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Abstract: We investigate two important properties of M-estimators, namely, ro-

bustness and tractability, in the linear regression setting, when the observations

are contaminated by some arbitrary outliers. Specifically, robustness means the

statistical property that the estimator should always be close to the true under-

lying parameters regardless of the distribution of the outliers, and tractability

indicates the computational property that the estimator can be computed effi-

ciently, even if the objective function of the M-estimator is non-convex. In this

article, by learning the landscape of the empirical risk, we show that under some

sufficient conditions, many M-estimators enjoy nice robustness and tractability

properties simultaneously when the percentage of outliers is small. We further

extend our analysis to the high-dimensional setting, where the number of pa-

rameters is greater than the number of samples, p � n, and prove that when

the proportion of outliers is small, the penalized M-estimators with L1 penalty

will enjoy robustness and tractability simultaneously. Our research provides an

analytic approach to see the effects of outliers and tuning parameters on the ro-

bustness and tractability of some families of M-estimators. Simulation and case

studies are presented to illustrate the usefulness of our theoretical results for

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



M-estimators under Welsch’s exponential squared loss and Tukey’s bisquare loss.

Key words and phrases: computational tractability, gross error, high-dimensionality,

non-convexity, robust regression, sparsity

1. Introduction

M-estimation plays an essential role in linear regression due to its robust-

ness and flexibility. From the statistical viewpoint, it has been shown that

many M-estimators enjoy desirable robustness properties in the presence of

outliers, as well as asymptotic normality when the data are normally dis-

tributed without outliers. Some general theoretical properties and review of

robust M-estimators can be found in Bai et al. (1992); Huber and Ronchetti

(2009); Cheng et al. (2010); Hampel et al. (2011); El Karoui et al. (2013).

In the high-dimensional setting, where the dimensionality is greater than

the number of samples, penalized M-estimators have been widely used to

tackle the challenges of outliers and have been used for sparse recovery and

variable selection, see Lambert-Lacroix and Zwald (2011); Li et al. (2011);

Wang et al. (2013); Loh (2017). However, it is often not easy to compute

the M-estimators from the computational tractability perspective since op-

timization problems over non-convex loss functions are usually involved.

Moreover, the tractability issue may become more challenging when the
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data are contaminated by some arbitrary outliers, which is essentially the

situation where robust M-estimators are designed to tackle.

This paper aims to investigate two important properties of M-estimators,

robustness and tractability, simultaneously under the gross error model.

Specifically, we assume the data generation model is yi = 〈θ0, xi〉+εi, where

yi ∈ R, xi ∈ Rp, , for i = 1, · · · , n, and the noise term εi’s are from Huber’s

gross error model (Huber, 1964): εi ∼ (1 − δ)f0 + δg, for i = 1, · · · , n.

Here, f0 denotes the probability density function (pdf) of the noise of the

normal samples, which has the desirable properties, such as zero mean and

finite variance; g denotes the pdf of the outliers (contaminations), which

can be arbitrary and may also depend on the explanatory variable xi, for

i = 1, · · · , n. One thing to notice is that we do not require the mean of g

to be 0. The parameter δ ∈ [0, 1], denotes the percentage of the contami-

nations, which is also known as the contamination ratio in robust statistics

literature. The gross error model indicates that for the ith sample, the resid-

ual term εi is generated from the pdf f0 with probability 1 − δ, and from

the pdf g with probability δ. It is important to point out that the residual

εi is independent of xi and other xj’s when it is from the pdf f0, but can

be dependent on the variable xi when it is from the pdf g.

In the first part of this paper, we start with the low-dimensional case
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when the dimension p � n. We consider the robust M-estimation with

a constraint on the `2 norm of θ. Mathematically, we study the following

optimization problem:

Minimize:
θ

R̂n(θ) :=
1

n

n∑
i=1

ρ(yi − 〈θ, xi〉), (1.1)

subject to: ‖θ‖2 ≤ r.

Here, ρ : R → R is the loss function, and is often non-convex. We con-

sider the problem with the `2 constraint due to three reasons: first, it is

well known the constrained optimization problem in (1.1) is equivalent to

the unconstrained optimization problem with an `2 regularizer. Therefore,

it is related to the Ridge regression, which can alleviate multicollinearity

amongst regression predictors. Second, by considering the problem of (1.1)

in a compact ball with radius r, it guarantees the existence of the global

optimal, which is necessary for establishing the tractability properties of the

M-estimator. Finally, by working on the constrained optimization problem,

we can avoid technical complications and establish the uniform convergence

theorems of the empirical risk and population risk. Besides, constrained M-

estimators are widely used and studied in the literature. See Geyer et al.

(1994); Mei et al. (2018); Loh (2017) for more details. To be consistent with

the assumptions used in the literature, in the current work, we assume r is

a constant, and the true parameter θ0 is inside of the ball.
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In the second part, we extend our research to the high-dimensional case,

where p � n and the true parameter θ0 is sparse. To achieve the sparsity

in the resulting estimator, we consider the penalized M-estimator with the

`1 regularizer:

Minimize:
θ

L̂n(θ) :=
1

n

n∑
i=1

ρ(yi − 〈θ, xi〉) + λn||θ||1, (1.2)

subject to: ‖θ‖2 ≤ r.

Note the corresponding penalized M-estimator with the `2 constraint is

related to the Elastic net, which overcomes the limitations of the LASSO

type regularization (Zou and Hastie, 2005).

In both parts, we will show that (in the finite sample setting), the

M-estimator obtained from (1.1) or (1.2) is robust in the sense that all

stationary points of empirical risk function R̂n(θ) or L̂n(θ) are bounded

in the neighborhood of the true parameter θ0 when the proportion of out-

liers is small. Besides, we will show that with a high probability, there

is a unique stationary point of the empirical risk function, which is the

global minimizer of (1.1) or (1.2) for some general (possibly non-convex)

loss functions ρ. This implies that the M-estimator can be computed effi-

ciently. To illustrate our general theoretical results, we study some specific

M-estimators Welsch’s exponential squared loss (Dennis Jr and Welsch,

1978) and Tukey’s bisquare loss (Beaton and Tukey, 1974), and explicitly
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discuss how the tuning parameter and percentage of outliers affect the ro-

bustness and tractability of the corresponding M-estimators.

Our research makes several fundamental contributions to the field of

robust statistics and non-convex optimization. First, we demonstrate the

uniform convergence results for the gradient and Hessian of the empiri-

cal risk to the population risk under the gross error model. Second, we

provide a nonasymptotic upper bound of the estimation error for general

M-estimators, which nearly achieve the minimax error bound in Chen et al.

(2016). Third, we investigate the computational tractability of the general

non-convex M-estimators under the gross error model. The result shows

that when the contamination ratio δ is small, there is only one unique sta-

tionary point of the empirical risk function. Therefore, efficient algorithms

such as gradient descent or proximal gradient descent can be guaranteed

to converge to a unique global minimizer irrespective of the initialization.

Our general results also imply the following interesting statement: the per-

centage of outliers impacts the tractability of non-convex M-estimators. In

a nutshell, the estimation and the corresponding optimization problem be-

come more complicated in terms of solution quality and computational ef-

ficiency when more outliers appear. While the former is well expected, we

find the latter – that more outliers make M-estimators more difficult to
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compute numerically – an interesting and somewhat surprising discovery.

Our simulation results and case study also verify this phenomenon.

Related works

Since Huber’s pioneer work on robust M-estimators (Huber, 1964), many

M-estimators with different choices of loss functions have been proposed,

e.g., Huber’s loss (Huber, 1964), Andrew’s sine loss (Andrews et al., 1972),

Tukey’s Bisquare loss (Beaton and Tukey, 1974), Welsch’s exponential squared

loss (Dennis Jr and Welsch, 1978), to name a few. From the statistical per-

spective, much research has been done to investigate the robustness of M-

estimators such as large breakdown point (Donoho and Huber, 1983; Mizera

and Müller, 1999; Alfons et al., 2013), finite influent function (Hampel et al.,

2011) and asymptotic normality (Maronna and Yohai, 1981; Lehmann and

Casella, 2006; El Karoui et al., 2013). Recently, in the high-dimensional

context, regularized M-estimators have received much attention. Lambert-

Lacroix and Zwald (2011) proposed a robust variable selection method by

combing Huber’s loss and adaptive lasso penalty. Li et al. (2011) show that

the nonconcave penalized M-estimation method can perform parameter esti-

mation and variable selection simultaneously. Welsch’s exponential squared

loss combined with adaptive lasso penalty is used by Wang et al. (2013) to
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construct a robust estimator for sparse estimation and variable selection.

Chang et al. (2018) proposed a robust estimator by combining Tukey’s

bisquare loss with adaptive lasso penalty. Loh and Wainwright (2015)

proved that under mild conditions, any stationary point of the non-convex

objective function would close to the true underlying parameters. However,

those statistical works did not discuss the computational tractability of the

M-estimators, even though many of these loss functions are non-convex.

During the last several years, non-convex optimization has attracted

fast-growing interests due to its ubiquitous applications in machine learning

and deep learning, such as dictionary learning (Mairal et al., 2009), phase

retrieval (Candes et al., 2015), orthogonal tensor decomposition (Anandku-

mar et al., 2014), and training deep neural networks (Bengio, 2009). It is

well known that there is no efficient algorithm that can guarantee to find

the global optimal solution for general non-convex optimization.

Fortunately, in the context of estimating non-convex M-estimators for

high-dimensional linear regression (without outliers), under some mild sta-

tistical assumptions, Loh (2017) establishes the uniqueness of the stationary

point of the non-convex M-estimator when using some non-convex bounded

regularizers instead of `1 regularizer. By investigating the uniform conver-

gence of gradient and Hessian of the empirical risk, Mei, Bai, Montanari,
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et al. (2018) prove that with a high probability, there exists one unique

stationary point of the regularized empirical risk function with `1 regular-

izer. Thus regardless of the initial points, many computational efficient

algorithms such as gradient descent or proximal gradient descent algorithm

could be applied and are guaranteed to converge to the global optimizer,

which implies the high tractability of the M-estimator. However, their anal-

ysis is restricted to the standard linear regression setting without outliers.

In particular, they assume the distribution of the noise terms in the linear

regression model should have some desirable properties such as zero mean,

sub-gaussian, and independent of feature vector x, which might not hold

when the data are contaminated with outliers. To the best of our knowl-

edge, no research has been done on analyzing the computational tractability

properties of the non-convex M-estimators when data are contaminated by

arbitrary outliers, although the very reason why M-estimators are proposed

is to handle outliers in linear regression in the robust statistics literature.

Our research is the first to fill the significant gap in the tractability of

non-convex M-estimators. We prove that under mild assumptions, many

M-estimators can tolerate a small number of arbitrary outliers in the sense

of keeping the tractability, even if the loss functions are non-convex.

Notations. Given µ, ν ∈ Rp, their standard inner product is defined
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by 〈µ, ν〉 =
∑p

i=1 µiνi. The `p norm of a vector x is denoted by ||x||p. The

p by p identity matrix is denoted by Ip×p. Given a matrix M ∈ Rm×m,

let λmax(M), λmin(M) denote the largest and the smallest eigenvalue of M ,

respectively. The operator norm of M is denoted by ||M ||op, which is equal

to max(λmax(M),−λmin(M)) when M ∈ Rm×m. Let Bp
q (a, r) = {x ∈ Rp :

||x − a||q ≤ r} be the `q ball in the Rp space with center a and radius

r. Moreover, let Bp
q (r) be the `q ball in the Rp space with center 0 and

radius r. Given a random variable X with probability density function f, we

denote the corresponding expectation by Ef . We will often omit the density

function subscript f when it is clear from the context, the expectation is

taken for all variables.

Organization. The rest of this article is organized as follows. In

Section 2, we present the theorems about the robustness and tractability

of general M-estimators under the low-dimensional setup when dimension

p is much smaller than n. Then in Section 3, we consider the penalized

M-estimator with `1 regularizer in the high-dimensional regression when

p � n. The `2 error bounds of the estimation and the scenario when the

M-estimator has nice tractability are provided. In Section 4, we discuss two

special families of robust estimator constructed by Welsch’s exponential loss

and Tukey’s bisquare loss as examples to illustrate our general theorems of
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robustness and tractability of M-estimators. Simulation results and a case

study are presented in Section 5 and Section 6 respectively to illustrate the

robustness and tractability properties when the data are contaminated by

outliers. Concluding remarks are given in Section 7. We relegate all proofs

and supporting lemmas to the Supplementary Material.

2. M-estimators in the Low-Dimensional Regime

In this section, we investigate two critical properties of M-estimators, namely

robustness, and tractability, in the setting of linear regression with arbi-

trary outliers in the low-dimensional regime where the dimension p is much

smaller than the number of samples n. In terms of robustness, we show

that under some mild conditions, any stationary point of the objective

function in (1.1) will be well bounded in a neighborhood of the true pa-

rameter θ0. Moreover, the neighborhood shrinks when the proportion of

outliers decreases. In terms of tractability, we show that when the propor-

tion of outliers is small, and the sample size is large, with a high probability,

there is a unique stationary point of the empirical risk function, which is

the global optimum (and hence the corresponding M-estimator). Conse-

quently, many first-order methods are guaranteed to converge to the global

optimum, irrespective of initialization. In particular, we will show the gra-
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dient descent algorithm can converge to the global optimum exponentially

for any initializations.

Before presenting our main theorems, we make the following mild as-

sumptions on the loss function ρ, the explanatory or feature vectors xi, and

the idealized noise distribution f0. We define the score function ψ(z) :=

ρ′(z).

Assumption 1.

(a) The score function ψ(z) is twice differentiable and odd in z with ψ(z) ≥

0 for all z ≥ 0. Moreover, we assume

max{||ψ(z)||∞, ||ψ′(z)||∞, ||ψ′′(z)||∞} ≤ Lψ.

(b) The feature vector xi are i.i.d with zero mean and τ 2-sub-Gaussain,

that is E[e〈λ,xi〉] ≤ exp(1
2
τ 2||λ||22), for all λ ∈ Rp.

(c) The feature vector xi spans all possible directions in Rp, that is E[xix
T
i ] �

γτ 2Ip×p, for some 0 < γ ≤ 1.

(d) The idealized noise distribution f0(ε) is symmetric. Define h(z) :=∫∞
−∞ f0(ε)ψ(z + ε)dε and h(z) satisfies h(z) > 0, for all z > 0 and

h′(0) > 0.

Assumption (a) requires the smoothness of the loss function in the ob-

jective function, which is crucial to study the tractability of the estimation
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problem; Assumption (b) assumes the sub-Gaussian design of the observed

feature matrix; Assumption (c) assumes that the covariance matrix of the

feature vector is positive semidefinite. We remark that the condition on

h(z) is mild. It is not difficult to show that it is satisfied if the idealized

noise distribution f0(ε) is strictly positive for all ε and decreasing for ε > 0,

e.g., if f0 = pdf of N(0, σ2).

Before presenting our main results in this section, we first define the

population risk as follows:

R(θ) = ER̂n(θ) = E[ρ(Y − 〈θ,X〉)]. (2.3)

The high level idea is to analyze the population risk first, and then we

build a link between the population risk and the empirical risk, which solves

the original estimation problem. Theorem 1 below summarizes the results

for the population risk function R(θ) in (2.3).

Theorem 1. Assume that Assumption 1 holds and the true parameter θ0

satisfies ||θ0||2 ≤ r/3.

(a) There exists a constant η0 = δ
1−δC1 such that any stationary point θ∗

of R(θ) satisfies ||θ∗ − θ0||2 ≤ η0, where δ is the contamination ratio,

and C1 is a positive constant that only depends on γ, r, τ, ψ(z) and the

pdf f0, but does not depend on the outlier pdf g.
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(b) When δ is small, there exist a constant η1 = C2 − C3δ > 0, where

C2, C3 are two positive constants that only depend on γ, r, τ, ψ(z) and

the pdf f0 but not depend on the outlier pdf g, such that

λmin(∇2R(θ)) > 0 (2.4)

for every θ with ||θ0 − θ||2 < η1.

(c) There is a unique stationary point of R(θ) in the ball Bp
2(0, r) as long

as η0 < η1 for a given contamination ratio δ.

It is useful to add some remarks for better understanding Theorem

1. First, recall that the noise term εi follows the gross error model: εi ∼

(1 − δ)f0 + δg, where the outlier pdf g may also depend on xi. While the

true parameter θ0 may no longer be the stationary point of the population

risk function R(θ), Theorem 1 implies that the stationary points of R(θ)

will always bounded in a neighborhood of the true parameter θ0 when the

percentage of contamination δ is small. This indicates the robustness of

M-estimators in the population case.

Second, Theorem 1 asserts that when there are no outliers, i.e., δ = 0,

the stationary point is indeed the true parameter θ0. In addition, since the

constant η0 in (a) is an increasing function of δ whereas the constant η1

in (b) is a decreasing function of δ, stationary points of R(θ) may disperse
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from the true parameter θ0 and the strongly convex region around θ0 will

be decreasing, as the contamination ratio δ is increasing. This indicates the

difficulty of optimization for large contamination ratio cases.

Third, part (c) is a direct result from part (a) and (b). Note that

η0(δ = 0) = 0 < η1(δ = 0) = C2, thus there exists a positive δ∗, such that

η0 < η1 for any δ < δ∗. A simple lower bound on δ∗ is C3/(C1 + C2 + C3),

since C1δ < (1− δ)(C2 − C3δ) whenever 0 ≤ δ ≤ C3/(C1 + C2 + C3).

Our next step is to link the empirical risk function (and the corre-

sponding M-estimator) with the population version. To this end, we need

to introduce Lemma 1, which shows the global uniform convergence theo-

rem of the sample gradient and Hessian. Due to the page limit, it will be

presented in the Supplementary Material.

We are now ready to present our main result about M-estimators by

investigating the empirical risk function R̂n(θ).

Theorem 2. Assume Assumption 1 holds and ||θ0||2 ≤ r/3. Let us use

the same notation η0 and η1 as in Theorem 1. Then for any π > 0, there

exist constants C, Cπ = C0(Ch ∨ log(rτ/π) ∨ 1), where C is a constant

greater than Cπ, C0 is a universal constant, Ch is a constant depending

on γ, r, τ, ψ(z), h(z) but independent of π, p, n, δ and g, such that as n ≥

Cp log n, the following statements hold with probability at least 1− π :
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(a) for all ||θ − θ0||2 > η0 + 1
1−δζ,

〈θ − θ0,∇R̂n(θ)〉 > 0, (2.5)

where ζ is a constant does not depend on δ.

(b) for all ||θ − θ0||2 < η1,

λmin(∇2R̂n(θ)) > 0. (2.6)

Thus, as long as η0 + 1
1−δζ < η1, R̂n(θ) has a unique stationary point, which

lies in the ball Bp
2(θ0, η0 + 1

1−δζ). This is the unique global optimal solution

of (1.1), and denote this unique stationary point by θ̂n.

(c) There exists a positive constant κ that depends on π, γ, r, ψ, δ, f0 but

independent of n, p and g, such that

||θ̂n − θ0||2 ≤ η0 +
4τ

κ

√
Cπp log n

n
. (2.7)

(d) There exist constants C1, C2, hmax that depend on π, γ, r, ψ, δ, f0 but

independent of n, p and g such that the gradient descent with fixed step

size h ≤ hmax converges exponentially fast to the global minimizer, i.e.,

for any initialization θn(0) ∈ Bp
2(0, r),

‖θn(k)− θ̂n‖22 ≤ C1(1− C2h)k‖θn(0)− θ̂n‖22, (2.8)
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A few remarks are in order. First, the constant Cπ is the same constant

in Lemma 1, which gauranntees the uniform convergence of the sample

gradient and Hessian when n ≥ Cπp log n. C is a constant depends on

Cπ and larger than Cπ, which means additional samples are required to

ensure the results in Theorem 2 compared to the sample size in Lemma

1. Second, since η0, ζ are independent of n, p and g, Theorem 2(a) as-

serts that the M-estimator which minimizes R̂n(θ) is always bounded in the

ball Bp
2(θ0, η0 + 1

1−δζ), regardless of g (and hence the outliers observed).

This indicates the robustness of the M-estimator, i.e., the estimates are

not severely skewed by a small amount of “bad” outliers. Next, when the

contamination ratio δ is small such that η0 + 1
1−δζ < η1, there is a unique

stationary point of R̂n(θ). In fact, as will be shown in the Supplementary

Material, when δ = 0, we always have η0 + ζ < η1, which implies the con-

dition η0 + 1
1−δζ < η1 will always hold for some small value of δ. Therefore,

although the original optimization problem (1.1) is non-convex and the

sample contains some arbitrary outliers, the optimal solution of R̂n(θ) can

be computed efficiently via most off-the-shelf first-order algorithms such as

gradient descent or stochastic gradient descent. Specifically, in Theorem 2,

we show with high probability, the gradient descent algorithm converges to

the global optimal solution exponentially regardless of the initializations.
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This indicates the tractability of the M-estimator. Interestingly, as in the

population risk case, the tractability is closely related to the number of

outliers – the problem is easier to optimize when the data contains fewer

outliers. Finally, when the number of samples n � p log n, the estimation

error bound is as the order of O(δ +
√

p logn
n

), which nearly achieves the

minimax lower bound of O(δ +
√

p
n
) in Chen et al. (2016).

3. Penalized M-estimator in the High-Dimensional Regime

In this section, we investigate the tractability and the robustness of the

penalized M-estimator in the high-dimension region where the dimension of

parameter p is much greater than the number of samples n. Specifically, we

consider the same data generation model yi = 〈θ0, xi〉+εi, where yi ∈ R, xi ∈

Rp, and the noise term εi are from Huber’s gross error model (Huber, 1964):

εi ∼ (1− δ)f0 + δg. Moreover, we assume p� n and the true parameter θ0

is sparse.

We consider the `1-regularized M-estimation under a `2-constraint on

θ:

Minimize:
θ

L̂n(θ) :=
1

n

n∑
i=1

ρ(yi − 〈θ, xi〉) + λn||θ||1, (3.9)

subject to: ‖θ‖2 ≤ r.

Before presenting our main theorem, we need additional assumptions
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on the feature vector x.

Assumption 2. The feature vector x has a probability density function

in Rp. In addition, there exists constant M > 1 that is independent of

dimension p such that ||x||∞ ≤Mτ almost sure.

Remark 1. For unbounded sub-Gaussian feature vectors, Theorem 3 below

can be supplemented by taking a truncation at M = C
√

log(np). Then, the

conclusions still hold, with an additional log(np) term. Thus, for simplicity

of the statement of Theorem 3, we consider the case when Assumption 2

holds.

In the Supplementary Material, we will present Lemma 2, which shows

the uniform convergence of gradient and Hessian under the Huber’s con-

tamination model in the high-dimensional setting where p � n. Then we

are ready for our main theorem.

Theorem 3. Assume that Assumption 1 and Assumption 2 hold and the

true parameter θ0 satisfies ||θ0||2 ≤ r/3 and ||θ0||0 ≤ s0. Then there exist

constants C,C0, C1 that are dependent on (ρ, Lψ, τ
2, r, γ, π) but independent

on (δ, s0, n, p,M) such that as n ≥ Cs0 log p and λn ≥ 2C0M
√

log p
n

+2δLψτ,

the following hold with probability as least 1− π :

(a) All stationary points of problem (3.9) are in Bp
2(θ0, η0 +

√
s0

1−δλnC1)
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(b) As long as n is large enough such that n ≥ Cs0 log2 p and the con-

tamination ratio δ is small such that (η0 + 1
1−δ
√
s0λnC1) ≤ η1, the

problem (3.9) has a unique local stationary point which is also the

global minimizer.

The proof of Theorem 3 is based on several lemmas, which are post-

poned to the Supplementary Material. We believe that some of our lemmas

are of interest in their own right. Theorem 3 implies the estimation error

of the penalized M-estimator is bounded as the order of O(δ +
√

s0 log p
n

),

which achieves the minimax estimation rate (Chen et al., 2016). Moreover,

it implies that the penalized M-estimator has good tractability when the

percentage of outliers δ is small.

Remark 2. In Theorem 3, we show there is a unique local stationary point

for the problem (3.9) if (η0 + 1
1−δ
√
s0λnC2) ≤ η1 and n is large. Thus,

many first-order algorithms can be guaranteed to converge to the global

optimal when the initialization is in the ball Bp
2(θ, η1). However, due to the

complicity of analyzing the restricted empirical risk L̂n(θ), we still leave an

open problem about the convergence analysis of such fast algorithms for

any initializations in the ball Bp
2(r).
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4. Example

In this section, we use some examples to illustrate our general theoretical

results about the robustness and tractability of M-estimators. In the first

subsection, we consider the low-dimensional regime and study a family of

M-estimators with a specific loss function known as Welsch’s exponential

squared loss (Dennis Jr and Welsch, 1978; Rey, 2012; Wang et al., 2013). In

the second subsection, we consider the high-dimensional regime and study

the penalized M-estimator with Tukey’s bisquare loss (Beaton and Tukey,

1974). In both subsections, we will derive the explicit expression of the

two critical radius η0, η1, and discuss the robustness and tractability of the

corresponding M-estimators.

4.1 M-estimators via Welsch’s Exponential Squared Loss

In this subsection, we illustrate the general results presented in Section 2 by

considering a family of M-estimators with a specific non-convex loss function

known as Welsch’s exponential squared loss (Dennis Jr and Welsch, 1978;

Rey, 2012; Wang et al., 2013),

ρα(t) =
1− exp(−αt2/2)

α
, (4.10)
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4.1 M-estimators via Welsch’s Exponential Squared Loss

where α ≥ 0 is a tuning parameter. The corresponding M-estimator is

obtained by solving the optimization problem

min
θ

R̂n(θ) :=
1

n

n∑
i=1

ρα(yi − 〈θ, xi〉), (4.11)

subject to ||θ||2 ≤ r.

The non-convex loss function ρα(t) in (4.10) has been used in other contexts

such as robust estimation and robust hypothesis testing, see Ferrari and

Yang (2010); Qin and Priebe (2017), as it has many nice properties. First,

it is a smooth function of both α and t, and the gradient and Hessian are

well-defined. Second, when α goes to 0, ρα(t) will converge to t2/2. Thus,

the least square estimator is a special case of the M-estimator obtained

from (4.16). Third, for fixed α > 0, ρα(t), ρ′α(t), ρ′′α(t) are all bounded.

Intuitively, this implies that the impact of outlier observations of yi will be

controlled and thus the corresponding statistical procedure will be robust.

We now study the robustness and tractability of the M-estimator of

(4.11) based on our framework in Theorem 2. In order to emphasize on

the effects of the tuning parameter α and the contamination ratio δ on

the robustness property and tractability property, we consider a simplified

assumption on the feature vector xi and the pdf of idealized residual f0.

Assumption 3. (a) The feature vector xi are i.i.d multivariate Gaussian
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4.1 M-estimators via Welsch’s Exponential Squared Loss

distribution N(0, τ 2Ip×p).

(b) The idealized noise pdf f0(ε) has Gaussian distribution N(0, σ2).

(c) Assume the true parameter ||θ0||2 ≤ r/3.

Now we are ready to present our Corollary 1, which is a direct applica-

tion of our Theorem 2.

Corollary 1. Assume Assumption 3 holds and ||θ0||2 ≤ r/3. For any π > 0,

there exist constant C such that as n ≥ Cp log n, the following statements

hold with probability at least 1− π :

(a) All stationary points of problem (4.11) are in Bp
2(θ0, η0 + 1

1−δζ).

(b) The empirical risk function R̂n(θ) are strongly convex in the ball Bp
2(θ0, η1).

(c) As long as η0 + 1
1−δζ < η1, R̂n(θ) has a unique stationary point, which

is the unique global optimal solution of (1.1).

Here

ζ =
1

13.5
√

3α(1 + ασ2)3/2τ
, (4.12)

η0(δ, α) =
δ

1− δ

√
e

α

4(1 + ασ2)3/2

τ
e

32αr2τ2

3(1+ασ2) , (4.13)

η1(δ, α) =
1

9
√

3α(1 + ασ2)3/2τ

[
1− δ(1 + 3(1 + ασ2)3/2)

]
. (4.14)
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4.2 Penalized M-estimators via Tukey’s Bisquare Loss

It is interesting to see the special case of Corollary 1 with α = 0, which

reduces to the least square estimator. On the one hand, with α = 0, we

have η1(δ, α = 0) = +∞ for any δ > 0. This means that the corresponding

risk function is strongly convex in the entire region of Bp
2(0, r = 10), and

hence it is always tractable. On the other hand, since η0(δ, α = 0) = +∞,

the solution of the optimization problem in (4.16) can be arbitrarily in the

ball Bp
2(0, r = 10), even when the proportion of outliers is small. Thus it

is not robust to the outliers. This recovers the well-known fact: the least

square estimator is easy to compute, but is very sensitive to outliers.

Additionally, for another special case with δ = 0 and α > 0, we have

η0(δ = 0, α) = 0 and ζ < η1(δ = 0, α). This implies the Welsch’s estimator

has nice tractability when there are no outliers. However, when the per-

centage of outlier δ is increasing, η1(δ, α) will decrease, which implies more

outliers will reduce the tractability of the M-estimator.

4.2 Penalized M-estimators via Tukey’s Bisquare Loss

In this subsection, we illustrate the general results presented in Section 3

by studying the Tukey’s bisquare loss function (Beaton and Tukey, 1974)

ρα(t) =


1
6
α2 [1− (1− (t/α)2)3] , if |t| ≤ α

0, if |t| > α.

(4.15)
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4.2 Penalized M-estimators via Tukey’s Bisquare Loss

where α > 0 is a tuning parameter. The corresponding penalized M-

estimator is obtained by solving the optimization problem

min
θ

L̂n(θ) :=
1

n

n∑
i=1

ρα(yi − 〈θ, xi〉) + λn||θ||1, (4.16)

subject to ||θ||2 ≤ r.

Note the loss function ρα(t) in (4.15) is non-convex. For fixed α > 0,

ρ′α(t), ρ′′α(t) are all bounded. We now study the robustness and tractability

of the penalized M-estimator of (4.16) based on our framework in Theorem

3. When α goes to ∞, ρα(t) will converge to t2/2. Thus, the penalized M-

estimator obtained by (4.16) reduces to the LASSO estimator, which can

be computed easily. However, LASSO is also known to be very sensitive

to the outliers (Alfons et al., 2013). On the other hand, when α increases,

the estimator becomes more robust but may lose tractability due to the

non-convexity of the function ρα(t) as well as the presence of the outliers.

In order to emphasize on the relation between the tuning parameter α

and the contamination ratio δ, we consider a simplified assumption on the

feature vector xi and the pdf of idealized residual f0.

Assumption 4. (a) The feature vector xi are i.i.d multivariate uniform

distribution [−τ, τ ]p.

(b) The idealized noise pdf f0(ε) has Gaussian distribution N(0, σ2).
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4.2 Penalized M-estimators via Tukey’s Bisquare Loss

(c) The true parameter ||θ0||2 ≤ r/3.

With Assumption 4 and Theorem 3, we can get the following Corollary

2, which characterizes the robustness and tractability of the penalized M-

estimator with Tukey’s exponential squared loss in (4.15):

Corollary 2. Assume that Assumption 4 holds and the true parameter θ0

satisfies ||θ0||2 ≤ r/3, for any π ∈ (0, 1), there exist a constant Cπ such that

if choosing λn = 2Cπτ
√

log p
n

+2ατδ, as n� s0 log p, the following hold with

probability as least 1− π :

(a) All stationary points of problem (4.16) are in Bp
2(θ0, (1 + 2τ)η0)

(b) The empirical risk function L̂n(θ) are strong convex in the ball Bp
2(θ0, η1)

(c) As long as n is large enough and the contamination ratio δ is small such

that (1 + 2τ) η0 ≤ η1, the problem (4.16) has a unique local stationary

point which is also the global minimizer.

Here

η0(δ, α) =
δ

1− δ
28
√

2π

τσ3α2
e
α2+64τ2r2

σ2 , (4.17)

η1(δ, α) =
(1− δ)M(α, σ)τ 2 − 4δ

2
√

3τ
α, (4.18)

where M(α, σ) = 2α
∫ 1

0
(1 − t)(1 + t)(1 − 5t2)f0(αt)dt is a positive number

when α > 0, σ > 0.
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It is interesting to see the special case of Corollary 2 with α → ∞,

which reduces to the LASSO estimator. On the one hand, with α =∞, we

have η1(δ, α = 0) = +∞ for any δ > 0. This means that the corresponding

risk function is strongly convex in the entire region of Bp
2(0, r = 10), and

hence it is always tractable. On the other hand, since η0(δ, α→∞)→ +∞,

the solution of the optimization problem in (4.16) can be arbitrarily in the

ball Bp
2(0, r = 10), even when the proportion of outliers is small. Thus it is

not robust to the outliers. This recovers the well-known fact: the LASSO

estimator is easy to compute, but is very sensitive to outliers.

Additionally, for another special case with δ = 0 and α > 0, we have

η0(δ = 0, α) = 0, which means the true parameter θ0 is the unique stationary

point of the risk function. This implies the Tukey’s estimator has nice

tractability when there are no outliers. However, when the percentage of

outlier δ is increasing, η1(δ, α) will decrease, which implies more outliers

may reduce the tractability of the M-estimator.

5. Simulation Results

In this section, we report the simulation results by using Welsch’s exponen-

tial loss and Tukey’s bisquare loss when the data are contaminated, using

the synthetic data. We first generate covariates xi ∼ N(0, Ip×p) and re-
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sponses yi = 〈θ0, xi〉+ εi, where ||θ0||2 = 1. We consider the case when the

residual term εi have gross error model with contamination ratio δ, i.e.,

εi ∼ (1− δ)N(0, 1) + δN(µi, 3
2) where µi = ||xi||22 + 1. The outlier distribu-

tion is chosen to highlight the effects of outliers when they are dependent

on xi and has non-zero mean.

In the first part, we consider the low-dimensional case when the dimen-

sion p = 10. Specifically, we generate n = 100 pairs of data (yi, xi)i=1,..,n

with dimension p = 10 and with different choices of contamination ratios

δ. We use projected gradient descent to solve the optimization problem in

(4.11) with Welsch’s loss and r = 10. To make the iteration points be inside

the ball, we will project the points back into Bp
2(0, r = 10) if they fall out

of the ball. The step size is fixed as 1. In order to test the tractability of

the M-estimator, we run gradient descent algorithm with 20 random initial

values in the ball Bp
2(0, r = 10) to see whether the gradient descent algo-

rithm can converge to the same stationary point or not. Denote θ̂(k) as the

kth iteration points, we then plot the empirical standard deviation of each

iteration std(θ̂(k)) = Tr(V̂ar(θ̂(k))) among those 20 different initializations.

Figure 1 shows the convergence of the gradient descent algorithm for the

Welsch’s exponential loss with the choice of α = 0.1 under the gross error

model with different δ. From Figure 1 we observe when the proportion of
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outliers is small (i.e., δ ≤ 0.1,) gradient descent could converge to the same

stationary point fast. However, when the contamination ratio δ becomes

larger, gradient descent may not converge to the same point for different ini-

tial points, indicating the loss of tractability for the same objective function

with increasing proportion of outliers. Those observations are consistent to

our Theorem 2, which asserts the M-estimator is tractable when the con-

tamination ratio δ is small. Then, we further show the empirical standard

deviation at the k = 300 iteration std(θ̂(300)) when p = 20 and the ratio

of n/p varies from 1 to 21 in Figure 2. From Figure 2, we can see when the

sample size n is small, the gradient descent may not converge to the same

stationary point. However, when n is large enough, for small proportion of

outlier δ, the algorithm will converge to the same stationary point, which

implies the uniqueness of the stationary point.

To illustrate the robustness of the M-estimator, we generate 100 re-

alizations of (Y,X) and run gradient descent algorithm with different ini-

tial values. The average estimation errors between the M-estimator and

the true parameter θ0 are presented in Figure 3. As we can see, when

δ = 0, all estimators have small estimation errors, which are well expected

as those M-estimators are consistent without outliers (Huber, 1964; Huber

and Ronchetti, 2009). However, for the M-estimator with α = 0, i.e., the
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Figure 1: The value of std(θ̂(k)) for

different δ. Y-axis is with log scale.
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Figure 2: The value of std(θ̂(300)) for

different δ. Y-axis is with log scale

least square estimator, the estimation error will increase dramatically as

the proportion of outliers increases. This confirms that the least square

estimator is not robust to the outliers.

Meanwhile, when α = 0.1, the overall estimation error does not increase

much even with 40% outliers, which clearly demonstrate the robustness of

the M-estimator. Note that when α is further increased from 0.1 to 0.3,

although the estimator error is still very small for δ ≤ 0.2, it will increase

dramatically when δ is greater than 0.2. We believe that two reasons con-

tribute to this phenomenon: robustness starts to decrease when α becomes

too large. More importantly, the algorithm fails to find the global opti-

mum due to multiple stationary points when α is large. Thus for each α,

there exists a critical bound of δ, such that the estimator will be robust and

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



tractable efficiently when the proportion of outliers is smaller than that

bound.

In the second part, we present our results in the high-dimensional re-

gion when p = 200, n = 200. Data (yi, xi) are generated from the same

gross error model in the previous simulation study, with the true parameter

θ0 a sparse vector with s = 10 nonzero entries. All nonzero entries are set

to be 1/
√

10. We use proximal gradient descent algorithm to solve prob-

lem (3.9) with Tukey’s bisquare loss. Similarly, we will project the points

back into Bp
2(0, r = 10) if they fall out of the ball. We set the fixed step

size as 0.1 and the L1 regularization parameter λ =
√

log(p)/n. We first

illustrate the robustness of the penalized M-estimator by Tukey’s loss with

different choices of tuning parameter α = 4, 5, 10, 20, 500. We generate 100

realizations of (Y,X) and run proximal gradient descent algorithm. The

average estimation errors between the penalized M-estimator and the true

parameter are reported in Figure 4. First, note as α is large, Tukey’s loss

will be similar to the square loss. Thus, the penalized M estimator with

α = 500 will have a similar performance as LASSO. From Figure 4, we can

see it has the smallest estimation error when δ = 0 but has the largest es-

timation error when δ ≥ 0.1. Moreover, when α is small, the corresponding

estimation error will not increase a lot even if δ = 0.4. These results imply
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the robustness of the penalized robust M-estimator.
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Figure 3: The estimation error for
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Figure 4: The estimation error for

different α and δ.

Next, we will illustrate the tractability of the penalized M-estimator by

showing std(θ̂(k)) among 20 initializations of the proximal gradient descent

algorithm for the Tukey’s loss with the choice of α = 20 under the gross

error model with different δ. Figure 5 shows the result with p = 200, n = 200

and Figure 6 shows the result with p = 400, n = 400. From the two plots,

we observe an interesting phenomenon: the proximal gradient descent will

converge to the same stationary points even when the percentage of outliers

δ = 0.4. This result seems to contradict the result for the low-dimensional

case, where α = 0.4 can make the algorithm converge to different stationary

points. Thus, more accurate analysis on the tractability property of the

penalized M-estimators are needed.
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Figure 5: The value of std(θ̂(k)) for

different δ. n=p=200.
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Figure 6: The value of std(θ̂(k)) for

different δ. n=p=400.

6. Case study

In this section, we present a case study of the robust regression problem

for the Airfoil Self-Noise dataset (Brooks et al., 2014), which is available on

UCI Machine Learning Repository. The dataset was processed by NASA

and is commonly used for regression study to learn the relation between

the airfoil self-noise and five explanatory variables. Specifically, the dataset

contain the following 5 explanatory variables: Frequency (in Hertzs), Angle

of attack (in degrees), Chord length,(in meters), Free-stream velocity (in

meters per second), and Suction side displacement thickness (in meters).

There are 1503 observations in the dataset. The response variable is Scaled

sound pressure level (in decibels). In this section, the five explanatory

variables are scaled to have zero mean and unit variance. Then, we corrupt
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the response by adding noise ε from the same gross error model as the

previous section: εi ∼ (1− δ)N(0, 1) + δN(µi, 3
2) with µi = ||xi||22 + 1.

We consider the M-estimator using Welsch’s exponential loss (Dennis Jr

and Welsch, 1978) on the dataset to validate the tractability and the ro-

bustness of the corresponding M-estimator. First, we run 100 Monte Carlo

simulations. At each time, we split the dataset which consists of 1503 pairs

of data into a training dataset of size 1000 and a testing dataset of size

503. Then for the training dataset, we use gradient descent method with 20

different initial values to update the iteration points.

Figure 7 shows the average distance between each iteration point and

the optimal point with the choice of α = 0.7 and step size 0.5. Clearly,

when δ is smaller than 0.3, gradient descent will converge to the same local

minimizer, which implies the uniqueness of the stationary point. This re-

sult demonstrates the nice tractability of the M-estimator under the gross

error model when the proportion of outliers is small. Then, using the op-

timal point as the M-estimator, we calculate the prediction error, which

is the mean square error on the testing data. Figure 8 shows the average

prediction error on the testing data. As we can see, the prediction error

with the choice of α = 0 will increase dramatically when the percentage of

outliers increases. In contrast, the prediction errors of M-estimators with
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α = 0.4 is stable even with a large percentage of outliers. This illustrates

the robustness of M-estimators for some positive α.
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Figure 7: The convergence of gradi-

ent descent algorithm for different δ.

Y-axis is with log scale.
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Figure 8: The prediction error for

different α and δ

7. Conclusions

In this paper, we investigate the robustness and computational tractabil-

ity of general (non-convex) M-estimators in both classical low-dimensional

regime and modern high-dimensional regime. In terms of robustness, in the

low-dimensional regime, we show the estimation error of the M-estimator

is as the order of O(δ +
√

p logn
n

), which nearly achieves the minimax lower

bound of O(δ+
√

p
n
) in Chen et al. (2016). In the high-dimensional regime,

we show the estimation error of the penalized M-estimator has the esti-
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mation error as the order of O(δ +
√

s0 log p
n

), which achieves the minimax

estimation rate (Chen et al., 2016).

In terms of tractability, our theoretical results imply under sufficient

conditions, when the percentage of arbitrary outliers is small, the general

M-estimator could have good computational tractability since it has only

one unique stationary point, even if the loss function is non-convex. There-

fore, M-estimators can tolerate certain level of outliers by keeping both

estimation accuracy and computation efficiency. Both simulation and real

data case study are conducted to validate our theoretical results about the

robustness and tractability of M-estimators in the presence of outliers.
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