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Adjusting systematic bias in high dimensional

principal component scores

Sungkyu Jung

Seoul National University

Abstract: Principal component analysis continues to be a powerful tool in di-

mension reduction of high dimensional data. We assume a variance-diverging

model and use the high-dimension, low-sample-size asymptotics to show that

even though the principal component directions are not consistent, the sample

and prediction principal component scores can be useful in revealing the popu-

lation structure. We further show that these scores are biased, and the bias is

asymptotically decomposed into rotation and scaling parts. We propose meth-

ods of bias-adjustment that are shown to be consistent and work well in the

high dimensional situations with small sample sizes. The potential advantage of

bias-adjustment is demonstrated in a classification setting.

Key words and phrases: HDLSS, jackknife, principal component analysis.

1. Introduction

Principal component analysis (PCA) is a workhorse method of mul-

tivariate analysis, and has been used in a variety of fields for dimension
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Bias in principal component scores 2

reduction, visualization and as exploratory analysis. The standard esti-

mates of principal components, obtained by either the eigendecomposition

of the sample covariance matrix or the singular value decomposition of the

data matrix, are now well-known to be inconsistent when the number of

variables, or the dimension d, is much larger than the sample size n (Paul,

2007; Johnstone & Lu, 2009; Jung & Marron, 2009). These observations

were paralleled with a vast amount of proposals on, e.g., sparse principal

component estimations (cf. most notably, Zou et al., 2006), which perform

better in some models with high dimensions.

However, the standard estimates of principal components (PCs) con-

tinue to be useful, partly due to fast computations available (see, e.g.,

Abraham & Inouye, 2014). Many of the sparse estimation methods, un-

fortunately, do not computationally scale well for large data with hundreds

of thousands of variables. Moreover, the standard estimation has shown to

be useful in some application areas such as imaging, genomics and big-data

analysis (Fan et al., 2014). In these areas, the sample and prediction PC

scores (the projection scores of the data points onto the PC directions) are

often used in the next stage of analysis.

The prediction of PC scores has considerable practical utility in modern

data analysis. A prominent example where the “sample” and “prediction”
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PC scores are used is the PC regression. In particular, for prediction and

cross-validation for PC regression, the PC scores are used as explanatory

variables. For prediction of the response from a new set of observations,

the predicted PC scores are needed (Jackson, 2005). As an example, Li

et al. (2014) used a PC regression in prediction of an phytoplankton abun-

dance index. In the same vein, classification rules are often estimated for

dimension-reduced data sets. As an instance, in forensic science, residue fea-

tures from various black ballpoint inks are dimension-reduced (via PCA)

then classified, based on a lab data set. New features from the field are

classified using their prediction scores as an input for the classification rule

(Adam et al., 2008). As a more involved example, ancestry estimation in

genetic association studies uses the sample PC scores obtained from a refer-

ence genotyped sample, often from large-scale public sequencing data sets

(Zhan et al., 2013; Marcus et al., 2020; Wang et al., 2015). The prediction

PC scores of a new sample is then matched to the sample PC scores, in

order to infer the new samples’s ancestry membership (Zhang et al., 2020).

In this paper, we revisit the standard estimates of principal components

in ultra-high dimensions and reveal that while the component directions and

variances are inconsistent, the sample and prediction scores are useful for

moderately large sample size. For low sample sizes, the scores are biased.
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Bias in principal component scores 4

We quantify the bias, decompose it into two systematic parts, and propose

to estimate bias-adjustment factors.

As a visual example of the systematic bias, a toy data set with 2 dis-

tinguishable principal components is simulated and plotted in Fig. 1. Each

observation in the data set consists of d “ 10, 000 variables. The first two

sample principal component directions are estimated from n “ 50 observa-

tions, and are used to obtain the sample and prediction scores (the latter

are computed from 20 new observations). The true principal scores are

also plotted and connected to their empirical counterparts. This example

visually reveals that the sample scores are systematically biased, that is,

uniformly rotated and stretched. What is more surprising is that the pre-

diction scores are also uniformly rotated, by the same angle as the sample

scores, and uniformly shrunk.

On the other hand, the third component scores from this example ap-

pear to be quite arbitrary; see Fig. 2. (The estimates for component 3 in

this example is only as good as random guess.) Moreover, unlike the first

two components plotted in Fig. 1, the sample scores of the third component

are grossly inflated, while the prediction scores are much smaller than the

sample scores.

In Section 2, we provide theoretical justification of the phenomenon
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Figure 1: Sample and prediction principal component scores connected to

their true values. This toy data set of size pd, nq “ p10000, 50q is generated

from the spike model with m “ 2 spikes, with polynomially-decreasing

eigenvalues with β “ 0.3; see Section 4.2 for details.

observed in Figs. 1 and 2, and asymptotically quantify the two parts of the

systematic bias. We assume m-component models with diverging variances,

and use the high-dimension, low-sample-size asymptotic scenario (i.e. dÑ

8 while n is fixed). These models and asymptotics are used in giving the

contrasting results of the sample and prediction scores. The correlation
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Figure 2: Sample and prediction principal component scores connected to

their true values. Models and data are the same as in Fig. 1.

coefficients between the sample (or prediction) and true scores turn out

to be close to 1, for large signals and large sample sizes, indicating the

situations where the principal component scores are most useful.

Since the bias is asymptotically quantified, the natural next step is to

adjust the bias by estimating the bias-adjustment factor. In Section 3,

we propose a simple, yet consistent, estimator and several variants of es-

timators based on the idea of Jackknife. Adjusting these biases improves
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the performance of prediction modeling, and we demonstrate its potential

by an example involving classification. Results from numerical studies are

summarized in Section 4.

There are several related works on the principal component scores in

high dimensions (Lee et al., 2010; Fan et al., 2013; Lee et al., 2014; Sund-

berg & Feldmann, 2016; Shen et al., 2016; Hellton & Thoresen, 2017; Wang

& Fan, 2017; Jung et al., 2018). This paper is built upon these previous

findings. In particular, this paper is a continuation of the author’s previous

work (Jung et al., 2018), and intermediate results are borrowed from there.

While the scaling and rotation of the sample scores were previously identi-

fied in Jung et al. (2018) as well as in Hellton & Thoresen (2017), the main

contributions of this paper are i) the quantification of the asymptotic bias

for the prediction scores, which has not been addressed, and ii) a consis-

tent estimation of the bias-adjustment factor. Under the “random-matrix”

asymptotic scenario, i.e., d{n Ñ c P p0,8q, Lee et al. (2010) discussed

a bias adjustment of principal component scores. Our work extends Lee

et al. (2010) to the high-dimension, low-sample-size asymptotic scenario.

Note that the asymptotic rotational bias was not identified in Lee et al.

(2010), due to larger sample size n — d considered there. A survey of high-

dimension, low-sample-size asymptotics can be found in Aoshima et al.
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(2018).

2. Asymptotic behavior of principal component scores

2.1 Model and assumptions

Let X “ rX1, . . . , Xns be a d ˆ n data matrix, where each Xi is mutually

independent and has zero mean and covariance matrix Σd. Population prin-

cipal components are obtained by the eigendecomposition of Σd “ UΛUT,

where Λ “ diagpλ1, . . . , λdq is the diagonal matrix of principal component

variances and U “ ru1, . . . , uds consists of principal component directions.

For a fixed m, we assume an m-component model, where the first m com-

ponent variances are distinguishably larger than the rest. Specifically, the

larger variances increase at the same rate as the dimension d, i.e. λi — d,

which was previously noted as the “boundary situation” (Jung et al., 2012).

This diverging-variance condition seems to be more realistic than the other

simpler cases λi " d (i.e., λi{d Ñ 8) and λi ! d (Hellton & Thoresen,

2017; Shen et al., 2016), and is satisfied for high-dimensional models used

in factor analysis (Fan et al., 2013; Li et al., 2017; Sundberg & Feldmann,

2016). In a more general asymptotic scenario of d{n Ñ 8, our condition,

λi — d, is akin to the condition, limnÑ8 d{pnλiq “ ci P p0,8q, assumed in

Shen et al. (2016) and Wang & Fan (2017). In particular, in the ultra-high
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dimensional case of n — logpdq, as defined in Fan & Lv (2008), we have

d1´ε ! d{n ! d1`ε for any ε ą 0. Thus, although not identical, the assump-

tion λi — d{n of Shen et al. (2016) and Wang & Fan (2017) is similar to

(A1) below, λi — d, in the ultra-high dimensional case.

We assume that the population principal component variances satisfy

the following:

(A1) λi “ σ2
i d, i “ 1, . . . ,m, σ2

1 ě ¨ ¨ ¨ ě σ2
m.

(A2) limdÑ8

řd
i“m`1 λi{d :“ τ 2 P p0,8q.

(A3) There exists B ă 8 such that for all i ą m, lim supdÑ8 λi ă B.

The conditions (A2) and (A3) are used to allow λi for i ą m increase

as d increases. All of our results hold when the condition (A3) is relaxed

to, e.g., allow the situation that λi — dα, α ă 1{2. Such generalization is

straightforward, but invites nonintuitive technicality (see, e.g., Jung et al.,

2012, 2018). By decomposing each independent observation into the first

m components and the remaining term, we write

Xj “

m
ÿ

i“1

λ
1{2
i uizij `

d
ÿ

i“m`1

λ
1{2
i uizij, pj “ 1, . . . , nq, (2.1)

where zij is the normalized principal component score.

(A4) For each j “ 1, 2, . . ., pz1j, z2j, . . .q is a sequence of independent ran-

dom variables such that for any i, Epzijq “ 0, Varpzijq “ 1, and that
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the fourth moment of zij is uniformly bounded.

2.2 Sample and prediction principal component scores

Suppose we have a data matrix X “ rX1, . . . , Xns and a vector X˚, in-

dependently drawn from the same population with principal component

directions ui. The principal component analysis is performed for data X

and is used to predict the principal component scores of X˚.

We define the ith true principal component scores of X as the vector of

n projection scores:

wT

i “ uT

i X “ pwi1, . . . , winq, pi “ 1, . . . , dq, (2.2)

where wij “ uT
iXj “

?
λizij. The last equality is given by the decomposition

of Xj in (2.1). Likewise, the true ith principal component score of X˚ is

wi˚ “ uT
iX˚ “

?
λizi˚.

The classical estimators of the pair of the ith principal component di-

rection and variance are pûi, λ̂iq, obtained by either the eigendecomposition

of the sample covariance matrix Sd “ n´1XX T ,

Sd “
n
ÿ

i“1

λ̂iûiû
T

i ,

or by the singular value decomposition of the data matrix,

X “
?
n

n
ÿ

i“1

b

λ̂iûiv̂
T

i , (2.3)
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where v̂i is the right singular vector of X . By replacing ui in (2.2) with its

estimator ûi, we define the ith sample principal component scores of X as

ŵT

i “ ûT

i X “ pŵi1, . . . , ŵinq, pi “ 1, . . . , nq. (2.4)

The sample principal component scores are in fact weighted right singular

vectors of X ; comparing to (2.3), ŵi “
a

nλ̂iv̂i.

For an independent observation X˚, the definition (2.4) gives

ŵi˚ “ ûT

iX˚,

which is called the ith prediction principal component score for X˚.

2.3 Main results

Denote W1 “ pσizijqi,j “ pd
´1{2wijqi,j “ d´1{2ru1, . . . , ums

TX for the m ˆ n

matrix of the scaled true scores for the first m principal components. The

ith row of W1 is d´1{2wT
i . Similarly, the scaled sample scores for the first m

principal components are denoted by xW1 “ d´1{2rû1, . . . , ûms
TX .

For a new observation X˚, write W˚ “ d´1{2pw1˚, . . . , wm˚q
T and xW˚ “

d´1{2pŵ1˚, . . . , ŵm˚q
T for the scaled true scores and prediction scores, re-

spectively, of the first m principal components.

Write W “ W1W
T
1 for the scaled m ˆ m sample covariance matrix

of the first m scores. Let tλipSq, vipSqu denote the ith largest eigenvalue-
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eigenvector pair of a non-negative definite matrix S and vijpSq denote the

jth loading of the vector vipSq. For a sequence Ad of random matrices,

we say Ad “ Oppbdq if all elements of Ad{bd are uniformly stochastically

bounded. Note that Ad “ Opp1q implies }Ad}F “ Opp1q.

Theorem 1. Assume the m-component model under Conditions (A1)–(A4)

and let n ą m ě 0 be fixed and d Ñ 8. Then, the first m sample and

prediction scores are systematically biased:

xW1 “ SRTW1 `Oppd
´1{4

q, (2.5)

xW˚ “ S´1RTW˚ `Oppd
´1{2

q, (2.6)

where R “ rv1pWq, . . . , vmpWqs, S “ diagpρ1, . . . , ρmq, and ρk “
a

1` τ 2{λkpWq.

Moreover, for k ą m,

ŵkj “ Oppd
1{2
q, j “ 1, . . . , n, (2.7)

ŵk˚ “ Opp1q. (2.8)

Our main results show that the first m sample and prediction scores are

comparable to the true scores. The asymptotic relation tells that for large d,

the first m sample scores in xW1 converge to the true scores in W1, uniformly

rotated and scaled for all data points. It is thus valid to use the first m

sample principal scores for exploration of important data structures, and to

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



2.3 Main results13

reduce the dimension of the data space from d to m in the high-dimension,

low-sample-size context.

Theorem 1 explains and quantifies the two parts of the bias, exemplified

in Fig. 1. In particular, the same rotational bias applies to both sample and

prediction scores. The scaling bias factors ρk in the matrix S are all greater

than 1. Thus, while the sample scores are all stretched, the prediction

scores are all shrunk. The second part of the theorem shows that the

magnitude of inflation for the sample scores of the “noise” component (see,

e.g., component 3 scores in Fig. 2) is of order d1{2. On the other hand, the

prediction scores of the noise component do not diverge.

Remark 1. Suppose m “ 1 in Theorem 1. Then the sample and prediction

scores are simply proportionally-biased in the limit: ŵ1j{w1j Ñ ρ1 and

ŵ1˚{w1˚ Ñ ρ´11 in probability as dÑ 8.

Remark 2. Suppose that the limit n Ñ 8 is taken for the expression

(2.5) and (2.6). Then from the classical asymptotic results on the m ˆm

covariance matrix W (cf. Anderson, 1963), S “ Im ` Opp
1
n
q and R “

Im `Opp
1
n
q. That is, in the limit dÑ 8, the limiting bias is of order n´1.

The proof of Theorem 1 relies on the asymptotic behavior of the prin-

cipal component direction and variance, which is now well-understood; see

Jung et al. (2018) for the asymptotic regime of dÑ 8, n fixed; Shen et al.
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(2016) and Wang & Fan (2017) for the asymptotic regime of dÑ 8, nÑ 8

and d{nÑ 8. For reference we restate it here.

Lemma 1. [Theorem S2.1, Jung et al. (2018)] Assume the conditions of

Theorem 1. (i) the sample principal component variances converge in prob-

ability as dÑ 8;

d´1nλ̂i “

$

’

’

&

’

’

%

λipWq ` τ 2 `Oppd
´1{2q, i “ 1, . . . ,m;

τ 2 `Oppd
´1{2q, i “ m` 1, . . . , n.

(ii) The inner product between sample and population PC directions con-

verges in probability as dÑ 8;

ûT

i uj “

$

’

’

&

’

’

%

ρ´1i vijpWq `Oppd
´1{2q, i, j “ 1, . . . ,m;

Oppd
´1{2q, otherwise.

This result is abridged later in Section 2.4 for discussion. To handle

prediction scores, we need in addition the following observation, summa-

rized in Lemma 2. For each k “ 1, . . . ,m, the kth projection score ŵk˚ is

decomposed into

ŵk˚ “ ûT

kX˚ “
m
ÿ

i“1

wi˚û
T

kui ` εk˚, (2.9)

where εk˚ “
řd
i“m`1wi˚û

T
kui. In the next lemma, we show that the “error

term,” εk˚, is stochastically bounded.
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Lemma 2. Assume the m-component model with (A1)–(A4) and let n ą

m ě 0 be fixed. For k “ 1, . . . , n, Epεk˚|W1q “ 0, and

lim
dÑ8

Varpεk˚ | W1q “ υ2O{pλkpWq ` τ 2q, for k ď m; (2.10)

lim
dÑ8

1

n´m

n
ÿ

k“m`1

Varpεk˚ | W1q “ υ2O{τ
2, (2.11)

where υ2O “ limdÑ8 d
´1

řd
i“m`1 λ

2
i . As dÑ 8, εk˚ “ Opp1q.

Lemmas 1 and 2 facilitate an interpretation of the results in Theo-

rem 1. Intuitively, the overestimation of the sample principal variances, in

Lemma 1(i), causes the sample scores to be stretched, while the inconsis-

tency of ûi leads to smaller ûT
i ui in Lemma 1(ii), which then results in the

deflation of the projection scores (2.9). Proofs of Theorem 1 and all other

results can be found in the supplementary material.

Next result shows that the sample and true scores (or prediction and

true scores) are highly correlated with each other. For this, we compute

the inner product between the standardized sample scores ŵk{
a

ŵT
k ŵk and

true scores wk{
a

wT
kwk. Define for a pair px, yq of n-vectors rpx, yq “

xTy{
?
xTx ¨ yTy, which is an empirical correlation coefficient between x and

y when the mean is assumed to be zero.

Theorem 2. Let ζkj “ λkpWq{p
řm
`“1 v

2
`jpWqλ`pWqq and ζ̄kj “ σ2

k{p
řm
`“1 v

2
`jpWqσ2

` q.

Under the assumptions of Theorem 1, as dÑ 8, for k, j “ 1 . . . ,m,
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(i) rpŵk, wjq Ñ vkjpWqζ1{2kj in probability ;

(ii) limdÑ8 Corrpŵk˚, wj˚ | W1q “ vkjpWqζ̄kj1{2.

Remark 3. In the special case, m “ 1, both the sample and prediction

scores of the first principal component are perfectly correlated with the true

scores, in the limit. Specifically, Theorem 2 implies that |rpŵ1, w1q| Ñ 1 in

probability and |Corrpŵk˚, wj˚q| Ñ 1 as dÑ 8.

Remark 4. The somewhat complex limiting quantity vkjpWqζ1{2kj is an

artifact of the fixed sample size. To simplify the expression for the case

k “ j, write

´

vkkpWqζ1{2kk

¯2

“
1

1` ξkpWq
, ξkpWq “

ÿ

`‰k

v2`kpWq
λ`pWq
λkpWq

.

Note that W “ W1W
T
1 is proportional to the sample covariance matrix of

the first m true scores, and that vkkpWq is the inner product between the

kth sample and theoretical principal component directions of the data set

W1, where the number of variables, m, is smaller than the sample size n.

Therefore, we expect that |vkkpWq| « 1 and ξkpWq « 0 for large sample size

n. Taking the additional limit n Ñ 8, the results in Theorem 2 become

more interpretable:

|rpŵk, wjq| Ñ 1pk“jq in probability, and |Corrpŵk˚, wj˚q| Ñ 1pk“jq,
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2.4 Inconsistency of the direction and variance estimators17

as dÑ 8, nÑ 8 (limits are taken progressively).

Remark 5. What is the correlation coefficient rpŵk, wkq for k ą m in

the limit d Ñ 8? In an attempt to answer this question, we note ŵk “

pnλ̂kq
1{2v̂k, v̂k “ vkpX TX q and X TX “

řd
i“1wiw

T
i . Thus,

rpŵk, wkq “ wT

kvkp
d
ÿ

i“1

wiw
T

i q{
a

λk,

and it is natural to guess that the dependence of v̂k on any wi, including

the case i “ k, would diminish as d tends to infinity. In fact, d´1X TX

converges to the rank-m matrix S0 :“ W T
1 W1 ` τ 2In (Jung et al., 2012),

and wk and S0 are independent. Thus, it is reasonable to conjecture that

limdÑ8 Errpŵk, wkqs “ 0, for k ą m. Unfortunately, in the limit dÑ 8, the

kth, k ą m, eigenvector of d´1X TX becomes an arbitrary choice in the left

null space of W1. Due to this non-unique eigenvector, the inner product

wT
kvkpS0q is not defined, and consequently discussing the convergence of

rpŵk, wkq is somewhat demanding. We numerically confirm the conjecture

in Section 4.1.

2.4 Inconsistency of the direction and variance estimators

The findings in the previous subsection may be summarized as that the first

m principal component scores convey about the same visual information as
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the true values when displayed. (The information is further honed by the

bias adjustment in Section 3.) In a practical point of view, the scores and

their graph matter the most.

On the other hand, a quite different conclusion about the standard

principal component analysis is made when the estimator ûi is of interest.

The asymptotic behavior of the direction ûi as well as the variance estimator

λ̂i are obtained as a special case of Lemma 1. Under our model,

pûT

i ui, d
´1nλ̂iq Ñ

$

’

’

&

’

’

%

pρ´1i viipWq, λipWq ` τ 2q, i “ 1, . . . ,m;

p0, τ 2q, i “ m` 1, . . . , n.

(2.12)

in probability as dÑ 8 (n is fixed).

The variance estimator λ̂i, for i ď m, is asymptotically proportionally-

biased. Specifically, λ̂i{λi Ñ pλipWq ` τ 2q{pnσ2
i q in probability as d Ñ 8.

Thus by using a classical result on the expansion of the eigenvalues of W

for large n,

Epλ̂i{λiq Ñ 1`
1

n

«

m
ÿ

j‰i

σ2
j

σ2
i ´ σ

2
j

`
τ 2

σ2
i

ff

`Opn´2q,

as d Ñ 8. Note that even when m “ 1, the bias is still of order n´1.

This proportional bias may be empirically adjusted, using good estimates

of σ2
i and τ 2. We do not pursue it here. Note that all empirical principal

component variances, for i ą m, converge to τ 2{n, when scaled by d, and

thus do not reflect any information of the population.
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The result (2.12) also shows that the direction estimator ûi is incon-

sistent and asymptotically-biased, compared to ui. The estimator ûi is

closer to ui when ρ´1i |viipWq| is closer to 1. It is impossible to achieve

ρ´1i |viipWq| Ñ 1 since for finite n, both |viipWq| and ρ´1i are strictly less

than 1. Although the “angle” between ûi and ui is quantified in (2.12),

the theorem itself is useless in adjusting the bias. This is because that the

direction to which ûi moves away from ui is random, i.e. uniformly dis-

tributed; see Wang & Fan (2017) for the limiting distribution of ûi under a

general asymptotic scenario of d{nÑ 8, while d{pnλiq
´1 is bounded.

In short, while the bias in the principal component direction is challeng-

ing to remove, the bias in the sample and prediction scores can be quantified

and removed.

3. Bias-adjusted scores

In this section, we describe and compare several choices for the estimation of

the bias-adjustment factor ρi. Note that both sample and prediction scores

are rotated by the same direction and amount, specified in the matrix R.

For applications requiring score matching (e.g., classification rules trained

on the sample scores or the ancestry estimation discussed in the introduc-

tion), coordinate-free methods are often used and there is less practical
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advantage in estimating R. We focus on adjusting the scores by estimating

ρi.

Suppose that the number of effective principal components, m, is pre-

specified or estimated in advance. Our first estimator is obtained by re-

placing τ 2 and λipWq in ρi “
a

1` τ 2{λipWq with reasonable estimators.

In particular, we set

τ̃ 2 “

řn
i“m`1 λ̂i

n´m

n

d
, λ̃ipWq “ d´1nλ̂i ´ τ

2, (3.13)

and

ρ̃i “

b

1` τ̃ 2{λ̃ipWq, pi “ 1, . . . ,mq. (3.14)

This simple estimator ρ̃i is in fact consistent.

Corollary 1. Suppose the assumptions of Lemma 1 are satisfied. Let dÑ

8. For i “ 1, . . . ,m, conditional to W1, τ̃
2, λ̃ipWq and ρ̃i are consistent

estimators of τ 2, λipWq and ρi, respectively.

Using (3.14), the bias-adjusted sample and prediction scores are ŵ
padjq
i “

ρ̃´1i ŵi and ŵ
padjq
i˚ “ ρ̃iŵi˚ for i “ 1, . . . ,m. The sample and prediction scores

matrices in (2.5) and (2.6) are then adjusted to, using S̃ “ diagpρ̃‘, . . . , ρ̃mq,

xW
padjq
1 “ S̃´1xW1, xW padjq

˚ “ S̃xW˚. (3.15)
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Figure 3: Bias-adjusted sample and prediction scores using (3.15) for the toy

data introduced in Fig. 1. The estimates (3.14) are pρ̃1, ρ̃2q “ p1.385, 1.546q,

very close to the theoretical values pρ1, ρ2q “ p1.385, 1.557q. Both sample

and prediction scores are simultaneously rotated about 16 degrees clockwise.

An application of the above bias-adjustment procedure is exemplified

in Fig. 3. There, the magnitudes of the sample and prediction scores are

well-adjusted.

Our next proposed estimators are motivated by the well-known jack-
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knife bias adjustment procedures and also by the leave-one-out cross-validation.

For simplicity, assume m “ 1. The bias-adjustment factor we aim to esti-

mate is ρ1 “ p1` τ
2{}ξ1}

2
2q

1{2, where ξ1 “ d´1{2w1 “ σ1pz11, . . . , z1nq
T is the

scaled true scores for the first principal component.

Write, for each j “ 1, . . . , n, the jth scaled sample score as $̂1j “

d´1{2ûT
1Xj, and the jth scaled prediction score as

$̂1pjq “ d´1{2ûT

1p´jqXj,

where û1p´jq is the first principal component direction, computed from Xp´jq,

i.e., the data except the jth observation.

From Theorem 1, ρ1 is the asymptotic bias-adjustment factor for $̂1;

$̂1j “ ρ1$1j ` Oppd
´1{4q. For $̂1pjq, again applying Theorem 1, we get

$̂1pjq “ ρ´11p´jq$1j ` Oppd
´1{2q, where ρ1p´jq “ p1` τ 2{}$1p´jq}

2
2q

1{2 is the

bias-adjustment factor computed from Xp´jq, using$1p´jq “ σ1pz11, . . . , z1,j´1, z1,j`1, . . . z1nq
T.

To simplify terms, Taylor expansion is used to expand ρ1p´jq as a function

of $2
1j{n, resulting in

ρ1p´jq “

ˆ

1`
τ 2{n

}$1}
2
2{n´$

2
1j{n

˙1{2

“ ρ1 `
1

2ρ1

}$1}
2
2{n

τ 2
$2

1j

n
`Opp

1

n2
q.

(3.16)

Using the approximation

ρ1ρ1p´jq « ρ21 `
}$1}

2
2

2τ 2
$2

1j

n2
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given by (3.16), we write the ratio of the sample and prediction scores to

cancel out the unknown true score $1j as follows:

ˆ

ŵ1j

ŵ1pjq

˙1{2

“

ˆ

$̂1j

$̂1pjq

˙1{2

« ρ1.

Based on the above heuristic, we define the following estimators of the

bias-adjustment factors:

ρ̂
p1q
i “

1

n

n
ÿ

j“1

ˆ

ŵij
ŵipjq

˙1{2

, (3.17)

ρ̂
p2q
i “

˜

řn
j“1 ŵij

řn
j“1 ŵipjq

¸1{2

, (3.18)

ρ̂
p3q
i “

˜

řn
j“1 ŵ

2
ij

řn
j“1 ŵ

2
ipjq

¸1{4

. (3.19)

In implementing the above estimators, we used absolute values of the sam-

ple and predicted scores. The estimator (3.19) is a ratio of the sample

and prediction score variances, obtained by a leave-one-out estimation of

prediction scores.

The estimators ρ̂
p1q
i , ρ̂

p2q
i , and ρ̂

p3q
i tend to overestimate ρ for small sam-

ple size n, as expected from (3.16). In our numerical experiments, these

three estimators perform similarly.
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4. Numerical studies

4.1 Simulations to confirm the asymptotic bias and near-perfect

correlations

In this section, we compare the theoretical asymptotic quantities derived in

Section 2.3 with their finite-dimensional empirical counterparts.

First, the theoretical values of the scaling bias ρi and the rotation ma-

trix R in Theorem 1 are compared with their empirical counterparts. The

empirical counterparts of the two matrices R, S are defined as the minimizer

of the Procrustes problem

min
›

›

›
W1 ´xW T

1 S
´1
0 R0

›

›

›

2

F
, (4.20)

with the constraint that S0 is a diagonal matrix with positive entries and R0

is an orthogonal matrix. The solutions are denoted by qS “ diagpρ̌1pW1q, . . . , ρ̌mpW1qq

and qR. For simplicity, we consider the m “ 2 case, and parameterize R

by the rotation angle, θR “ cos´1pR1,1q, and qR by θ̌R “ cos´1p qR1,1q. We

compare θR with θ̌R and ρipW1q with ρ̌ipW1q, from a 2-component model

with pn, dq “ p50, 5000q (precisely, the spike model with m “ 2 and β “ 0.3

in Section 4.2). Note that both the theoretical values and the best-fitted

values depend on the true scores W1. To capture the natural variation given

by W1, the experiment is repeated for 100 times. The results, summarized
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in the top row of Fig. 4, confirm that the asymptotic statements in Theo-

rem 1 approximately hold for finite dimensions. In particular, the rotation

matrices R and qR are very close to each other. The Procrustes-fitted, or

“best”, ρ̌i tends to be larger than the asymptotic, or theoretical, ρi, espe-

cially for i “ 2 (shown as© in Fig. 4) and for larger values of ρ2. This is not

unexpected. Larger values of ρ2 are from smaller λ2pWq. Take an extreme

case where λ2pWq “ 0, then by (2.7) in Theorem 1, the sample scores are

of magnitude d1{2 compared to the true scores. Thus, as λ2pWq decreases

to 0, the Procrustes scaler ρ̌2 empirically interpolates the finite-scaling case

(2.5) to the diverging case (2.7) of Theorem 1.

Second, we compare the limit of correlation coefficients in Theorem 2

with finite-dimensional empirical correlations, rpŵk, wkq, for k “ 1, 2. For

the correlation coefficient of the prediction scores, we use the sample corre-

lation coefficient between pŵk˚, wk˚q, as an estimate of Corrpŵk˚, wk˚ | W1q.

The simulated results are shown in the bottom row of Fig. 4. The empirical

correlation coefficients tend to be smaller than the theoretical counterparts,

but both are higher for stronger “signal strength” nσ2
k “ EpλkpWqq.

Third, from the same simulations, it can be checked that the kth, where

k ą m, sample scores are diverging, while the prediction scores are stable, as

indicated in (2.7) and (2.8). To confirm this, we choose k “ 3 and for each
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Figure 4: (Top row) Theoretical rotation angles θR and bias-adjustment

factors ρ1 (ˆ), ρ2 (©), compared with the best-fitting Procrustes coun-

terparts (θ̌R, ρ̌ipW1q). (Bottom row) Empirical correlations compared with

their limits in Theorem 2.
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4.2 Numerical performance of the bias-adjustment factor estimation27

Sample scores Prediction scores

Variance 120.7(4.4) 1.38(0.2)

Corr. Coef. -0.0024(0.2) -0.004(0.15)

Table 1: The kth sample and prediction scores (unadjusted) for the case

k ą m. Shown are the mean (standard deviation) of the variances and cor-

relation coefficients to true scores, from 100 repetitions. The true variance

is λ3 “ Varpw3˚q « 6.5.

experiment, compute yVarpŵ3q, the sample variance of the sample scores,

and an approximation of Varpŵ3˚q. The results are shown in Table 1. As

expected, the sample scores are grossly inflated, while the prediction scores

are stable. Finally, the conjecture in Remark 5 is also empirically checked;

Table 1 also shows that for large d, the sample (or prediction) and true

scores for the kth, k ą m, component are nearly uncorrelated.

4.2 Numerical performance of the bias-adjustment factor esti-

mation

We now test our estimators of the bias-adjustment factor ρi, using the

following data-generating models with m “ 2.

The first one is called a spike model. We sample from the d-dimensional
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4.2 Numerical performance of the bias-adjustment factor estimation28

zero-mean normal distribution where the first two largest eigenvalues of the

covariance matrix are λi “ σ2
i d, for i “ 1, 2, where pσ2

1, σ
2
2q “ p0.02, 0.01q.

The rest of eigenvalues are slowly-decreasing. In particular, λi “ τi´β,

where τ “ r
řd
i“3 i

´β{pd ´ 2qs´1. We set β “ 0.3 or 0.5. This spike model

has more than two unique principal components for each fixed dimension,

but in the limit dÑ 8, only the first two principal components are useful.

The second model is a mixture model. Let µg (g “ 1, 2, 3) be d-

dimensional vectors, the elements of which are randomly drawn from t´a, 0, au

with replacement for a given a ą 0, then assumed as fixed quantities.

Given µg’s we sample from the mixture model X | G “ g „ Npµg, Idq,

P pG “ gq “ pg ą 0,
ř3
g“1 pg “ 1. We set pp1, p2, p3q “ p0.5, 0.3, 0.2q. It can

be checked that CovpXq satisfies the assumption of the 2-component model

in (A1)–(A4).

For various cases of high-dimension, low-sample-size situations, ranging

d “ 5, 000 to 20, 000 and n “ 50 to 100, random samples from each of

these models are generated. For each case, the theoretical quantity ρi “

ρipW1q and the best-fitted Procrustes scaler ρ̌i “ ρ̌ipW1q are computed.

These quantities depend on the mˆ n random matrix W1. The mean and

standard deviation of ρi (from 100 repetitions) are shown in the first column

of Table 2. As expected, the theoretical value ρi depends on the sample
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4.2 Numerical performance of the bias-adjustment factor estimation29

size n; large sample size decreases the bias, Epρiq, and also decreases the

variance Varpρiq.

The mean of the best-fitted scaler ρ̌i (i “ 1) is displayed in the second

column of the table. While they are quite close to the theoretical counter-

part, ρ̌is are significantly larger for the mixture model, whose signal-to-noise

ratio is smaller than the spike model, and for the not-so-large dimension

d “ 5, 000. This is not unexpected, since the theoretical values are also

based on the dimension-increasing asymptotic arguments.

We further compute the proposed estimators of ρi, given in (3.14),

(3.17)–(3.19). We also compute the estimator derived from Lee et al. (2010),

which is the square-root of the reciprocal of the shrinkage factor, obtained

by numerical iterations, denoted by d̂ν in Lee et al. (2010). (The relation

of Lee et al. (2010) to our work is further discussed in Section 5.) All of the

methods considered provide accurate estimates of the theoretical quantity

ρi. We omit the numerical results from the estimators (3.18) and (3.19), as

their performances are very close to those from (3.17). The supplementary

material contains an extended table of Table 2, including the case for ρ2.
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ρ1

d n Theory Best Asymp. Jackknife LZW

5000 50 1.41 (0.07) 1.42 1.40 1.43 1.41

Spike model 10000 50 1.42 (0.06) 1.43 1.42 1.44 1.42

β “ 0.3 10000 100 1.23 (0.03) 1.23 1.23 1.24 1.23

20000 100 1.23 (0.02) 1.23 1.23 1.24 1.23

5000 50 1.42 (0.08) 1.45 1.41 1.45 1.40

Spike model 10000 50 1.43 (0.07) 1.45 1.43 1.46 1.42

β “ 0.5 10000 100 1.22 (0.02) 1.23 1.22 1.23 1.21

20000 100 1.23 (0.02) 1.23 1.23 1.24 1.22

5000 50 2.06 (0.06) 2.22 1.92 2.14 2.00

Mixture model 10000 50 2.09 (0.06) 2.17 1.98 2.14 2.02

a “ 0.15 10000 100 1.63 (0.02) 1.67 1.61 1.65 1.63

20000 100 1.64 (0.02) 1.66 1.62 1.66 1.63

Table 2: Simulation results from 100 repetitions. “Theory” is mean (stan-

dard deviation) of ρi; “Best” is ρ̌i (4.20); “Asymp.” is ρ̃i (3.14); “Jackknife”

is ρ̂
p1q
i (3.17); “LZW” is from Lee et al. (2010). Averages are shown for the

latter four columns. The standard errors of the quantities in estimation of

ρi are at most 0.04.
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4.3 Bias-adjustment improves classification31

4.3 Bias-adjustment improves classification

Our last simulation study is an application of the bias-adjustment proce-

dure to classification. Our training and testing data, each with sample size

100, are sampled from the mixture model with three groups, as described in

Section 4.2. As frequently used in practice (Adam et al., 2008), dimension

reduction by the standard principal component analysis is performed first,

then a classification rule by the support vector machine (SVM, Cristianini

& Shawe-Taylor, 2000) is trained on the sample principal component scores.

In this simulation, we fix m “ 2 and d “ 5000. We compare the training

and testing missclassification error rates (estimated by 100 repetitions) of

the SVMs trained (and tested) either on the unadjusted sample and pre-

diction scores, xW1 and xW‹, or on the bias-adjusted sample and prediction

scores, xW
padjq
1 and xW

padjq
‹ in (3.15). The estimated error rates are shown in

Table 3. It is clear that the use of bias-adjusted scores greatly improves the

performance of classification.

To better understand the huge improvement of classification perfor-

mances, we plot the sample and prediction scores that are inputs of the

classifier. In Fig. 5, the classifier is estimated from the the sample scores

(symbol ©) and is used to classify future observations, i.e. the prediction

scores (symbol ˆ). Due to the scaling bias, the unadjusted sample and
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Unadjusted scores Bias-adjusted scores

Training Error 0.04(0.02) 0.07(0.03)

Testing Error 21.4(1.33) 1.98(0.23)

Table 3: Means (standard errors) of Missclassification error rates (in per-

cent).

prediction scores are of different scales (shown in the left panel), and classi-

fication is bound to fail. On the other hand, the proposed bias-adjustment,

shown in the right panel, works well for this data set, leading to a better

classification performance.

5. Discussion

The standard principal component analysis is shown to be useful in the

dimension reduction of data from the m-component models with diverging

variances. In particular, in the high-dimension, low-sample-size asymptotic

scenario we reveal that the sample and prediction scores have systematic

biases that can be consistently adjusted. We propose several estimators of

the scaling bias, while there is no compelling reason to adjust rotational

bias. The amount of bias is large when the sample size is small and when

the variance of accumulated noise is large compared to the variances of the
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Figure 5: Bias-adjusted scores from the mixture models greatly improve the

classification performance. Different colors correspond to different groups.

Symbol© represents the sample scores (unadjusted in the left, adjusted in

the right); symbol ˆ represents the prediction scores.

first m components.

Lee et al. (2010) discussed adjusting bias in the prediction of principal

components, based on the random matrix theory and the asymptotic sce-

nario of d{nÑ γ P p0,8q, nÑ 8. They showed that the prediction scores

tend to be smaller than the sample scores, and the ratio of the shrinkage

is asymptotically sdpŵi1q{sdpŵi˚q « ρ
pLZWq
i “

λi´1
λi`γ´1

. This “shrinkage fac-

tor” ρ
pLZWq
i corresponds to the squared reciprocal of our scaling bias, ρ´2i .

Our work can be thought of as an extension of Lee et al. (2010) from the
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asymptotic regime d — n to the high-dimension, low-sample-size situations

(see also Lee et al. (2014); Dey & Lee (2019)). Finally, we note that in

the asymptotic scenario of Lee et al. (2010, 2014) and Dey & Lee (2019)

there is no rotational bias. This is because in their limit the sample size is

infinite. We show that the rotational bias is universal to both sample and

prediction scores and is of order n´1{2.

Supplementary Materials

The online supplementary materials contain proofs of all results and a

table summarizing simulation results.

Acknowledgements

This work was supported by the National Research Foundation of Korea

(No. 2019R1A2C2002256) and the Research Resettlement Fund for the new

faculty of Seoul National University.

References

Abraham, G. & Inouye, M. (2014). Fast principal component analysis of large-scale genome-

wide data. PloS one 9, e93766.

Adam, C. D., Sherratt, S. L. & Zholobenko, V. L. (2008). Classification and individuali-

sation of black ballpoint pen inks using principal component analysis of UV–vis absorption

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



REFERENCES

spectra. Forensic Sci. Int. 174, 16–25.

Anderson, T. W. (1963). Asymptotic theory for principal component analysis. Ann. Math.

Stat. 34, 122–148.

Aoshima, M., Shen, D., Shen, H., Yata, K., Zhou, Y.-H. & Marron, J. (2018). A survey

of high dimension low sample size asymptotics. Aust. N. Z. J. Stat 60, 4–19.

Cristianini, N. & Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines.

Cambridge University Press.

Dey, R. & Lee, S. (2019). Asymptotic properties of principal component analysis and

shrinkage-bias adjustment under the generalized spiked population model. J. Multivar.

Anal 173, 145–164.

Fan, J., Han, F. & Liu, H. (2014). Challenges of big data analysis. Natl. Sci. Rev. 1, 293–314.

Fan, J., Liao, Y. & Mincheva, M. (2013). Large covariance estimation by thresholding

principal orthogonal complements. J. R. Stat. Soc. B 75, 603–680.

Fan, J. & Lv, J. (2008). Sure independence screening for ultrahigh dimensional feature space.

J. R. Stat. Soc. B 70, 849–911.

Hellton, K. H. & Thoresen, M. (2017). When and why are principal component scores a

good tool for visualizing high-dimensional data? Scand. J. Stat. 44, 581–597.

Jackson, J. E. (2005). A user’s guide to principal components, vol. 587. John Wiley & Sons.

Johnstone, I. M. & Lu, A. Y. (2009). On Consistency and Sparsity for Principal Components

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



REFERENCES

Analysis in High Dimensions. J. Am. Stat. Assoc. 104, 682–693.

Jung, S., Ahn, J. & Lee, M. H. (2018). On the number of principal components in high

dimensions. Biometrika 105, 389–402.

Jung, S. & Marron, J. S. (2009). PCA consistency in high dimension, low sample size context.

Ann. Stat. 37, 4104–4130.

Jung, S., Sen, A. & Marron, J. (2012). Boundary behavior in High Dimension, Low Sample

Size asymptotics of PCA. J. Multivar. Anal. 109, 190–203.

Lee, S., Zou, F. & Wright, F. A. (2010). Convergence and prediction of principal component

scores in high-dimensional settings. Ann. Stat. 38, 3605.

Lee, S., Zou, F. & Wright, F. A. (2014). Convergence of sample eigenvalues, eigenvectors,

and principal component scores for ultra-high dimensional data. Biometrika 101, 484.

Li, Q., Cheng, G., Fan, J. & Wang, Y. (2017). Embracing the blessing of dimensionality in

factor models. J. Am. Stat. Assoc. 113, 380–389.

Li, Q., Shang, L., Gao, T., Zhang, L., Ou, T., Huang, G., Chen, C. & Li, C. (2014).

Use of principal component scores in multiple linear regression models for simulation of

chlorophyll-a and phytoplankton abundance at a karst deep reservoir, southwest of China.

Acta Ecologica Sinica 34, 72–78.

Marcus, J. H., Posth, C., Ringbauer, H., Lai, L., Skeates, R., Sidore, C., Beckett,

J., Furtwängler, A., Olivieri, A., Chiang, C. W. et al. (2020). Genetic history from

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



REFERENCES

the Middle Neolithic to present on the Mediterranean island of Sardinia. Nat. Commun.

11, 1–14.

Paul, D. (2007). Asymptotics of sample eigenstructure for a large dimensional spiked covariance

model. Stat. Sin. 17, 1617–1642.

Shen, D., Shen, H., Zhu, H. & Marron, J. (2016). The statistics and mathematics of high

dimension low sample size asymptotics. Stat. Sin. 26, 1747.

Sundberg, R. & Feldmann, U. (2016). Exploratory factor analysis-parameter estimation and

scores prediction with high-dimensional data. J. Multivar. Anal. 148, 49–59.

Wang, C., Zhan, X., Liang, L., Abecasis, G. R. & Lin, X. (2015). Improved ancestry

estimation for both genotyping and sequencing data using projection procrustes analysis

and genotype imputation. Am. J. Hum. Genet. 96, 926–937.

Wang, W. & Fan, J. (2017). Asymptotics of empirical eigenstructure for high dimensional

spiked covariance. Ann. Stat. 45, 1342.

Zhan, X., Larson, D. E., Wang, C., Koboldt, D. C., Sergeev, Y. V., Fulton, R. S.,

Fulton, L. L., Fronick, C. C., Branham, K. E., Bragg-Gresham, J. et al. (2013).

Identification of a rare coding variant in complement 3 associated with age-related macular

degeneration. Nat. Genet. 45, 1375–1379.

Zhang, D., Dey, R. & Lee, S. (2020). Fast and robust ancestry prediction using principal

component analysis. Bioinformatics 36, 3439–3446.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



REFERENCES

Zou, H., Hastie, T. & Tibshirani, R. (2006). Sparse Principal Component Analysis. J.

Comp. Graph. Stat. 15, 265–286.

Seoul National University

E-mail: sungkyu@snu.ac.kr

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)


	Asymptotic behavior of principal component scores
	Model and assumptions
	Sample and prediction principal component scores
	Main results
	Inconsistency of the direction and variance estimators

	Bias-adjusted scores
	Numerical studies
	Simulations to confirm the asymptotic bias and near-perfect correlations
	Numerical performance of the bias-adjustment factor estimation
	Bias-adjustment improves classification

	Discussion



