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ON STRATIFIED DENSITY RATIO MODELS

Moming Li and Guoqing Diao

George Mason University

Abstract: Density ratio models have received increasing attention in recent years,

particularly because of its relationship with generalized linear models and appli-

cations in missing data analysis. The density-ratio assumption, however, may

not be true in some applications and one important limitation is that the stan-

dard density ratio model does not accommodate heterogeneity within the un-

derlying population. To address these issues, we propose a new density ratio

model by incorporating a stratification procedure and dispersion parameters.

The resulting stratified density ratio model 1) retains attractive properties of the

standard density ratio model while allowing the density-ratio assumption to be

violated for some covariate, and 2) provides a validation tool, via a Kolmogorov-

Smirnov-type statistic, to check the modeling assumption. We estimate both the

finite-dimensional and infinite-dimensional parameters simultaneously using an

efficient nonparametric maximum likelihood approach. The resulting estimators

are shown to be consistent and asymptotically normal. The asymptotic covari-

ance matrix of the estimators for the finite-dimensional parameters attains the

semiparametric efficiency bound.
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1. Introduction

The exponential family is a rich and flexible parametric family of distribu-

tions possessing nice theoretical properties and wide practical applicability.

The generalized linear model (GLM) (McCullagh and Nelder, 1989) relates

the response variable Y and θ, which contains covariate information, as

f(y|θ, φ) = exp

{
yθ − b(θ)
a(φ)

+ c(y, φ)

}
, (1.1)

where a(·), b(·), and c(·) are known functions, and φ is called the disper-

sion parameter. We refer the interested readers to Jørgensen (1997) for a

book-length comprehensive treatment and generalization of the error dis-

tributions considered by Nelder and Wedderburn (1972).

It is a critical assumption for the classical GLM that a(·), b(·), and

c(·) are known functions. In addition, model (1.1) is an exponential family

density function with canonical parameter θ only if φ is known, other-

wise, it is an exponential dispersion model. If c(·) is unspecified in model

(1.1), then neither is b(·). Using the canonical link function with linear
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predictor θ = βTX, where X is a set of covariates, we have f(y|φ) =

constant×exp {c(y, φ)} when X = 0 and φ is a known quantity. Therefore,

a properly normalized function of c(·) shall serve as a so-called baseline

density function. The preceding argument heuristically introduces a semi-

parametric specification of the GLM when c(·) is left unspecified. In this

paper, we will formalize this idea in a density-ratio modeling framework

with unspecified c(·) and unknown φ.

The semiparametric density ratio model (DRM) (Diao et al., 2012),

which is also termed the proportional likelihood ratio model (Luo and Tsai,

2012), has been extensively studied in recent years, while its early history

could be dated back to Anderson (1972). Several statistical models in the

existing literature are closely related to the DRM, such as the Cox propor-

tional hazards model (Cox, 1972, 1975), generalized linear models (Nelder

and Wedderburn, 1972), DRMs for categorical covariates (Qin and Zhang,

1997; Qin, 1998; Fokianos et al., 2001; Zhang, 2000, 2002), biased sampling

models (Vardi, 1985; Gill et al., 1988; Gilbert et al., 1999; Chen, 2001),

semiparametric single-index models (Ichimura, 1993), generalized odds ra-

tio models (Liang and Qin, 2000), semiparametric generalized linear models

(Rathouz and Gao, 2009; Huang and Rathouz, 2012; Huang, 2014). While

obtaining some desirable properties, such as efficiency of the estimators
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(within a suitable class) and robustness to certain model mis-specification,

further researches based on the standard DRM have been extended to ac-

commodate different types of data, such as missing and truncated data

(Chan, 2012), right censored data (Zhu, 2014), longitudinal data (Luo and

Tsai, 2014), time-series data (Kedem et al., 2008; Fung and Huang, 2016),

multivariate extreme value data in risk assessment (De Carvalho and Davi-

son, 2014), survival data from prevalent cohort studies (Zhu et al., 2017),

and correlated data with multivariate outcomes (Marchese and Diao, 2017).

The key to modeling the distribution of a response variable Y condi-

tional on a given covariate vector X using the density-ratio technique is

through a properly normalized product of an unspecified baseline probabil-

ity density function f(·) and an exponential function of the linear predictor

containing the covariate information:

f(y|X) =
f(y) exp(yβTX)

b(βTX, f)
, b(βTX, f) =

∫
Y
f(s) exp(sβTX)ds, (1.2)

where b(·) is a normalizing constant dependent on βTX and f(·), and

Y is the support of the response variable. Closely related to the DRM,

it is worth mentioning that the semiparametric generalized linear models

(SPGLMs) by Rathouz and Gao (2009), Huang and Rathouz (2012), and
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Huang (2014) explicitly modeled the mean structure E(Y |X) = η(βTX) via

a user-specified inverse link function η(·) in addition to the error distribution

f(y) = exp(b+ yθ)f0(y) in density-ratio form, where f0(·) is some reference

density function and b is a normalizing constant. The merit in the SPGLMs

is the reverse specification of the canonical parameter θ ≡ θ(X;β, f) as an

implicit solution of the conditional mean and the error distribution, which

gives β the usual mean contrast interpretation.

Robustness is a major advantage of the DRM and its variants; however,

the performance still relies on the density-ratio assumption. By density-

ratio assumption, we mean that the logarithm of two probability density

functions are related linearly in y:

log
f(y|X)

f(y)
= yβTX + b̃(βTX, f), (1.3)

where b̃(βTX, f) = − log b(βTX, f). If the functional form of the baseline

density function is known, then (1.3) can be used to check the density-ratio

assumption. However, the baseline density function f(·) is left unspecified.

Therefore, validating the density-ratio assumption by directly checking the

linearity of the functional forms is practically infeasible under the afore-

mentioned semiparametric specification. To the best of our knowledge, very
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little work is available to justify the validity of the density-ratio assump-

tion; the vast majority of the existing literature in using the density-ratio

modeling technique is to enhance model flexibility due to the robust na-

ture and some invariant properties of the density-ratio form. Violation of

the density-ratio assumption can yield inconsistent estimators of the un-

known parameters, both finite-dimensional and infinite-dimensional, and

other statistical inferences may not be reliable, either.

Under the DRM (1.2), the population is typically assumed to be homo-

geneous with a common baseline distribution, based upon which the linear

predictor quantifies the covariate effects. If this is untrue for some covariate,

especially for a discrete covariate, then including all the covariates into the

linear predictor upon a single baseline distribution is inappropriate. The

following two examples shall give some insight into the violations due to

heterogeneity, motivating us to consider the stratified density ratio model

in this paper.

Example 1 (ANCOVA with unequal covariances). Figure 1 plots the post-

vs. pre-treatment blood lead concentration levels from a clinical trial dataset

(Fitzmaurice et al., 2012). The open and closed circles show the succimer

and placebo groups, respectively, and their corresponding fitted regression

lines are also displayed. A very typical feature of this type of data is that
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pre-treatment scores have roughly the same means and variances between

the two treatment groups, but this is not the case for the post-treatment

scores because individual response to different treatments is unlikely the

same. The analysis of covariance (ANCOVA) model with random effects

thus can be useful in modeling this type of data. The underlying hetero-

geneity is group specific. Hence, the density-ratio assumption is clearly

violated without considering separate baseline density functions.

Poisson distribution (and its variants) is another commonly used para-

metric family of distributions in real practice when modeling count data.

The density-ratio assumption is also violated in the following example of

heterogeneous negative-binomial regression model, which offers extra flexi-

bility in modeling over-dispersed count data.

Example 2 (Negative-binomial regression with heterogeneous dispersion).

The probability mass function is

P(Y = y|A) =
Γ(y + 1

φ
)

Γ(y + 1)Γ( 1
φ
)

(
1

1 + φµ

) 1
φ
(

φµ

1 + φµ

)y
,
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where

φ ≡ φ(A) =


0, A = 0,

φ1 ∈ (0, 1], A = 1.

Under the above model,

E(Y |A) = µ, Var(Y |A) = µ+ φ(A)µ2.

Note that as φ → 0, the negative-binomial distribution NB(µ, µ + φµ2)

converges to a Poisson distribution with mean µ, and µ can be either treated

as a baseline quantity or further modeled with other covariates. Clearly,

the (conditional) variance here is covariate-dependent.
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Figure 1: Treatment-specific Blood Lead Concentration.

The remainder of this paper is organized as follows. In Section 2, we

present a new density ratio model through stratification and incorporating

dispersion parameters. To avoid a fully stratified model, a common re-

gression vector (direction) is assumed while the magnitudes are allowed to

vary across strata. We develop likelihood-based inference procedures and

establish asymptotic properties of the proposed estimators. In Section 3,

we illustrate how to use the proposed model to validate the density-ratio

assumption via a Kolmogorov-Smirnov-type goodness-of-fit test. In addi-

tion, we propose a bootstrap procedure to approximate the p-value of the
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goodness-of-fit test statistic. In Section 4, we conduct simulation studies to

assess the finite-sample performance of the proposed model and the testing

procedure. In Section 5, we analyze two datasets, the blood lead concentra-

tion data (Fitzmaurice et al., 2012), and the German health 1984-1988 data

(SOEP Group, 2001; Hilbe, 2011), to illustrate the proposed methodology.

Technical details are provided in the Supplementary Materials.

2. Methods

The Models

We first define some notations to ease our presentation. Let Y be a gen-

eral univariate response variable supported on Y ⊆ R. We consider a

K-level categorical covariate, namely A ∈ {1, 2, ..., K}. Denote by A =

(A1, ..., AK−1)T the (K − 1)× 1 vector of dummy variables associated with

A, where Ak = I{A = k} (k = 1, ..., K − 1) correspond to the first K − 1

levels of A and the Kth one is set as the reference level. Let X be a d×1 vec-

tor of other available covariates, and denote by Z = (XT,AT)T, the totality

of covariates defined on Z ⊆ Rd+K−1. Let F (·|Z) and Fk(·|X) be the distri-

bution functions of Y conditional on Z and (X, A = k) (k = 1, ..., K), re-

spectively. Assume all the aforementioned conditional distributions possess

density functions (with respect to some proper dominating measures sup-
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pressed without ambiguity) denoted by f(·|Z) and fk(·|X) (k = 1, ..., K).

Let f(·) = f(·|Z = 0) and fk(·) = fk(·|X = 0) (k = 1, ..., K) be their

corresponding baseline density functions. It is clear that f(·) = fK(·).

Recall that under the density-ratio assumption, Y |(X,A) ∼ f(y|X,A)

satisfies

f(y|X,A) =
f(y) exp{y(αTA + βTX)}

b(αTA + βTX, f)
,

b(αTA + βTX, f) =

∫
Y
f(s) exp{s(αTA + βTX)}ds.

Similarly, if the density-ratio assumption is postulated within each stratum

of A, i.e., Y |(X, A = k) ∼ fk(y|X) (k = 1, ..., K), then

fk(y|X) =
fk(y) exp(yβT

kX)

bk(β
T
kX, fk)

, bk(β
T
kX, fk) =

∫
Yk
fk(s) exp(sβT

kX)ds.

To avoid a fully stratified model, i.e., with different baseline density func-

tions and different regression coefficients, we consider the following “parallel-

slope” model in this paper:

fk(y|X) =
fk(y) exp{yβTXV (φk)}

bk(β
TX, φk, fk)

,

bk(β
TX, φk, fk) =

∫
Yk
fk(s) exp{sβTXV (φk)}ds,

(2.1)
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where Yk is the support of Y |(X, A = k) (k = 1, ..., K), φk is the unknown

dispersion parameter corresponding to stratum k (k = 1, ..., K), and V (·)

is a known positive function subject to V (0) = 1. To ensure model identi-

fiability, we set φK to be 0. This semiparametric specification mimics the

formulation of the classical parametric generalized linear models with dis-

persion parameters. A typical example is the normal regression model with

mean parameter β and error variance σ2, where β∗ ≡ β/σ2 is identified as

the true parameter in the DRM. We refer to (2.1) as the stratified density

ratio model (SDRM).

Remark 1. Conditional mean/variance function is useful for prediction

and model diagnostics. Based on the DRM, the conditional mean function

is given by

µ(z) ≡ E(Y |Z = z) =

∫
Y yf(y) exp{y(αk + βTx)}dy∫
Y f(y) exp{y(αk + βTx)}dy

, (2.2)

where z = (x, k), and the conditional variance function is given by

Var(Y |Z = z) =

∫
Y{y − µ(z)}2f(y) exp{y(αk + βTx)}dy∫

Y f(y) exp{y(αk + βTx)}dy
. (2.3)

These conditional mean and conditional variance functions shall be under-
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stood in the usual way as any other model in regression analysis. It is clear

that (2.2) and (2.3) depend on the linear predictor (αk + βTx) and the

baseline density f(·). If fk(·) ≡ f(·|A = k) are heterogeneous for different

k, then the heterogeneity contained in the baseline density functions plays

a part in the overall conditional mean and conditional variance.

Remark 2. As mentioned previously, when the true model is a normal

linear regression model, the DRM can only estimate the quotient β/σ2,

where σ2 is the variance of the residual error. In general, for a K-level cat-

egorical covariate A, let σ2
k = σ2(A = k) (k = 1, ..., K), and the regression

parameter in the SDRM be β∗. Then,

β

σ2
k

=
β

σ2
K

× σ2
K

σ2
k

≡ β∗ × V (φk). (2.4)

We set the Kth stratum to be the reference level. Therefore, V (φk) is the

variance ratio of the reference stratum of the baseline distribution to that

of the kth stratum (k = 1, ..., K − 1). In this paper, we set V (·) to be the

exponential function exp(·). In real practice, since the true variance of any

of the distributions is unknown, the SDRM essentially estimates the log

odds ratio parameter, for all strata, in the same direction ‖β∗‖−1β∗, whose

magnitude is controlled by the dispersion parameter in the corresponding
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stratum. A similar technique was used in a genetic study by Schifano et al.

(2013).

Remark 3. The positive function V (·) shall not be confused with the vari-

ance function in the GLM literature; it is not a variance function depending

on the conditional mean (e.g., VGLM(µ) = µ(1−µ) for the Binomial family).

As in (2.4), V (φk) represents the baseline variance ratio, any positive func-

tion subject to V (0) = 1 (identifiability) is a potential candidate, though

the actual numerical performance may differ. Therefore, the exponential

function would be a natural choice.

Remark 4. From (2.4), we can also see that if the heterogeneity indeed

exists, then not all the ratios σ2
K/σ

2
k (k = 1, ..., K−1) are equal to 1. There-

fore, without the stratification, the estimator of β∗ is no longer consistent.

This can be generalized to arbitrary response beyond the normal data via

the proposed SDRM.

Remark 5. The estimator of β∗ can be converted back to the original scale

β by adjusting the error variance σ2
K of the reference distribution. Following

Marchese and Diao (2017), we can estimate σ2
K from the residuals using

the observations from the reference stratum after obtaining the regression

coefficient estimates.
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Nonparametric Maximum Likelihood Estimation

Let {(Yi,Xi, Ai), i = 1, ..., n} be an i.i.d. sample of observations of size

n. The sample size in the kth group of A is nk =
∑n

i=1 I{Ai = k}, k =

1, ..., K. If the response variable Y follows a discrete or mixed underlying

distribution, tied outcomes may be observed. Let m and mk (k = 1, ..., K)

be the numbers of distinct observations in the whole sample and in the

stratified sample corresponding to stratum k, respectively. Note that n =∑K
k=1 nk, but m 6

∑K
k=1 mk in general. Based on the definition in (2.1)

and an i.i.d. sample of size n, the likelihood function about the unknown

parameter (β,φ,F), where φ = (φ1, ..., φK−1) and F = (F1, ..., FK), is given

by

Ln(β,φ,F) =
n∏
i=1

K∏
k=1

[
dFk(Yi) exp{YiβTXiV (φk)}∫
Yk

exp{sβTXiV (φk)}dFk(s)

]I{Ai=k}

=
K∏
k=1

nk∏
r=1

dFk(Ykr) exp{YkrβTXkrV (φk)}∫
Yk

exp{sβTXkrV (φk)}dFk(s)
, (2.5)

where dFk(·) = fk(·) (k = 1, ..., K) are the baseline density functions with

respect to some dominating measure, and Ykr and Xkr (k = 1, ..., K; r =

1, ..., nk) are the response and covariates for the rth subject in the kth group

of A, respectively.

However, the likelihood function (2.5) can be maximized, without ex-
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ploding to infinity, only when the baseline distribution functions are dis-

cretized at the distinct observations, and the corresponding jump sizes are

considered as unknown parameters to be estimated. Let pkj = Fk{Yk(j)|X =

0} (j = 1, ...,mk; k = 1, ..., K) be the probability masses that the discretized

conditional distributions assign to the ordered distinct observations when

the covariate X takes value 0, where Yk(j) denotes the jth order statistic in

stratum k. Then, the nonparametric likelihood function is given by

Ln(β,φ,p) =
K∏
k=1

nk∏
r=1

pkj exp{Yk(j)β
TXkrV (φk)}∑mk

l=1 pkl exp{Yk(l)β
TXkrV (φk)}

, (2.6)

where pk = (pk1, ..., pk,mk−1)T, k = 1, ..., K, and p = (pT1 , ...,p
T
K)T. We

introduce an intermediate index j in (2.6) to account for possible tied values

of Y , where j depends on r via {j : Yk(j) = Ykr, 1 6 j 6 mk, 1 6 r 6 nk} ≡

Jk. For stratum k, the multiplicity of j, denoted by λkj, is defined to be

the cardinality of the set Jk. It follows that
∑mk

j=1 λkj = nk (k = 1, ..., K).
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The corresponding nonparametric log-likelihood function can be written as

`n(β,φ,p) =
K∑
k=1

{
mk∑
j=1

λkj log(pkj) +

nk∑
r=1

Ykrβ
TXkrV (φk)

−
nk∑
i=1

log

[
mk∑
l=1

pkl exp{Yk(l)β
TXkrV (φk)}

]}
.

(2.7)

To maximize (2.7) with respect to (β,φ,p), a commonly used approach

is the re-normalizing iterative procedure; that is, repeatedly updating the

estimates of the jump sizes p and the regression parameters (β,φ) until

both converge. It can be shown that the resulting nonparametric maxi-

mum likelihood estimators (NPMLEs) of (β,φ,p), denoted by (β̃n, φ̃n, p̃n),

satisfy

p̃kj = λkj

[
nk∑
r=1

exp{Yk(j)β̃
T
XkrV (φ̃k)}∑mk

l=1 p̃kl exp{Yk(l)β̃
T
XkrV (φ̃k)}

]−1

. (2.8)

Alternatively, Diao et al. (2012) and Marchese and Diao (2017) pro-

posed to use the quasi-Newton algorithm (Press et al., 1992) to directly

optimize the negative nonparametric likelihood function (2.6) with respect

to the regression parameters (β,φ) and the re-parametrized jump sizes p
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via the softmax transformation:

pkj =
exp(ζkj)∑mk
l=1 exp(ζkl)

, ζkmk ≡ 0 (j = 1, ...,mk − 1; k = 1, ..., K). (2.9)

The softmax transformation (2.9) implicitly transforms the constrained

optimization problem to an unconstrained one and stabilizes the jump sizes,

and consequently facilitates the numerical computation. Both of the itera-

tive procedure and the direct optimization procedure generally yield almost

identical solutions. However the direct optimization is considerably faster

than the iterative procedure and is less prone to convergence problems. We

adopt the direct optimization approach via the softmax transformation in

the numerical studies.

Utilizing the softmax transformation, the resulting effective nonpara-

metric log-likelihood function about (β,φ, ζ) is give by

`n(β,φ, ζ) =
K∑
k=1

nk∑
r=1

log

[
exp{ζkj + Yk(j)β

TXkrV (φk)}∑mk
l=1 exp{ζkl + Yk(l)β

TXkrV (φk)}

]
,

where ζk = (ζk1, ..., ζk,mk−1)T, k = 1, ..., K, and ζ = (ζT1 , ..., ζ
T
K)T is of

dimension
∑K

k=1(mk − 1). The intermediate index j plays the same role as

that in (2.6). The totality of unknown parameters is d+K−1+
∑K

k=1(mk−
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1) = d− 1 +
∑K

k=1 mk.

Then, the NPMLE of Fk(t) (k = 1, ..., K) is given by

F̃n,k(t) =

∫
Yk
I{y 6 t}dF̃k(y) =

mk∑
j=1

p̃kjI{Yk(j) 6 t},

where

p̃kj =


exp(ζ̃kj)

1 +
∑mk−1

l=1 exp(ζ̃kl)
, j 6= mk

1−
mk−1∑
l=1

p̃kl, j = mk,

and (β̃n, φ̃n, ζ̃n) are obtained by solving∇`n(β̃n, φ̃n, ζ̃n) = 0. Here∇`n(β,φ, ζ)

denotes the first derivatives of `n(β,φ, ζ) with respect to the unknown pa-

rameters (β,φ, ζ).

Asymptotic Theory

In this subsection, we establish the asymptotic properties of the proposed

NPMLEs. We first impose the following regularity conditions :

(C1) The covariate vector Z = (XT,AT)T is bounded almost surely, and

aTZ = 0 almost surely if and only if a = 0.

(C2) For some fixed limit ρk ∈ (0, 1), nk/n→ ρk, as n→∞ (k = 1, ..., K).

(C3) The true parameter values of β and φ, denoted by β0 and φ0, belong
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to the interior of a known compact set

Θ = {(β,φ) : ‖β‖ 6 B0, ‖φ‖ 6 B0, for some positive constant B0} .

Besides, φk 7→ V (φk) is a known positive function with V (0) ≡ 1 such that

it is bounded away from 0 and ∞ on Θ almost surely, and continuously

differentiable in a neighborhood of φk0 (k = 1, ..., K − 1).

(C4) The true baseline cumulative distribution function of Fk(t), denoted

by Fk0(t) =
∫
Yk
I{y 6 t}dFk0(y) (k = 1, ..., K), is a class of distribution

functions defined on Yk ⊆ R with finite first and second moments. The

integral shall be understood in the usual Lebesgue-Stieltjes sense, where

the probability density function is assumed with respect to some proper

dominating measure suppressed without ambiguity.

(C5) There exist positive constants B1 6 B2 such that the following in-

equalities hold almost surely:

B1 6 Eη0

[
exp{Y βT

0 XV (φk0)}
]
6 B2,

Eη0

∥∥∥∥ ∂

∂θ0

exp{Y βT
0 XV (φk0)}

∥∥∥∥ 6 B2,

Eη0

∥∥∥∥ ∂2

∂θ0∂θ
T
0

exp{Y βT
0 XV (φk0)}

∥∥∥∥ 6 B2,
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where η0 = (β0,φ0,F0) are the true parameter values.

We now establish consistency and asymptotic normality of the proposed

NPMLEs.

Theorem 1. Under conditions (C1)-(C5), ‖β̃n−β0‖ → 0, ‖φ̃n−φ0‖ → 0,

and supt∈Yk |F̃n,k(t) − Fk0(t)| → 0 (k = 1, ..., K) almost surely, where ‖ · ‖

is the Euclidean norm.

Theorem 2. Under conditions (C1)-(C5), the random element
√
n(β̃n −

β0, φ̃n−φ0, F̃n−F0) converges weakly to a tight, zero-mean Gaussian pro-

cess in the metric space l∞(Rd×RK−1×HK), where l∞(H) is a linear space,

equipped with the supremum norm, consisting of all bounded functions.

Remark 6. Although it is not required that the support of Z contain 0

to prove Theorems 1 and 2, we impose this additional assumption such

that Fk(·), k = 1, ..., K, have meaningful interpretations. In practice, if

a covariate takes positive values (for example, age), one can center the

covariate at its sample mean. In this case, Fk(·) has the interpretation of

the conditional CDF of the response variable for the kth group given that

covariates take value at their means.

In addition to estimating the baseline distribution function in each stra-

tum, we can also estimate the asymptotic covariance matrix of the baseline
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distribution function estimator together with that of the finite-dimensional

parameter θ. We can regard the likelihood function (2.7) as a function

of (β,φ), and the parameters that represent the jump sizes of Fk(·) (k =

1, ..., K) at distinct observed values. From the classical Fisher information

theory of parametric models, the asymptotic covariance matrix in Theorem

2 can be estimated by the inverse of the observed Fisher information matrix

jointly in all parameters (β,φ,F). Let (b, c) ∈ Rd×RK−1 be any constant

vector, and h = (h1, ..., hK) ∈ HK be any bounded K-function. The asymp-

totic variance of the random element bTβ̃n+cTφ̃n+
∑K

k=1

∫
Yk
hk(t)dF̃n,k(t)

is equal to that of bTβ̃n+cTφ̃n+
∑K

k=1

∑mk
j=1 hk(Yk(j))p̃kj. Therefore, it can

be consistently estimated by hT
nJ−1

n hn, where hn is the column vector con-

sisting of b, c, and hk(Yk(j)) − hk(Yk(mk)) (j = 1, ...,mk − 1; k = 1, ..., K),

and Jn is the negative Hessian matrix of `n(β̃n, φ̃n, F̃n) with respect to

(β,φ) and the jump sizes Fk{Yk(j)} (j = 1, ...,mk − 1; k = 1, ..., K). The

next theorem provides theoretical justification for this result.

Theorem 3. Let V (b, c,h) be the asymptotic variance of the random ele-

ment
√
n[bT(β̃n − β0) + cT(φ̃n −φ0) +

∑K
k=1

∫
Yk
hk(t)d{F̃n,k(t)− Fk0(t)}].

Under conditions (C1)-(C5), the estimator nhT
nJ−1

n hn → V (b, c,h) uni-

formly in (b, c,h) in probability.

Proofs of Theorems 1-3 are provided in the Supplementary Materials.
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3. A Goodness-of-fit Test

An appealing feature of the proposed SDRM is that it can be used to check

the density-ratio assumption. Recall that under the DRM, the nonpara-

metric likelihood function of (α,β, q) is given by

Ln(α,β, q) =
n∏
i=1

qj exp{Y(j)(α
TAi + βTXi)}∑m

l=1 ql exp{Y(l)(αTAi + βTXi)}
, (3.1)

where Y(j) is the jth order statistic in the entire sample, and qj = F{Y(j)|Z =

0} (j = 1, ...,m). Note that similar to (2.6), the intermediate index j in

(3.1) is related to i via Yi = Y(j) (j = 1, ...,m; i = 1, ..., n).

The NPMLEs of (α,β, q), denoted by (α̂n, β̂n, q̂n), are obtained by

solving ∇ logLn(α̂n, β̂n, q̂n) = 0 subject to the constraint
∑m

j=1 qj = 1,

and the NPMLE of the baseline distribution function F (·) is given by

F̂n(t) =
m∑
j=1

q̂jI{Y(j) 6 t}.

Recall from Section 2 that Fk(·) = F (·|X = 0, A = k) is the distribution

function conditional on (X = 0, A = k) and F = (F1, ..., FK). Under the
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DRM, the NPMLEs of Fk(·), denoted by F̂n,k(·), k = 1, ..., K, are given by

F̂n,k(t) =



m∑
j=1

q̂jI{Y(j) ≤ t}, k = K,

m∑
j=1

q̂j exp(Y(j)α̂k)I{Y(j) 6 t}∑m
l=1 q̂l exp(Y(l)α̂k)

, k = 1, ..., K − 1.

Intuitively, if the density-ratio assumption is valid, we would expect

that F̃n,k(·) and F̂n,k(·) are close for all k = 1, ..., K. We then propose a

Kolmogorov-Smirnov-type (KS) statistic

∆n =
K∑
k=1

nk
n

∆n,k (3.2)

to test the density-ratio assumption, where

∆n,k = sup
t∈Yk

√
n |∆n,k(t)| = sup

t∈Yk

√
n
∣∣F̂n,k(t)− F̃n,k(t)∣∣

measures the maximum discrepancy between the estimated baseline distri-

butions for the kth group based on the DRM and the SDRM. A large value of

∆n indicates the departure from the density-ratio assumption. The validity

of the test is based on the following theorem.

Theorem 4. Under the density-ratio assumption and regularity conditions

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



25

(C1)-(C5), the stochastic process
√
n(F̂−F̃) W, where W = (W1, ...,WK)

is a zero-mean K-variate Gaussian process in the metric space l∞(HK).

Theorem 4 serves as the basis for justifying the proposed goodness-of-fit

test. Let δp be the pth quantile of the asymptotic null distribution of the

test statistic ∆n defined in (3.2), that is, δp satisfies

P

(
K∑
k=1

ρk

{
sup
t∈Yk
|Wk(t)|

}
6 δp

)
= p.

Since the supremum map is uniformly continuous in l∞(H), according to

the Continuous Mapping Theorem (van der Vaart and Wellner, 1996), we

have

lim
n→∞

P(∆n > δ1−p) = lim
n→∞

P

(
K∑
k=1

nk
n

{
sup
t∈Yk

√
n
∣∣F̂n,k(t)− F̃n,k(t)∣∣} > δ1−p

)

= P

(
K∑
k=1

ρk

{
sup
t∈Yk
|Wk(t)|

}
> δ1−p

)

= p.

Since there is no explicit analytic expression for the weighted suprema of

the Gaussian processes, we propose a bootstrap procedure to approximate

the p-value of the goodness-of-fit test. The algorithm proceeds as follows.

Step 1. Obtain the NPMLEs (α̂n, β̂n, F̂n) and (β̃n, φ̃n, F̃n) under the
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DRM and SDRM, respectively. Calculate ∆obs
n based on the observed sam-

ple of size n and the NPMLEs thereof.

Step 2. For i = 1, ..., n, calculate the conditional distribution of the

response based on (Yi,Zi), where Zi = (XT
i ,A

T
i )T, under the DRM as

follows:

P̂ij = P(·|Xi,Ai) =
q̂j exp{Y(j)(α̂

T
nAi + β̂

T

nXi)}∑m
l=1 q̂l exp{Y(l)(α̂

T
nAi + β̂

T

nXi)}
(j = 1, ...,m).

Then, P̂(·|Zi) ≡ P̂i = (P̂i1, ..., P̂im) is the estimated probability distribution

conditional on Zi under the DRM.

Step 3. Generate Y ∗i according to the multinomial distribution P̂(·|Zi)

(i = 1, ..., n). Denote the generated random sample of size n as Y∗ =

(Y ∗1 , ..., Y
∗
n ).

Step 4. Obtain the NPMLEs (α̂∗n, β̂
∗
n, F̂

∗
n) and (β̃

∗
n, φ̃

∗
n, F̃

∗
n) based on

{(Y ∗i ,Zi), i = 1, ..., n} under the DRM and the SDRM, respectively. Cal-

culate the test statistic ∆∗n based on the generated sample and the corre-

sponding NPMLEs.

Step 5. Repeat Step 3 and Step 4 B times, obtain (∆∗1n , ...,∆
∗B
n ). The
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p-value is then approximated by

p̂∆ =
1

B

B∑
b=1

I{∆∗bn > ∆obs
n }.

The null hypothesis, H0 : the density-ratio assumption holds, is rejected at

a pre-specified significance level α if p̂∆ < α.

4. Simulation Studies

In this section, we conduct simulation studies to assess the finite-sample

performance of the proposed SDRM and the goodness-of-fit test procedure.

Over the course of the simulation studies, we provide some insight into how

the SDRM is comparable to the DRM when the density-ratio assumption

is satisfied/violated.

We first consider the scenario under which the density-ratio assumption

holds. We generate data from the model

Yi|(Xi, Ai) ∼ N
(
αAi + βTXi, 1

)
, i = 1, ..., n,

where α = −0.2, β = (0.5,−0.5, 0.5)T, A is a binary variable with success

probability 0.5, X is a covariate vector with three components X1, X2,

and X3, which are standard normal, uniform(−1, 1), and Bernoulli(0.5)
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variables, respectively. We consider sample sizes 100, 200, and 400, and all

simulation results are based on 1000 replicates. The confidence intervals are

constructed based on the normal approximation, where the corresponding

standard errors are estimated by inverting the observed Fisher information

matrix jointly in all parameters.

Simulation results under the above settings are summarized in Table

1. The NPMLEs under the DRM and the SDRM are comparable. Both

have small biases; the standard error estimates agree well with the sampling

standard deviations; and the 95% confidence intervals have correct coverage

probabilities (CPs). As the sample size increases, the biases and standard

deviations of the NPMLEs for both models decrease. As expected, the

biases and the standard error estimates under the DRM are smaller than

those under the SDRM, since the DRM is the true model. The relative effi-

ciency (RE), which is defined as the ratio of the mean squared error (MSE)

of the estimator under the SDRM to that under the DRM, is only slightly

greater than 1 especially for the regression coefficients, demonstrating that

the SDRM only results in limited loss of efficiency when the density-ratio

assumption holds.

We next consider the scenario when the density-ratio assumption is
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violated. Specifically, we generate data from the model

Yi|(Xi, Ai) ∼ N
(
αAi + βTXi, σ

2(A)
)
, i = 1, ..., n.

Here, σ2(A = 1) = 0.72, and σ2(A = 0) = 1. All the remaining settings are

the same as those in the first set of simulations. Since we set V (·) to be the

exponential function exp(·), the dispersion parameter φ is log(1.0/0.49) =

0.713. In this case, the true model is the SDRM, whereas the density-ratio

assumption in the DRM is violated.

Simulation results under the above scenario are summarized in Table 2.

The NPMLEs under the SDRM continue to perform well with small biases

and correct coverage probabilities of the 95% confidence intervals. On the

other hand, the NPMLEs of the regression parameters under the DRM are

very biased and the REs decrease quickly as sample size increases such that

the MSE is dominated by the bias. The biases of the estimators of the

baseline distributions under the DRM appear to be much larger than those

under the SDRM.

Finally, we evaluate the finite-sample performance of the proposed

goodness-of-fit test for testing the density-ratio assumption in the standard

DRM. The mean function of the normal distribution is under the same set-
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tings as in the previous settings. The variance parameter σ1 ≡ σ(A = 1)

controls the effect size, and σ(A = 0) ≡ 1. Type I error rates and statis-

tical powers are calculated based on 2000 simulations, each with B = 500

bootstrap replicates. The size/power curve for the normal regression with

covariate-dependent errors is plotted in Figure 2. The proposed goodness-

of-fit test can control the type I error rate accurately and the power increases

when the sample size or the effect size increases.

In addition to the normal regression with covariate-dependent errors,

we also conduct power analysis when the baseline distribution is heteroge-

neous negative-binomial. See Example 2 in Section 1 for the parametriza-

tion of the baseline distribution. The linear predictor in the DRM form is

(αA +
∑3

j=1 βjXj), where A is a binary variable with success probability

0.5, X1, X2 and X3 are standard normal, uniform(−1, 1), and Bernoulli(0.5)

variables, respectively; (α, β1, β2, β3) = (−1.0,−0.5, 0.5,−0.5). The base-

line distribution of the response variable is a Poisson distribution with mean

µ = 3 conditional on A = 0. The dispersion parameter φ1 controls the ef-

fect size. Type I error rates and statistical powers are calculated based on

2000 simulations, each with B = 500 bootstrap replicates. The size/power

curves are displayed in Figure 3. The proposed goodness-of-fit test can still

control the type I error rate accurately. The test, however, is much less pow-
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erful compared to that of the normal regression with covariate-dependent

errors. One possible reason for such a dramatic decrease in power is that

the response variable follows a discrete probability distribution, of which

the true distribution function is a step function.

5. Applications

We first apply the proposed methodology to a blood lead concentration

dataset. A sample of n = 100 observations is available in Fitzmaurice et al.

(2012) and will be used in our data analysis. In randomized clinical trials,

it is a common practice to consider pre-treatment score as a covariate to be

adjusted for post-treatment score, and the difference between group-wise

intercepts may quantify the treatment effect (Crager, 1987). In practice,

people typically assume normality. Two issues have long been recognized.

First, both pre- and post-treatment scores are random rather than fixed

values, which may have different covariance structures. Second, parallel

slopes between treatment groups is a critical assumption in the classical

ANCOVA model, albeit this has been frequently questioned. Motivated by

this dataset, recently, Funatogawa et al. (2011) studied the type I error rate

of the ANCOVA model under equal-slope but different covariances without

assuming normality. We now show how the proposed SDRM can be applied
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in this situation.

Let A be the succimer group indicator, pre.trt and post.trt be the pre-

and post-treatment scores, respectively. We standardize these scores for

comparison purpose. The fitted linear predictor in the SDRM is 4.311pre.trt×

e−2.134, and that in DRM is −3.310A + 1.099pre.trt. All the estimated co-

efficients are significant. Detailed estimation results can be found in Table

3, and the estimated baseline distribution functions (CDFs) based on the

SDRM and DRM are plotted in Figure 4. The proposed goodness-of-fit

test is significant with a p-value of 0.023 based on 2,000 bootstrap samples,

and the homogeneity test based on the SDRM is also significant (p-value

< 0.001). In other words, the density-ratio assumption is rejected, and the

two estimated baseline CDFs based on the SDRM are significantly different.

Although the estimated baseline CDFs based on the DRM and the

SDRM do not differ substantially in Figure 4, the proposed tests can still de-

tect significant difference (all give consistent results). This finding demon-

strates that when the normality assumption indeed holds, the proposed

semiparametric procedure is fairly powerful in distinguishing heterogene-

ity among the baselines. In addition, both the parametric and semipara-

metric procedures validate the parallel-slope assumption (with a p-value of

0.194 for testing the interaction effect in the ANCOVA model and a p-value
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< 0.001 for testing φ = 0 in the SDRM).

We end this case analysis with a final remark. The quantity T ≡

EF1(post .trt |pre.trt = 0) − EF0(post .trt |pre.trt = 0) represents the treat-

ment effect incorporating the random subject/group effects (see (2.2) for

the conditional mean function). Replacing the unknown parameters in T by

(β̃, φ̃, F̃1, F̃0) based on the SDRM gives the NPMLE of the treatment effect

T̃ . We have T̃ = −1.317, which is very close to −1.308 (p-value < 0.001)

obtained from the ANCOVA model. Since we have the conditional distribu-

tion estimates, in addition to the mean difference, other summary statistics

involving β and/or F0, F1, such as the median treatment effect, can also be

conveniently calculated through plug-ins.

The second real data analysis is provided in the Supplementary Mate-

rials.

6. Discussion

We proposed a KS-type test statistic (3.2) along with the goodness-of-fit

procedure proposed in Section 3. Alternatively, we may consider the so-

called Cramér-von-Mises-type (CvM) statistic based on the (weighted) in-
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tegrated quadratic distance, that is,

∆CvM
n =

K∑
k=1

∫
Yk
wk(t){F̂n,k(t)− F̃n,k(t)}2dt.

One may improve the efficiency of the test by choosing a proper weight func-

tion wk(t) (k = 1, ..., K) taking into account both the within and between

strata information, as well as the characteristics of the baseline distribution

functions. We take wk(t) = nk/n, the benchmark sample proportion, as a

simple adjustment for the between strata sample sizes in the KS-type test

described in Section 3. The optimality conditions of the weight function are

beyond the scope of this paper, but deserved to be investigated in future

research.

Apart from the strengths, there are also some limitations in the pro-

posed stratified model as well as the goodness-of-fit test procedure. First

of all, the proposed KS-type test and its potential alternative, the CvM-

type test, are not direct and formal diagnostic tests for the density-ratio

assumption. The entire testing procedure relies on the stratification of a

categorical covariate. On one hand, searching for such a categorical covari-

ate can be practically burdensome; on the other hand, sometimes it may be

more reasonable to explain the (condition) variance based on a set of covari-
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ates, which is similar to the GLMs with varying dispersion (Smyth, 1989).

Most importantly, if the density-ratio assumption is violated for a contin-

uous covariate, then how to properly categorize such continuous variable

becomes more troublesome. Undoubtedly, a suitable stratification will en-

tail a nice result with great interpretability. The second drawback we would

like to address is the transformation applied to the variables used to fit the

model. Typically, we use the log-transformation to a right-tailed variable

naturally bounded from below by 0. This may practically be acceptable,

however, is not “formally” justified, yet. Therefore, a formal validation

procedure for the density-ratio assumption and functional forms of the co-

variates certainly warrants future research. Lastly, we want to emphasize

that the regression parameter β in the DRM/SDRM, in general, cannot be

interpreted as the mean contrast as those in the GLMs. This is the major

limitation of this model due to the “canonical form” yβTX in the linear

predictor. The SPGLMs (Rathouz and Gao, 2009; Huang and Rathouz,

2012; Huang, 2014) clearly has an advantage in this regard.

The standard DRM typically assumes that observations are homoge-

neous within the whole population. This is, in general, untrue if there is

a natural stochastic ordering in the response variable across different levels

of a potential confounding categorical covariate. El Barmi and McKeague
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(2013) considered the testing of stochastic ordering based on an integrated

localized empirical likelihood ratio statistic. Combining the advantages of

the empirical likelihood methodology and the benchmark likelihood ratio

test, their approach is elegant and successful in k-sample data, whose data

structure is similar to the DRM with a single k-level categorical covariate.

Their procedure, however, is not applicable to data with arbitrary covari-

ates in general. In a blood alcohol concentration (BAC) dataset discussed

by Ramı́rez and Vidakovic (2010), Chang (2014) stratified the age of the

drunk drivers into two levels, where below 30 were considered as young

and 30 and above were considered as old. The post-stratified distribution

of BAC of the young group was stochastically larger than that of the old

group. The original BAC dataset contains many other covariates, though

Chang (2014) only considered the covariate age, which was stratified. In-

spired by El Barmi and McKeague (2013) and Chang (2014), we think that

it will be an interesting future research topic to consider the testing of

stochastic orderings among the baseline CDFs in the SDRM formulated in

this paper.
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Figure 2: Size/power curve for testing the density-ratio assumption under
the normal regression with covariate-dependent errors. The dashed hori-
zontal line corresponds to the nominal 5% significance level.
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Figure 3: Size/power curve for testing the density-ratio assumption under
the heterogeneous negative-binomial regression. The dashed horizontal line
corresponds to the nominal 5% significance level.
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Table 3: Estimated coefficients for the blood lead concentration data.

SDRM DRM
Var. Coef. Std. Err. t P > |t| Var. Coef. Std. Err. t P > |t|

pre.trt 4.311 0.993 4.337 < 0.001 pre.trt 1.099 0.225 4.882 < 0.001
φ -2.134 0.453 -4.710 < 0.001 succimer -3.310 0.593 -5.579 < 0.001
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Figure 4: Estimated baseline CDFs for the blood lead concentration data.

7. Supplementary Materials

Proofs of the theorems referenced in Section 2 and Section 3, and the second

real data example (German health registry data) referenced in Section 5 are

provided in the Supplementary Materials.
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