as in Theorem 2 and

the parameter ρ3 satisfies ρ3 ≤ 1
cτλ‖ε‖∞(

√
4.5s∗+

√
3/8)

, then for each k ∈ N

‖βk− β∗‖ ≤ (3 +
√

3)cτ 2
√
s∗‖X‖1‖ε‖∞
n

+
(3 +3

√
3)cτλ

√
s∗‖ε‖∞

2
√

2
max
i∈S∗

IΛ0(i)

+ cτ‖ε‖∞
√
s∗

k−2∑
j=0

rk−j

( 1√
3

)j
+
( 1√

3

)k−1∥∥β1− β∗
∥∥ (4.10)

where we stipulate that
∑k−2

j=0 rk−j(
1√
3
)j = 0 for k = 1.

Remark 3. (i) The error bound in (4.10) consists of the statistical error due

to the noise, the identification error maxi∈S∗ IΛ0(i) related to the choice of a

and ρ0, and the computation errors
∑k−2

j=0 rk−j(
1√
3
)j and ( 1√

3
)k−1‖β1− β∗‖.

By the definition of Λ0, when ρ0 and a are such that (a+1)ρ0
4a

> 1
mini∈S∗ |β∗i |

,

the identification error becomes zero. If mini∈S∗|β∗i | is not too small, it

would be easy to choose such ρ0. Clearly, when ρ0 and a are chosen to

be larger, the identification error is smaller. However, when ρ0 and a are

larger, ρ1 becomes larger and each component of w1 is close to 1 by (3.3).
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Consequently, it will become very conservative to cut those smaller entries

of β2 when solving the second subproblem. Hence, there is a trade-off

between the choice of a and ρ0 and the computation speed of Algorithm 1.

(ii) If the subproblem (3.1) could be solved exactly, the computation error∑k−2
j=0 rk−j(

1√
3
)j vanishes. If the subproblem (3.1) is solved with the accu-

racy rk satisfying rk ≤ ( 1√
3
)k 1
kν

for ν > 1, this computation error will tend

to 0 as k → +∞. Since the third term on the right hand side of (4.10) is

the combination of the noise and
∑k−2

j=0 rk−j(
1√
3
)j, it is strongly suggested

that the subproblem (3.1) is solved as well as possible.

For the RSC assumption in Theorem 2-3, from Raskutti et al. (2010)

we know that if X is from the Σx-Gaussian ensemble (i.e., X is formed

by independently sampling each row xTi ∼ N(0,Σx), there exists a constant

κ > 0 (depending on Σx) such that the RSC holds on C(S∗) with probability

greater than 1− c1 exp(−c2n) as long as n > c0s
∗ log p, where c0, c1 and c2

are absolutely positive constants. From Banerjee et al. (2015), for some

sub-Gaussian X, the RSC holds on C(S∗) with a high probability when n

is over a threshold depending on the Gaussian width of C(S∗).
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5. Proximal dual semismooth Newton method

By Remark 1 (iv), the pivotal part of Algorithm 1 is the exact solution of

min
β∈Rp

{
fτ (y −Xβ) + hk−1(β)− 〈δk, β − βk−1〉

}
(5.1)

where, for each k ∈ N, hk is the function defined in (3.7). In this section,

we develop a proximal dual semismooth Newton method (PDSN) for (5.1),

which is a proximal point algorithm (PPA) with the subproblems solved by

applying the semismooth Newton method to their dual problems.

Algorithm 2 PPA for solving problem (5.1)

Initialization: Fix k. Choose γ1,0, γ2,0, γ > 0, %∈ (0, 1). Let β0 = βk−1.

for j = 0, 1, 2, . . ..

1. Seek the unique minimizer βj+1 to the following convex program

min
β∈Rp

{
fτ (y−Xβ)+hk−1(β)−〈δk, β−βk−1〉+γ1,j

2
‖β−βj‖2+

γ2,j

2
‖X(β−βj)‖2

}
.

2. If βj+1 satisfies the stopping rule, then stop. Otherwise, update γ1,j

and γ2,j by γ1,j+1 = max(γ, %γ1,j) and γ2,j+1 = max(γ, %γ2,j).

end for

Remark 4. (i) Since fτ (y−X·) and hk−1 are convex but nondifferentiable,

we follow the same line as in Tang et al. (2019) to introduce a key proximal
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term
γ2,j

2
‖Xβ −Xβj‖2 except the common

γ1,j
2
‖β − βj‖2. As will be shown

later, this provides an effective way to handle the nonsmooth fτ (y −X·).

(ii) The first-order optimality conditions for (5.1) have the following form

u ∈ ∂fτ (z), XTu + δk ∈ ∂hk−1(β), y −Xβ −z = 0, where u ∈ Rn is the

multiplier vector associated to y −Xβ − z = 0. Hence, the KKT residual

of problem (5.1) at (βj, zj, uj) can be measured by

ErrjPPA :=

√
‖zj−Pfτ (zj+uj)‖2 +‖βj−Phk−1(XTuj+δk)‖2 +‖y −Xβj−zj‖2

1 + ‖y‖
.

So, we suggest ErrjPPA≤ εjPPA as the stopping condition of Algorithm 2.

The efficiency of Algorithm 2 depends on the solution of its subproblem,

which by introducing a variable z ∈ Rn is equivalently written as

min
β∈Rp,z∈Rn

{
fτ (z) + hk−1(β)−〈δk, β −βk−1〉+

γ1,j

2
‖β − βj‖2 +

γ2,j

2
‖z − zj‖2

}
s.t. Xβ + z − y = 0 with zj = y −Xβj. (5.2)

After an elementary calculation, the dual of (5.2) takes the following form

min
u∈Rn

{
Ψk,j(u) :=

‖u‖2

2γ2,j

−eγ−1
2,j
fτ

(
zj− u

γ2,j

)
−eγ−1

1,j
hk−1

(
βj−X

Tu+δk

γ1,j

)
+
‖XTu‖2

2γ1,j

}
.

Since Ψk,j is a smooth convex function, seeking an optimal solution of the

last dual problem is equivalent to finding a root to the system

Φk,j(u) := −Pγ−1
2,j
fτ

(
zj− u

γ2,j

)
−XPγ−1

1,j
hk−1

(
βj−X

Tu+δk

γ1,j

)
+y = 0. (5.3)
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Since Pγ−1
2,j
fτ and Pγ−1

1,j
hk−1 are strongly semismooth by Appendix A and

the composition of strongly semismooth mappings is strongly semismooth

by Facchinei and Pang (2003), the mapping Φk,j is strongly semismooth.

Inspired by this, we use the semismooth Newton method to seek a root to

system (5.3), which by Qi and Sun (1993) is expected to have a superlinear

even quadratic convergence rate. By Proposition 2.3.3 and Theorem 2.6.6

of Clarke (1983), the Clarke Jacobian ∂CΦk,j(u) of Φk,j at u is included in

γ−1
2,j ∂C

[
Pγ−1

2,j
fτ
](
zj− u

γ2,j

)
+γ−1

1,jX∂C
[
Pγ−1

1,j
hk−1

](
βj−X

Tu+ δk

γ1,j

)
XT

= γ−1
2,jUj(u) + γ−1

1,jXVj(u)XT ∀u ∈ Rn (5.4)

where (5.4) is due to Lemma 1-2 in Appendix A, and Uj(u) and Vj(u) are

Uj(u) :=
{

Diag(v1, . . . , vn) | vi ∈ ∂C
[
Pγ−1

2,j
(n−1θτ )

]
(zji − γ−1

2,jui)
}
,

Vj(u) :=
{

Diag(v) | vi = 1 if |(γ1,jβ
j−XTu−δk)i| > ωki , otherwise vi ∈ [0, 1]

}
.

For each U j ∈ Uj(u) and V j ∈ Vj(u), the matrix γ−1
2,jU

j +γ−1
1,jXV

jXT is

semidefinite, and positive definite when {i | τ−1
nγ
≤ zji − γ−1

2,jui ≤ τ
nγ
} = ∅ or

the matrixXJ has full row rank with J ={i | |(γ1,jβ
j−XTu−δk)i| > ωki }. To

ensure that each iterate of the semismooth Newton method works, or each

element of Clarke Jacobian ∂CΦk,j(u) is nonsingular, we add a small positive

definite perturbation µI to γ−1
2,jU

j +γ−1
1,jXV

jXT. The detailed iterates of

the semismooth Newton method is provided in Appendix C.
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6. Numerical experiments

We shall test the performance of Algorithm 1 with the subproblems solved

by PDSN, SeDuMi and sPADMM, respectively, on synthetic and real data,

and call the three solvers MSCRA PPA, MSCRA IPM and MSCRA ADMM,

respectively. Among others, SeDuMi is solving the equivalent LP of (3.1):

min
(β+,β−)∈R2p

+ ,(ζ+,ζ−)∈R2n
+

〈ωk, β+〉+ 〈ωk, β−〉+
τ

n
〈ζ+, e〉+

1− τ
n
〈ζ−, e〉

s.t. Xβ+ −Xβ− + ζ+ − ζ− = y, (6.5)

and the iterates of sPADMM are described in Appendix C. All numerical

results are computed by a laptop computer running on 64-bit Windows

System with an Intel(R) Core(TM) i7-8565 CPU 1.8GHz and 8 GB RAM.

For SeDuMi, we adopt the default setting, and for sPADMM we choose

the step-size % = 1.618 and the initial σ = 1, and adopt the stopping

criterion in Appendix C with jmax = 3000 and εADMM = 10−6. For PDSN,

we choose γ = 10−8, % = 5/7 and γ1,0 = γ2,0 = min(0.1, R0) where R0 is

the relative KKT residual at the initial (β0, z0, u0), and adopt the stopping

criterion in Remark 4(ii) with εj+1
PPA = max(10−8, 0.1εjPPA) for ε0PPA = 10−6

and the stopping rule
‖Φk,j(ul)‖

1+‖y‖ ≤ 0.1εjPPA for Algorithm 1 in Appendix C.

For MSCRA IPM, MSCRA ADMM and MSCRA PPA, we use w0 = 0,

and terminate them at βk when k > 10, or Nnz(β
k) = · · · = Nnz(β

k−3) and

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



25

Errk ≤ 10−5, or Nnz(β
k) = · · · = Nnz(β

k−2) and |Errk − Errk−2| ≤ 10−6,

whereNnz(β
k) :=

∑p
i=1 I

{
|βki | >10−6 max(1, ‖βk‖∞)

}
denotes the number of

nonzero entries of βk, and Errk is the KKT residual at the kth step defined

in (3.6). We update ρk by ρ1 = max
(
1, 1

3‖β1‖∞

)
and ρk = min

(
5
4
ρk−1,

108

‖βk‖∞

)
for k = 2, 3. In addition, during the implementation of three solvers, we run

SeDuMi, sPADMM and PSDN to solve the kth subproblem with the optimal

solution of the (k−1)th subproblem yielded by them as the starting point.

When k = 1, we choose β0 = 0 to be the starting point of MSCRA IPM

and MSCRA ADMM, and use β0 = 0 to run Algorithm 2.

6.1. Comparisons of three solvers for the subproblem

We make numerical comparisons among SeDuMi, sPADMM and PDSN

by applying them to the problem (3.1) for k = 1, i.e., the `1-regularized

check loss minimization problem. Inspired by the work owing to Gu et al.

(2018), we consider the simulation model yi = xTi β
∗+κεi for i = 1, . . . , n in

Friedman et al. (2010) to generate data, where xTi ∼ N(0,Σ) for i = 1, . . . , n

with Σ = (α+ (1−α)I{i=j})p×p, β∗j =(−1)j exp(−2j−1
20

), ε ∼ N(0,Σ), and κ

is chosen such that the signal-noise ratio of the data is 3.0. We focus on the

high-dimensional situation with (p, n) = (5000, 500) and α = 0 and 0.95.

Figure 1-2 show the optimal values yielded by three solvers and their CPU

time (in seconds) on solving (3.1) with k = 1 and the same sequence of 50

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



26

values of λ. By the results in Section 4, we select the 50 values of λ by

λi = max
(
0.01, γi‖X‖1/n

)
with γi = γmin+((i−1)/49)(γmax−γmin) (6.6)

for i = 1, 2, . . . , 50, where γmin = 0.02, and γmax = 0.25 and 0.38 respectively

for α = 0 and 0.95. Such γmax is such that Nnz(β
f ) attains the value 0,

where βf represents the final output of a solver.
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Figure 1: Optimal values of three solvers for the sample size n = 500

Figure 1 shows that the three solvers yield comparable optimal values,

and the optimal values given by PDSN are a little better than those given

by SeDuMi and sPADMM. Figure 2 shows that PDSN requires much less

CPU time than SeDuMi and sPADMM do, and for α = 0.95 the CPU

time of the former is on average about 0.03 and 0.09 times that of SeDuMi

and sPADMM, respectively, but for α = 0, τ = 0.5, when λ < λ3, PDSN
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Figure 2: CPU times of three solvers for the sample size n = 500

requires more CPU time since the Clarke Jacobians are close to singularity.

This shows that if the parameter λ in the model is not too small (a common

setting for sparsity), PDSN is superior to SeDuMi and sPADMM in terms of

the optimal value and CPU time. We find that sPADMM always attains the

maximum number of iterations 3000 for all test problems (it even attains

the maximum number of iterations if jmax = 10000). Since jmax = 3000 is

used here, its CPU time is less than that of SeDuMi.

6.2. Numerical performance of Algorithm 1

We first apply MSCRA PPA to the example in Section 3.1 of Wang

et al. (2012), i.e., solve (2.6) with ν = λ−1 for λ = max(0.01, 0.1‖X‖1/n),

for which the scalar response is generated according to the heteroscedastic
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location-scale model Y = X6+X12+X15+X20+0.7X1ε, where ε ∼ N(0, 1) is

independent of the covariates. Table 1 reports its identification performance

for τ = 0.3, 0.5 and 0.7 under different sample size, where Size, AE, P1

and P2 have the same meaning as in Wang et al. (2012). We see that,

for τ = 0.5, P2 always equals 0. So, the check loss with τ = 0.5 can not

identify X1, but the check loss with τ = 0.3 and 0.7 can identify X1 and

the proportion of identifying X1 increases as n becomes large.

Next we use a synthetic example to show that MSCRA PPA can solve

efficiently a series of zero-norm regularized problems (2.3) with different τ

but a fixed λ. We generate an i.i.d. standard normal random vector β∗S∗ with

s∗ = b0.5√pc entries of S∗ chosen randomly from {1, . . . , p} for p = 15000,

and then obtain the response vector y from model (2.1), where xTi ∼ N(0,Σ)

for i = 1, . . . , n with Σ = 0.6E + 0.4I and n = b2s∗ log pc, and the noise εi

is from the Laplace distribution with density d(u) = 0.5 exp(−|u|). Here, E

is a p×p matrix of all ones. Figure 3 describes the average absolute `2-error

‖β̂f−β∗‖ and time when applying MSCRA PPA to 10 test problems for

τ ∈ {0.05, 0.1, 0.15, . . . , 0.95} with ν = λ−1 and λ = 37.5/n. We see that

MSCRA PPA yields better `2-errors for τ close to 0.5, and worse `2-errors

for τ close to 0 or 1. So, for this class of noises, the check loss with τ close

to 0.5 is suitable. The MSCRA PPA yields a desired solution for all test
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Table 1: Identification performance of MSCRA PPA

n = 250 n = 300 n = 400 n = 500

τ = 0.3

Size 11.800(4.369) 9.320(3.146) 6.290(1.472) 5.330(0.697)

P1 0.81 0.83 0.93 0.91

P2 0.81 0.83 0.93 0.91

AE 0.197(0.174) 0.170(0.165) 0.176(0.155) 0.145(0.127)

τ = 0.5

Size 10.960(3.075) 7.910(2.060) 5.270(1.171) 4.370(0.597)

P1 1.00 1.00 1.00 1.00

P2 0.00 0.00 0.00 0.00

AE 0.034(0.014) 0.027(0.011) 0.021(0.010) 0.018(0.008)

τ = 0.7

Size 12.590(4.356) 8.320(2.169) 6.310(1.308) 5.380(0.693)

P1 0.79 0.88 0.91 0.93

P2 0.79 0.88 0.91 0.93

AE 0.183(0.175) 0.220(0.180) 0.151(0.146) 0.162(0.142)

problems in 40 seconds, and the CPU time for τ close to 0 or 1 is about 1.5

times that of τ close to 0.5. This means that it is an efficient solver for a

series of zero-norm regularized problems in (2.3).
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Figure 3: Performance of MSCRA PPA under different quantile level τ

7. Conclusions

We have proposed a multi-stage convex relaxation approach, MSCRA PPA,

for computing a desirable approximation to the zero-norm penalized QR,

which is defined as a global minimizer of an NP-hard problem. Under the

common RSC condition and a mild restriction on the noises, we established

the error bound of every iterate to the true estimator and the linear rate of

convergence of the iterate sequence in a statistical sense. Numerical com-

parisons with MSCRA IPM and MSCRA ADMM show that MSCRA PPA

yields a comparable estimation performance within much less time.

Supplementary Materials

The online supplementary material consists of five parts. Appendix

A includes some preliminary knowledge on generalized subdifferentials and
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Clarke Jacobian, and some lemmas used in Section 2-5; Appendix B in-

cludes the proof of Theorem 2 and Theorem 3; Appendix C introduces the

semismooth Newton method and the semi-proximal ADMM in Gu and Zou

(2016); Appendix D includes performance comparisons of MSCRA IPM,

MSCRA ADMM and MSCRA PPA on some synthetic data and real data.
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