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Abstract: Comparing two population means of network data is of paramount importance in a wide range of

scientific applications. Numerous existing network inference solutions focus on global testing of entire networks,

without comparing individual network links. The observed data often take the form of vectors or matrices, and

the problem is formulated as comparing two covariance or precision matrices under a normal or matrix normal

distribution. Moreover, many tests suffer from a limited power under a small sample size. In this article, we tackle

the problem of network comparison, both global and simultaneous inferences, when the data come in a different

format, i.e., in the form of a collection of symmetric matrices, each of which encodes the network structure of

an individual subject. Such data format commonly arises in applications such as brain connectivity analysis and

clinical genomics. We no longer require the underlying data to follow a normal distribution, but instead impose

some moment conditions that are easily satisfied for numerous types of network data. Furthermore, we propose

a power enhancement procedure, and show that it can control the false discovery, while it has the potential to

substantially enhance the power of the test. We investigate the efficacy of our testing procedure through both

an asymptotic analysis and a simulation study under a finite sample size. We further illustrate our method with

examples of brain connectivity analysis.

Key words and phrases: Auxiliary information; False discovery rate; Multiple testing; Network data; Power

enhancement.
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1. INTRODUCTION

1 Introduction

With recent prevalence of network data, the problem of comparing two populations of networks

is gaining increasing attention. Our motivation is brain connectivity analysis, which studies func-

tional and structural brain architectures through neurophysiological measures of brain activities

and synchronizations (Fornito et al., 2013). Accumulated evidences have suggested that, com-

pared to a healthy brain, the brain connectivity network alters in the presence of numerous neu-

rological disorders, for example, Alzheimer’s disease, autism spectrum disorder, among many

others. Such alternations are believed to hold crucial insights of disease pathologies (Fox and

Greicius, 2010). A typical brain connectivity study collects imaging scans, such as functional

magnetic resonance imaging, or diffusion tensor imaging, from groups of subjects with and with-

out disorder. Based on the imaging scan, a network is constructed for each individual subject,

with the nodes corresponding to a common set of brain regions, and the edges encoding the func-

tional or structural associations between the regions. A fundamental scientific question of interest

is to compare the brain networks and to identify local connectivity patterns that alter between the

two populations. Network comparison is equally interesting in many other scientific areas as

well, for instance, clinical genomics, where of crucial interest is to understand and compare gene

regulatory networks of patients with and without cancer (Luscombe et al., 2004).

In the context of brain connectivity analysis, there has been a rich literature on network esti-

mation methods (Ahn et al., 2015; Qiu et al., 2016; Wang et al., 2016; Zhu and Li, 2018, among

many others). Recently, Zou et al. (2017) and Lan et al. (2018) studied estimation of the covari-

ance matrix of a multivariate vector as a function of the similarity measure of the covariates, or

a function of the adjacency matrix. There is, however, a relative paucity of inference methods,
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1. INTRODUCTION

especially simultaneous inference for individual links. Even though both can produce, in effect,

a concise representation of the network structure, network inference is a fundamentally different

problem than network estimation. Among the few existing network inference solutions, Kim et al.

(2014) studied a number of two-sample tests based on network summary metrics or generalized

linear models. However, they only compared two networks globally, without any inference on the

individual links of the networks. Besides, some of their tests resorted to bootstrap or permutation,

which is computationally intensive and slow. Ginestet et al. (2017) characterized the geometry

of the space of undirected networks with edge weights, and developed an analog of the classical

two-sample test for network empirical means. However, they again focused on the global test

of two entire networks. Chen et al. (2015) developed a method to detect differentially expressed

connectivity subnetworks under different clinical conditions. They resorted to a permutation test,

and controlled the family-wise error rate. Xia et al. (2015) first encoded the connectivity network

by a partial correlation matrix computed from vector-valued data under a normal distribution.

They then proposed a multiple testing procedure to compare the partial correlation matrices from

the two populations, along with a proper false discovery control. Xia and Li (2019) further ex-

tended the test to matrix-valued data under a matrix normal distribution. In both cases, the test

statistics were constructed based on the vector or matrix-valued data, which, as we explain next,

may not be directly observable. Moreover, the underlying data distribution may not always be

normal or matrix normal. Durante and Dunson (2018) developed a fully Bayesian solution for

network comparison, which is very flexible and can handle the data format of our problem, but it

requires specification of a series of prior distributions and can be computationally intensive.

Applications such as brain connectivity analysis actually raise new challenges for network

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



1. INTRODUCTION

inference. First, the observed data come in the form of p × p matrices, where p is the number

of network nodes. Each such matrix encodes the network structure for one individual subject,

and a collection of network samples are observed. For instance, in brain structural connectivity,

what one observes are the numbers of white matter fibers between pairs of brain anatomical

regions. This matrix of counts forms a network observation for one subject, with brain regions

constituting the nodes and the fiber counts the links, and we observe multiple such count-valued

networks for multiple subjects. This is ultimately different from the data format studied in most

existing network methods, where a network structure usually takes the form a covariance or

precision matrix of some vector-valued or matrix-valued data. This fundamental difference in

terms of the available data format would thus require a completely new problem formulation

and inferential procedure. Second, in a multitude of applications including brain connectivity

analysis, the sample size is usually very small, e.g., in tens. This calls for a testing procedure that

is powerful enough to detect differentially expressed links under a limited sample size. In this

article, we address the problem of comparing two populations of network data, more precisely, the

two population means of networks. We aim to consider both global and simultaneous inferences,

tackle the new data format, and explicitly enhance the power of the test.

Specifically, suppose we observe two groups of samples, {S1,1, . . . ,S1,n1} and {S2,1, . . . ,

S2,n2}, where Sd,l denotes the observed symmetric p × p network data for the lth sample in

the dth group, nd is the total number of network samples in the dth group, l = 1, . . . , nd, and

d = 1, 2. Suppose Sd,l = (Sd,l,i,j)p×p ∼ Fd(sd), where Fd is some distribution with a symmetric

mean matrix sd = (sd,i,j)p×p. Our goal is to test whether the two population means are the same:

H0 : s1 = s2 versus H1 : s1 6= s2. (1)
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1. INTRODUCTION

If the global null in (1) is rejected, we further aim to identify at which locations the two mean

matrices are different. That is, we wish to simultaneously test:

H0,i,j : s1,i,j = s2,i,j versus H1,i,j : s1,i,j 6= s2,i,j, for 1 ≤ i < j ≤ p. (2)

In Xia et al. (2015), the observed data Xd,l ∈ Rp represents expressions of multiple genes for

two groups of patients with long and short term survival. It is a vector, and is assumed to follow

a normal distribution with the covariance matrix Σd. Let Rd denote the corresponding partial

correlation matrix, i.e., the standardized version of Σ−1d , d = 1, 2. Then the network structure

is encoded by Rd, and the problem becomes testing if R1 = R2. Xia and Li (2019) followed a

similar setup, except that the observed data Xd,l ∈ Rp×t becomes a matrix, which represents brain

temporal neural activity measures collected at multiple brain locations for two groups of patients

with and without attention deficit hyperactivity disorder. It is assumed to follow a matrix normal

distribution with the covariance Σd ⊗ Λd, and the network is still encoded by the standardized

version of Σ−1d . The key difference for our setting is that, we do not always observe Xd,l directly,

but instead Sd,l only. This difference in data format completely distinguishes our method from

nearly all existing solutions such as Xia et al. (2015) and Xia and Li (2019). Moreover, we do

not impose that the underlying data follows a normal or matrix normal distribution. Instead, we

consider a general class of distributions for Fd satisfying some moment condition. Our method

works for many different types of network links, for instance, binary links when Fd follows a

light tailed distribution, or count links when Fd follows a heavy-tailed distribution.

For the global test (1), we develop a global test statistic taken as the maximum of a set of in-

dividual test statistics. We then derive its limiting null distribution, and show the resulting global

test is power minimax optimal asymptotically. For the simultaneous test (2), we first develop a
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multiple testing procedure, and show that it can asymptotically control the false discovery at the

pre-specified level. Next we propose a method to substantially enhance the power of the simul-

taneous inference procedure for (2). Specifically, we extend the grouping-adjusting-pooling idea

of Xia et al. (2019a), and modify it for our inference of network data.

Our proposal differs from the existing solutions and makes several useful contributions. First,

to the best of our knowledge, there has been no solution directly targeting simultaneous hypothe-

sis testing of individual links for the network data in the format of Sd,l. Our method bridges this

gap, and offers a timely solution to a range of scientific applications where this form of problem

and data is commonly encountered. Second, our global test statistic is constructed as the maxi-

mum of the individual test statistics for all links. This type of maximum statistic enjoys various

advantages and has been commonly employed in the hypothesis testing literature (e.g., Cai et al.,

2013; Xia et al., 2019b). However, the derivation of its asymptotics, as well as the properties

of the subsequent multiple testing procedure, are far from trivial in our new context of network

comparison. Moreover, we remark that, in some network data applications, the individual test

statistics may be correlated, and a global test statistic that utilizes such correlations may result

in a more powerful test. However, this may not always be the case. For instance, in our brain

connectivity application, the nodes are usually the brain anatomical regions, which can scatter at

distant locations of the brain. As a result, there is no obvious correlation structure for the indi-

vidual test statistics built on the pairs of brain regions. Therefore, we do not explicitly impose or

employ any correlation structure when constructing the global test statistic. On the other hand, in

our power enhancement procedure, we implicitly utilize the fact that some individual test statis-

tics may be correlated and clustered. We then use a data driven approach to find such clusters and
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2. MOMENT CONDITIONS AND EXAMPLES

incorporate this information in our test. Finally, the power enhancement approach we develop is

particularly useful in numerous applications, e.g., brain connectivity analysis, where the sample

size is limited. Although motivated by Xia et al. (2019a), our enhancement method differs from

Xia et al. (2019a) considerably in several ways. We explicitly compare the two power enhance-

ment procedures in Section 4.5. Overall, we feel our method provides a useful addition to the

general toolbox of network inference.

We adopt the following notation throughout this article. For a symmetric matrix Ad, let

λmax(Ad) and λmin(Ad) denote the largest and smallest eigenvalues of Ad, respectively. For a

set H, let |H| denote its cardinality. For two sequences of real numbers {an} and {bn}, write

an = O(bn) if there exists a constant C such that |an| ≤ C|bn| holds for all n, write an = o(bn)

if limn→∞ an/bn = 0, and write an � bn if there are positive constants c and C such that

c ≤ an/bn ≤ C for all n. Write n = n1n2/(n1 + n2) and assume that n1 � n2.

The rest of the article is organized as follows. Section 2 presents the moment conditions

for the distribution of Fd and show they are easily satisfied in numerous types of network data.

Section 3 develops the global testing and the simultaneous testing for the two-sample network

comparison, and Section 4 studies power enhancement, both of which are key to our proposal.

Section 5 presents the simulations, and Section 6 presents two brain connectivity analysis exam-

ples as illustration. The Supplementary Material collects additional lemmas and the proofs.

2 Moment Conditions and Examples

We begin with some moment conditions imposed on Fd. We then give a number of examples and

show that those conditions are easily satisfied in numerous types of network data.
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2.1 Moment conditions

We assume that the distribution Fd of the network data Sd,l satisfies one of the following two

conditions: a sub-Gaussian-type tail, or a polynomial-type tail, as stated below.

(C1) (Sub-Gaussian-tail). Suppose that log p = o(n1/5), and that there exist some constants

η > 0 and K > 0, such that, for d = 1, 2,

E
[
exp

{
η(Sd,l,i,j − sd,i,j)2/Var(Sd,l,i,j)

}]
≤ K, for 1 ≤ i < j ≤ p, l = 1, . . . , nd.

(C2) (Polynomial-tail). Suppose that p ≤ cnγ0 for some constants γ0, c > 0, and that there exist

some constants ε > 0 and K > 0, such that, for d = 1, 2,

E
{∣∣(Sd,l,i,j − sd,i,j)/Var(Sd,l,i,j)1/2

∣∣4γ0+2+ε
}
≤ K, for 1 ≤ i < j ≤ p, l = 1, . . . , nd.

We first comment that, both conditions are common, and similar conditions have been often as-

sumed in the high-dimensional setting (Cai et al., 2014; Van de Geer et al., 2014). These moment

conditions are much weaker than the Gaussian assumption as usually required in the testing lit-

erature (Schott, 2007). Next we discuss a number of network examples that satisfy the above

moment conditions, including Bernoulli and mixture Bernoulli data, Poisson data, correlation

and partial correlation data. Furthermore, we discuss some examples where the distributions

are heavy-tailed, but after some data transformation, they still satisfy the moment conditions.

Examples include transformed normal count data and transformed Wishart count data.

2.2 Network data examples

The first example is binary network, which is arguably the most commonly seen network data

type, where each link is a binary indicator. The Bernoulli distribution is often assumed; i.e., for
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Sd,l = (Sd,l,i,j)p×p, Sd,l,i,j follows a Bernoulli distribution with mean sd,i,j , u < sd,i,j < 1− u for

a constant 0 < u < 1, l = 1, . . . , nd, d = 1, 2, and 1 ≤ i < j ≤ p. In such case, Sd,l satisfies

the sub-Gaussian-tail condition in (C1), e.g., with η = 1 and K = (1 − u) exp{u(1 − u)−1} +

u exp{(1−u)u−1}. The same holds true for the mixture Bernoulli distribution as discussed in Du-

rante and Dunson (2018). That is, for some integer H > 0 and randomly selected {φ1, . . . , φH}

subject to
∑H

h=1 φh = 1 and φh > 0, P(Sd,l,i,j = x) =
∑H

h=1 φh

{
s
(h)
d,i,j

}x {
1− s(h)d,i,j

}1−x
, with

u < s
(h)
d,i,j < 1− u for some constant 0 < u < 1, x = 0, 1, h = 1, . . . , H , l = 1, . . . , nd, d = 1, 2

and 1 ≤ i < j ≤ p. For this example, Sd,l again satisfies the sub-Gaussian-tail condition in (C1),

with η = 1 and K = (1− u) exp{u(1− u)−1}+ u exp{(1− u)u−1}.

The second example is correlation network, which is another equally common network data

type. In brain functional connectivity analysis and many other applications, the network is often

encoded by a Pearson correlation or a partial correlation matrix. Take the Pearson correlation

network as an example. The functional imaging data is usually summarized as a spatial-temporal

matrix. That is, for the lth subject in the dth group, the observed data is of the form Xd,l ∈ Rp×td ,

l = 1, . . . , nd, d = 1, 2, where p is the number of brain regions, and td is the number of repeated

measures. Then the brain functional connectivity network is encoded by the sample correlation

matrix Sd,l = t−1d
∑td

j=1{Xd,l,(·,j) − X̄d,l}{Xd,l,(·,j) − X̄d,l}T, where Xd,l,(·,j) denotes the jth

column of the matrix Xd,l and X̄d,l = t−1d
∑td

j=1 Xd,l,(·,j) denotes the sample mean vector (Fornito

et al., 2013). Next we show that, as long as Xd,l satisfies one of the conditions in Lemma 1, then

Sd,l satisfies the sub-Gaussian-tail condition (C1).

Lemma 1. Suppose Xd,l satisfies one of the following conditions: (i) log p = o(t1/5), and there

exist constants η′ > 0, K ′ > 0 such that E (exp [η′{Xd,l,i,j − E(Xd,l,i,j)}2/Var(Xd,l,i,j)]) ≤ K ′,
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where t = max{t1, t2} and t1 � t2; (ii) p ≤ c′tγ
′
0 , for some γ′0, c

′ > 0, and there exist constants

ε′ > 0, K ′ > 0 such that E
[∣∣{Xd,l,i,j − E(Xd,l,i,j)} /Var(Xd,l,i,j)

1/2
∣∣4γ′0+4+ε′

]
≤ K ′, for i =

1, . . . , p, j = 1, . . . , td. Then Sd,l satisfies the sub-Gaussian-tail condition in (C1), with η = 1/4

and K = 2, as t→∞.

We remark that a similar result as Lemma 1 can be obtained for the partial correlation network, by

using the inverse regression techniques as in Liu (2013). Xia and Li (2019) tackled network com-

parison assuming Xd,l is directly observable and follows a matrix normal distribution. Lemma

1 suggests that, the test we develop later is still applicable when Xd,l is available, even though

it may not be as powerful as the test of Xia and Li (2019) in this case. On the other hand, the

main focus of this article is to develop a test of comparing two networks even when Xd,l is not

observed, but only Sd,l is. As such, our test is more general than that of Xia and Li (2019).

The third example is count network, another common network data type, where each link is

a count. For instance, in brain structural connectivity analysis, the link is the number of white

matter fibers between anatomical brain regions. The Poisson distribution is often imposed; i.e.,

Sd,l,i,j follows a Poisson distribution with mean sd,i,j , 0 < u1 < sd,i,j < u2, l = 1, . . . , nd, d =

1, 2, 1 ≤ i < j ≤ p. For any constant ε > 0, let M be the smallest integer that is no smaller than

4γ0 + 2 + ε, where γ0 is as defined in (C2). Then Sd,l satisfies the polynomial-tail condition (C2),

with K upper bounded by u−(M−1)/21

[∑M
i=0 u

i
2

{
M
i

}
+ uM2 (u2/2 + 1)

]
, and

{
M
i

}
is the number

of ways to partition a set of M objects into i non-empty subsets.

We next consider some examples where the original network data Gd,l = (Gd,l,i,j)p×p ∼

F̃d(s̃d), l = 1, . . . , nd, d = 1, 2, and F̃d is some heavy-tailed distribution that only differs in the

mean matrix s̃d = (s̃d,i,j) ∈ Rp×p between the two groups. In such cases, testing the means
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3. TWO-SAMPLE TEST ON NETWORK DATA

of the original samples are equivalent to testing the means of the transformed data, Sd,l,i,j =

f(Gd,l,i,j), where f is some one-to-one transformation function. One example is the log-normal

count network. After the logarithmic transformation of Gd,l, the transformed data Sd,l follows

a normal distribution, and thus both (C1) and (C2) are satisfied. This can be further extended

to the transformed normal mixture network. Another example is the transformed Wishart count

network, where the transformed data Sd,l follows the Wishart distribution. For this case, Sd,l

satisfies the sub-Gaussian-tail condition (C1). Moreover, in this case, the testing problems (1) and

(2) are closely related to the covariance matrix testing problems studied in Li and Chen (2012)

and Cai et al. (2013). The key difference between our method and the existing ones is that, we

only observe Sd,l, but not the original vector samples. This example can be further extended to

the case of the product of Gaussian mixtures network, or the Wishart mixtures network.

3 Two-sample Test on Network Data

We begin with the construction of a test statistic for the two testing problems (1) and (2). We then

develop a global testing procedure for (1), and a simultaneous testing procedure for (2). For each

test, we derive its corresponding asymptotic properties.

3.1 Test statistics

We first observe that the testing problem (1) is equivalent to the test, H ′0 : max1≤i<j≤p |s1,i,j −

s2,i,j| = 0. This motivates us to construct the test statistic based on

Wi,j = S̄1,i,j − S̄2,i,j.
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3. TWO-SAMPLE TEST ON NETWORK DATA

where S̄d,i,j = n−1d
∑nd

l=1 Sd,l,i,j . We standardize Wi,j , and estimate the variance of Sd,l,i,j by

V1,i,j = n−11

n1∑
l=1

(S1,l,i,j − S̄1,i,j)
2, and V2,i,j = n−12

n2∑
l=1

(S2,l,i,j − S̄2,i,j)
2, (3)

respectively. This leads to our test statistic,

Ti,j =
Wi,j

(V1,i,j/n1 + V2,i,j/n2)1/2
, 1 ≤ i < j ≤ p. (4)

3.2 Global test

In brain connectivity analysis and many other applications, it is generally postulated that the

differences between two network structures concentrate on a small number of brain regions. This

translates to a sparse alternative in our global test. Correspondingly, we construct the global test

statistic as,

Mn = max
1≤i<j≤p

T 2
i,j.

Let Γd ∈ Rq×q denote the covariance matrix of vech(Sd,l), where q = p(p−1)/2, and vech(·)

is the operator that turns the upper triangular part of Sd,l into a vector. Let Rd = (rd,i,j) ∈ Rq×q

denote the corresponding correlation matrix. We introduce two conditions.

(A1) C−10 ≤ λmin(Γd) ≤ λmax(Γd) ≤ C0 for some constant C0 > 0, d = 1, 2.

(A2) maxd=1,2 max1≤i<j≤q |rd,i,j| < r < 1 for some constant 0 < r < 1.

Both conditions are mild. Particularly, Condition (A1) implies that maxj sj(α0) ≤ Kc−2q for

some constant K > 0, where sj(α0) = |{i : maxd=1,2 |rd,i,j| ≥ cq}| and cq is a correlation

order that depends on q, with a common choice of (log q)−1−α0 for some α0 > 0. In other words,

it allows at most O{qc−2q } highly correlated pairs of network entries. For the high-dimensional
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3. TWO-SAMPLE TEST ON NETWORK DATA

vector-valued data, such a condition on the eigenvalues of the covariance matrix is commonly

imposed (Bickel et al., 2008; Rothman et al., 2008; Yuan, 2010; Cai et al., 2014). Condition (A2)

is also mild, because if max1≤i<j≤q |rd,i,j| = 1, then Γd is singular. We next obtain the limiting

distribution of our test statistic Mn.

Theorem 1. Suppose that (A1)-(A2), and one of (C1) and (C2) hold. Then for any x ∈ R,

PH0 (Mn − 2 log q + log log q ≤ x)→ exp
{
−π−1/2 exp(−x/2)

}
, as n1, n2, q →∞.

Based on this limiting null distribution, we define the asymptotic α-level test as,

Ψα = I(Mn ≥ 2 log q − log log q + qα),

where qα = − log π − 2 log log(1− α)−1.

We next study the power and the asymptotic optimality of the test Ψα. Toward that end, define

the sparsity of s1 − s2 as kq = |{(i, j) : s1,i,j − s2,i,j 6= 0, 1 ≤ i < j ≤ p}|. We also introduce a

class of (s1, s2),

U(c) =

{
(s1, s2) : max

1≤i<j≤p

|s1,i,j − s2,i,j|
{Var(S1,l,i,j)/n1 + Var(S2,l,i,j)/n2}1/2

≥ c(log q)1/2

}
.

Theorem 2. Suppose that one of (C1) and (C2) holds. Then,

inf
(s1,s2)∈U(2

√
2)

P (Ψα = 1)→ 1, as n1, n2, q →∞.

Furthermore, suppose that kq = o(qr) for some r < 1/2. Let α, β > 0 and α + β = 1. Then

there exists a constant c0 > 0 such that, for all sufficiently large nd and q,

inf
(s1,s2)∈U(c0)

sup
Tα∈Tα

P (Tα = 1) ≤ 1− β,

where Tα is the set of all α-level tests, i.e., PH0(Tα = 1) ≤ α for all Tα ∈ Tα.
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3. TWO-SAMPLE TEST ON NETWORK DATA

This theorem shows that the null hypothesis in (1) can be rejected by Ψα with a high prob-

ability if the pair of the network means belong to the class U(2
√

2). In addition, with the mild

sparsity condition kq = o(qr), the lower bound rate of (log q)1/2 cannot be further improved,

because for a sufficiently small c0, any α-level test is unable to reject the null correctly uniformly

over U(c0) with probability tending to 1. Henceforth, the global test Ψα reaches the power mini-

max optimality asymptotically.

3.3 Simultaneous test

We next develop a multiple testing procedure for (2) based on the test statistic Ti,j in (4). Let

h be the threshold level such that H0,i,j is rejected if |Ti,j| ≥ h. Let H0 = {(i, j) : s1,i,j =

s2,i,j, 1 ≤ i < j ≤ p} be the set of true nulls, and H1 = H \ H0 the set of true alternatives,

where H = {(i, j) : 1 ≤ i < j ≤ p}. Denote by R0(h) =
∑

(i,j)∈H0
I(|Ti,j| ≥ h) and

R(h) =
∑

1≤i<j≤p I(|Ti,j| ≥ h) the total number of false positives and rejections, respectively.

Then we define the false discovery proportion and false discovery rate by

FDP(h) =
R0(h)

R(h) ∨ 1
, FDR(h) = E{FDP(h)}.

An ideal choice of h would reject as many true positives as possible while controlling the FDP at

the pre-specified level α. That is, we select h0 = inf
{
h : 0 ≤ h ≤ (2 log q)1/2, FDP(h) ≤ α

}
.

Since R0(h) is unknown, we estimate it conservatively by 2q{1 − Φ(h)}, where Φ(h) is the

standard normal cumulative distribution function. This leads to our multiple testing procedure as

summarized in Algorithm 1.

We next show that this testing procedure controls the FDR and FDP asymptotically at the

pre-specified level. For notation simplicity, we write FDP=FDP(ĥ) and FDR=FDR(ĥ), where ĥ
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Algorithm 1 Simultaneous inference with FDR control

Step 1: Estimate FDP by F̂DP(h) = 2q{1− Φ(h)}/{R(h) ∨ 1}.

Step 2: For a given 0 ≤ α ≤ 1, calculate

ĥ = inf
{
h : 0 ≤ h ≤ (2 log q)1/2, F̂DP(h) ≤ α

}
.

If ĥ does not exist, set ĥ = (2 log q)1/2.

Step 3: Reject H0,i,j if and only if |Ti,j| ≥ ĥ, for 1 ≤ i < j ≤ p.

is obtained in Algorithm 1. Define Ai(ξ) = {j : max(|r1,i,j|, |r2,i,j|) ≥ (log q)−2−ξ}, and Sρ =

{(i, j) : 1 ≤ i < j ≤ p, |s1,i,j − s2,i,j|/{Var(S1,l,i,j)/n1 + Var(S2,l,i,j)/n2}1/2 ≥ (log q)1/2+ρ}.

We further introduce some conditions.

(B1) |Sρ| ≥ [1/{π1/2α} + δ](log q)1/2, for some constant δ > 0 and any sufficiently small

constant ρ > 0.

(B2) max1≤i≤q |Ai(ξ)| = o(qν) for some constants ξ > 0 and 0 < ν < (1− r)/(1 + r).

(B3) q0 = |H0| ≥ c1q for some constant c1 > 0.

Condition (B1) on Sρ is mild, as it only requires a small number of s1 and s2 having standardized

difference with the order of (log q)1/2+ρ for any sufficiently small constant ρ > 0. Condition (B2)

is mild, as it requires that not too many Sd,l,i,j are highly correlated, but still allows the number

of highly correlated pairs to grow in the order of o(q1+ν). Condition (B3) is also a natural and

mild assumption, because if it does not hold, i.e., q0 = o(q), then we can simply reject all the

hypotheses. As a result, we would have |R0| = q0, |R| = q, and the FDR would tend to zero.

Under these conditions, we obtain the asymptotic properties of our multiple testing procedure in

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



4. POWER ENHANCEMENT

terms of false discovery control.

Theorem 3. Suppose that (A2), (B1)-(B3), and one of (C1) and (C2) hold with p ≤ cnγ0 for some

constants γ0, c > 0. Then,

lim
(n1,n2,q)→∞

FDR
αq0/q

= 1, and
FDP
αq0/q

→ 1 in probability, as n1, n2, q →∞.

4 Power Enhancement

In brain connectivity analysis and many other applications, the sample size nd is often small,

whereas the number of nodes p can be moderate to large. This results in a limited power for the

proposed test. We explore in this section an explicit power enhancement method that has potential

to substantially improve the power of the simultaneous inference developed in Section 3.3. We

borrow the idea of grouping, adjusting and pooling (GAP) that was first proposed in Xia et al.

(2019a). However, our method differs from Xia et al. (2019a) in many ways, including a different,

and actually less restrictive, assumption, a different set of primary and auxiliary statistics, and a

different modification of the multiple testing procedure. We show that the modified procedure

is asymptotically more powerful, meanwhile it can still control FDR and FDP asymptotically.

We obtain these properties assuming the sub-Gaussian-tail condition (C1). Parallel results can

be obtained under the polynomial-tail condition (C2) too, but are technically more involved. We

begin by describing the intuition behind our power enhancement solution, then derive the proper

auxiliary statistic for our inference problem. We then develop the modified simultaneous testing

procedure, and study its asymptotic properties in terms of power improvement and false discovery

control. We also compare in detail our method with the GAP method of Xia et al. (2019a).
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4.1 Intuition

We recognize that there exists additional information in the data that is potentially useful to

improve the simultaneous testing procedure of Algorithm 1. We first discuss our intuition, then

use some simple example to illustrate where the auxiliary information is and how it can facilitate

our multiple testing procedure.

In a multitude of applications including brain connectivity analysis, it is often believed that

the difference between the two networks under different biological conditions is small. This

means s1 − s2 is sparse. Accordingly, one can find a baseline matrix s0, such that s′1 = s1 − s0

and s′2 = s2 − s0 are individually sparse. Let Id = {(i, j) : s′d,i,j 6= 0, 1 ≤ i < j ≤ p}

denote the support of s′d, d = 1, 2, and I = I1 ∪ I2 denote the union support. Note that the set

of alternative hypotheses H1 defined in Section 3.3 is the same as I, if s1,i,j 6= s2,i,j for every

(i, j) ∈ I1 ∩ I2. In general, H1 is a proper subset of I. Since s′1 and s′2 are both sparse, we

realize that the cardinality of I is small. Moreover, the following relationship holds true:

(i, j) /∈ I implies that s1,i,j − s2,i,j = 0, 1 ≤ i < j ≤ p.

Therefore, the knowledge about I is useful to help narrow down the search in multiple testing. In

other words, if one can find a way to identify possible entries (i, j) in I, it would provide useful

information about the set of true alternatives H1, or equivalently, the set of true nulls H0. As a

consequence, it can potentially increase the power of the testing procedure.

A key observation is then, while the test statistic is built on the difference between S̄1,i,j and

S̄2,i,j as defined in Section 3.1, the sum of S̄1,i,j and S̄2,i,j can provide crucial information about

I. Consider a toy example where the network data is binary, and Sd,l,i,j follows a Bernoulli

distribution with mean sd,l,i,j , l = 1, . . . , nd, d = 1, 2, 1 ≤ i < j ≤ p. Assume that s1,i,j =
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s2,i,j = s0,i,j = 0.1 for 80% of the (i, j) pairs, s1,i,j = s2,i,j = s0,i,j = 0.9 for 10% of the (i, j)

pairs, and for the rest of the (i, j) pairs, s1,i,j, s2,i,j ∼ Uniform(0.1, 0.9) and s0,i,j = 0.1. In this

example, for the pairs (i, j) /∈ I, the sum of s1,i,j and s2,i,j is either very small, which is 0.2, or

very large, i.e., 1.8. Meanwhile, for the pairs (i, j) ∈ I, the sum is in between. Henceforth, this

sum contains useful information about I, and can potentially enhance the power of the multiple

testing procedure.

Based on the above discussion, we can see that, the more sparsity structure information the

auxiliary statistics can capture, the more information they can provide about the union support

I, and the more substantial power gain the test can achieve. In general, the sparser the true

difference s1 − s2 is, the more information the auxiliary statistics can offer.

4.2 Auxiliary statistics

We next formally construct the auxiliary statistic that provides useful information about the union

support I. It is important to note that, the auxiliary statistic should be constructed so that they

are asymptotically independent of the test statistic Ti,j in (4). This way the null distribution of

Ti,j would not be distorted by the incorporation of the auxiliary statistic.

Recall Vd,i,j in (3) is the sample variance of Sd,l,i,j . We construct the auxiliary statistic as,

Ai,j =
S̄1,i,j + κ̂i,jS̄2,i,j

(V1,i,j/n1 + κ̂2i,jV2,i,j/n2)1/2
, 1 ≤ i < j ≤ p,

where κ̂i,j = (n2V1,i,j)/(n1V2,i,j). The next proposition shows that the test statistic Ti,j and the

auxiliary statistic Ai,j are asymptotically independent under the null hypothesis. Define

ai,j =
s1,i,j + κi,js2,i,j{

Var(S1,l,i,j) + κ2i,jVar(S1,l,i,j)
}1/2 , where κi,j =

n2Var(S1,l,i,j)

n1Var(S2,l,i,j)
.
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Proposition 1. Suppose (C1) holds with log q = o(n1/c) for some c > 5. For any constants

M > 0 and C > 0, we have

PH0,i,j
(|Ti,j| ≥ h, |Ai,j| ≥ λ) = {1 + o(1)}G(h)P (|N(0, 1) + ai,j| ≥ λ) +O(q−M),

uniformly for 0 ≤ h ≤ C
√

log q, 0 ≤ λ ≤ C
√

log q, and 1 ≤ i < j ≤ p, with G(h) =

2{1− Φ(h)}. Furthermore, for all 0 ≤ k ≤ CN with an integer constant N ,

PH0,i,j
(|Ti,j| ≥ h, |Ai,j| < λk) = {1 + o(1)}G(h)P (|N(0, 1) + ai,j| < λk) +O(q−M),

uniformly for 0 ≤ h ≤ C
√

log q and 1 ≤ i < j ≤ p, where λk = (k/N)
√

log q.

4.3 Power enhanced simultaneous test

Based on (Ti,j, Ai,j), we now modify the simultaneous testing procedure of Algorithm 1. We

first describe the main idea. We next summarize the modified testing procedure in Algorithm 2.

Finally, we discuss some specific choices of the key parameters of the algorithm.

Since there are totally q = p(p − 1)/2 tests to carry out simultaneously, we rearrange the

pairs of {(Ti,j, Ai,j), 1 ≤ i < j ≤ p} into {(Ti, Ai), i = 1, . . . , q}. After obtaining all the p-

values, pi = 2{1 − Φ(|Ti|)}, from Algorithm 1, our basic idea is to adjust those p-values by

pwi = min{pi/wi, 1}, with wi being the adjusting weights, i = 1, . . . , q. We utilize the auxiliary

statistics Ai to help compute the adjusting weights wi, by groups. Specifically, we consider a

set of grid values, J = {(C1N − 1)
√

log q/N,C1

√
log q, . . . , (C2N − 1)

√
log q/N,C2

√
log q},

where C1, C2 and N are some pre-specified constants. We divide the index set {1, . . . , q} into

K groups according to the auxiliary statistics (A1, . . . , Aq). As an example, we take K = 3.

That is, we choose two grid points JK = {λ1, λ2} in J , and obtain K = 3 groups of indices,
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G1 = {i : 1 ≤ i ≤ q, −∞ < Ai ≤ λ1}, G2 = {i : 1 ≤ i ≤ q, λ1 < Ai ≤ λ2}, and

G3 = {i : 1 ≤ i ≤ q, λ2 < Ai ≤ ∞}. For each group Gk, we compute its cardinality, qk = |Gk|.

We also estimate the proportion, πk, of alternatives in Gk, k = 1, . . . , K. To do so, we employ the

method of Schweder and Spjøtvoll (1982) and Storey (2002) to obtain an estimate π̃k first, then

stablize it by π̂k = (ε ∨ π̃k) ∧ (1− ε), where ε is a small positive number; we set ε = 10−5. Then

for all the indices in Gk, we compute the group-wise adjusting weight:

wi =

(
K∑
k=1

qkπ̂k
1− π̂k

)−1
qπ̂k

(1− π̂k)
, i ∈ Gk, 1 ≤ k ≤ K. (5)

This idea of adjusting the weights wi by groups is motivated by our intuition in Section 4.1.

After obtaining the weights, we adjust the p-values and apply the Benjamini-Hochberg procedure

(Benjamini and Hochberg, 1995, BH) to the adjusted p-values pwi . Finally, we search all possible

choices of JK among J , and find the one that yields the largest number of rejections. We apply

BH again to the adjusted p-values under this choice of JK to obtain the final adjusted rejection

region. We summarize this modified simultaneous testing procedure in Algorithm 2.

We discuss some specific choices of the parameters in Algorithm 2. First, the number of

groups K is usually set at K = 3. As shown in Xia et al. (2019a), when K ≥ 4, there is little

additional power gain, but a more expensive computation. Second, the constants C1 and C2 can

be chosen so that C1

√
log q is equal to the smallest value of the auxiliary statistics and C2

√
log q

is equal to the largest value of the auxiliary statistics. If the absolute values of the smallest and

largest auxiliary statistics exceed 16
√

log q, we truncate at C1 = −16 and C2 = 16 to stabilize

and expedite the computation. We note here that, if the network data are non-negative, such as

the binary and poisson network data, then both C1 and C2 are non-negative. By contrast, in Xia

et al. (2019a), C1 and C2 were fixed at−4 and 4. Finally, N can be any integer for the theoretical
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Algorithm 2 Adjusted simultaneous inference with FDR control and power enhancement.
Step 1: Initialization:

Step 1.1: Compute the test statistics and auxiliary statistics {(Ti, Ai), i = 1, . . . , q}.

Step 1.2: Compute the p-values: pi = 2{1− Φ(|Ti|)}, i = 1, . . . , q.

Step 1.3: Input the pre-specified constants K, C1, C2 and N .

Step 1.4: Compute the grid set:

J =
{

(C1N − 1)
√

log q/N,C1

√
log q, . . . , (C2N − 1)

√
log q/N,C2

√
log q

}
.

Step 2: For each JK = {λ1, . . . , λK−1} in J , and λ0 = −∞, λK =∞:

Step 2.1: Construct Gk = {i : 1 ≤ i ≤ q, λk−1 < Ai ≤ λk}, 1 ≤ k ≤ K.

Step 2.2: For each Gk, compute the cardinality, qk = |Gk|.

Step 2:3: For each Gk, estimate the proportion, π̂k, of alternatives in Gk.

Step 2.4: Compute the adjusting weights wi, i = 1, . . . , q, according to (5).

Step 2.5: Adjust the p-values: pwi = min{pi/wi, 1}, i = 1, . . . , q.

Step 2.6: Apply the BH procedure, and record the total number of rejections.

Step 3: Obtain the adjusted rejection region:

Step 3.1: Choose JK that yields the largest number of rejections.

Step 3.2: Compute the corresponding adjusted p-values: pwi , 1 ≤ i ≤ q.

Step 3.3: Reorder all the adjusted p-values: pw(1) ≤ . . . ≤ pw(q).

Step 3.4: Output the rejection region {i : i < τ̂}, where τ̂ = max{i : pw(i) ≤ αi/q}.
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validity. Numerically, a larger value of N implies a more precise grid search, but at the cost of a

heavier computational burden. We choose N such that the gap between two adjacent grid points,

(log p)1/2/N , equals 0.1 approximately.

4.4 FDR control and power enhancement

We next show that the modified inference of Algorithm 2 is asymptotically more powerful than

Algorithm 1, meanwhile it can still asymptotically control the false discovery.

Denote {pwi : 1 ≤ i ≤ q} the adjusted p-values from Algorithm 2, and {pw(i) : 1 ≤ i ≤ q} the

ordered adjusted p-values. The corresponding adjusted FDP is:

FDPadj =

∑
i∈H0

I
{
pwi ≤ pw(τ̂)

}
∑q

i=1 I
{
pwi ≤ pw(τ̂)

}
∨ 1

,

where τ̂ is the cutoff obtained from Step 3.4 of Algorithm 2, and I(·) is the indicator function.

Accordingly, FDRadj = E(FDPadj). The next theorem shows that the modified procedure can still

control FDR and FDP asymptotically.

Theorem 4. Suppose (A2), (B1)-(B3), and (C1) hold with p ≤ cnγ0 for constants γ0, c > 0. Then,

lim
(n1,n2,q)→∞

FDRadj

αq0/q
= 1, and

FDPadj

αq0/q
→ 1 in probability, as n1, n2, q →∞.

Next, denote the power of the testing procedures of Algorithms 1 and 2 by Ψ and Ψadj, re-

spectively. That is,

Ψ = E

{∑
(i,j)∈H1

I(|Ti,j| ≥ ĥ)

|H1|

}
, Ψadj = E

∑i∈H1
I
{
pwi ≤ pw(τ̂)

}
|H1|

 .
Then the next theorem shows that, by incorporating the auxiliary statistics Ai,j , the modified

simultaneous testing procedure of Algorithm 2 is asymptotically more powerful than Algorithm

1, which is solely based on the test statistics Ti,j .

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



4. POWER ENHANCEMENT

Theorem 5. Suppose the same conditions in Theorem 4 hold. Then,

Ψadj ≥ Ψ + o(1), as q →∞.

4.5 Comparison to GAP

Although motivated by the GAP method of Xia et al. (2019a), our power enhancement procedure

is also considerably different. While GAP tackled the problem of mean comparison of vector-

valued samples, we target the problem of network mean comparison. This leads to a different set

of test and auxiliary statistics, but a number of additional intrinsic differences as well.

First, the two methods impose different assumptions. A key requirement for GAP to enhance

the power is that the parameters of interest from each group are individually sparse. In our setup,

however, the parameters may all be non-negative. For instance, in a binary network or a count

network, all the entries of both means s1 and s2 are usually non-negative. As such, the means

may not be individually sparse. Our procedure instead only requires the difference of the two

means s1 − s2 is sparse, which reasonably holds and is often imposed in numerous applications

including brain connectivity analysis (Zhu and Li, 2018).

Second, the two methods differ in terms of the range of the auxiliary statistics that contribute

most to the power enhancement. Consider the case when K = 3. In Xia et al. (2019a), since

both means are assumed to be individually sparse, the tests that are more likely to be adjusted and

rejected are those with the corresponding auxiliary statistics either being negative and small, or

positive and large. That is, the power enhancement hinges more on those tests in G1 and G3 with

small or large auxiliary statistics. However, in our setup, the individual means s1 and s2 can both

be dense and their entries are all positive. Instead we only assume that s1 − s2 is sparse. Take a
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binary brain connectivity network as an example. The observed networks are often sparse, in that

most links are zero, since it is known that brain connections are energy consuming and biological

units tend to minimize energy-consuming activities (Raichle and Gusnard, 2002; Bullmore and

Sporns, 2009). This translates to small connection probabilities for most entries of s1 and s2,

while all these probabilities are positive. Moreover, the difference of the means between the two

populations is often sparse, which translates to equal connection probabilities for most entries of

s1 and s2, or equivalently zero difference for most entries of of s1− s2. This is similar to the toy

example we discuss in Section 4.1. For such cases, as a consequence of Algorithm 2, the tests

whose corresponding auxiliary statistics are too small or too large would be adjusted so that they

are less likely to be rejected. Instead, those tests whose auxiliary statistics are in between would

be adjusted so that they are more likely to be rejected. In other words, the power enhancement in

our setup may hinge more on G2, rather than G1 and G3.

Third, due to the above difference, the grid construction in Step 1.4 of Algorithm 2 is notice-

ably different from that of GAP in Xia et al. (2019a). Specifically, in Xia et al. (2019a), to ensure

the inclusion of important locations in G1 and G3, the constants C1 and C2 can be simply fixed

at −4 and 4, respectively, so that the upper bound of those small negative auxiliary statistics and

lower bound of those large positive auxiliary statistics can be attained in the grid J . By contrast,

for our problem, the upper bound of the auxiliary statistics in the union support I can go beyond

the bound in Xia et al. (2019a), i.e., 4
√

log q, and the lower bound of the auxiliary statistics in

the union support can be non-negative. Since the tests in G2 are more likely to be adjusted and

rejected, we need to do a more thorough grid construction and choose the constants C1 and C2

based on the smallest and largest values of the auxiliary statistics as described in Section 4.3.
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5 Simulations

We first present the simulation setup, where we consider different network structures, sparsity

levels, network sizes and sample sizes. We then investigate the empirical performance of the

global test, and compare the two simultaneous tests, Algorithms 1 and 2.

5.1 Setup

We consider p × p networks, with two network sizes, p = 100 and 200. This results in q =

100(100 − 1)/2 = 4590 and q = 200(200− 1)/2 = 19900 links, respectively. We consider five

common network structures, the Bernoulli, Bernoulli mixture, and transformed Wishart distribu-

tions, and for the Bernoulli case, the binary links are generated from a power-law distribution,

a stochastic block model, and an Erdös-Rényi model. For each network structure, we further

consider three sparsity levels.

+ Bernoulli: Select the sets Md,1 and M0 from q hypotheses according to the following

models generated by the R package igraph, with |Md,1| = |M0| = kq/2, d = 1, 2. Here

kq is a parameter that controls the sparsity level, and is specified later.

− Power-law distribution: with p nodes, kq/2 edges, the power law exponent of the

degree distribution is set to 2.1, and all other parameters are set to the default values.

− Stochastic block model: with 2 blocks and the diagonal Bernoulli rates matrix,

where the diagonal values are set to kq/(2q).

− Erdös-Rényi model: with p nodes and kq/2 edges.
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Let Md = Md,1 ∪ M0. For (i, j) /∈ Md, generate Sd,l,i,j ∼ Bernoulli(1, 0.3). For

(i, j) ∈Md, generate Sd,l,i,j ∼ Bernoulli(1, rd,i,j), where r1,i,j is set to 0.5 with probability

0.1, and 0.8 otherwise, whereas r2,i,j is set to 0.8 with probability 0.1, and 0.5 otherwise.

+ Bernoulli mixture: GenerateMd in the same way as before. Generate Sd,l,i,j ∼ Bernoulli

(1, rd,i,j), where rd,i,j = πi,j ∗ rd,1,i,j + (1 − πi,j) ∗ rd,2,i,j , with πi,j ∼ Uniform(0, 1). For

(i, j) /∈ Md, rd,1,i,j = rd,2,i,j = 0.3, d = 1, 2. For (i, j) ∈ Md, r1,1,i,j is set to 0.5 with

probability 0.1, and 0.7 otherwise, whereas r2,1,i,j is set to 0.7 with probability 0.1, and 0.5

otherwise, and rd,2,i,j = rd,1,i,j + 0.2.

+ Wishart with logarithm transformation: Select the sets Md,1 and M0 from q hy-

potheses, uniformly and randomly, with |Md,1| = kq/4, and |M0| = 3kq/4, d = 1, 2.

Let Md = Md,1 ∪ M0. Generate Σd such that Σ′d,i,j = Uniform(3, 5) if (i, j) ∈ Md

and Σ′d,i,j = 0 otherwise. Let Σ′d,j,i = Σ′d,i,j and Σd = Σ′d + {|λmin(Σ′d)| + 0.5}I ,

where I is the identify matrix. Generate S ′d,l ∼ Wishart(m−1Σd,m), with m = 300,

and Sd,l = log[round{exp(S ′d,l)}], where round(·) rounds a number to the nearest integer.

For each network structure, the parameter kq controls the sparsity level, and we examine three

levels, kq = 0.2q, 0.15q and 0.1q, where q is the total number of the network links.

5.2 Results

First, we investigate the empirical size of the proposed global test Ψα for the global testing

problem (1). For this problem, the population network means are equal to each other under

the null hypothesis, and we set M1 = M2, and set the sample size n1 = n2 = 500. We also
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compare with the global testing method aSPU developed by Kim et al. (2014), implemented in

the R package aSPU. Table 1 reports the empirical size of the two tests, in percentage, based

on 1000 data replications under the significance level α = 5%. It is seen clearly from the table

that our proposed global testing procedure controls the type I error reasonably well, while the

aSPU method has a slight size inflation in some cases though not severe. In addition, we report

the computation time of each method, in seconds, averaged over three sparsity levels and all

replications. It is seen from the last two columns of the table that, the average computation time

of aSPU is much longer than our method; e.g., for p = 100 and p = 200, it is about 9 times and 15

times of our method, respectively. This is because Kim et al. (2014) did not derive the theoretical

null distribution of their test statistics, but instead employed the permutations to obtain the critical

value, which results in a more time consuming procedure. We also note that, in this setting, the

sample size is much smaller than the total number of hypotheses q, but is larger than the sample

size we use in the multiple testing simulations. This is due to the relatively slow convergence rate

of the Bernoulli normal approximation and the maximum type statistics.

Next, we examine the empirical FDR and the empirical power of the simultaneous testing

procedure for the multiple testing problem (2). We consider two sample sizes, n1 = n2 = 100

and n1 = n2 = 25, and the latter mimics the real data setting where the sample size is very

limited. We apply both Algorithms 1 and 2, one with the proposed power enhancement, and

one without. Table 2 reports the empirical FDR and power, both in percentage, based on 100

replications under the significance level α = 5% for the Bernoulli network structure. Table 3

reports the results for the Bernoulli mixture and Wishart with logarithm transformation. It is seen

that, in all cases, the empirical FDRs are generally controlled under the nominal level by both
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Table 1: The empirical size and computation time for our global test Ψα and the aSPU test of Kim et al.

(2014). The empirical size is in percentage based on 1000 data replications. The computation time is in

seconds averaged over three sparsity levels and all replications. The significance level is α = 5%, and the

sample size is n1 = n2 = 500.

Method p = 100 p = 200 Computation time

0.2q 0.15q 0.1q 0.2q 0.15q 0.1q p = 100 p = 200

Power-law
Ψα 4.1 5.1 5.6 5.0 3.6 4.9 0.52 1.99

aSPU 5.8 6.7 6.0 5.8 5.6 5.7 4.86 32.6

Stochastic Block
Ψα 4.3 5.4 5.2 5.9 4.4 5.1 0.56 2.00

aSPU 6.2 6.1 5.5 6.2 7.0 5.4 4.66 32.8

Erdös-Rényi
Ψα 5.3 5.4 4.1 4.8 5.4 5.4 0.52 2.01

aSPU 5.9 7.5 5.2 6.1 5.3 6.4 4.74 32.3

Bernoulli mixture
Ψα 6.2 5.1 4.9 4.8 3.4 5.5 0.51 2.06

aSPU 6.8 6.3 5.4 7.0 5.4 6.0 4.77 32.9

Transformed Wishart
Ψα 4.9 4.5 5.7 4.2 4.8 4.5 0.54 2.23

aSPU 6.5 6.9 6.3 6.5 6.8 5.7 4.42 28.1

algorithms. Algorithm 2 is slightly more conservative than Algorithm 1, which is mainly due

to the normalization step of the weight calculation as shown in (5). A similar phenomenon has

also been observed in Xia et al. (2019a). For the empirical power, it is seen that Algorithm 2

achieves a clear power improvement over Algorithm 1, without sacrificing the size of the test.

This is mainly due to the utilization of the auxiliary information in Algorithm 2. Furthermore,
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Table 2: The empirical FDR and the empirical power for the simultaneous testing procedures, Algorithms

1 and 2. The results are in percentages based on 100 data replications. The significance level is α = 5%.

The network structure is Bernoulli.

p = 100 p = 200

n1 = n2 = 100 n1 = n2 = 25 n1 = n2 = 100 n1 = n2 = 25

Network structure 0.2q 0.15q 0.1q 0.2q 0.15q 0.1q 0.2q 0.15q 0.1q 0.2q 0.15q 0.1q

Bernoulli, power-law Empirical FDR

Algorithm 1 4.1 4.5 4.7 6.2 6.3 7.2 4.2 4.4 4.9 5.8 6.5 7.5

Algorithm 2 2.6 2.6 2.9 3.5 4.6 5.3 2.2 2.3 2.5 3.5 4.9 5.1

Empirical power

Algorithm 1 88.7 87.0 84.7 42.2 40.8 39.7 88.7 87.0 84.9 41.6 40.5 39.9

Algorithm 2 92.1 91.7 90.9 54.8 54.1 53.4 92.3 91.8 91.0 54.2 53.9 53.2

Bernoulli, stochastic block Empirical FDR

Algorithm 1 4.3 4.4 4.8 6.1 6.4 7.7 4.2 4.5 4.9 5.8 6.3 7.6

Algorithm 2 2.8 2.7 3.0 3.5 4.5 5.5 2.2 2.3 2.5 3.5 5.0 5.0

Empirical power

Algorithm 1 89.0 87.1 84.8 41.5 40.4 40.0 89.0 87.0 84.9 41.4 40.4 40.1

Algorithm 2 92.2 91.7 90.8 54.5 54.5 54.0 92.5 91.9 90.9 54.2 53.9 53.4

Bernoulli, Erdös-Rényi Empirical FDR

Algorithm 1 4.1 4.4 4.8 6.0 6.0 7.3 4.0 4.4 4.8 5.9 5.2 7.3

Algorithm 2 2.3 2.6 2.9 3.9 4.1 5.7 2.1 2.2 2.4 3.7 4.5 5.1

Empirical power

Algorithm 1 88.0 86.9 84.7 44.1 41.8 40.6 88.1 86.8 84.5 44.4 42.0 40.8

Algorithm 2 91.8 91.3 90.6 54.7 54.4 53.3 91.9 91.4 90.5 54.6 54.1 53.6
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Table 3: The empirical FDR and the empirical power for the simultaneous testing procedures, Algorithms

1 and 2. The results are in percentages based on 100 data replications. The significance level is α = 5%.

The network structure is Bernoulli mixture and transformed Wishart.

p = 100 p = 200

n1 = n2 = 100 n1 = n2 = 25 n1 = n2 = 100 n1 = n2 = 25

Network structure 0.2q 0.15q 0.1q 0.2q 0.15q 0.1q 0.2q 0.15q 0.1q 0.2q 0.15q 0.1q

Bernoulli mixture Empirical FDR

Algorithm 1 4.0 4.4 4.8 6.1 6.0 7.4 4.0 4.4 4.8 6.0 5.8 7.5

Algorithm 2 1.4 1.7 2.0 3.2 4.2 5.0 1.3 1.5 1.7 2.9 4.3 4.5

Empirical power

Algorithm 1 88.3 87.2 85.6 41.8 40.8 41.1 88.2 87.1 85.7 41.6 40.7 41.2

Algorithm 2 93.8 93.6 93.6 54.2 54.3 54.1 93.5 93.6 93.5 53.9 54.2 54.1

Transformed Wishart Empirical FDR

Algorithm 1 4.2 4.6 5.1 5.0 5.6 6.6 4.2 4.6 4.9 4.9 5.3 5.9

Algorithm 2 1.6 1.8 2.0 2.4 2.8 3.7 1.6 1.9 2.0 1.8 2.1 2.6

Empirical power

Algorithm 1 63.5 65.9 69.6 44.1 46.8 50.6 52.6 55.7 60.4 37.5 40.2 43.1

Algorithm 2 70.9 73.8 78.4 50.3 54.5 59.9 59.8 63.9 69.9 41.4 45.2 50.0

the performance under the varying sample size confirms the power enhancement of Algorithm

2 as theoretically revealed in Section 4.4. We also observe that, the power gain becomes more

substantial when the true difference s1−s2 becomes more sparse, which agrees with our intuition

explained in Section 4.1.
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6. BRAIN CONNECTIVITY ANALYSIS

6 Brain Connectivity Analysis

We illustrate our method with two brain connectivity analysis examples.

6.1 Structural connectivity analysis

The first example is a brain structural connectivity analysis of diffusion tensor images (DTI).

DTI is a magnetic resonance imaging technique that measures the diffusion of water molecules to

map white matter tractography in the brain. The data we analyze is the KKI-42 dataset, available

at http://openconnecto.me/data/public/MR/archive/, and its detailed descrip-

tion can be found in Landman et al. (2011). This data consists of 21 subjects with no history of

neurological conditions, aging from 22 to 61 years old. Each subject received two resting-state

DTI under a scan-rescan imaging session. For simplicity, we treat the data as if those images

were from independent samples, which is common for the analysis of this dataset (Wang et al.,

2017). It results in a total sample size of 42 for this study. Brain regions are constructed following

the Desikan Atlas (Desikan et al., 2006), leading to p = 68 regions equally divided in the left

and right hemispheres. Each DTI image has been preprocessed and summarized in the form of a

68× 68 network, where the edges record the total number of white matter fibers between the pair

of nodes. It is also equally common to focus on the form of a binary network, where the edges

become the binary indicators of presence or absence of white matter fibers (Wang et al., 2017).

We partition the subjects into two age groups, the ones whose are younger than 30 years, and the

ones who are 30 or older. Age 30 is a transition period, usually known as the “age 30 transition”,

when the first phase of early adulthood comes to a close, and the basis for the next life structure

is formed. Moreover, this partition yields about the same number of subjects for each group, with
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6. BRAIN CONNECTIVITY ANALYSIS

Table 4: Structural connectivity analysis of the KKI-42 dataset. Reported are the significantly different

links found by Algorithms 1 and 2 for the binary and count network data, respectively.

Binary network Count network

Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2

r.posteriorcingulate↔ l.superiorparietal r.posteriorcingulate↔ l.superiorparietal r.corpuscallosum↔ l.superiorparietal r.corpuscallosum↔ l.superiorparietal

r.posteriorcingulate↔ l.supramarginal r.precuneus↔ l.postcentral l.isthmuscingulate↔ l.posteriorcingulate l.isthmuscingulate↔ l.posteriorcingulate

− r.caudalanteriorcingulate↔ r.lingual r.caudalmiddlefrontal↔ r.rostralmiddlefrontal r.caudalmiddlefrontal↔ r.rostralmiddlefrontal

− r.posteriorcingulate↔ l.caudalmiddlefrontal l.lateralorbitofrontal↔ l.superiorfrontal l.lateralorbitofrontal↔ l.superiorfrontal

− l.lateraloccipital↔ l.parsopercularis − r.posteriorcingulate↔ l.precuneus

− r.superiorparietal↔ l.precentral − r.caudalmiddlefrontal↔ r.parstriangularis

− r.paracentral↔ l.superiorparietal − l.fusiform↔ l.temporalpole

− l.bankssts↔ l.frontalpole − l.entorhinal↔ l.lateralorbitofrontal

− r.corpuscallosum↔ l.precuneus

− l.caudalmiddlefrontal↔ l.pericalcarine

− r.bankssts↔ r.postcentral

− l.lateralorbitofrontal↔ l.temporalpole

− l.parsopercularis↔ l.rostralmiddlefrontal

− l.medialorbitofrontal↔ l.temporalpole

− l.corpuscallosum↔ l.superiorparietal

n1 = 22 for the younger-than-30 age group, and n2 = 20 for the older-than-30 age group. We

study the age-related difference in structural connectivity patterns, which is of universal inter-

est, as aging is the main risk factor for progressive loss of both structures and functions of brain

neurons (Morrison and Hof, 1997).

We apply both multiple testing procedures Algorithms 1 and 2 to this dataset, first the binary

network, then the count network with a logarithm transformation. We set the significance level at

0.05. For the binary network, out of the total of 2278 links, Algorithm 1 identifies 2 significantly

different links, whereas the power-enhanced Algorithm 2 identifies 8 links, including the first link

found by Algorithm 1 plus 7 additional links. For the count network, Algorithm 1 identifies 4

significantly different links, whereas Algorithm 2 identifies 15 links, including all the links found
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6. BRAIN CONNECTIVITY ANALYSIS

by Algorithm 1 plus 11 additional links. These results agree with both our theory and simulations,

in that Algorithm 2 is usually able to recognize more significant links than Algorithm 1. Table 4

reports the identified links by the two algorithms for both types of network data. Some links found

by our power-enhanced procedure agree with the neuroscience literature; for instance, the link

between left fusiform and left temporal pole under the count network. The temporal pole, also

known as Brodmanna area 38, is a paralimbic region involved in high-level semantic memories

and socio-emotional processing. The fusiform gyrus is part of the temporal lobe and occipital

lobe in Brodmann area 37, and is linked with various neural pathways related to recognition. Li

et al. (2013) also found significant difference in structural connectivity patterns between the left

fusiform and the left temporal pole, for the young subjects (18 to 23 years old) versus the middle-

aged and old subjects (30 to 58, and 61 to 89 years old). Meanwhile, other links found by our

procedure require further scientific validation; for instance the links between left temporal pole

and orbitofrontal cortex. The latter is a prefrontal cortex region in the frontal lobe of the brain

involved in the cognitive process of decision-making.

6.2 Functional connectivity analysis

The second example is a brain functional connectivity analysis of functional magnetic resonance

images (fMRI). Functional MRI measures the blood oxygen level signals, and provides a tool to

study brain functional connectivity network. The data we analyze is the ADHD-200 dataset, and

is available at http://neurobureau.projects.nitrc.org/ADHD200/Data.html.

More detailed description can be found in Ahn et al. (2015). Attention deficit hyperactivity disor-

der (ADHD) is one of the most commonly diagnosed child-onset neurodevelopmental disorders,
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Table 5: Functional connectivity analysis of the ADHD-200 dataset. Reported are the significantly dif-

ferent links found by Algorithms 1 and 2 for the Pearson correlation and partial correlation network data,

respectively.

Pearson correlation network Partial correlation network

Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2

− r.frontal.sup↔ r.frontal.med.orb − l.paracentral.lobule↔ r.paracentral.lobule

− r.cerebelum6↔ r.cerebelum.8 − r.frontal.sup.orb↔ r.frontal.mid.orb

− l.cerebelum8↔ vermis7 − r.frontal.inf.orb↔ l.temporal.pole.sup

− r.fusiform↔ r.cerebelum6

− l.frontal.sup↔ l.frontal.mid

and has an estimated childhood prevalence of 5−10% worldwide (Pelham et al., 2007). This data

consists of 96 subjects with ADHD, and 91 normal controls. Each subject received a resting-state

fMRI scan, and each brain image is parcellated using the Anatomical Automatic Labeling (AAL)

Atlas with p = 116 regions (Tzourio-Mazoyer et al., 2002). The resulting data is a spatial by tem-

poral matrix, which is then turned into a Pearson correlation matrix or a partial correlation matrix

to represent the brain functional connectivity network. Actually, both correlation measures are

frequently used in functional connectivity analysis (Bullmore and Sporns, 2009). We use both

measures to study the difference in functional connectivity patterns between the two groups of

subjects with and without ADHD.

We again apply both multiple testing procedures Algorithms 1 and 2 to this dataset, first the

Pearson correlation network, then the partial correlation network. For the Pearson correlation

network, Algorithm 1 identifies no significantly different links, whereas the power-enhanced
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Algorithm 2 identifies 3 links. For the partial correlation network, Algorithm 1 again identifies

no significantly different links, whereas the power-enhanced Algorithm 2 identifies 5 links. Table

5 reports the identified links by the two algorithms for both types of network data. One brain

region that differentiating links concentrate is cerebellum. The cerebellum is responsible for

motor control and cognitive functions such as attention and language, and dysfunction in the

cerebellum in ADHD patients have been reported (Toplak et al., 2006). We also remark that,

there are fewer links found here compared to those found in Xia and Li (2019). This is because

the data in the format of spatial temporal matrix analyzed in Xia and Li (2019) carries more

information than the data in the format of correlation matrix. Nevertheless, the focus of this

article is to develop inferential tests for the scientific applications where only the data format of

some symmetric network matrix is available.

7 Conclusion

In this article, we develop both global and simultaneous inference methods for network com-

parisons when the data are observed in the form of p × p matrices, each of which encodes the

network structure for an individual subject. This data format is different from those studied in the

existing network literature, and leads to a different set of testing procedures and the associated

theory. In addition, we propose a power enhancement approach to tackle the challenge of limited

sample size in numerous applications.

We have primarily focused on the scenario of using a symmetric matrix to encode a network

structure in this article. In principle, our methods can be extended to the asymmetric matrix

scenario as well, with corresponding modifications of the total number of tests and the related
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theoretical properties. In the interest of space, we leave it as our future research.

8 Supplementary Material

The additional lemmas and theorem proofs are available in the online supplementary material.
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