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Hypothesis Testing for Block-structured Correlation

for High-dimensional Variables

Shurong Zheng1, Xuming He2 and Jianhua Guo1

1Northeast Normal University, China and 2University of Michigan, USA

Abstract: Testing independence or block-independence of high dimensional ran-

dom vectors is of great importance in multivariate statistical analysis. Recent

work on high dimensional block independence tests aim to extend their validity

beyond specific distributions (e.g., Gaussian) or restrictive block sizes. In this

paper, we propose a new and powerful test on block-structured correlation of high

dimensional random vectors for sparse or non-sparse alternatives without strict

distributional assumptions. The statistical properties of the proposed test are

developed under the asymptotic regime that the dimension grows proportionally

with the sample size. Empirically, we find that the proposed test outperforms

the existing tests we have considered for a variety of alternatives and works quite

well when there are few existing tests at our disposal.

Key words and phrases: Testing block-independence, high-dimension, multivari-

ate statistical analysis, sparse alternatives, non-sparse alternatives.

1. Introduction

Driven by a wide range of scientific applications, testing independence
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Hypothesis Testing for Block-structured Correlation 2

of random vectors is of great importance in multivariate statistical analysis.

In the conventional low-dimensional setting with p/n → 0, where p is the

dimension of the random vector and n is the sample size, both complete and

block independence tests are well established. For complete independence,

Anderson (2003) detailed the likelihood ratio test (LRT) for the Gaussian

population. For block independence, Wilks (1935) and Sugiura & Fujikoshi

(1969) developed effective likelihood ratio tests for the Gaussian population

and derived their asymptotic distributions under regularity conditions.

In the high-dimensional setting, the classical LRT is invalid or cannot

be defined as the dimension p becomes greater than the sample size n. In

recent years, researchers have made great advances on high-dimensional

independence tests. For complete independence, Bai et al. (2009) proposed

the corrected LRT when p/n→ y ∈ (0, 1). Jiang & Yang (2013) studied the

LRT when p/n → y ∈ (0, 1]. Schott (2005) developed a test based on the

Frobenius norm of the sample correlation matrix under the case of p > n.

Zhou (2007) and Cai & Jiang (2011) extended the results of Jiang (2004)

to obtain the extreme distribution of coherence of the sample correlation

matrices. Li & Xue (2015) proposed a quadratic type statistic and an

extreme-value type statistic. For high dimensional block independence,

Jiang, Bai & Zheng (2013) developed a corrected LRT and trace test as
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p/n → y ∈ (0, 1). Jiang & Yang (2013) studied the LRT for the Gaussian

population when p/n → (0, 1]. Bao, Hu, Pan & Zhou (2016) proposed a

Schott type statistic when the dimension of every block of random variables

is less than the sample size. Yamada, Hyodo and Nishiyama (2017) allowed

a more general setting by using the Frobenius norm of the sample covariance

matrix. Paindaveine and Verdebout (2016) proposed a high dimensional

sign test for block-structured correlation between random variables of two

blocks under appropriate symmetry assumptions.

This paper aims to develop a new and powerful test on block-structured

correlation of a high dimensional random vector for sparse or non-sparse

alternatives under no strict distributional assumptions under the asymp-

totic regime of p/n → y ∈ (0,∞). To this end, we propose a two-term

test statistic. The first term is Tn1 = tr[Sn − diag(S11, . . . ,SKK)]2, where

the sample covariance matrix Sn is a natural estimator of the population

covariance matrix and the block-diagonal matrix diag(S11, . . . ,SKK) is a

population covariance matrix estimator under block-structured correlation.

The statistic Tn1 does not impose any condition on the dimension because

Tn1 involves no matrix inversion. The statistic Tn1 is the total sum of the

squared entries of Sn − diag(S11, . . . ,SKK) to capture the overall differ-

ence between Sn and diag(S11, . . . ,SKK) even if the individual entries of
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Sn − diag(S11, . . . ,SKK) are small. That is, Tn1, similar to the test used in

Yamada, Hyodo and Nishiyama (2017), will have good power for non-sparse

alternatives. The second term is a screening term Tn0 which is added to

Tn1 for enhancing the power under sparse alternatives. Then the proposed

test statistic Tn1 + Tn0 is effective not only for non-sparse alternatives but

also for sparse alternatives. To examine the performance of the proposed

test statistic, the limiting null distribution is derived as p/n→ y ∈ (0,∞),

allowing y to be greater than 1. Simulation studies show that Type I errors

of the proposed test can be well maintained. Moreover, under the alterna-

tive hypothesis, the limiting distribution of the proposed test is discussed,

and the asymptotic unbiasedness of the proposed test is proved. When the

dimension is smaller than the sample size, simulation studies are conducted

to compare our proposed test with the existing tests for the Gaussian pop-

ulation. For comparison of empirical powers, our proposed test performs

favorably over other tests designed for high dimensions. Even when the

population is non-Gaussian and the dimension is greater than the sample

size, our proposed test performs well in our studies.

The organization of this paper is as follows. In Section 2, we propose

the test statistic, derive its limiting distribution under the null hypothesis

and the alternative hypothesis, and present the asymptotic power function

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



5

to show that the proposed test is asymptotically unbiased. In Section 3, we

conduct simulation studies for comparing the proposed test with several ex-

isting tests. A real data set is analyzed in Section 4 for illustration. Section

5 concludes with a discussion. Some proofs are given in the Appendix.

2. Test on block-structured correlation

Let {x1, . . . ,xn} be a random sample from the p-dimensional population

random vector x = (x1, . . . , xp)
> with mean vector µ and covariance ma-

trix Σ. Let x̄ = n−1
∑n

i=1 xi and Sn = (n − 1)−1
∑n

i=1(xi − x̄)(xi − x̄)>

be the sample mean and sample covariance matrix, respectively. Without

loss of generality, the random vector x = (x1, . . . , xp)
T can be formulat-

ed by K random variable blocks: {x1, . . . , xp1}, {xp1+1, . . . , xp1+p2}, . . .,

{xp1+p2+···+pK−1+1, . . . , xp}, where p = p1 + · · · + pK and K is permitted

to increase with n at some rate. Let Σij be the covariance matrix of the

i-th and j-th random variable blocks. The population and sample covari-

ance matrices can be partitioned into Σ = (Σij)
K
i,j=1 and Sn = (Sij)

K
i,j=1,

respectively. Testing block-structured correlation of x can be formulated as

testing

H0 : Σ = diag(Σ11, . . . ,ΣKK), (2.1)
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where diag(Σ11, . . . ,ΣKK) is the block-diagonal matrix fromK blocks {Σkk, k =

1, . . . , K}. A natural estimator of Σ is Sn. Under the null hypothesis, a

natural estimator of Σ is diag(S11, . . . ,SKK). For the Gaussian population,

the LRT statistic is (Wilks, 1935)

log |Sn| − log |diag(S11, . . . ,SKK)|,

which is the entropy loss of Sn and diag(S11, . . . ,SKK). The entropy loss

for covariance matrix estimation can be found in James & Stein (1961) and

Muirhead (1982). Jiang, Bai & Zheng (2013) proposed the following trace

test statistic for the case of K = 2

tr

[(
S
−1/2
11 S12S

−1/2
22

)(
S
−1/2
11 S12S

−1/2
22

)>]
which is the quadratic loss of Sn and diag(S11,S22). The quadratic loss for

covariance matrix estimation can be found in Olkin & Selliah (1977), Haff

(1980) and Muirhead (1982). For block-structured correlation, regardless

of the entropy loss or the quadratic loss for covariance matrix estimation,

the inversion of a sample covariance matrix or log-determinant of Skk is

involved; as a consequence, the block dimension cannot be larger than the

sample size.

In this paper, we propose a test statistic with two terms where one term

is the distance between Sn and diag(S11, . . . ,SKK) and the other term is
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a screening term. Motivated by the Frobenius distance between matrices,

this paper proposes the following statistic

Tn1 = tr[Sn − diag(S11, . . . ,SKK)]2.

Note that the statistic Tn1 as used in Yamada, Hyodo and Nishiyama

(2017)is the total sum of the squared entries of Sn − diag(S11, . . . ,SKK),

which can capture the overall difference even when the individual entries of

Sn − diag(S11 ,. . ., SKK) are small nonzero numbers. Therefore, the statis-

tic Tn1 is not only suitable for both low dimensions and high dimensions,

but is also expected to have good performance for non-sparse alternatives.

Furthermore, to enhance the power of Tn1 when Σ−diag(Σ11, . . . ,ΣKK) is

very sparse, a screening term Tn0 is added to Tn1. A similar idea has been

used in Fan, Liao and Yao (2015). Let the screening term be

Tn0 = p2δ{max(`1,`2)∈A0
n(s`1`2 )2(θ̂`1`2 )−1>s∗(n,p)}

where δ{·} is an indicator function, s∗(n, p) is a threshold depending on

(n, p), Sn = (s`1`2)
p
`1,`2=1, θ̂`1`2 = n−1

∑n
i=1[(x`1i − x̄`1)(x`2i − x̄`2) − s`1`2 ]2,

the set

A0 = {(`1, `2) : `1 ∈ {p̃i−1+1, . . . , p̃i}, `2 ∈ {p̃j−1+1, . . . , p̃j}, 1 ≤ i < j ≤ K},

(2.2)
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2.1 Limiting null distribution of Tn8

with p̃i = p1 + . . . + pi, xi = (x1i, . . . , xpi)
>, x̄`1 = n−1

∑n
i=1 x`1i and x̄`2 =

n−1
∑n

i=1 x`2i. The screening term Tn0 shows that if some s`1,`2 is large

enough, then Tn0 is at least in the order of p2. Thus, the screening term Tn0

can capture the difference between Sn and diag(S11, . . . ,SKK) even when

Σ − diag(Σ11, . . . ,ΣKK) is very sparse. Our proposed test statistic is the

sum of the two terms, that is,

Tn = Tn1 + Tn0 (2.3)

= tr[Sn − diag(S11, . . . ,SKK)]2 + p2δ{max(`1,`2)∈A0
n(s`1`2 )2(θ̂`1`2 )−1>s∗(n,p)}

which is expected to have good performance not only for non-sparse alter-

natives but also for sparse alternatives. Conditions needed on the threshold

s∗ will be given later.

2.1 Limiting null distribution of Tn

To facilitate the formulation, we use the following independent component

structure model for the data.

Assumption [A]. Let {xi}ni=1 satisfy the independent component structure

xi = (x1i, . . . , xpi)
T = µ + Σ1/2wi, where wi = (w1i, . . . , wpi)

>, all elements

{wji : j = 1, . . . , p, i = 1, . . . , n} are i.i.d. with E(wji) = 0, E(w2
ji) = 1, and

finite 4th moments.
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2.1 Limiting null distribution of Tn9

Remark 1. In fact, by (1.8) of Bai and Silverstein (2004), the existence

of the finite 4th moment of wji implies that there exists a sequence {ηn}

satisfying ηn → 0, ηnn
1/4 → +∞ and η−4

n Ew4
jiδ(|wji|>ηn

√
n) → 0.

Assumption [B]. Assume that the number of blocks satisfies Kη2
n = o(1).

Moreover, the spectral norm of Σ is bounded uniformly in p. The conver-

gence regime p/n→ y ∈ (0,∞) for some constant y is satisfied.

In Assumption [A], moment conditions are imposed, which is distribu-

tion free. For example, the Gaussian distribution and many other distribu-

tions readily satisfy the independent component structure. In Assumption

[B], Kη2
n = o(1) allows that K increases with n at some rate. Especially,

for the Gaussian distribution, we have

η−4
n Ew4

jiδ(|wji|>ηn
√
n) ≤ η−(4+m)

n n−m/2Ew4+m
ji δ(|wji|>ηn

√
n)

= o(η−(4+m)
n n−m/2) = o(1),

for any even m, if η−2
n = O(nm/(m+4)). Then K can have the order o(n1−ε)

for any ε > 0.

Lemma 1. Under Assumption [A]-[B], and under H0 specified by (2.1), we

have

Tn1 − µ
σ

→ N(0, 1) and
Tn1 − µ̂
σ0

→ N(0, 1),
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2.1 Limiting null distribution of Tn10

where

µ =
(n2 − n− 1)[(trΣ)2 −

∑K
k=1(trΣkk)

2]

n(n− 1)2
,

µ̂ =
(n2 − n− 1)[(trSn)2 −

∑K
k=1(trSkk)

2]

n(n− 1)2
, (2.4)

σ2
0 = 4(n−1trΣ2)2 − 4

K∑
k=1

(n−1trΣ2
kk)

2,

σ2 = σ2
0 + 4n−3

K∑
k=1

(trΣkk − trΣ)2

[
2 trΣ2

kk + βw

pk∑
`=1

(e>`kΣkke`k)
2

]
,

βw = E(w4
ji)− 3.

Here e` is a p-dimensional vector with the `-th element being one and other

elements being zeros and e`k is a pk-dimensional vector with the `-th element

being one and other elements being zeros.

Note that we have suppressed the subscript n in many of the quantities

we use such as µ and σ2. The proof of Lemma 1 is in the supplementary file

1. The asymptotic variance σ2
0 depends on the unknown parameters tr(Σ2)

and tr(Σ2
kk), k = 1, . . . , K. However,

(n− 2)−1[tr(S2
kk)− (n+ 2)−1(trSkk)

2]− n−1tr(Σ2
kk) = op(1), k = 1, . . . , K

which can be used to estimate σ2
0; see the proof in the supplementary file
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1. Moreover, under H0, we have tr(Σ2) =
∑K

k=1 tr(Σ2
kk), and then

(n− 2)−1

K∑
k=1

[tr(S2
kk)− (n+ 2)−1(trSkk)

2]− n−1tr(Σ2) = op(1).

Therefore, σ2
0 can be consistently estimated by

σ̂2
0 = 4(n− 2)−2{

K∑
k=1

[tr(S2
kk)− (n+ 2)−1(trSkk)

2]}2

−4(n− 2)−2

K∑
k=1

[tr(S2
kk)− (n+ 2)−1(trSkk)

2]2.

Bai and Saranadasa (1996) suggested a uniformly minimum variance un-

biased estimator of tr(Σ2) under the normality assumption, but we have

used an asymptotic approximation with a finite sample correction factor to

better control Type I errors. Let

p2
0 = p2 − p2

1 − . . .− p2
K . (2.5)

The following result provides the asymptotic justification to the proposed

test.

Theorem 1. Under Assumptions [A]-[B], and under H0 specified by (2.1),

if lim inf
n→∞

inf
(i,j)∈A0

var[(x1i − Ex1i)(x1j − Ex1j)][var(x1i)var(x1j)]
−1/2 > 0, s∗(n, p)−

4 log p0 → +∞, and sup1≤`≤p E exp(t0|x`1|m0) < ∞ for some constants

t0 > 0 and 0 < m0 ≤ 2, we have

σ̂−1
0 (Tn − µ̂)→ N(0, 1).
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2.1 Limiting null distribution of Tn12

We note that Tn has the same null distribution as Tn1 in the asymptotic

sense, and the second term Tn0 plays a role mainly when the alternative

hypothesis is true. The one-sided rejection region for H0 at the nominal

level α is

{x1, . . . ,xn : Tn − µ̂ > σ̂0q1−α}, (2.6)

where qα is the α-th quantile of the standard normal distribution.

Remark 2. To apply the proposed test in practice, we need to choose

the threshold s∗(n, p). There are many choices for the threshold as long

as it satisfies s∗(n, p) − 4 log p0 → +∞. For simplicity, in this paper, the

threshold is taken to be

s∗(n, p) = [4 + (log log n− 1)2](log p0 − 0.25 log log p0) + q (2.7)

where q satisfies exp[−(8π)−1/2 exp(−q/2)] = 0.99. The threshold ensures

that even if n and p0 are small, the probability of the event Tn0 = 0 is bound-

ed by 0.01 under H0 because max(`1,`2)∈A0 n(s`1`2)
2 θ̂−1

`1`2
−4 log p0 +log log p0

converges to a type I extreme value distribution exp[−(8π)−1/2 exp(−t/2)]

under the null hypothesis (see Xiao and Wu, 2013). The probability of the

event Tn0 = 0 becomes negligible under H0 when either n or p0 is moderate-

ly large. For example, if n = 200 and p0 = 250, the concerned probability

is only 0.002.
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2.1 Limiting null distribution of Tn13

Remark 3. Our proposed hypothesis test (2.6) is a global test on correla-

tions among different blocks. If the null hypothesis gets rejected, under the

sparsity assumption, for identifying the individual nonzero correlations, we

may directly use Cai and Liu (2016)’s multiple testing method in two steps.

Let

Tij =

∑n
`=1(xi` − x̄i)(xj` − x̄j)√

nθ̂ij

(2.8)

where θ̂ij = n−1
∑n

`=1[(xi` − x̄i)(xj` − x̄j)− sij]2.

Step 1: bootstrap procedure. Let {x∗j1, ..., x∗jn} be a sample drawn

randomly with replacement from {xj1, ..., xjn} for every j ∈ {1, ..., p}. Let

x∗` = (x∗1`, ..., x
∗
p`)

T for ` = 1, ..., n and the bootstrap test statistic T ∗ij is

computed from x∗1, ...,x
∗
n as in (2.8). When the above bootstrap procedure

is repeated N times, then we have N bootstrap test statistics T ∗ij1, ..., T
∗
ijN .

Let

G∗n,N(t) =
2

Np2
0

N∑
`=1

∑
(i,j)∈A0

I{|T ∗ij`| ≥ t},

where A0 is in (2.2).

Step 2: Large-scale correlation tests with bootstrap given in Cai

and Liu (2016). Let

t̂ = inf{0 ≤ t ≤
√

4 log p0 − 2 log(log p0) :

G∗n,N(t)(p2
0)/2

max{
∑

(i,j)∈A0
I{|Tij| ≥ t}, 1}

≤ α}.
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If t̂ does not exist, then let t̂ =
√

4 log p0. We reject H0ij : σij = 0 whenever

|Tij| ≥ t̂ for (i, j) ∈ A0.

Remark 4. On the surface, it seems that we need the eighth moment of

xi to calculate the variance of Tn1. In fact, Yamada, Hyodo and Nishiyama

(2017) requires the finite eighth moment condition. However, as we show in

this paper, the results of Lemma 1 and Theorem 2 require only the fourth

moment of xi.

2.2 Limiting distribution of Tn under the alternative hypothesis

Next, we study the theoretical property of proposed statistic Tn under the

alternative hypothesis. Let the difference between the null hypothesis and

alternative hypothesis be A = Σ2 − diag(Σ2
11, . . . ,Σ

2
KK).

Theorem 2. Under Assumptions [A]-[B], we have

σ−1
1 (Tn1 − µ̂− µ1)→ N(0, 1)

where µ1 = (n2 − n+ 2)trA/(n− 1)2,

σ2
1 = σ2

0 + 4[2n−1trA2 + βwn
−1

p∑
`=1

(e>`Ae`)
2],

here e` is the p-dimensional vector with the `th element being one and other

elements being zeros and βw = Ew4
ij − 3.
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2.2 Limiting distribution of Tn under the alternative hypothesis15

The asymptotic power function of Tn is βTn(A) = P (Tn − µ̂ > σ̂0q1−α).

We have P (Tn − µ̂ > σ̂0q1−α)− [1− Φ(σ−1
1 (σ0q1−α − µ1))] = o(1). Because

trA = trΣ2−
∑K

k=1 trΣ2
kk =

∑
1≤k1 6=k2≤K trΣk1k2Σk2k1 ≥ 0, it is easy to see

that σ2
1 ≥ σ2

0 and µ1 ≥ 0. If the population covariance matrix departs from

the null hypothesis (in the sense that trA > ε0 > 0 for any positive constant

ε0), then σ2
1 > σ2

0 and µ1 > 0. Under such an alternative hypothesis, we

have (σ0q1−α − µ1)/σ1 < q1−α, that is,

βTn(A) > α.

Thus, the proposed test Tn is asymptotically unbiased. In fact, when n

is sufficiently large, βTn(A) is an increasing function of trA where trA

measures the departure from the null hypothesis.

Theorem 3. Under Assumptions [A]-[B] and Σ2 = diag(Σ2
11, . . . ,Σ

2
KK) +

A,

(1). We have βTn(A) ≥ α when n is large enough; Especially, when trA >

ε0 > 0 for any positive constant ε0, we have βTn(A) > α for sufficiently

large n;

(2). If trA tends to infinity or P (max(`1,`2)∈A0 n(s`1`2)
2(θ̂`1`2)

−1 > s∗(n, p))

converges to one, then we have βTn(A)→ 1 as n→∞.

Theorem 3 shows that the proposed test Tn is asymptotically unbi-
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2.2 Limiting distribution of Tn under the alternative hypothesis16

ased. If the absolute value of at least one entry of A is greater than√
(log p0 log n)/n, then there exists (`1, `2) ∈ A0 such that n(s`1`2)

2(θ̂`1`2)
−1/s∗(n, p) ≈

c log n/ log log n converges to infinity in probability under the conditions of

Theorem 1, and thus P (max(`1,`2)∈A0 n(s`1`2)
2(θ̂`1`2)

−1 > s∗(n, p))→ 1 holds

by Remark 2 and then the power converges to one.

Remark 5. Support recovery of Σ: Following the proof of Theorem 5

in Cai, Liu and Xia (2013), under the conditions

p/n→ y ∈ (0,+∞), min
(i,j)∈A0

θij(σiiσjj)
−1/2 > τ,

E|(xj1 − Exj1)(σjj)
−1/2|8+ε ≤ c0, ∀ 1 ≤ j ≤ p,

for some c0 > 0, ε > 0, τ > 0 with the set A0 defined in (2.2), we have

lim inf
Σ∈W0

P (Ψ̂ = Ψ)→ 1,

where

Ψ = {(i, j) : σij 6= 0, (i, j) ∈ A0},

Ψ̂ = {(i, j) : n(sij − σij)2(θ̂ij)
−1 ≥ 4 log p0, (i, j) ∈ A0},

W0 = {Σ : min
(i,j)∈Ψ

n1/2|σij|(θij)−1/2 ≥ 4
√

log p0, (i, j) ∈ A0},

with Σ = (σij)
p
i,j=1 and p2

0 = p2 − p2
1 − ...− p2

K given in (2.5).
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3. Simulation studies

In this section, we evaluate the finite sample performance of the proposed

test in terms of its Type I error rates and powers. Because the proposed

test uses the Frobenius distance between covariance matrices, we will de-

note it as FDS. The test proposed by Paindaveine and Verdebout (2016)

was developed for variables with mean zero. When applied to the centered

variables (by removing the sample mean) in high dimensions, the test has

seriously inflated Type I errors, and therefore we exclude it from the com-

parisons. The test used by Jiang, Bai and Zheng (2013) is the same as the

test of Bao, Hu, Pan and Zhou (arXiv) when K = 2 but has slightly poorer

performance when K = 3, so we will include the latter test only. To be

specific, the following three competing tests are used in our comparisons:

• “CLRT”: the test of Jiang and Yang (2013);

• “BHPZ”: the test of Bao, Hu, Pan and Zhou (arXiv);

• “YHN”: the test of Yamada, Hyodo and Nishiyama (2017);

We generate samples of size n from xi = 1p + Σ1/2wi for i = 1, . . . , n

where 1p is a p-dimensional vector with all elements equal to one, wi =

(w1i, . . . , wpi)
> and {wji, i = 1, . . . , n, j = 1, . . . , p} are independent and

identically distributed as N(0, 1). To consider different structures of Σ,
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we use Σ = 0.2Ip +
∑3

i=1 θiΣi for some values (θ1, θ2, θ3) where Σ1 =

(0.5|i−j|)pi,j=1 is approximately sparse in structure, Σ2 = Ip+0.5(δ{|i−j|=1})
p
i,j=1

is sparse, and Σ3 = 0.98Ip+0.021p1
T
p is a dense structure. For each setting,

we conduct 5000 Monte Carlo simulations. For the type I error estimates,

the standard errors are approximately 0.006.

At the sample size at n = 200, we consider the dimension p = 60, 120, 180,

and the number of blocks K = 2, 3 with the block sizes p1 = . . . =

pK = p/K. The ROC curves for the competing tests are plotted in Fig-

ure 1 under the null hypothesis Σ = 0.2Ip and the alternative hypotheses

Σ = 0.2Ip + Σi, i = 1, 2, 3 at n = 200 and p1 = p2 = p3 = 20. Clearly, the

test FDS has the best performance for the non-dense Σ. When Σ is dense,

FDS and YHN are similar, but YHN is the worst performer for the sparse

alterative. Moreover, the empirical test sizes and empirical powers are list-

ed in Table 1 for a variety of settings. All the methods maintain Type I

errors well. For comparison of powers, the proposed FDS test outperforms.

Especially, when (p1, p2, p3) = (20, 20, 20) and Σ = 0.2Ip+Σ1, the empirical

power of FDS test is about 98% and the empirical powers of other tests are

between 36% and 53%. For (p1, p2, p3) = (60, 60, 60) and Σ = 0.2Ip + Σ2,

the empirical power of FDS test is about 88%, but the empirical powers of

the other tests range at most from 10% to 14%. Overall, the proposed test
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FDS is seen to be much more powerful than its competitors. When Σ is

dense, FDS and YHN are indeed similar, and they are both leaders in the

comparison.

When the dimension is much greater than the sample size, we only

examine the performance of FDS, BHPZ and YHN, because CLRT cannot

handle such cases. In the simulation, the null hypothesis is Σ = 0.2Ip and

the alternative hypothesis is Σ = 0.2Ip + θ1Σ1 + θ2Σ
∗
2 + θ3Σ3 where Σ∗2 =

Ip + ρ0(δ{|i−j|=1})
p
i,j=1 with ρ0 = 0.3 + 0.3 exp(0.009p)/(0.15 + exp(0.009p))

and θi = 0 or 1 for i = 1, 2, 3. The distribution of wji is taken to be N(0, 1)

or Gamma(4, 2)-2. In this study we consider the sample size n = 150, 300,

the dimension p = 180, 360, 900 and the number of blocks K = 2, 3 with

the block sizes p1 = . . . = pK = p/K. The empirical test sizes and powers

are listed in Tables 2 and 3. The Type I errors are all close to the nominal

level of 0.05. Moreover, as the dimension increases, the empirical powers of

the tests increase with n. For example, when Σ = 0.2Ip + Σ∗2, p = 180 and

K = 2, the power of FDS increases from 71.24% to 99.96% quickly as the

sample size increases from n = 150 to 300, but the powers of other tests

rise much less. To save the space, Table 3 is given in the supplementary

file.
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We note that the proposed FDS test does not always dominate the

others when p is small. We refer to the ROC curve in Figure 1 under the

null hypothesis Σ = 0.2Ip and the alternative hypotheses for Σ = Σ4 =

1.2Ip+0.18(δ{|i−j|=1})
p
i,j=1+0.1(δ{|i−j|=3})

p
i,j=1 at the sample size n = 200, the

dimension p = 6 with K = 3 blocks of equal sizes p1 = p2 = p3 = 2. In this

case, the population is Gaussian and the likelihood is correctly specified,

so it is not surprisingly that CLRT shows slightly better performance than

FDS.

To check the sensitivity of the threshold s∗(n, p) and any scaled version

of Tn0, we consider the rejection region

{x1, . . . ,xn : Tn(c1, c2)− µ̂ > σ̂0q1−α}, (3.1)

which is similar to (2.6) where µ̂ and σ̂0 are in (2.4) and

Tn(c1, c2) = Tn1 + c1 · Tn0(c2),

with Tn1 = tr[Sn − diag(S11, . . . ,SKK)]2 and

Tn0(c2) = p2δ{max(`1,`2)∈A0
n(s`1`2 )2(θ̂`1`2 )−1>s∗(n,p,c2)},

s∗(n, p, c2) = c2 · [4 + (log log n− 1)2](log p0 − 0.25 log log p0) + q.

We have s∗(n, p) = s∗(n, p, 1), Tn0 = Tn0(1) and Tn = Tn(1, 1). We consider

the sample size n=200, the dimension is p = 60, 120, 180, and the number
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Figure 1: The first three ROC curves are the results from three simulation

settings given in Section 3 with three different specifications Σ1 (upper left

panel), Σ2 (upper right), Σ3 (lower left) with wij being i.i.d from N(0, 1),

(n, p) = (200, 60), and p1 = p2 = p3 = 20. The ROC curve in the lower

right panel refers to the case of (n, p) = (200, 6) of K = 3 equal block sizes.

The curves for FDS and YHN are nearly identical in the lower left panel

and lower right panel.
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of blocks is K = 2, 3 with the block sizes p1 = . . . = pK = p/K. The

parameters c1 and c2 are taken as c1 = 0.001, 0.5, 2 and c2 = 0.5, 1, 2. The

empirical test sizes and powers for different values of c1 and c2 are listed in

Tables 4-5. Simulation results in Table 4 show that when c1 is small or large,

the empirical test sizes and empirical powers are similar for the different

values of c1. Simulation results in Table 5 show that when c2 is small, the

empirical test sizes cannot be controlled; when c2 is large, although the

empirical test sizes can be controlled, the empirical powers will decrease.

Then the penalty Tn0 is somewhat sensitive for the threshold s∗(n, p), but

is not sensitive for the scaled version of Tn0. Moreover, to show that our

test is valid for p/n→ y = 0, Table 6 presents some simulation results with

n = 500, 750, 1000 and p = 6, 12, 18. To save the space, Tables 4-5-6 are

given in the supplementary file.

4. Demonstration with a real data example

To further demonstrate the power of the proposed test, we use data from

a major supermarket in northern China (Wang, 2009). In the dataset,

each record contains the daily sales volume of individual products over a

463-day period. We are interested in understanding the correlation between

vegetable sale volumes and dairy sale volumes. We have 26 major vegetables
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Table 1: Empirical test sizes and powers (in percentage) for comparison of

four methods with n = 200, (p1, . . . , pK) = (p/K, . . . , p/K) and K = 2, 3

for Gaussian variables. The vector (θ1, θ2, θ3) specifies the Σ matrix. The

rejection region is given in (2.6).

(θ1, θ2, θ3) Methods p = 60 120 180 60 120 180

K = 2 K = 3

Empirical test sizes

(0, 0, 0) FDS 4.50 4.95 4.94 5.10 4.85 4.88

CLRT 4.74 5.52 4.86 5.02 5.30 5.12

BHPZ 4.58 5.12 4.52 4.88 5.09 4.68

YHN 4.64 5.07 5.07 5.18 4.94 4.88

Empirical powers

(1, 0, 0) FDS 87.86 76.52 69.28 98.06 93.20 88.42

CLRT 19.52 9.40 6.98 38.74 14.28 8.38

BHPZ 17.46 8.80 6.64 36.08 14.72 9.55

YHN 27.28 13.22 9.72 52.48 22.78 14.83

(0, 1, 0) FDS 86.70 75.52 68.62 97.50 92.68 88.02

CLRT 38.28 13.26 7.86 75.42 24.86 10.92

BHPZ 30.86 11.82 7.82 66.78 23.62 13.26

YHN 15.68 92.50 7.60 26.12 14.18 10.02

(0, 0, 1) FDS 32.46 69.86 90.90 38.48 78.90 95.32

CLRT 12.82 12.38 8.78 15.62 15.90 11.70

BHPZ 11.92 11.32 9.00 18.10 20.20 17.62

YHN 32.62 70.20 91.02 38.96 79.16 95.42
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Table 2: Empirical test sizes and powers (in percentage) of comparison of

three methods with (p1, . . . , pK) = (p/K, . . . , p/K) and K = 2, 3 for Gaus-

sian variables. The vector (θ1, θ2, θ3) specifies the Σ matrix. The rejection

region is given in (2.6). When a test is not applicable, the corresponding

entries are marked −.

(θ1, θ2, θ3) n Methods p=180 360 900 180 360 900
K = 2 K = 3

Empirical test sizes
(0, 0, 0) 150 FDS 5.11 4.72 4.22 4.86 4.78 4.48

BHPZ 4.62 — — 5.08 4.76 —
YHN 5.50 4.94 5.06 5.26 4.86 5.24

300 FDS 5.08 4.92 4.93 5.08 5.08 5.02
BHPZ 5.08 4.70 — 5.26 5.30 —
YHN 5.04 5.08 5.33 5.42 5.32 5.12

Empirical powers
(1, 0, 0) 150 FDS 38.22 25.78 14.06 57.02 38.85 21.80

BHPZ 6.14 — — 7.84 5.26 —
YHN 8.74 6.22 5.44 12.41 7.66 5.66

300 FDS 97.74 94.16 87.52 99.95 99.51 97.74
BHPZ 8.74 5.92 — 13.76 7.48 —
YHN 12.42 8.14 6.60 22.86 11.36 7.72

(0, 1, 0) 150 FDS 71.24 59.54 41.78 89.52 80.20 61.92
BHPZ 9.32 — — 20.72 7.10 —
YHN 7.68 5.86 5.32 10.22 7.18 5.24

300 FDS 99.96 99.88 99.74 100 100 100
BHPZ 32.22 10.50 — 74.24 27.82 —
YHN 10.42 7.2 6.70 16.02 9.85 7.00

(0, 0, 1) 150 FDS 76.18 98.48 100 84.28 99.38 100
BHPZ 7.24 — — 11.20 6.48 —
YHN 76.87 98.52 100 84.56 99.46 100

300 FDS 99.36 100 100 99.82 100 100
BHPZ 14.84 9.16 — 34.16 21.02 —
YHN 99.34 100 100 99.82 100 100
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and 58 dairy products in the study, that is, (p1, p2) = (26, 58).

To evaluate the power of various tests at small sample sizes, we ran-

domly draw the sale volumes of vegetables and dairies with p1 +p2 +2 days,

that is, the sample size is n = p1 + p2 + 2. Based on 10,000 random draws

at this sample size, the proposed test, FDS, together with the test YHN,

rejects the null hypothesis that sale volumes of the vegetables and dairies

are uncorrelated 100% of the time. The tests CLRT and BHPZ reject the

null hypothesis 58.71% and 84.22% of the time, respectively. For the sen-

sitivity analysis with (c1, c2) = (0.001, 1), (5, 1), (1, 0.5), (1, 2), the proposed

test FDS still rejects the null hypothesis 100% of the time.

When we take a small number of days randomly from the data set,

autocorrelation is negligible. To use the whole sample to understand or

confirm the correlation between the prices of these two products, we use

the autoregressive AR(1) model to fit the data first, and then examine the

residuals. In this case, all the tests we considered reject the null hypothesis

of no correlation at the level 0.001. The fact that the proposed test is

able to detect the correlation with high power even when the sample size is

slightly above the total dimension indicates that the test is valuable in the

analysis of moderately high dimensional problems.
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5. Discussion

We propose a test for detecting block-structured correlation in high dimen-

sional variables. The validity of the test is established under a framework

where the dimension of the variables grows linearly with the sample size.

For the rationale of why the framework of p/n tending to a constant is useful

for high dimensional data analysis, we refer to Marčenko and Pastur (1967)

and Bai and Silverstein (2010). The test can be used in a wide range of

problems for Gaussian or non-Gaussian variables, and attains good power

for sparse or non-sparse alternatives. Simulation studies show that the pro-

posed test performs very well in both Type I error rates and powers relative

to the existing tests when the latter are applicable. Unlike the other tests,

the proposed method does not use the inversion of any covariance matrix

and requires only the finite fourth moments of the random variables. More

importantly, the proposed test performs quite well even when the dimen-

sion exceeds the sample size. When p is small and n is large, and the data

are Gaussian, the proposed test will lose some power against the likelihood

ratio test, but the loss of power is limited even in those situations in our

empirical studies.

Supplementary materials
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The first supplementary material consists of the proofs of Lemma 1 and

Theorem 1-3. The second supplementary material consists of three lemmas

and the detailed proofs of (S.6)-(S.8). These proofs are conducted under As-

sumptions [A]-[B]. The sample covariance matrix Sn of 84 major vegetables

and 58 dairy products in Section 4 is

https : //math127.nenu.edu.cn/shuxue/HData/webpage/covariancematrix.zip.
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S.1

Supplementary material 1

The first supplementary material consists of the proofs of Lemma 1 and

Theorem 1-3, and Tables 3-4-5-6. The simulation settings of Tables 3-4-5-6 are

in the main paper.

S.1. Tables 3-4-5-6

S.2. Proofs of Lemma 1 and Theorem 1-3

Define ri = n−1/2wi, wi = (w1i, . . . , wpi)
>, rik = n−1/2wik, wik = (wp̃k−1+1,i, . . . , wp̃k,i)

>

with p̃0 = 0 and p̃k = p1 + . . . + pk for k = 1, . . . ,K, i = 1, . . . , n. Then

ri = (r>i1, . . . , r
>
iK)> and wi = (w>i1, . . . ,w

>
iK)> for i = 1, . . . , n. We have

(n− 1)2n−2tr(S2
n) = tr[(

n∑
i=1

Σ1/2rir
>
iΣ

1/2)2] + n2(r̄>Σr̄)2 − 2nr̄>Σ
n∑
i=1

rir
>
iΣr̄,

where r̄ = n−1
∑n

i=1 ri. By Lemma S.2.1 and S.2.2 from the supplementary

file 2, letting ε be a very small positive number, we have n2(r̄>Σr̄)2 = (n −

1)n−3(trΣ)2 + op(n
−(1−ε)), and

nr̄>Σ
n∑
i=1

rir
>
iΣr̄ = (n−1trΣ)2 + (n− 1)n−2tr(Σ2) + op(n

−(1−ε)).

Thus, we have

tr(S2
n) =

n2

(n− 1)2
tr[(

n∑
i=1

Σ1/2rir
>
iΣ

1/2)2]− n+ 1

n(n− 1)2
(trΣ)2− 2

n− 1
tr(Σ2)+op(n

−(1−ε)).

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



S.2

Table 3: Empirical test sizes and empirical powers (in percentage) of com-

parison of three methods with with (p1, . . . , pK) = (p/K, . . . , p/K) and

K = 2, 3 for Gamma variables. The vector (θ1, θ2, θ3) specifies the Σ ma-

trix. The rejection region is given in (2.6). When a test is not applicable,

the corresponding entries are marked −.

(θ1, θ2, θ3) n Methods p=180 360 900 180 360 900
K = 2 K = 3

Empirical test sizes
(0, 0, 0) 150 FDS 4.86 4.90 4.44 5.12 4.99 4.54

BHPZ 4.46 — — 5.22 4.90 —
YHN 4.94 5.36 5.48 5.30 5.29 5.06

300 FDS 4.92 4.82 4.81 4.92 5.02 4.84
BHPZ 4.76 4.94 — 5.38 5.14 —
YHN 4.84 4.92 5.10 5.02 5.22 4.90

Empirical powers
(1, 0, 0) 150 FDS 33.98 22.44 13.36 52.32 33.08 19.24

BHPZ 5.89 — — 8.02 5.02 —
YHN 8.82 7.42 5.88 12.88 7.88 6.38

300 FDS 95.56 90.78 81.34 99.58 99.02 95.42
BHPZ 8.34 5.86 — 14.17 7.26 —
YHN 13.28 8.76 6.12 22.12 11.93 7.16

(0, 1, 0) 150 FDS 59.82 47.54 31.44 79.76 67.61 47.70
BHPZ 9.48 — — 21.44 7.40 —
YHN 8.44 6.92 5.76 10.30 7.78 6.10

300 FDS 99.08 98.46 96.04 99.98 99.96 99.86
BHPZ 31.06 11.00 — 74.36 27.98 —
YHN 11.40 8.00 5.84 16.78 10.36 6.62

(0, 0, 1) 150 FDS 75.24 98.62 100 83.14 99.28 100
BHPZ 7.40 — — 11.42 6.62 —
YHN 77.30 98.86 100 84.34 99.39 100

300 FDS 99.38 100 100 99.74 100 100
BHPZ 14.78 8.02 — 34.00 19.76 —
YHN 99.50 100 100 99.78 100 100
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Table 4: Empirical test sizes and powers (in percentage) for comparison of

four methods with n = 200, (p1, . . . , pK) = (p/K, . . . , p/K) and K = 2, 3

for Gaussian variables. The vector (θ1, θ2, θ3) specifies the Σ matrix. The

rejection region is given in (3.1).

(c1, c2) (θ1, θ2, θ3) Methods p = 60 120 180 60 120 180

K = 2 K = 3

Empirical test sizes

(0.001, 1) (0, 0, 0) FDS 5.61 5.48 5.65 5.77 5.73 5.20

CLRT 5.15 5.36 5.38 5.26 5.49 5.29

BHPZ 5.20 5.08 4.88 4.86 5.29 5.15

YHN 5.32 5.36 5.54 5.55 5.58 4.87

(5, 1) (0, 0, 0) FDS 5.61 5.48 5.65 5.77 5.73 5.20

CLRT 5.15 5.36 5.38 5.26 5.49 5.29

BHPZ 5.20 5.08 4.88 4.86 5.29 5.15

YHN 5.32 5.36 5.54 5.55 5.58 4.87

Empirical powers

(0.001, 1) (1, 0, 0) FDS 87.63 77.34 70.30 98.20 93.21 88.66

CLRT 19.54 9.78 7.07 38.47 14.27 8.51

BHPZ 17.27 9.08 6.69 35.03 14.41 9.75

YHN 27.55 13.91 9.60 52.16 22.80 14.83

(5, 1) (1, 0, 0) FDS 87.77 77.34 70.30 98.21 93.21 88.66

CLRT 19.54 9.78 7.07 38.47 14.27 8.51

BHPZ 17.27 9.08 6.69 35.03 14.41 9.75

YHN 27.55 13.91 9.60 52.16 22.80 14.83
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Table 5: Empirical test sizes and powers (in percentage) for comparison of

four methods with n = 200, (p1, . . . , pK) = (p/K, . . . , p/K) and K = 2, 3

for Gaussian variables. The vector (θ1, θ2, θ3) specifies the Σ matrix. The

rejection region is given in (3.1).

(c1, c2) (θ1, θ2, θ3) Methods p = 60 120 180 60 120 180

K = 2 K = 3

Empirical test sizes

(1, 0.5) (0, 0, 0) FDS 20.53 29.74 39.05 22.40 32.66 41.39

CLRT 5.15 5.36 5.38 5.26 5.49 5.29

BHPZ 5.20 5.08 4.88 4.86 5.29 5.15

YHN 5.32 5.36 5.54 5.55 5.58 4.87

(1, 2) (0, 0, 0) FDS 5.43 5.35 5.55 5.60 5.55 5.12

CLRT 5.15 5.36 5.38 5.26 5.49 5.29

BHPZ 5.20 5.08 4.88 4.86 5.29 5.15

YHN 5.32 5.36 5.54 5.55 5.58 4.87

Empirical powers

(1, 0.5) (1, 0, 0) FDS 99.10 98.47 97.91 99.97 99.93 99.93

CLRT 19.54 9.78 7.07 38.47 14.27 8.51

BHPZ 17.27 9.08 6.69 35.03 14.41 9.75

YHN 27.55 13.91 9.60 52.15 22.80 14.82

(1, 2) (1, 0, 0) FDS 40.26 20.03 13.34 64.40 31.24 19.74

CLRT 19.54 9.78 7.07 38.47 14.27 8.51

BHPZ 17.27 9.08 6.69 35.03 14.41 9.75

YHN 27.55 13.91 9.60 52.15 22.80 14.82
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Table 6: Empirical test sizes and powers (in percentage) for comparison of

four methods with n = 200, (p1, . . . , pK) = (p/K, . . . , p/K) and K = 2, 3

for Gaussian variables. The vector (θ1, θ2, θ3) specifies the Σ matrix. The

rejection region is given in (2.6).

n (θ1, θ2, θ3) Methods p = 6 12 18 6 12 18

K = 2 K = 3

Empirical test sizes

600 (0, 0, 0) FDS 6.65 6.28 5.92 6.82 6.12 5.87

CLRT 6.51 6.13 5.65 6.68 5.90 5.67

BHPZ 6.46 6.09 5.59 6.69 5.93 5.50

YHN 6.57 5.97 5.65 6.72 5.92 5.64

750 (0, 0, 0) FDS 6.36 6.22 5.84 6.46 6.12 6.36

CLRT 6.48 5.99 5.81 6.49 5.84 6.19

BHPZ 6.45 5.99 5.72 6.46 5.82 6.23

YHN 6.35 6.04 5.79 6.39 6.00 6.19

1000 (0, 0, 0) FDS 6.54 6.07 6.05 6.54 5.87 6.36

CLRT 6.29 5.86 5.96 6.49 5.69 6.10

BHPZ 6.26 5.83 5.90 6.39 5.67 6.21

YHN 6.51 6.01 5.91 6.59 5.87 6.21
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Because trSn = n(n−1)−1(
∑n

i=1 r>iΣri−nr̄>Σr̄), we have trSn = n(n−1)−1
∑n

i=1 r>iΣri−

(n − 1)−1trΣ + op(n
−(1−ε)) by Lemma S.2.1 from the supplementary file 2. As

shown in Bai and Silverstein (2004, p. 559-560),

tr[(
n∑
i=1

Σ1/2rir
>
iΣ

1/2)q]− tr[(
n∑
i=1

Σ1/2r̃ir̃
>
iΣ

1/2)q] = op(n
−1/4), q = 1, 2

where r̃i = n−1/2w̃i, w̃i = (w̃1i, . . . , w̃pi)
>,

w̃`i = [Var(w`iδ{|w`i|≤
√
nηn})]

−1/2(w`iδ{|w`i|≤
√
nηn} − Ew`iδ{|w`i|≤

√
nηn}),

|w̃`i| ≤ c
√
nηn, Ew̃`i = 0, E(w̃2

`i) = 1 and E(w̃4
`i) < ∞ for ` = 1, . . . , p and i =

1, . . . , n with ηn ↓ 0, n1/4ηn →∞ and c being a positive constant. For simplicity,

we shall rename the variables w̃`i simply as w`i and proceed by assuming that

|w`i| ≤
√
nηn, Ew`i = 0, E(w2

`i) = 1 and E(w4
`i) < ∞ with ηn ↓ 0 and n1/4ηn →

∞. Let Bn =
∑n

i=1 Σ1/2rir
>
iΣ

1/2, then

tr(S2
n) =

n2

(n− 1)2
tr(B2

n)− n+ 1

n(n− 1)2
(trΣ)2 − 2

n− 1
tr(Σ2) + op(n

−1/4). (S.1)

Similarly, let Bn =
∑n

i=1 Σ
1/2
kk rikr

>
ikΣ

1/2
kk , then trSkk = n(n−1)−1

∑n
i=1 r>ikΣkkrik−

(n− 1)−1trΣkk + op(1) and

tr(S2
kk) =

n2

(n− 1)2
tr(B2

kk)−
n+ 1

n(n− 1)2
(trΣkk)

2 − 2

n− 1
tr(Σ2

kk) + op(n
−1/4),

(S.2)

where op(n
−1/4) is uniform for k = 1, . . . ,K.
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S.1 Part I of Lemma 1 and its proofS.7

S.1 Part I of Lemma 1 and its proof

Lemma S.1. Under Assumption [A]-[B] and under H0 : Σ = diag(Σ11, . . . ,ΣKK),

we have σ−1(Tn1−µ)→ N(0, 1), where the quantities µ and σ are given in Lemma

1 in the main paper.

Proof of Lemma S.1. First note that Tn1 = tr[Sn−diag(S11, . . . ,SKK)]2 =

tr(S2
n)−

∑K
k=1 tr(S2

kk). By (S.1) and (S.2), we have

Tn1 =
n2

(n− 1)2
[tr(B2

n)−
K∑
k=1

tr(B2
kk)] (S.3)

− n+ 1

n(n− 1)2
[(trΣ)2 −

K∑
k=1

(trΣkk)
2]− 2

n− 1
[tr(Σ2)−

K∑
k=1

tr(Σ2
kk)] + op(n

−1/4).

Under H0, we have

Tn1 =
n2

(n− 1)2
[tr(B2

n)−
K∑
k=1

tr(B2
kk)]−

n+ 1

n(n− 1)2
[(trΣ)2−

K∑
k=1

(trΣkk)
2]+op(n

−1/4).

That is, the central limit theorem for Tn1 can be obtained by establishing the

central limit theorem for [tr(B2
n) −

∑K
k=1 tr(B2

kk)]. We need to compute the

mean µ and the variance σ2 of the statistic Tn1. The asymptotic normality is

due to the fact that {Ej(trB2
n) − Ej−1(trB2

n), j = 1, . . . , n} and {Ej(trB2
kk) −

Ej−1(trB2
kk), j = 1, . . . , n} for k = 1, . . . ,K are two martingale difference se-

quences, where we use Ej as the conditional expectation given x1, . . . ,xj . Lem-

ma S.2.3 from the supplementary file 2 shows that these martingale difference

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



S.1 Part I of Lemma 1 and its proofS.8

sequences satisfy the Lindeberg’s conditions, that is,

n∑
j=1

E([Ej(trB
2
n)− Ej−1(trB2

n)]2δ{|Ej(trB2
n)−Ej−1(trB2

n)|≥ε}) = O(η4
n), (S.4)

n∑
j=1

E([Ej(trB
2
kk)− Ej−1(trB2

kk)]
2δ{|Ej(trB2

kk)−Ej−1(trB2
kk)|≥ε}) = O(η4

n), (S.5)

for any ε > 0 where O(η4
n) is uniform for k = 1, ...,K. For simplicity, Ej(trB

2
n)−

Ej−1(trB2
n) is often written as (Ej − Ej−1)(trB2

n) in this paper.

To compute the mean and the variance, we take the following two steps.

Step 1 computes the mean

µ =
n2

(n− 1)2
E[tr(B2

n)−
K∑
k=1

tr(B2
kk)]−

n+ 1

n(n− 1)2
[(trΣ)2 −

K∑
k=1

(trΣkk)
2].

We have

E[tr(B2
n)] = n−1[2trΣ2 + βw

p∑
j=1

(e>jΣej)
2] + n−1(trΣ)2 + (n− 1)n−1tr(Σ2),

E[tr(B2
kk)] = n−1[2trΣ2

kk + βw

pk∑
j=1

(e>jkΣkkejk)
2] + n−1(trΣkk)

2 + (n− 1)n−1tr(Σ2
kk),

for k = 1, . . . ,K. Then under H0, we have

µ =
n2 − n− 1

n(n− 1)2
(trΣ)2 − n2 − n− 1

n(n− 1)2

K∑
k=1

(trΣkk)
2.

Step 2 shows that σ2 = σ00 +
∑K

k=1 σkk − 2
∑K

k=1 σ0k converges in prob-

ability, where σ00 =
∑n

j=1 Ej−1[(Ej − Ej−1)(trB2
n)]2, σkk =

∑n
j=1 Ej−1[(Ej −

Ej−1)(trB2
kk)]

2, σ0k =
∑n

j=1 Ej−1{[(Ej − Ej−1)(trB2
n)][(Ej − Ej−1)(trB2

kk)]} for
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k = 1, · · · ,K. To do so, we have

(Ej − Ej−1)trB2
n

= 2(n− j)n−1(Ej − Ej−1)r>jΣ
2rj + (Ej − Ej−1)r>jΣrjr

>
jΣrj

+2
∑
`≤j−1

(Ej − Ej−1)r>jΣr`r
>
`Σrj

= 2(n− j)n−1(Ej − Ej−1)r>jΣ
2rj + (r>jΣrj − n−1trΣ)2 − E[(r>jΣrj − n−1trΣ)2]

+2(n−1trΣ)(r>jΣrj − n−1trΣ) + 2
∑
`≤j−1

(Ej − Ej−1)r>jΣr`r
>
`Σrj ,
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(Ej − Ej−1)trB2
11

= 2(n− j)n−1(Ej − Ej−1)r>j1Σ
2
11rj1 + (Ej − Ej−1)r>j1Σ11rj1r

>
j1Σ11rj1

+2
∑
`≤j−1

(Ej − Ej−1)r>j1Σ11r`1r
>
`1Σ11rj1

= 2(n− j)n−1(Ej − Ej−1)r>j1Σ
2
11rj1

+(r>j1Σ11rj1 − n−1trΣ11)2 − E[(r>j1Σ11rj1 − n−1trΣ11)2]

+2(n−1trΣ11)(r>j1Σ11rj1 − n−1trΣ11) + 2
∑
`≤j−1

(Ej − Ej−1)r>j1Σ11r`1r
>
`1Σ11rj1,

where

(r>jΣrj)
2 − E(r>jΣrj)

2 = (r>jΣrj − n−1trΣ)2 − E(r>jΣrj − n−1trΣ)2

+2(n−1trΣ)(r>jΣrj − n−1trΣ),

(r>j1Σ11rj1)2 − E(r>j1Σ11rj1)2 = (r>j1Σ11rj1 − n−1trΣ11)2 − E(r>j1Σ11rj1 − n−1trΣ11)2

+2(n−1trΣ11)(r>j1Σ11rj1 − n−1trΣ11).

We first compute σ01, and the calculations of {σ0k, k = 2, . . . ,K} can be similarly

obtained.

σ01 =
n∑
j=1

Ej−1[(Ej − Ej−1)trB2
n][(Ej − Ej−1)trB2

11]

=

n∑
j=1

Ej−1

{
(Ej − Ej−1)

[
2(n− j)

n
r>jΣ

2rj + r>jΣrjr
>
jΣrj + 2

∑
`≤j−1

r>jΣr`r
>
`Σrj

]

(Ej − Ej−1)

[
2(n− j)

n
r>j1Σ

2
11rj1 + r>j1Σ11rj1r

>
j1Σ11rj1 + 2

∑
`≤j−1

r>j1Σ11r`1r
>
`1Σ11rj1

]}
= (S.6) + (S.7) + (S.8),
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where (S.6)-(S.8) are given as follows.

n∑
j=1

2(n− j)n−1Ej−1

{
(r>jΣ

2rj − n−1trΣ2)(Ej − Ej−1)
[
2(n− j)n−1r>j1Σ

2
11rj1

+r>j1Σ11rj1r
>
j1Σ11rj1 + 2

∑
`≤j−1

r>j1Σ11r`1r
>
`1Σ11rj1

]}
, (S.6)

n∑
j=1

Ej−1

{
Ej − Ej−1)(r>jΣrjr

>
jΣrj)(Ej − Ej−1)

[
2(n− j)n−1r>j1Σ

2
11rj1

+r>j1Σ11rj1r
>
j1Σ11rj1 + 2

∑
`≤j−1

r>j1Σ11r`1r
>
`1Σ11rj1

]}
, (S.7)

2

n∑
j=1

Ej−1

{
Ej − Ej−1)(

∑
`≤j−1

r>jΣr`r
>
`Σrj)(Ej − Ej−1)

[
2(n− j)n−1r>j1Σ

2
11rj1

+r>j1Σ11rj1r
>
j1Σ11rj1 + 2

∑
`≤j−1

r>j1Σ11r`1r
>
`1Σ11rj1

]}
. (S.8)

As verified in the supplementary file, we have

(S.6) = 2(n−1trΣ11)[2n−1tr(Σ3
11) + βwn

−1
p1∑
`=1

e>`1Σ
2
11e`1e

>
`1Σ11e`1]

+2[2n−1tr(Σ4
11) + βwn

−1
p1∑
`=1

(e>`1Σ
2
11e`1)2] +Op(η

2
n),

(S.7) = 4(n−1trΣ11)(n−1trΣ)[2n−1tr(Σ2
11) + βwn

−1
p1∑
`=1

(e>`1Σ11e`1)2]

+4(n−1trΣ)[2n−1tr(Σ3
11) + βwn

−1
p1∑
`=1

e>`1Σ11e`1e
>
`1Σ

2
11e`1] +Op(η

2
n),

(S.8) = 2(n−1trΣ11)[2n−1tr(Σ3
11) + βwn

−1
p1∑
`=1

(e>`1Σ11e`1)(e>`1Σ
2
11e`1)]

+2[2n−1tr(Σ4
11) + βwn

−1
p1∑
`=1

(e>`1Σ
2
11e`1)2] + 4(n−1trΣ2

11)2 +Op(η
2
n).
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Thus under H0, we have

σ01 = (S.6) + (S.7) + (S.8)

= 4[2n−1tr(Σ4
11) + βwn

−1
p1∑
`=1

(e>`1Σ
2
11e`1)2] + 4[n−1tr(Σ2

11)]2

+(4n−1trΣ + 4n−1trΣ11)[2n−1tr(Σ3
11) + βwn

−1
p1∑
`=1

e>`1Σ
2
11e`1e

>
`1Σ11e`1]

+4(n−1trΣ11)(n−1trΣ)[2n−1tr(Σ2
11) + βwn

−1
p1∑
`=1

(e>`1Σ11e`1)2] +Op(η
2
n).

Similarly, for k = 2, . . . ,K, under H0, we have

σ0k = 4[2n−1tr(Σ4
kk) + βwn

−1
pk∑
`=1

(e>`kΣ
2
kke`k)

2] + 4(n−1trΣ2
kk)

2

+(4n−1trΣ + 4n−1trΣkk)[2n
−1tr(Σ3

kk) + βwn
−1

pk∑
`=1

e>`kΣ
2
kke`ke

>
`kΣkke`k]

+4(n−1trΣkk)(n
−1trΣ)[2n−1tr(Σ2

kk) + βwn
−1

pk∑
`=1

(e>`kΣkke`k)
2] +Op(η

2
n),

σ00 =
n∑
`=1

E`−1[(E` − E`−1)(trB2
n)]2

= 4[2n−1tr(Σ4) + βwn
−1

p∑
`=1

(e>`Σ
2e`)

2]

+4(n−1trΣ)2[2n−1tr(Σ2) + βwn
−1

p∑
`=1

(e>`Σe`)
2]

+4[n−1tr(Σ2)]2 + 8(n−1trΣ)[2n−1tr(Σ3) + βwn
−1

p∑
`=1

e>`Σ
2e`e

>
`Σe`] + op(1)
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σkk =

n∑
`=1

E`−1[(E` − E`−1)trB2
kk]

2

= 4n−1[2tr(Σ4
kk) + βw

pk∑
`=1

(e>`kΣ
2
kke`k)

2]

+4(n−1trΣkk)
2n−1[2tr(Σ2

kk) + βw

pk∑
`=1

(e>`kΣkke`k)
2] + 4[n−1tr(Σ2

kk)]
2

+8(n−1trΣkk)n
−1[2tr(Σ3

kk) + βw

pk∑
`=1

e>`kΣ
2
kke`ke

>
`Σkke`] +Op(η

2
n).

Putting things together, we have under H0,

σ2 = σ00 +
K∑
k=1

σkk − 2
K∑
k=1

σ0k

= 4

K∑
k=1

(n−1trΣkk − n−1trΣ)2[2n−1tr(Σ2
kk) + βwn

−1
pk∑
`=1

(e>`kΣkke`k)
2]

+4[n−1tr(Σ2)]2 − 4
K∑
k=1

[n−1tr(Σ2
kk)]

2 +Op(Kη
2
n).

S.2 Proofs of Theorem 1, Part II of Lemma 1 and Theorem 2

S.2.1 Proof of Theorem 2

Under H0, we have (Tn1 − µ)/σ → N(0, 1). But

µ =
n2 − n− 1

n(n− 1)2
(trΣ)2 − n2 − n− 1

n(n− 1)2

K∑
k=1

(trΣkk)
2

is unknown. We now replace trΣ and trΣkk by trSn and trSkk in µ, and establish

the asymptotic distribution of

Tn1 − µ̂ = trS2
n −

K∑
k=1

trS2
kk − µ̂
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where µ̂ = n2−n−1
n(n−1)2

[(trSn)2 −
∑K

k=1(trSkk)
2]. By (S.1) and (S.2), we have

Tn1 − µ̂

=
n2

(n− 1)2
[tr(B2

n)−
K∑
k=1

tr(B2
kk)]

− n

n− 1

n2 − n− 1

(n− 1)3
[(trBn − n−1trΣ)2 −

K∑
k=1

(trBkk − n−1trΣkk)
2]

− n+ 1

n(n− 1)2
[(trΣ)2 −

K∑
k=1

(trΣkk)
2]− 2

n− 1
[tr(Σ2)−

K∑
k=1

tr(Σ2
kk)] + op(n

−1/4).

That is, the central limit theorem for Tn1 − µ̂ can be obtained by establishing

the central limit theorem for (trB2
n−

∑K
k=1 trB2

kk, trBn, trB11, . . . , trBKK). The

asymptotic normality is due to the fact that the sequences {(Ej−Ej−1)(trB2
n), j =

1, . . . , n}, {(Ej − Ej−1)(trBn), j = 1, . . . , n}, {(Ej − Ej−1)(trBkk), j = 1, . . . , n}

and {(Ej−Ej−1)(trB2
kk), j = 1, . . . , n} for k = 1, . . . ,K are martingale difference

sequences and Lindeberg-type conditions are satisfied by Lemma S.2.3 from the

supplementary file 2. Then we have

σ−1
1 {Tn1 − µ̂− µ1} → N(0, 1),

where µ1 = n2(n−1)−2E[tr(B2
n)−

∑K
k=1 tr(B2

kk)]− (n+1)n−1(n−1)−2[(trΣ)2−∑K
k=1(trΣkk)

2]− 2(n− 1)−1[tr(Σ2)−
∑K

k=1 tr(Σ2
kk)]− µ and

σ2
1 = σ00A +

K∑
k=1

σkkA − 2

K∑
k=1

σ0kA − 4(n−1trΣ)σ000A + 4(n−1trΣ)

K∑
k=1

σ00kA

+4
K∑
k=1

(n−1trΣkk)σ0kkA − 4
K∑
k=1

(n−1trΣkk)σkkkA + 4(n−1trΣ)2σ0000A

+4

K∑
k=1

(n−1trΣkk)
2σkkkkA − 8

K∑
k=1

(n−1trΣ)(n−1trΣkk)σ00kkA,
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S.2 Proofs of Theorem 1, Part II of Lemma 1 and Theorem 2S.15

if the following terms converge in probability

σ00A =
∑n

`=1 E`−1[(E` − E`−1)trB2
n]2,

σ0kA =
∑n

`=1 E`−1{[(E` − E`−1)trB2
n][(E` − E`−1)trB2

kk]},

σkkA =
∑n

`=1 E`−1[(E` − E`−1)trB2
kk]

2,

σ0000A =
∑n

`=1 E`−1{[(E` − E`−1)trBn][(E` − E`−1)trBn]},

σ000A =
∑n

`=1 E`−1{[(E` − E`−1)trB2
n][(E` − E`−1)trBn]},

σkkkkA =
∑n

`=1 E`−1{[(E` − E`−1)trBkk]
2,

σkkkA =
∑n

`=1 E`−1{[(E` − E`−1)trB2
kk][(E` − E`−1)trBkk]},

σ0kkA =
∑n

`=1 E`−1{[(E` − E`−1)trB2
n][(E` − E`−1)trBkk]},

σ00kA =
∑n

`=1 E`−1{[(E` − E`−1)trBn][(E` − E`−1)trB2
kk]},

σ00kkA =
∑n

`=1 E`−1[(E` − E`−1)trBkk][(E` − E`−1)trBn].

The first step is to compute µ1. Because E[tr(B2
n)] = n−1[2trΣ2 +

βw
∑p

j=1(e>jΣej)
2]+n−1(trΣ)2+(n−1)n−1tr(Σ2) and E[tr(B2

kk)] = n−1[2trΣ2
kk+

βw
∑pk

j=1(e>jkΣkkejk)
2] +n−1(trΣkk)

2 + (n− 1)n−1tr(Σ2
kk) for k = 1, . . . ,K, thus

we have

µ1 = n2(n− 1)−2E[tr(B2
n)−

K∑
k=1

tr(B2
kk)]− (n+ 1)n−1(n− 1)−2[(trΣ)2 −

K∑
k=1

(trΣkk)
2]

−2(n− 1)−1[tr(Σ2)−
K∑
k=1

tr(Σ2
kk)]− µ =

n2 − n+ 2

(n− 1)2
trA

where A = Σ2 − diag(Σ2
11, . . . ,Σ

2
KK).

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



S.2 Proofs of Theorem 1, Part II of Lemma 1 and Theorem 2S.16

The second step is to compute σ2
1. Let Σ(kk) is the p × p dimensional

matrix with the kth diagonal block being Σkk and other entries being zeros. The

detailed proofs of σ00A, σ0kA, σkkA, σ0000A, σ000A, σkkkkA, σkkkA, σ0kkA, σ00kA

and σ00kkA are similar for k = 1, . . . ,K. Moreover, the proof of σ01A is similar

to σ01. Therefore, we do not give the details of the proofs of σ01A. We have

σ01A =

n∑
j=1

Ej−1[(Ej − Ej−1)trS2
n][(Ej − Ej−1)trS2

11] = (S.6) + (S.7) + (S.8)

where under the alternative hypothesis,

(S.6) = 2[2n−1trΣ2Σ2
(11) + βwn

−1
p∑
`=1

(e>`Σ
2e`)(e

>
`Σ

2
(11)e`)]

+2n−1trΣ(11)[2n
−1trΣ2Σ(11) + βwn

−1
p∑
`=1

e>`Σ
2e`e

>
`Σ(11)e`] +Op(η

4
n),

(S.7) = 4(n−1trΣ)
(
2n−1trΣΣ2

(11) + βwn
−1

p∑
`=1

e>`Σe`e
>
`Σ

2
(11)e`

)
+4(n−1trΣ(11))(n

−1trΣ)
[
2n−1trΣΣ(11) + βwn

−1
p∑
`=1

(e>`Σe`)(e
>
`Σ(11)e`)

]
+Op(η

4
n),

(S.8) = 2[2n−1trΣ2Σ2
(11) + βwn

−1
p∑
`=1

(e>`Σ
2e`)(e

>
`Σ

2
(11)e`)]

+2(n−1trΣ(11))
[
2n−1trΣ2Σ(11) + βwn

−1
p∑
`=1

(e>`Σ
2e`)(e

>
`Σ(11)e`)

]
+Op(η

4
n).
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S.2 Proofs of Theorem 1, Part II of Lemma 1 and Theorem 2S.17

Therefore, under the alternative hypothesis, we have

σ01A = 4[2n−1trΣ2Σ2
(11) + βwn

−1
p∑
`=1

(e>`Σ
2e`)(e

>
`Σ

2
(11)e`)]

+4(n−1trΣ)(2n−1trΣ3
(11) + βwn

−1
p∑
`=1

e>`Σe`e
>
`Σ

2
(11)e`)

+4(n−1trΣ(11)(2n
−1trΣ2Σ(11) + βwn

−1
p∑
`=1

e>`Σ
2e`e

>
`Σ(11)e`)

+4(n−1trΣ(11))(n
−1trΣ)[2n−1trΣ2

(11) + βwn
−1

p∑
`=1

(e>`Σe`)(e
>
`Σ(11)e`)]

+4(n−1trΣΣ(11))
2 +Op(η

2
n).

Similarly, for k = 1, . . . ,K, under the alternative hypothesis, we have

σ0kA =

n∑
j=1

Ej−1[(Ej − Ej−1)trS2
n][(Ej − Ej−1)trS2

kk]

= 4
[
2n−1trΣ2Σ2

(kk) + βwn
−1

p∑
`=1

(e>`Σ
2e`)(e

>
`Σ

2
(kk)e`)

]
+ 4(n−1trΣ2

(kk))
2

+4(n−1trΣ)
(
2n−1trΣ3

(kk) + βwn
−1

p∑
`=1

e>`Σ(kk)e`e
>
`Σ

2
(kk)e`

)
+4(n−1trΣ(kk))

(
2n−1trΣ2Σ(kk) + βwn

−1
p∑
`=1

e>`Σ
2e`e

>
`Σ(kk)e`

)
+4(n−1trΣ(kk))(n

−1trΣ)
[
2n−1trΣ2

(kk) + βwn
−1

p∑
`=1

(e>`Σ(kk)e`)
2
]

+Op(η
2
n),

σ00A =

n∑
`=1

E`−1[(E` − E`−1)trS2
n]2

= 4n−1[2trΣ4 + βw

p∑
`=1

(e>`Σ
2e`)

2] + 4(n−1trΣ)2n−1
[
2trΣ2 + βw

p∑
`

(e>`Σe`)
2
]

+4(n−1trΣ2)2 + 8(n−1trΣ)n−1
[
2trΣ3 + βw

p∑
`=1

e>`Σ
2e`e

>
`Σe`

]
+Op(η

2
n),

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



S.2 Proofs of Theorem 1, Part II of Lemma 1 and Theorem 2S.18

σkkA =

n∑
`=1

E`−1[(E` − E`−1)trS2
kk]

2

= 4n−1[2trΣ4
kk + βw

pk∑
`=1

(e>`kΣ
2
kke`k)

2] + 4(n−1trΣkk)
2n−1

[
2trΣ2

kk + βw

pk∑
`

(e>`kΣkke`k)
2
]

+4(n−1trΣ2
kk)

2 + 8(n−1trΣkk)n
−1
[
2trΣ3

kk + βw

pk∑
`=1

e>`kΣ
2
kke`ke

>
`Σkke`

]
+Op(η

2
n),

σ0000A =

n∑
`=1

E`−1{[(E` − E`−1)trSn][(E` − E`−1)trSn]}

= 2n−1tr(Σ2) + βwn
−1

p∑
`=1

(e>`Σe`)
2 +Op(η

2
n),

σ000A =

n∑
`=1

E`−1{[(E` − E`−1)trS2
n][(E` − E`−1)trSn]}

= 2
(
2n−1trΣ3 + βwn

−1
p∑
`=1

e>`Σe`e
>
`Σ

2e`
)

+2(n−1trΣ)
(
2n−1trΣ2 + βwn

−1
p∑
`=1

(e>`Σe`)
2
)

+Op(η
2
n),

σkkkkA =

n∑
j=1

Ej−1{[(Ej−Ej−1)trSkk]
2 = 2n−1tr(Σ2

kk)+βwn
−1

p∑
`=1

(e>`Σkke`)
2+Op(η

2
n),

σkkkA =
n∑
`=1

E`−1{[(E` − E`−1)trS2
kk][(E` − E`−1)trSkk]}

= 2n−1(2trΣ3
kk + βw

p∑
`=1

e>k`Σkkek`e
>
k`Σ

2
kkek`)

+2n−1trΣkk[2n
−1trΣ2

kk + βwn
−1

p∑
`=1

(e>k`Σkkek`)
2] +Op(η

2
n),
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σ0kkA =

n∑
`=1

E`−1{[(E` − E`−1)trS2
n][(E` − E`−1)trSkk]}

= 2
(
2n−1trΣ2Σ(kk) + βwn

−1
p∑
`=1

e>`Σ
2e`e

>
`Σ(kk)e`

)
+2(n−1trΣ)

(
2n−1trΣ2

kk + βwn
−1

p∑
`=1

(e>`Σkke`)
2
)

+Op(η
2
n),

σ00kA =
n∑
`=1

E`−1{[(E` − E`−1)trSn][(E` − E`−1)trS2
kk]}

= 2
(
2n−1trΣΣ2

(kk) + βwn
−1

p∑
`=1

e>`Σe`e
>
`Σ

2
(kk)e`

)
+2(n−1trΣkk)

(
2n−1trΣ2

kk + βwn
−1

p∑
`=1

(e>`Σkke`)
2
)

+Op(η
2
n),

σ00kkA =
n∑
j=1

Ej−1[(Ej − Ej−1)trSkk][(Ej − Ej−1)trSn]

= 2n−1tr(Σ2
kk) + βwn

−1
p∑
`=1

(e>`Σkke`)
2 +Op(η

2
n).

Then we have

σ2
1 = σ00A +

K∑
k=1

σkkA − 2
K∑
k=1

σ0kA − 4(n−1trΣ)σ000A + 4(n−1trΣ)
K∑
k=1

σ00kA

+4
K∑
k=1

(n−1trΣkk)σ0kkA − 4
K∑
k=1

(n−1trΣkk)σkkkA + 4(n−1trΣ)2σ0000A

+4

K∑
k=1

(n−1trΣkk)
2σkkkkA − 8

K∑
k=1

(n−1trΣ)(n−1trΣkk)σ00kkA

= 4(n−1trΣ2)2 − 4
K∑
k=1

(n−1trΣ2
kk)

2 + 4[2n−1trA2 + βwn
−1

p∑
`=1

(e>`Ae`)
2] +Op(Kη

2
n).
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S.2 Proofs of Theorem 1, Part II of Lemma 1 and Theorem 2S.20

with A = Σ2 − diag(Σ2
11, . . . ,Σ

2
KK). Thus σ−1

1 (Tn1 − µ̂− µ1)→ N(0, 1).

The proof of Theorem 2 is now complete.

S.2.2 Proof of Part II of Lemma 1

Under H0, µ1 = 0 and σ2
0 = σ2

1 = 4(n−1
∑K

k=1 trΣ2
kk)

2−4
∑K

k=1(n−1trΣ2
kk)

2.

Then under H0 and by Theorem 2, we have σ−1
0 (Tn1 − µ̂)→ N(0, 1).

The proof of Lemma 1 is complete.

S.2.3 Theorem 1

We have (n − 2)−1[trS2
n − (n + 2)−1(trSn)2] − n−1trΣ2 = op(1) and (n −

2)−1[trS2
kk − (n + 2)−1(trSkk)

2] − n−1trΣ2
kk = op(1), k = 1, . . . , K. Thus

under H0, we have

σ̂−1
0 (Tn1 − µ̂)→ N(0, 1) (S.9)

where σ̂2
0 = 4(n−2)−2{

∑K
k=1[trS2

kk−(n+2)−1(trSkk)
2]}2−4(n−2)−2

∑K
k=1[trS2

kk−

(n+ 2)−1(trSkk)
2]2.

Moreover, Xiao and Wu (2013) presented that max
(`1,`2)∈A0

n(s`1`2)
2θ̂−1
`1`2
−

4 log p0 + log log p0 converges to a type I extreme value distribution under

H0. Then if the threshold s∗(n, p) is taken to satisfy s∗(n, p) − 4 log p0 →

+∞, then P (max(`1,`2)∈A0 n(s`1`2)
2θ̂−1
`1`2

> s∗(n, p)) → 0 under H0. That is,

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



S.3 Proof of Theorem 3S.1

Tn − Tn1 = op(1) under H0. By (S.9), we have

σ̂−1
0 (Tn − µ̂)→ N(0, 1).

The proof of Theorem 1 is complete.

S.3 Proof of Theorem 3

When trA tends to infinity, σ1 also converges and µ1 → +∞. Then

σ0q1−α − µ1

σ1

→ −∞.

Thus we have βTn(A)→ 1. Moreover, if P ( max
(`1,`2)∈A0

n(s`1`2)
2θ̂−1
`1`2

> s∗(n, p))→

1, then Tn0 → ∞ in probability as n → ∞. Then the power function will

tend to one.

The proof of Lemma 3 is complete.

Supplementary material 2

This supplementary material consists of three lemmas and the detailed

proofs of (S.6)-(S.8). These proofs are conducted under Assumption [A]-[B].

S.2.1. Lemma S.2.1-S.2.4 and their proofs

Let ri = n−1/2wi and ε be a very small positive number.
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Lemma S.2.1. Under Assumptions [A]-[B], we have

nr̄>Σr̄ = n−1trΣ + op(n
−(0.5−ε)).

Proof. We have

nr̄>Σr̄ = 2n−1
∑
i<j

r>iΣrj + n−1

n∑
i=1

r>iΣri.

First, we have E(n−1
∑

i<j r>iΣrj) = 0 and

E(n−1
∑
i<j

r>iΣrj)
2

= (n− 1)n−1E(r>1Σr2r
>
2Σr1) + n−2

∑
i<j<k<`

E(r>iΣrjr
>
kΣr`)

+2n−2
∑
i<j<k

E(r>iΣrjr
>
jΣrk)

≤ n−2tr(Σ2) = o(n−2(0.5−ε)),

for any small positive number ε. That is,

n−1
∑
i<j

r>iΣrj = op(n
−(0.5−ε)).

Second, we have E(n−1
∑n

i=1 r>iΣri) = n−1trΣ and

Var(n−1

n∑
i=1

r>iΣri) = n−1E[(r>1Σr1 − n−1trΣ)2]

= n−2[2tr(Σ2) + βw

p∑
j=1

(e>jΣej)
2] = o(n−2(0.5−ε)),

where the second equality is from (1.15) of Bai and Silverstein (2004). That

is,

n−1

n∑
i=1

r>iΣri − n−1trΣ = op(n
−(0.5−ε)).
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Thus we have

nr̄>Σr̄ = n−1trΣ + op(n
−(0.5−ε)).

Lemma S.2.2. Under Assumptions [A]-[B], we have

nr̄TΣ
n∑
i=1

rir
T
i Σr̄ = (n−1trΣ)2 + (n− 1)n−2tr(Σ2) + op(1).

Proof. We have

nr̄TΣ
n∑
i=1

rir
>
iΣr̄ = n−1

∑
i,j,` unequal

rTi Σrjr
T
j Σr` + n−1

∑
i,j unequal

rTi Σrjr
T
j Σri

+2n−1
∑

i,j unequal

rTi Σrir
T
i Σrj + n−1

n∑
i=1

rTi Σrir
T
i Σri.

Step 1. We have

n−1

n∑
i=1

rTi Σrir
T
i Σri = n−1

n∑
i=1

(r>iΣri − n−1trΣ)2

+2n−1

n∑
i=1

(n−1trΣ)(r>iΣri − n−1trΣ) + (n−1trΣ)2.

Because n−1
∑n

i=1 E[(r>iΣri−n−1trΣ)2] = n−2[2tr(Σ2)+βw
∑p

j=1(eTj Σej)
2] =

o(n−(1−ε)), then we have n−1
∑n

i=1(r>iΣri− n−1trΣ)2 = o(n−(1−ε)). Because

n−1
∑n

i=1 E(r>iΣri − n−1trΣ) = 0 and

Var[n−1

n∑
i=1

(r>iΣri−n−1trΣ)] = n−3[2tr(Σ2)+βw

p∑
j=1

(eTj Σej)
2] = o(n−2(1−ε)),

then we have n−1
∑n

i=1(r>iΣri − n−1trΣ) = op(n
−(1−ε)). Thus,

n−1

n∑
i=1

rTi Σrir
T
i Σri = (n−1trΣ)2 + op(n

−(1−ε)). (S.2.1)
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Step 2. We have n−1
∑

i,j,` unequal E(rTi Σrjr
T
j Σr`) = 0 and

E(n−1
∑

i,j,` unequal

rTi Σrjr
T
j Σr`)

2

= 2n−2
∑

i,j,`,k unequal

E[tr(Σ1/2rir
T
i Σrjr

T
j Σr`r

T
` Σrkr

T
kΣ1/2)]

+2n−2
∑

i,j,` unequal

E[tr(Σ1/2rir
T
i Σrjr

T
j Σr`r

T
` Σrjr

T
j Σ1/2)]

+4n−2
∑

i,j,` unequal

E[tr(Σ1/2rir
T
i Σrjr

T
j Σr`r

T
` Σrir

T
` Σ1/2)]

≤ 2n−2tr(Σ4) + 2n−1E[(rT1 Σ2r1)2] + 4E[tr(Σ1/2r1r
T
1 Σ2r2r

T
2 Σr1r

T
2 Σ1/2)]

≤ 2n−2tr(Σ4) + 2n−3[2tr(Σ4) + βw

p∑
j=1

(eTj Σ2ej)
2 + (trΣ2)2]

+8E[(rT1 Σ2r2r
T
2 Σ2r1)] + 8E[(rT1 Σr2r

T
2 Σr1)2]

= 2n−2tr(Σ4) + 2n−3[2tr(Σ4) + βw

p∑
j=1

(eTj Σ2ej)
2 + (trΣ2)2]

+8n−2tr(Σ4) + 24n−2E(rT2 Σ2r2)2 + 8n−2βw

p∑
j=1

E(eTj Σr2)4

= 10n−2tr(Σ4) + (2n−3 + 24n−4)[2tr(Σ4) + βw

p∑
j=1

(eTj Σ2ej)
2 + (trΣ2)2]

+24n−4βw

p∑
j=1

(eTj Σ2ej)
2 + 8n−4β2

w

p∑
j=1

p∑
`=1

(eTj Σe`)
4

= op(n
−2(0.5−ε)).

Then we have

n−1
∑

i,j,` unequal

(rTi Σrjr
T
j Σr`) = op(n

−(0.5−ε)). (S.2.2)
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Step 3. We have n−1
∑

i,j unequal ErTi Σrjr
T
j Σri = (n− 1)n−2tr(Σ2) and

n−2E(
∑

i,j unequal

rTi Σrjr
T
j Σri)

2

= 2n−2
∑

i,j unequal

(rTi Σrjr
T
j Σri)

2 + n−2
∑

i,j,k,` unequal

(rTi Σrjr
T
j Σri)(r

T
` Σrkr

T
kΣr`)

+4n−2
∑

i,j,` unequal

(rTi Σrjr
T
j Σri)(r

T
i Σr`r

T
` Σri)

= 6n−3(n− 1)E[(rT1 Σ2r1)2] + 2n−3(n− 1)βw

p∑
j=1

E(eTj Σr1)4

+n−5(n− 1)(n− 2)(n− 3)[tr(Σ2)]2

+4n−5(n− 1)(n− 2)[2tr(Σ4) + βw

p∑
j=1

(eTj Σ2ej)
2 + (trΣ2)2]

≤ 6n−5(n− 1)βw

p∑
j=1

(eTj Σ2ej)
2 + 2n−5(n− 1)β2

w

p∑
j=1

p∑
`=1

(eTj Σe`)
4

+n−5(n− 1)(n− 2)(n− 3)[tr(Σ2)]2

+2n−5(n− 1)(2n− 1)[2tr(Σ4) + βw

p∑
j=1

(eTj Σ2ej)
2 + (trΣ2)2].

Then we have

Var(n−1
∑

i,j unequal

rTi Σrjr
T
j Σri)

= n−2E

[( ∑
i,j unequal

rTi Σrjr
T
j Σri

)2]
−
(
n−1

∑
i,j unequal

ErTi Σrjr
T
j Σri

)2

= o(n−2(0.5−ε)).

That is,

n−1
∑

i,j unequal

rTi Σrjr
T
j Σri − (n− 1)n−2tr(Σ2) = op(n

−(0.5−ε)). (S.2.3)
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Step 4. By (1.8) of Bai and Silverstein (2004), there exists ηn ↓ 0 satisfying

n1/4ηn → ∞ and η−4
n E[w4

11δ(|w11| ≥ ηn
√
n)] → 0. Then let r̂i be the

truncated version of ri, that is, r̂Ti = n−1/2ŵi with ŵi = (ŵ1i, . . . , ŵpi)
> and

ŵ`i = w`iδ{|w`i|≤
√
nηn}. Then we have Eŵ11 → 0, Eŵ2

11 → 1 and Var(ŵ11)→

1 as n→∞. Let µ̂ = n−1/2(Eŵ11)1p where 1p is the p-dimensional vector

with all entries being ones. Because Ew11 = 0, then we have

|Eŵ11| = |E[w11δ(|w11| > ηn
√
n)]| ≤ η−3

n n−3/2E[w4
11δ(|w11| > ηn

√
n)] = o(n−3/2).

That is

µ̂>µ̂ = n−1(Eŵ11)21>p1p ≤ o(n−1/2).

Because

P (n−1
∑

i,j unequal

rTi Σrir
T
i Σrj 6= n−1

∑
i,j unequal

r̂Ti Σr̂ir̂
T
i Σr̂j)

≤ P (for some `, i, ŵ`i 6= w`i)

≤
p∑
`=1

n∑
i=1

P (|w`i| ≥ ηn
√
n)

≤ (ηn
√
n)−4npE[w4

11δ(|w11| ≥ ηn
√
n)]

= (p/n)η−4
n E[w4

11δ(|w11| ≥ ηn
√
n)]→ 0

where the third inequality is from the Chebyshev inequality and the last

equality is from (1.8) of Bai and Silverstein (2004), then we have

n−1
∑

i,j unequal

rTi Σrir
T
i Σrj = n−1

∑
i,j unequal

r̂Ti Σr̂ir̂
T
i Σr̂j + op(1). (S.2.4)
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Let r̃i = (r̂i − µ̂)/
√

Var(ŵ11), then

r̂Ti Σr̂i = Var(ŵ11)r̃Ti Σr̃i + 2
√

Var(ŵ11)r̃Ti Σµ̂ + µ̂TΣµ̂

= Var(ŵ11)(r̃Ti Σr̃i − n−1trΣ) + n−1Var(ŵ11)trΣ

+2
√

Var(ŵ11)r̃Ti Σµ̂ + o(n−1/2),

and r̂Ti Σr̂j = Var(ŵ11)r̃Ti Σr̃j+
√

Var(ŵ11)r̃Ti Σµ̂+
√

Var(ŵ11)r̃Tj Σµ̂+o(n−1/2).

Because

n−1
∑

i,j unequal

Er̃Ti Σr̃j = 0, E(n−1
∑

i,j unequal

r̃Ti Σr̃j)
2 ≤ n−2tr(Σ2) = o(n−2(0.5−ε)),

we have n−1
∑

i,j unequal r̃
T
i Σr̃j = op(n

−(0.5−ε)). Because

n−1
∑

i,j unequal

Er̃Ti Σµ̂ = 0, E(n−1
∑

i,j unequal

r̃Ti Σµ̂)2 ≤ µ̂>Σ2µ̂ = o(n−1/2),

we have n−1
∑

i,j unequal r̃
T
i Σµ̂ = op(n

−1/2). Because n−1
∑

i,j unequal E(r̃Ti Σµ̂)2 =

µ̂>Σ2µ̂ = o(n−1/2), we have n−1
∑

i,j unequal(r̃
T
i Σµ̂)2 = op(n

−1/2). Because

n−1
∑

i,j unequal

E(r̃Ti Σµ̂µ̂>Σr̃j) = 0,E(n−1
∑

i,j unequal

r̃Ti Σµ̂µ̂>Σr̃j)
2 ≤ (µ̂>Σ2µ̂)2 = o(n−1),

we have n−1
∑

i,j unequal(r̃
T
i Σµ̂µ̂>Σr̃j) = op(n

−1/2). Because

E(n−1
∑

i,j unequal

r̃Tj Σr̃ir̃
>
iΣµ̂)2

= n−2
∑

i,j,` unequal

Er̃Tj Σr̃ir̃
>
iΣµ̂µ̂>Σr̃`r̃

>
`Σr̃j + n−2

∑
i,j, unequal

Er̃Tj Σr̃ir̃
>
iΣµ̂µ̂>Σr̃ir̃

>
iΣr̃j

+n−2
∑

i,j, unequal

Er̃Tj Σr̃ir̃
>
iΣµ̂µ̂>Σr̃j r̃

>
jΣr̃i

≤ n−2µ̂>Σ4µ̂ + Er̃T1 Σµ̂µ̂>Σr̃1r̃
>
1Σ

2r̃1 + E(r̃T1 Σr̃2)2r̃>1Σµ̂µ̂>Σr̃2 = o(n−1/2),
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we have n−1
∑

i,j unequal r̃
T
j Σr̃ir̃

>
iΣµ̂ = op(n

−1/2). Because

E(n−1
∑

i,j unequal

(r̃Ti Σr̃i − n−1trΣ)r̃Ti Σr̃j)
2

= n−2
∑

i,j,` unequal

E(r̃Ti Σr̃i − n−1trΣ)r̃Ti Σr̃j r̃
>
jΣr̃`(r̃

T
` Σr̃` − n−1trΣ)

+n−2
∑

i,j unequal

E(r̃Ti Σr̃i − n−1trΣ)r̃Ti Σr̃j r̃
>
jΣr̃i(r̃

T
i Σr̃i − n−1trΣ)

+n−2
∑

i,j unequal

E(r̃Ti Σr̃i − n−1trΣ)r̃Ti Σr̃j r̃
>
iΣr̃j(r̃

T
j Σr̃j − n−1trΣ)

≤ [E(r̃T1 Σr̃1 − n−1trΣ)2]2 + E(r̃T1 Σ2r̃2)2 + n−1E(r̃T1 Σr̃1 − n−1trΣ)2r̃T1 Σ2r̃1

+[E(r̃T1 Σr̃1 − n−1trΣ)2]2 + E(r̃T1 Σr̃2)4 = o(n−2(0.5−ε)),

by (1.15) of Bai and Silverstein (2004) and (9.9.6) of Bai and Silverstein

(2010), we have

n−1
∑

i,j unequal

(r̃Ti Σr̃i − n−1trΣ)r̃Ti Σr̃j = op(n
−(0.5−ε)).

Thus we have

n−1
∑

i,j unequal

r̂Ti Σr̂ir̂
T
i Σr̂j = o(n−(0.5−ε)). (S.2.5)

By (S.2.4) and (S.2.5), we have

n−1
∑

i,j unequal

rTi Σrir
T
i Σrj = op(1). (S.2.6)

By (S.2.1), (S.2.2), (S.2.3) and (S.2.6), we have

nr̄TΣ
n∑
i=1

rir
T
i Σr̄ = (n−1trΣ)2 + (n− 1)n−2tr(Σ2) + op(1). (S.2.7)

That is, the proof of Lemma S.2.2 is complete.
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Lemma S.2.3. Under Assumptions [A]-[B] with |w`i| ≤
√
nηn, Ew`i = 0,

E(w2
`i) = 1 and E(w4

`i) <∞ with ηn ↓ 0 and n1/4ηn →∞, we have

n∑
j=1

E([(Ej − Ej−1)trBn]2δ{|(Ej−Ej−1)trBn|≥ε}) = O(η4
n),

n∑
j=1

E([(Ej − Ej−1)trB2
n]2δ{|(Ej−Ej−1)trB2

n|≥ε}) = O(η4
n),

n∑
j=1

E([(Ej − Ej−1)trBkk]
2δ{|(Ej−Ej−1)trBkk|≥ε}) = O(η4

n),

and
n∑
j=1

E([(Ej − Ej−1)trB2
kk]

2δ{|(Ej−Ej−1)trB2
kk|≥ε}) = O(η4

n).

Proof. We have trBn =
∑n

i=1 rTi Σri and E(rTi Σri−n−1trΣ)4 ≤ Cn−1η4
n‖Σ‖4 =

O(η4
nn
−1) by (9.9.6) of Bai and Silverstein (2010) where C is a constant in-

dependent of n and p. Then we have

n∑
j=1

E([(Ej−Ej−1)trBn]2δ{|(Ej−Ej−1)trBn|≥ε}) ≤ nE(rTi Σri − n−1trΣ)4/ε2 = O(η4
n).

Similarly, we have

n∑
j=1

E([(Ej − Ej−1)trB2
kk]

2δ{|(Ej−Ej−1)trB2
kk|≥ε}) = O(η4

n).

Ej(trB
2
n)− Ej−1(trB2

n) can be expressed by

Ejtr(B
2
n)− Ej−1tr(B2

n) = 2(n− j)n−1[r>jΣ
2rj − n−1tr(Σ2)]

+[r>jΣrjr
>
jΣrj − E(r>jΣrjr

>
jΣrj)]

+2
∑
k≤j−1

[r>jΣrkr
>
kΣrj − n−1(r>jΣ

2rj)].
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We have

n∑
j=1

(n− j)4n−4E
[
(r>1Σ

2r1 − n−1trΣ2)4
]
≤ C

n∑
j=1

(n− j)4n−5η4
n, (S.2.8)

which is from Lemma 9.1 of Bai and Silverstein (2004) and C is a constant

not dependent on p or n. Moreover, we have

n∑
j=1

E[(r>jΣrjr
>
jΣrj − Er>jΣrjr

>
jΣrj)

4]

= nE[(r>1Σr1r
>
1Σr1 − Er>1Σr1r

>
1Σr1)4]

≤ CnE[(rT1 Σr1 − n−1trΣ)8] + nO(n−4) + Cn(n−1trΣ)4E[(rT1 Σr1 − n−1trΣ)4]

≤ O(η12
n ) +O(n−3) +O(n−4) (S.2.9)

where (r>1Σr1 − n−1trΣ)2 = n−2[2tr(Σ2) + βw
∑p

j=1(eTj Σej)
2], the last in-

equality is from (9.9.6) of Bai and Silverstein (2010) and

(r>1Σr1)2 − E[(r>1Σr1)2]

= (r>1Σr1 − n−1trΣ)2 − E[(r>1Σr1 − n−1trΣ)2] + 2(n−1trΣ)(r>1Σr1 − n−1trΣ)

= (r>1Σr1 − n−1trΣ)2 + 2(n−1trΣ)(r>1Σr1 − n−1trΣ) +O(n−1).
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Furthermore, we have

n∑
j=1

E{[
∑
k≤j−1

(Ej − Ej−1)r>jΣrkr
>
kΣrj]

4}

=
n∑
j=1

E{[
∑
k≤j−1

(r>jΣrkr
>
kΣrj − n−1r>kΣ

2rk)]
4}

≤ Cη4
nn
−1

n∑
j=1

E(‖
∑
k≤j−1

Σrkr
>
kΣ‖4)

≤ Cη4
nE(‖

n∑
k=1

Σrkr
>
kΣ‖4) ≤ Cη4

n‖Σ‖8E(‖
n∑
k=1

rkr
>
k‖4)

≤ 2Cη4
n‖Σ‖2(1 +

√
yn)8 = O(η4

n) (S.2.10)

where the second inequality is from (9.9.6) of Bai and Silverstein (2010),

‖
∑

k≤j−1 Σrkr
>
kΣ‖ is the spectral norm of the random matrix

∑
k≤j−1 Σrkr

>
kΣ,

that is, the maximum eigenvalue of
∑

k≤j−1 Σrkr
>
kΣ and the last inequality

is from (4.2) of Yin, Bai and Krishnaiah (1988). From (S.2.8)-(S.2.9)-

(S.2.10), we have

n∑
j=1

E{[(Ej − Ej−1)trB2
n]2δ{|(Ej−Ej−1)trB2

n|≥ε}}

≤ C
n∑
j=1

E[2(n− j)n−1(r>jΣ
2rj − n−1trΣ2)]4 + C

n∑
j=1

E[r>jΣrjr
>
jΣrj − E(r>jΣrjr

>
jΣrj)]

4

+C
n∑
j=1

E{[
∑
k≤j−1

(Ej − Ej−1)r>jΣrkr
>
kΣrj]

4} = O(η4
n) +O(n−3) +O(n−4) = O(η4

n).

Similarly, we have

n∑
j=1

E{[(Ej−Ej−1)trB2
kk]

2δ{|(Ej−Ej−1)trB2
kk|≥ε}} = O(η4

n)+O(n−3)+O(n−4) = O(η4
n).
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The proof of Lemma S.2.3 is complete.

Lemma S.2.4. Under Assumptions [A]-[B] with |w`i| ≤
√
nηn, Ew`i = 0,

E(w2
`i) = 1 and E(w4

`i) <∞ with ηn ↓ 0 and n1/4ηn →∞, we have

(S.6) = 2(n−1trΣ11)[2n−1tr(Σ3
11) + βwn

−1

p1∑
`=1

e>`1Σ
2
11e`1e

>
`1Σ11e`1]

+2[2n−1tr(Σ4
11) + βwn

−1

p1∑
`=1

(e>`1Σ
2
11e`1)2] +Op(η

2
n),

(S.7) = 4(n−1trΣ11)(n−1trΣ)[2n−1tr(Σ2
11) + βwn

−1

p1∑
`=1

(e>`1Σ11e`1)2]

+4(n−1trΣ)[2n−1tr(Σ3
11) + βwn

−1

p1∑
`=1

e>`1Σ11e`1e
>
`1Σ

2
11e`1] +Op(η

2
n),

(S.8) = 2(n−1trΣ11)[2n−1tr(Σ3
11) + βwn

−1

p1∑
`=1

(e>`1Σ11e`1)(e>`1Σ
2
11e`1)]

+2[2n−1tr(Σ4
11) + βwn

−1

p1∑
`=1

(e>`1Σ
2
11e`1)2] + 4(n−1trΣ2

11)2 +Op(η
2
n),

where Op(η
2
n) is uniform for k = 1, ..., K.

Proof. We have

(S.6) = (S.2.11) + (S.2.12) + (S.2.13),

(S.7) = (S.2.14) + (S.2.15) + (S.2.16),

(S.8) = (S.2.17) + (S.2.18) + (S.2.19),
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where

4
n∑
j=1

(n− j)2

n2
Ej−1{[(Ej − Ej−1)r>jΣ

2rj][(Ej − Ej−1)r>j1Σ
2
11rj1]} (S.2.11)

2
n∑
j=1

(n− j)
n

Ej−1{[(Ej − Ej−1)r>jΣ
2rj][(Ej − Ej−1)r>j1Σ11rj1r

>
j1Σ11rj1]} (S.2.12)

4
n∑
j=1

(n− j)
n

∑
k≤j−1

Ej−1{[(Ej − Ej−1)r>jΣ
2rj][(Ej − Ej−1)r>j1Σ11rk1r

>
k1Σ11rj1]} (S.2.13)

2
n∑
j=1

(n− j)
n

Ej−1{[(Ej − Ej−1)r>jΣrjr
>
jΣrj][(Ej − Ej−1)r>j1Σ

2
11rj1]} (S.2.14)

n∑
j=1

Ej−1{[(Ej − Ej−1)r>jΣrjr
>
jΣrj][(Ej − Ej−1)r>j1Σ11rj1r

>
j1Σ11rj1]} (S.2.15)

2
n∑
j=1

∑
k≤j−1

Ej−1{[(Ej − Ej−1)r>jΣrjr
>
jΣrj][(Ej − Ej−1)r>j1Σ11rk1r

>
k1Σ11rj1]} (S.2.16)

4
n∑
j=1

(n− j)
n

∑
k≤j−1

Ej−1{[(Ej − Ej−1)r>jΣrkr
>
kΣrj][(Ej − Ej−1)r>j1Σ

2
11rj1]} (S.2.17)

2
n∑
j=1

∑
k≤j−1

Ej−1{[(Ej − Ej−1)r>jΣrkr
>
kΣrj][(Ej − Ej−1)r>j1Σ11rj1r

>
j1Σ11rj1]} (S.2.18)

4
n∑
j=1

∑
k≤j−1

∑
`≤j−1

Ej−1{[(Ej − Ej−1)r>jΣrkr
>
kΣrj][(Ej − Ej−1)r>j1Σ11r`1r

>
`1Σ11rj1]}.(S.2.19)

Detailed proof of (S.2.11):

(S.2.11) = 4
n∑
j=1

(n− j)2

n2
Ej−1[(Ej − Ej−1)r>jΣ

2rj(Ej − Ej−1)r>j1Σ
2
11rj1]

=
4n(1 +O(n−1))

3
E{[r>j1Σ2

11rj1 − n−1tr(Σ2
11)]2}

=
4

3n
[2tr(Σ4

11) + βw

p1∑
`=1

(e>`1Σ
2
11e`1)2] +O(n−1)

where the last equality is from (1.15) of Bai and Silverstein (2004).
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Detailed proof of (S.2.12):

(S.2.12)

= 2
n∑
j=1

(n− j)
n

Ej−1[(Ej − Ej−1)r>jΣ
2rj(Ej − Ej−1)r>j1Σ11rj1r

>
j1Σ11rj1]

= n(1 +O(n−1))E[r>j1Σ
2
11rj1 − Er>j1Σ

2
11rj1][(r>j1Σ11rj1)2 − E(r>j1Σ11rj1)2]

= n(1 +O(n−1))E[(r>j1Σ
2
11rj1 − Er>j1Σ

2
11rj1)(r>j1Σ11rj1 − n−1trΣ11)2]

+2n(1 +O(n−1))(n−1trΣ11)E[(r>j1Σ
2
11rj1 − Er>j1Σ

2
11rj1)(r>j1Σ11rj1 − n−1trΣ11)] (S.2.20)

where the last equality is from the following equality

(r>j1Σ11rj1)2 − E[(r>j1Σ11rj1)2]

= (r>j1Σ11rj1 − n−1trΣ11)2 − E[(r>j1Σ11rj1 − n−1trΣ11)2]

+2(n−1trΣ11)(r>j1Σ11rj1 − n−1trΣ11).

By (9.9.6) of Bai and Silverstein (2010), we have

nE[(r>j1Σ
2
11rj1−Er>j1Σ

2
11rj1)(r>j1Σ11rj1−n−1trΣ11)2] ≤ C0‖Σ11‖2‖Σ2

11‖η2
n = O(η2

n)

(S.2.21)

where C0 is a constant. By (1.15) of Bai and Silverstein (2004), we have

E[(r>j1Σ
2
11rj1 − Er>j1Σ

2
11rj1)(r>j1Σ11rj1 − n−1trΣ11)]

= n−2[2tr(Σ3
11) + βw

p∑
`=1

e>`1Σ
2
11e`1e

>
`1Σ11e`1] = O(n−1). (S.2.22)
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By (S.2.20)-(S.2.21)-(S.2.22), we have

(S.2.12) = 2(n−1trΣ11)[2n−1tr(Σ3
11)+βwn

−1

p1∑
`=1

e>`1Σ
2
11e`1e

>
`1Σ11e`1]+O(η2

n).

Moreover, the detailed proof of (S.2.14) is similar to the proof of (S.2.12).

Detailed proof of (S.2.13):

(S.2.13)

= 4
n∑
j=1

∑
k≤j−1

(n− j)
n

Ej−1[(Ej − Ej−1)r>jΣ
2rj(Ej − Ej−1)r>j1Σ11rk1r

>
k1Σ11rj1]

= 4
n∑
j=1

∑
k≤j−1

(n− j)
n

Ej−1{[r>jΣ2rj − n−1tr(Σ2)](r>j1Σ11rk1r
>
k1Σ11rj1 − n−1r>k1Σ

2
11rk1)}

= 4
n∑
j=1

∑
k≤j−1

(n− j)
n

Ej−1{[r>j1Σ2
11rj1 − n−1tr(Σ2

11)](r>j1Σ11rk1r
>
k1Σ11rj1 − n−1r>k1Σ

2
11rk1)}

= 4
n∑
j=1

∑
k≤j−1

(n− j)
n3

(2r>k1Σ
4
11rk1 + βw

p1∑
`=1

e>`Σ
2
11e`e

>
`Σ11rk1r

>
k1Σ11e`) (S.2.23)

where the last equality is from (1.15) of Bai and Silverstein (2004). It is clear

that
∑n

j=1

∑
k≤j−1(n− j)n−3r>k1Σ

4
11rk1 is the weighted sum of independent

random variables {r>k1Σ
4
11rk1, k = 1, ..., n} with E

[∑n
j=1

∑
k≤j−1

n−j
n3 r>k1Σ

4
11rk1

]
=

(3n)−1trΣ4
11+O(n−1) and var

[∑n
j=1

∑
k≤j−1

n−j
n3 r>k1Σ

4
11rk1

]
= O(n−1). That

is

n∑
j=1

∑
k≤j−1

(n− j)n−3r>k1Σ
4
11rk1 = (3n)−1trΣ4

11 +Op(n
−1/2). (S.2.24)

It is clear that
∑n

j=1(n−j)n−3
∑

k≤j−1

∑p
`=1 e>`Σ

2
11e`e

>
`Σ11rk1r

>
k1Σ11e` is the

weighted sum of the independent random variables {
∑p

`=1 e>`Σ
2
11e`e

>
`Σ11rk1r

>
k1Σ11e`, k =
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1, ..., n} with

E

[ n∑
j=1

(n− j)n−3
∑
k≤j−1

p∑
`=1

e>`Σ
2
11e`e

>
`Σ11rk1r

>
k1Σ11e`

]
= (6n)−1

p∑
`=1

(e>`Σ
2
11e`)

2 +O(n−1)

var

[ n∑
j=1

(n− j)n−3
∑
k≤j−1

p∑
`=1

e>`Σ
2
11e`e

>
`Σ11rk1r

>
k1Σ11e`

]
= O(n−1).

That is,

n∑
j=1

(n−j)n−3
∑
k≤j−1

p∑
`=1

e>`Σ
2
11e`e

>
`Σ11rk1r

>
k1Σ11e` = (6n)−1

p1∑
`=1

(e>`1Σ
2
11e`1)2+Op(n

−1/2).

(S.2.25)

By (S.2.23)-(S.2.24)-(S.2.25), we have

(S.2.13) =
2

3n
[2trΣ4

11 + βw

p∑
`=1

(e>`Σ
2
11e`)

2] +Op(n
−1/2).

Moreover, the detailed proof of (S.2.17) is similar to the proof of (S.2.13).

Detailed proof of (S.2.15):

(S.2.15) =
n∑
j=1

Ej−1[(Ej − Ej−1)r>jΣrjr
>
jΣrj(Ej − Ej−1)r>j1Σ11rj1r

>
j1Σ11rj1]

= nE[(r>jΣrj − n−1trΣ)2(r>j1Σ11rj1 − n−1trΣ11)2]

−nE[(r>jΣrj − n−1trΣ)2]E[(r>j1Σ11rj1 − n−1trΣ11)2]

+2n(n−1trΣ11)E[(r>jΣrj − n−1trΣ)2(r>j1Σ11rj1 − n−1trΣ11)]

+2n(n−1trΣ)E[(r>jΣrj − n−1trΣ)(r>j1Σ11rj1 − n−1trΣ11)2]

+4n(n−1trΣ)(n−1trΣ11)E[(r>jΣrj − n−1trΣ)(r>j1Σ11rj1 − n−1trΣ11)].(S.2.26)
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By (1.15) of Bai and Silverstein (2004), we have

nE[(r>jΣrj − n−1trΣ)2]E[(r>j1Σ11rj1 − n−1trΣ11)2] (S.2.27)

= n−1[2n−1trΣ2 + βwn
−1

p∑
`=1

(e>`Σe`)
2][2n−1trΣ2

11 + βwn
−1

p1∑
`=1

(e>`1Σe`1)2] = O(n−1),

and

E[(r>jΣrj−n−1trΣ)(r>j1Σ11rj1−n−1trΣ11)] = n−2[2trΣ2
11+βw

p1∑
`=1

(e>`1Σ11e`1)2].

(S.2.28)

By (9.9.6) of Bai and Silverstein (2010), we have

nE[(r>jΣrj − n−1trΣ)2(r>j1Σ11rj1 − n−1trΣ11)2] ≤ η4
n · C0‖Σ‖2‖Σ11‖2 = O(η4

n),

nE[(r>jΣrj − n−1trΣ)2(r>j1Σ11rj1 − n−1trΣ11)] ≤ η2
n · C0‖Σ‖2‖Σ11‖ = O(η2

n),

nE[(r>jΣrj − n−1trΣ)(r>j1Σ11rj1 − n−1trΣ11)2] ≤ η2
n · C0‖Σ‖2‖Σ11‖ = O(η2

n).

(S.2.29)

By (1.15) of Bai and Silverstein (2004), we have

nE[(r>jΣrj−n−1trΣ)(r>j1Σ11rj1−n−1trΣ11)] = 2n−1trΣ2
11+βwn

−1

p1∑
`=1

(e>`1Σ11e`1)2.

(S.2.30)

Then by (S.2.26)-(S.2.27)-(S.2.28)-(S.2.29)-(S.2.30), we have

(S.2.15) = 4(n−1trΣ11)(n−1trΣ)[2n−1trΣ2
11+βwn

−1

p1∑
`=1

(e>`1Σ11e`1)2]+O(η2
n).
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Detailed proof of (S.2.16):

(S.2.16)

= 2
n∑
j=1

∑
k≤j−1

Ej−1[(Ej − Ej−1)r>jΣrjr
>
jΣrj(Ej − Ej−1)r>j1Σ11rk1r

>
k1Σ11rj1]

= 2
n∑
j=1

∑
k≤j−1

Ej−1[(r>jΣrj − n−1trΣ)2(r>j1Σ11rk1r
>
k1Σ11rj1 − n−1r>k1Σ

2
11rk1)]

+4(n−1trΣ)
n∑
j=1

∑
k≤j−1

Ej−1[(r>jΣrj − n−1trΣ)(r>j1Σ11rk1r
>
k1Σ11rj1 − n−1r>k1Σ

2
11rk1)].(S.2.31)

By (9.9.6) of Bai and Silverstein (2010), we have∣∣∣∣∣
n∑
j=1

∑
k≤j−1

Ej−1[(r>jΣrj − n−1trΣ)2(r>j1Σ11rk1r
>
k1Σ11rj1 − n−1r>k1Σ

2
11rk1)]

∣∣∣∣∣
≤

n∑
j=1

∣∣∣∣∣Ej−1[(r>jΣrj − n−1trΣ)2(r>j1Σ11

∑
k≤j−1

rk1r
>
k1Σ11rj1 − n−1

∑
k≤j−1

r>k1Σ
2
11rk1)]

∣∣∣∣∣
≤

n∑
j=1

n−1η2
n · C0‖Σ‖2‖Σ11

∑
k≤j−1

rk1r
>
k1Σ11‖

≤ η2
n · C0‖Σ‖2‖Σ11

n∑
k=1

rk1r
>
k1Σ11‖

≤ η2
n · C0‖Σ‖2‖Σ11‖2‖

n∑
k=1

rk1r
>
k1‖

= η2
n · C0‖Σ‖2‖Σ11‖2λmax(

n∑
k=1

rk1r
>
k1)

= η2
n · C0‖Σ‖2‖Σ11‖2[(1 +

√
yn)2 + oa.s.(1)] = Oa.s.(η

2
n) (S.2.32)

where λmax(
∑n

k=1 rk1r
>
k1) = (1 +

√
yn)2 + oa.s.(1) is the maximum eigenval-

ue of the random matrix
∑n

k=1 rk1r
>
k1 by Yin, Bai and Krishnaiah (1988).
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Similar to the proofs of (S.2.24) and (S.2.25), we have

2n−2

n∑
j=1

∑
k≤j−1

r>k1Σ
3
11rk1 = n−1trΣ3

11 +Op(n
−1/2)

and

n−2

n∑
j=1

∑
k≤j−1

p1∑
`=1

e>`1Σ11e`1r
>
k1Σ11e`1e

>
`1Σ11rk1 = 0.5n−1

p1∑
`=1

e>`1Σ11e`1e
>
`1Σ

2
11e`1+Op(n

−1/2).

Thus we have

n∑
j=1

∑
k≤j−1

Ej−1[(r>jΣrj − n−1trΣ)(r>j1Σ11rk1r
>
k1Σ11rj1 − n−1r>k1Σ

2
11rk1)]

=
n∑
j=1

∑
k≤j−1

Ej−1[(r>j1Σ11rj1 − n−1trΣ11)(r>j1Σ11rk1r
>
k1Σ11rj1 − n−1r>k1Σ

2
11rk1)]

= n−2

n∑
j=1

∑
k≤j−1

E

[
2r>k1Σ

3
11rk1 + βw

p1∑
`=1

e>`1Σ11r`1r
>
k1Σ11e`1e

>
`1Σ11rk1

]

= 0.5n−1(2trΣ3
11 + βw

p1∑
`=1

e>`1Σ11e`1e
>
`1Σ

2
11e`1) +Op(n

−1). (S.2.33)

By (S.2.31)-(S.2.32)-(S.2.33), we have

(S.2.16) = 2(n−1trΣ)(2n−1trΣ3
11 + βwn

−1

p∑
`=1

e>`1Σ11e`1e
>
`1Σ

2
11e`1) +Op(η

2
n).

The detailed proofs of (S.2.18) is similar to the proofs of (S.2.16).
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Detailed proofs of (S.2.19):

(S.2.19) = 4
n∑
j=1

Ej−1

∑
k≤j−1

∑
i≤j−1

(Ej − Ej−1)r>jΣrkr
>
kΣrj(Ej − Ej−1)r>j1Σ11ri1r

>
i1Σ11rj1

= 4
n∑
j=1

Ej−1

∑
k≤j−1

∑
i≤j−1

[(r>jΣrk)
2 − n−1r>kΣ

2rk][(r
>
j1Σ11ri1)2 − n−1r>i1Σ

2ri1]

= 4
n∑
j=1

Ej−1

∑
k≤j−1

∑
i≤j−1

[(r>j1Σ11rk1)2 − n−1r>k1Σ
2
11rk1][(r>j1Σ11ri1)2 − n−1r>i1Σ

2ri1]

= 4n−2

n∑
j=1

Ej−1

∑
k≤j−1

∑
i≤j−1

[
2(r>k1Σ

2
11ri1)2 + βw

p∑
`=1

(e>`Σ11rk1)2(e>`Σ11ri1)2

]

= 4n−2

n∑
j=1

∑
k≤j−1

[
2(r>k1Σ

2
11rk1)2 + βw

p∑
`=1

(e>`Σ11rk1)4

]

+4n−2

n∑
j=1

∑
1≤k 6=i≤j−1

[
2(r>k1Σ

2
11ri1)2 + βw

p1∑
`=1

(e>`1Σ11rk1)2(e>`1Σ11ri1)2

]
(S.2.34)

where the fourth equality is from (1.15) of Bai and Silverstein (2004). Be-

cause
n−2

∑n
j=1

∑
k≤j−1 E(r>k1Σ

2
11rk1 − n−1trΣ2

11)2 = 0.5n−2[2trΣ4
11 + βw

∑p
`=1(e>`1Σ

2
11e`1)2] = O(n−1),

n−2
∑n

j=1

∑
k≤j−1 E|r>k1Σ

2
11rk1 − n−1trΣ2

11)| ≤ 0.5{E[(r>k1Σ
2
11rk1 − n−1trΣ2

11)2]}1/2 = O(n−1/2),

leads to
n−2

∑n
j=1

∑
k≤j−1 E(r>k1Σ

2
11rk1 − n−1trΣ2

11)2 = Op(n
−1),

n−2
∑n

j=1

∑
k≤j−1(n−1trΣ2

11)(r>k1Σ
2
11rk1 − n−1trΣ2

11) = Op(n
−1/2),
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then we have

n−2

n∑
j=1

∑
k≤j−1

(r>k1Σ
2
11rk1)2 = n−2

n∑
j=1

∑
k≤j−1

(r>k1Σ
2
11rk1 − n−1trΣ2

11)2 + 0.5(n−1trΣ2
11)2

+2n−2

n∑
j=1

∑
k≤j−1

(n−1trΣ2
11)(r>k1Σ

2
11rk1 − n−1trΣ2

11)

= 0.5(n−1trΣ2
11)2 +Op(n

−1/2). (S.2.35)

Because n−2
∑n

j=1

∑
k≤j−1

∑p
`=1(e>`Σ11rk1)4 = n−2

∑n
j=1

∑
k≤j−1

∑p
`=1(r>k1Σ11e`e

>
`Σ11rk1)2,

similar to the proof of (S.2.35), we have

n−2

n∑
j=1

∑
k≤j−1

p∑
`=1

(e>`Σ11rk1)4 = Op(n
−1/2). (S.2.36)

Because

4n−2

n∑
j=1

∑
1≤k 6=i≤j−1

E

[
2(r>k1Σ

2
11ri1)2 + βw

p∑
`=1

(e>`Σ11rk1)2(e>`Σ11ri1)2

]

=
4

3
[2n−1trΣ4

11 + βwn
−1

p1∑
`=1

(e>`1Σ
2
11e`1)2]+O(n−1),

and
n−4var[

∑n
j=1

∑
1≤k 6=i≤j−1(r>k1Σ

2
11ri1)2] = O(n−1),

n−4var[
∑n

j=1

∑
1≤k 6=i≤j−1

∑p
`=1(e>`Σ11rk1)2(e>`Σ11ri1)2] = O(n−1),

then we have

4n−2

n∑
j=1

∑
1≤k 6=i≤j−1

[
2(r>k1Σ

2
11ri1)2 + βw

p1∑
`=1

(e>`Σ11rk1)2(e>`Σ11ri1)2

]

=
4

3
[2n−1trΣ4

11 + βwn
−1

p1∑
`=1

(e>`1Σ
2
11e`1)2] + 4(n−1trΣ2

11)2 +Op(n
−1/2).(S.2.37)
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By (S.2.34)-(S.2.35)-(S.2.36)-(S.2.37), we have

(S.2.19) =
4

3
[2n−1trΣ4

11+βwn
−1

p1∑
`=1

(e>`1Σ
2
11e`1)2]+4(n−1trΣ2

11)2+Op(n
−1/2).

Thus, we have

(S.6) = 2(n−1trΣ11)[2n−1tr(Σ3
11) + βwn

−1

p1∑
`=1

e>`1Σ
2
11e`1e

>
`1Σ11e`1]

+2[2n−1tr(Σ4
11) + βwn

−1

p1∑
`=1

(e>`1Σ
2
11e`1)2] +Op(η

2
n),

(S.7) = 4(n−1trΣ11)(n−1trΣ)[2n−1tr(Σ2
11) + βwn

−1

p1∑
`=1

(e>`1Σ11e`1)2]

+4(n−1trΣ)[2n−1tr(Σ3
11) + βwn

−1

p1∑
`=1

e>`1Σ11e`1e
>
`1Σ

2
11e`1] +Op(η

2
n),

(S.8) = 2(n−1trΣ11)[2n−1tr(Σ3
11) + βwn

−1

p1∑
`=1

(e>`1Σ11e`1)(e>`1Σ
2
11e`1)]

+2[2n−1tr(Σ4
11) + βwn

−1

p1∑
`=1

(e>`1Σ
2
11e`1)2] + 4(n−1trΣ2

11)2 +Op(η
2
n).

The proof of Lemma S.2.4 is complete.
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