
 

 

 

 

 

 

 

 

 

Statistica Sinica Preprint No: SS-2019-0315 

Title Elastic-net Regularized High-dimensional Negative 

Binomial Regression: Consistency and Weak Signal 

Detection 

Manuscript ID SS-2019-0315 

URL http://www.stat.sinica.edu.tw/statistica/ 

DOI 10.5705/ss.202019.0315 

Complete List of Authors Huiming Zhang and  

Jinzhu Jia 

Corresponding Author Jinzhu Jia 

E-mail jzjia@math.pku.edu.cn 

Notice: Accepted version subject to English editing. 



1

Elastic-net Regularized High-dimensional Negative Binomial Regression:

Consistency and Weak Signal Detection

Huiming Zhang1,3, Jinzhu Jia2,3

School of Mathematical Sciences1, School of Public Health2 and

Center for Statistical Sciences3,Peking University, Beijing, 100871, China

Abstract: We study sparse negative binomial regression (NBR) for count data by showing

non-asymptotic merits of the Elastic-net estimator. Two types of oracle inequalities are

derived for the Elastic-net estimates of NBR by utilizing Compatibility Factor or Stabil

Condition. The second-type oracle inequality is for random design which can be extended

to many `1 + `2 regularized M-estimation with the corresponding empirical process having

stochastic Lipschitz properties. To show some high probability events, we derive concentra-

tion inequality for suprema empirical processes for the weighted sum of negative binomial

variables. For applications, we show the sign consistency provided that the non-zero com-

ponents in sparse true vector are larger than a proper choice of the weakest signal detection

threshold; and the second application is that we show the grouping effect inequality with

high probability; thirdly, under some assumptions of design matrix, we can recover the true

variable set with high probability if the weakest signal detection threshold is large than

the turning parameter up to a known constant; at last, we briefly discuss the de-biased

Elastic-net estimator and numerical studies are given to support the proposal.

Key words: high-dimensional count data regression, oracle inequalities, stochastic Lipschitz

condition, mpirical processes, sign consistency, de-biased Elastic-net.
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1 Introduction

In this paper, we focus on regression problems of count data (sometimes called cate-

gorical data). The responses are denoted as {Yi}ni=1 each of which follows a discrete

distribution. The expectation of Yi will be related to XT
i β after a transformation

by a link function. Poisson regression is a well-known example. Here the covariates

Xi := (xi1, · · · , xip)T , (i = 1, 2, · · · , n) are supposed to be a deterministic or random

variable; if it is random we could deal with the model by conditioning on design matrix

X := (X1, · · · ,Xn)T . Covariates in count data regression may take discrete or continu-

ous values, and important exemplified regressions includes: logistic regression, Poisson

regression, negative binomial regression, etc. There are many monographs on statistical

models for counting data, see Hilbe (2011); Tutz (2011).

A commonly used regression model for count data is the Poisson generalized linear

model, which is of frequent occurrence in economic, social, and biological science, see

Tutz (2011). Poisson regression considers that the response variables are nonnegative

integers and follow the Poisson distribution. The sample responses Yi’s obey the Pois-

son distributions P (Yi = yi|λ i) =
λ
yi
i
yi!
e−λi , (i = 1, 2, · · · , n), where the expectation of Yi

is λi := E(Yi). We require that the positive parameter λi is related to a linear com-

bination of p covariate variables. And the assumption of Poisson regression considers

the logarithmic link function η(λi) =: log λi = XT
i β where β = (β1, · · · , βp)T . Ac-

cording to the nature of Poisson distribution, the variance is equal to the expectation:

E(Yi |Xi ) = Var(Yi |Xi ) = λi.

However, count data in practice often encounter the situation where the variance
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is greater than the mean comparing to Poisson count data, in technical terms, called

overdispersion. For example in RNA-Seq gene expression data, the negative binomial

(NB) distribution provides a good choice for modelling a count variable and related

high-dimensional sets of quantitative or binary variables are of interest, i.e. p � n. It

is often shown the evidence of over-dispersion that the variance of the response variable

is greater than its mean, see Rauschenberger et al. (2016), Qiu et al. (2018). To test

whether the variance of a count data is greater than the expectation, a commonly used

testing method is firstly proposed by Cameron and Trivedi (1990). It is called the

Cameron-Trivedi test:

H0: Var(Yi |Xi ) = E(Yi |Xi )=:µi v.s. H1: Var(Yi |Xi ) = µi+αg(µi),

where g(µi) = µi or g(µi) = µ2
i and the constant α is the value to be tested. Therefore,

the hypothesis test is alternatively written as H0: α = 0 v.s. H1: α 6= 0. For α 6= 0,

the count data is called over-dispersed if α > 0 and it is called under-dispersed if α < 0.

Here the under-dispersion means that the variance of the data is less than the mean,

which suggests that binomial regression (see Section 3.3.2 of Tutz (2011)) or COM-

Poisson regression (see Sellers and Shmueli (2008)) should be suitable. More details on

the overdispersion test can be found in Chapter 7 of Hilbe (2011).

When the data is tested to be over-dispersed, we have to correct the hypothetical

distributions and then select a flexible distribution, such as some two-parameter models.

As an overdispersed distribution, the negative binomial (NB) distribution is a special

case of the discrete compound Poisson (DCP) family, which also belongs to the class of

infinitely divisible distribution. For more details properties of NB and DCP distribution,
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we refer readers to Section 5.9.3 of Johnson et al. (2005), Zhang et al. (2014).

In low and fixed dimensional regressions, it is often to use maximum likelihood

estimator (MLE) of regression coefficients. The subsequent sections will frequently

employ the average negative log-likelihood of NBR (i.e. a convex empirical process

indexed by n):

`n(β) := − 1

n

n∑
i=1

[YiX
T
i β − (θ + Yi) log(θ + eX

T
i β)],

see Section 2.1 below for details. The `n(β) is also termed as the empirical NBR loss

function from the machine learning point of view. If it is given θ or treated as tuning

parameter, the NBR actually belongs to the generalized linear models (GLMs) with

non-canonical links. The coefficient of Yi in the log-likelihood of common GLMs with

canonical link function is linear in XT
i β, while the coefficient of Yi in log-likelihood of

NBR is non-linear in XT
i β which is due to the non-canonical link function.

In high-dimensional setting, a powerful tool for remedying MLE is by adding the

penalty function to the `n(β) to get the penalized (regularized) likelihood estimator.

We prefer to study Elastic-net regularized MLE defined as follow.

Definition 1. (Elastic-net method of NBR) For the empirical NB loss function `n(β),

let λ1, λ2 > 0 be turning parameters, the Elastic-net estimates is defined as

β̂ =: β̂(λ1, λ2) = argmin
β∈Rp

{`n(β) + λ1 ‖β‖1 + λ2‖β‖22}. (1)

where ‖β‖q := (
∑p

i=1 |βi|
q)1/q is the lq-norm of β, 1 ≤ q <∞.

In the section below, we usually denote β̂ as β̂(λ1, λ2) for simplicity.

Chapter 3 of Tutz (2011) begins with three golden criteria for penalized estimation
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method for sparse of coefficient vector:

1◦. Existence of unique estimates - this is where maximum likelihood estimates often fail;

2◦. Prediction accuracy - a model should be able to yield a decent prediction of the outcome;

3◦. Sparseness and interpretation - the parsimonious model that contains the strongest

effects is easier to interpret than a big model with hardly any structure.

For 3◦, the penalty function in this paper we study is Elastic-net estimate due to

that Elastic-net enjoys the merit of both Lasso and Ridge, see Zou and Hastie (2005).

Lasso can only select one variable in a group of highly related variables, but Elastic-net

can choose more than one, this phenomenon is called a grouping effect. As for 1◦ and

2◦, we concentrate on the non-asymptotic oracle inequalities of the Elastic-net penal-

ized maximum likelihood estimator in NB regression, because asymptotic distribution

of the high-dimensional penalized estimator is usually not available. Essentially, deriv-

ing oracle inequalities is a powerful mathematical skill which gives deep insight into the

non-asymptotic fluctuation of an estimator as compared to that of an ideal unknown

estimator (which is called an oracle). Wang et al. (2016) compared the negative bino-

mial regression and Poisson regression models based on the Elastic-net, MCP-net and

SCAD-net penalty functions by using the hospitalization days in hospitalized pediatric

cardiac surgery and the associated covariates for variable selection analysis. Massaro

(2016) constructed the Elastic-net penalized NBR to analyze the over-dispersed count

data: time-to-death (in days), the Elastic-net selected functional characteristics of genes

that increased or decreased the survival time in the high-dimensional scenario p � n.

In practice, the covariates are habitually corrupted, since it contains measurement er-

ror. Recently, Sørensen et al. (2018) suggested that Elastic-net penalty (or generalized
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Elastic-net penalty with higher-order terms, such as cubic, quadratic terms, etc.) can

decorrupted the corrupted covariates in high-dimensional GLMs with the natural link,

the idea is by specifically choosing the second tuning parameter in Elastic-net.

Contributions:

• For GLMs, Bunea (2008) investigated oracle inequalities in the setting of logistic

and linear regression models for the Elastic-net penalization schemes under the

Stabil Condition. However, by extending the proofs from Bunea (2008), Blazere

et al. (2014) kept a watchful eye on deriving oracle inequalities for GLMs with

canonical link function which does not contain NBR. Empirical processes technique

is utilized by Blazere et al. (2014) to get oracle inequalities for Elastic-net in GLMs,

but their assumption of GLMs does not contain the NBR. Even under the fixed

design, the Hessian matrix of the NB log-likelihood contains the random responses,

this complex phenomenon is substantially distinct from the canonical link GLMs.

More treatments about the concentration of random Hessian matrix is needed to

deal with. To show the KKT-like event with high probability, we proposed a new

concentration inequality for superama of multiplier NB empirical processes.

• Moreover, van de Geer (2008) mainly studied oracle inequalities for high-dimensional

GLMs with Lipschitz loss functions, but the loss of NBR is not Lipschitz owing

to the unbounded responses. To handle the non-Lipschitz loss, we have to make

sure the stochastic Lipschitz property (see Chi (2010)) of the NB loss with high

probability. Thus we enable to derive oracle inequalities for Elastic-net estimates

for NBR under the compatibility factor and Condition Stabil, and this is different
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from conditions in van de Geer (2008).

• Except the `1-consistency, it is worth noting that, the sign consistent (Zhao and Yu

(2006)) of the Elastic-net type estimators are not frequently studied in documental

records, see Jia and Yu (2010) for the linear model and Yu (2010) for the Cox

model. Based on bounded covariates assumption, we study the sign consistency of

Elastic-net regularized NBR without using Irrepresentable Condition.

This paper aims to study the theoretical properties of the Elastic-net methods

for sparse estimator in NBR within the framework of the non-asymptotics theory. Sec-

tion 2.1 and Section 2.2 present a review of NBR and KKT conditions. In Section 2.3,2.4,

we showed that, two types of oracle inequalities can be derived for `1 estimation and

prediction error bound under the assumption of compatibility factor condition or Stabil

Condition with measurement error, respectively. The remaining sections are byproducts

of our proposed oracle inequalities. Typically phenomenon for Elastic-net, we establish

a uniform bound for the grouping effect in the Section 3.1. To obtain sign consistency

in Section 3.2, the requirement of uniform signal strength that we can detect coefficients

larger than a constant multiplied by the tuning parameter of the `1 penalty is needed.

Using the weakest signal condition, in Section 3.3, we arrive at that, the probabili-

ty of correct inclusion for all true variables in the selected set Ĥ and the probability

of corrected subset selection is high. We discuss the de-biased Elastic-net regularized

M-estimators for low-dimensional parameters in Section 3.4. The simulation study is

provided in Appendix A. All proofs of main theorems, lemmas and propositions are

given in Appendix A, and assisted lemmas are postponed Appendix B.
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2 High-dimensional Negative Binomial Regression

In following two subsections, we review the negative binomial GLMs and the corre-

sponding mathematical optimization problems.

2.1 Negative Binomial Regression

The probability mass function of the negative binomial distribution random variable is

pn =: P (Y = n) = Γ(n+θ)
Γ(θ)n! (1− p)θpn, (p ∈ (0, 1), n ∈ N). The expectation and variance

of the NB distribution are θp
1−p and θp

(1−p)2 . If θ is positive integer, it is called Pascal

distribution. This special case of NB is modeled as the number of failures Y = n

before the θ-th success in repeated mutually independent Bernoulli trials (with success

probability 1− p). The θ is positive integer or real number sometimes.

In the regression setting, one type of negative binomial regressions (NBR) assumes

that the count data response obeys the NB distribution (denoted as Y ∼ NB(µi, θ))

with over-dispersion:

P (Yi = yi|Xi) =: f(yi, θ, µi) =
Γ(θ + yi)

Γ(θ)yi!
(

µi
θ + µi

)yi(
θ

θ + µi
)θ, (i = 1, 2, · · · , n)

Here E(Yi |Xi ) = µi,Var(Yi |Xi ) = µi +
µ2i
θ . The θ is a qualification of level of overdis-

persion that underlies in a count data set, and θ is the known dispersion parameter

which can be estimated (see Section 8 of Hilbe (2011)). When the mean parameter µi

and the covariates are linked by logµi = XT
i β, we have a NBR. When θ → +∞, it

implies Var(Yi |Xi ) → µi= E(Yi |Xi ). Thus the Poisson regression is a limiting case of

NBR when the dispersion parameter tends to infinite. As overdispersion occurs in real

data, NBR can be more powerful and interpretable than Poisson regression.
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The log-likelihood function of NB responses is:

L(Y;β) = log[
n∏
i=1

f(Yi, θ, µi)] =
n∑
i=1

log{Γ(θ + Yi)

Γ(θ)Yi!
(

µi
θ + µi

)Yi(
θ

θ + µi
)θ}

=

n∑
i=1

{log Γ(θ + Yi) + Yi logµi + θ log θ − log Γ(θ)− log Yi!− (θ + Yi) log(θ + µi)}

= c0 +

n∑
i=1

[YiX
T
i β − (θ + Yi) log(θ + eX

T
i β)] with a constant c0.

Then, we take the derivative of the vector β. Let ∂L(Y;β)
∂β = {∂L(Y;β)

∂β1
, · · · , ∂L(Y;β)

∂βp
}T ,

we get ∂L(Y;β)
∂β =

n∑
i=1

Xiθ[
θ+Yi

θ+eX
T
i
β
− 1] =

n∑
i=1

Xi(Yi−eX
T
i β)θ

θ+eX
T
i
β

. Besides, by setting score

function to be 0, ∂L(Y;β)
∂β = 0, we obtain β̂mle. The second derivative is calculated

by ∂2L(Y;β)
∂β∂βT

= −
n∑
i=1

XiX
T
i
θ(θ+Yi)e

XTi β

(θ+eX
T
i
β)

2 which is semi-negative, so that β̂mle makes the

likelihood function take the maximum value.

2.2 KKT conditions

For generalized Lasso-type convex penalty (GLCP) criterion, Yu (2010) considers pe-

nalized likelihood for convex loss function `(β)

F (β;λ1, λ2) = `(β) + λ1‖β‖1 + λ2g(β)

where g(β) is a nonnegative convex function with g(0) = 0, λ1, λ2 being positive turning

parameters. The GLCP estimation problem for general log-likelihood is β̂(λ1, λ2) =

argminβ∈Rp F (β;λ1, λ2). By sub-derivative technique in the optimization function, the

corresponding Karush-Kuhn-Tucker conditions of GLCP estimator is
˙̀
j(β̂) + λ2ġj(β̂) = −λ1sign(β̂j) if β̂j 6= 0,

| ˙̀j(β̂) + λ2ġj(β̂)| ≤ λ1 if β̂j = 0,

(2)
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(KKT conditions, see page68 of Bühlmann and van de Geer (2011)). Thus the KKT

conditions for the non-zero (or zero) Elastic-net estimate of the NBR.

Lemma 1. (Necessary and Sufficient Condition) Let k ∈ {1, 2, · · · , p} and λ2 > 0.

Then, a necessary and sufficient condition for Elastic-net estimates of NBR to be a

solution of (1) is

1. β̂k = β̂k 6= 0 if 1
n

n∑
i=1

xik
θ(eX

T
i β̂−Yi)

θ+eX
T
i
β̂

= [signβ̂k](λ1 + 2λ2|β̂k|).

2. β̂k = 0 if

∣∣∣∣ 1
n

n∑
i=1

xik
θ(eX

T
i β̂−Yi)

θ+eX
T
i
β̂

∣∣∣∣ ≤ λ1.

Zhou (2013) gives an elementary proof of KKT conditions for the Elastic-net pe-

nalized optimization problem merely in linear regression. It is worth noting that KKT

conditions are a standard result of sub-differentiation techniques. But here to apply

some identities to prove Lemma A.11 in Section 3.1, we give a detailed proof of the

above lemma. The prerequisite λ2 > 0 in Lemma 1 is indispensable. The reason is that

we need λ2 > 0 such that F (β̂ + εek;λ1, λ2) − F (β̂;λ1, λ2) > 0 in the lines of proof,

see Appendix B, and then β̂ is the unique locally minimum. The KKT conditions are

crucial for all sections below.

2.3 `q-estimation error via Compatibility Factor

In this part, we are going to present that the sparse estimator for high-dimensional

negative binomial regression by using Elastic-net regularization is asymptotically close

to the true parameter under some suitable regularity conditions.

For fixed designs {Xi}ni=1, let β∗ be the true coefficients vector, which satisfies

EYi = eX
T
i β
∗
. (3)
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In some sense, we can never really know the expectation of the negative log-

likelihood because β∗ is the unknown parameter to be estimated. In high-dimension,

we are interested in the sparse estimates defined in (1) by adding Elastic-net penal-

ty. For the true coefficient vector β∗ = (β∗1 , · · · , β∗p)T , let H = {j : β∗j 6= 0, j =

1, · · · , p}, Hc = {j : β∗j = 0, j = 1, · · · , p} be the nonzero and zero components respec-

tively, and let d∗H = |H| be the number of non-zero coefficients in β∗. For any index

set H ∈ {1, 2, · · · , p}, define the sub-vector indexed by H as bH = (· · · , b̃j , · · · )T ∈ Rp

with b̃j = bj if j ∈ H and b̃j = 0 if j /∈ H. We know that the Kullback-Leibler

divergence measures that how one probability distribution is different from a second.

Similarly, in order to measure the distance between two penalized log-likelihood index

by its parameter, the symmetric Bregman divergence between `(β̂) and `(β) is

Ds
g(β̂,β) = (β̂ − β)T [ ˙̀(β̂)− ˙̀(β) + λ2(ġ(β̂)− ġ(β))].

If g = 0, the symmetric Bregman divergence is Ds(β̂,β) = (β̂ − β)T [ ˙̀(β̂) − ˙̀(β)].

In this case, the symmetric Bregman divergence is a type of generalized quadratic dis-

tances (Mahalanobis distances) which can been seen as the symmetric extension of

Kullback-Leibler divergence. See Nielsen and Nock (2009), Huang et al. (2013) for

more discussions about symmetric Bregman divergence. Since g(β) is a nonnegative

convex function, we deduce the quantitative relation: Ds
g(β̂,β) ≥ Ds(β̂,β). With the

above definitions, let z∗ = ‖ ˙̀(β∗) + λ2ġ(β∗)‖∞ and ∆ = β̂ − β∗, we now provide the

lower and upper bounds for the symmetric Bregman divergence.

Lemma 2 (Theorem 1 in Yu (2010)). For GLCP estimation, we have

(λ1 − z∗)||∆Hc ||1 ≤ Ds
g(β̂,β

∗) + (λ1 − z∗)||∆Hc ||1 ≤ (λ1 + z∗)||∆H ||1. (4)
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If z∗ ≤ ζ−1
ζ+1λ1 for some ζ > 1, the inequalities and implies

2λ1

ζ + 1
||∆Hc ||1 ≤ Ds

g(β̂,β∗) +
2λ1

ζ + 1
||∆Hc ||1 ≤

2ζλ1

ζ + 1
||∆H ||1, (5)

which is from the fact that λ1 − z∗ ≥ 2λ1
ζ+1 and λ1 + z∗ ≤ 2ζλ1

ζ+1 .

By (5), we have

||∆Hc ||1 ≤ ζ‖∆H‖1. (6)

Hence we conclude that in the event Kλ :=
{
z∗ ≤ ζ−1

ζ+1λ1

}
, the error of estimate ∆ =

β̂ − β∗ belongs to the cone set :

S(s,H) := {b ∈ Rp : ||bHc ||1 ≤ s||bH ||1}, (s ∈ R). (7)

with s = ζ.

The key of deriving oracle inequalities also depends on the behaviour of empirical

covariance matrix, namely, the weighted Gram matrix:

῭
n(β) =

1

n

n∑
i=1

XiX
T
i

θ(θ + Yi)e
XTi β

(θ + eX
T
i β)

2 :=
1

n

n∑
i=1

X̃iX̃
T
i , where X̃i := Xi(

θ(θ + Yi)e
XTi β

(θ + eX
T
i β)

2 )1/2.

In increasing dimension setting p = p(n), it is well-known that the Gram matrix

1
n

n∑
i=1

XiX
T
i (i.e. the correlation between the covariates) which is necessarily singu-

lar when p > n. In order to obtain oracle inequality with a fast rate as discussed in

Bickel et al. (2009), the following versions of restricted eigenvalues is usually needed

under the restriction (7).

The compatibility factor (denoted by C(s,H,Σ), see van de Geer (2007)) of a p× p

nonnegative-definite matrix Σ, is defined by

C2(s,H,Σ) := inf
06=b∈S(s,H)

d∗H(bTΣb)

‖bH‖21
> 0, (s ∈ R). (8)
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For the sake of deriving `q-loss (q > 1) oracle inequalities for target coefficient

vectors, we require the concept of weak cone invertibility factors (weak CIF, see (53) of

Ye and Zhang (2010)),

Cq(s,H,Σ) := inf
06=b∈S(s,H)

d∗H
1/q(bTΣb)

||bH ||1 · ||b||q
> 0, (s ∈ R). (9)

This constant generalizes the compatibility factor and is close to the restricted eigenvalue

(see Bickel et al. (2009)). From the results in Ye and Zhang (2010) and Huang et al.

(2013), we know that the compatibility factor and weak CIF can achieve a sharper

upper bounds for the oracle inequalities since both of them are bigger than the restricted

eigenvalue.

The condition C2(s,H,Σ) > 0 or Cq(s,H,Σ) > 0 for Hessian matrix Σ = ῭(β) is

an indispensable assumptions for deriving the targeted oracle inequalities.

Some additional regularity conditions are required.

• (C.1): Bounded covariates, max{|xij | ; 1 ≤ i ≤ n, 1 ≤ j ≤ p} = L <∞.

• (C.2): We assume the identifiability condition that XT
i (β + δ) = XT

i β implies

XT
i δ = 0 for δ ∈ Rp.

• (C.3): Suppose that ||β∗||1 ≤ B.

The bounded covariates C.1 is a common assumption in GLMs (see Example 5.40 of

van der Vaart (1998)), it may be achieved by doing some bounded transformation of

the covariates in real data. The identifiability condition C.2 and compact parameter

space C.3 are common assumptions for obtaining consistency for general M-estimation,

see section 5.5 and remark of Theorem 5.9 in van der Vaart (1998). Recently, Weißbach
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and Radloff (2019) shows the consistency for the NBR with fixed covariates under the

assumption that all possible parameters and regressor are in the compact space.

At first, we present the non-asymptotic upper bounds for Elastic-net regularized

NBR in following two theorems.

Theorem 1. Let C(ζ,H) := C(ζ,H, ῭(β∗)) and Cq(ζ,H) := Cq(ζ,H, ῭(β∗)) to be the

compatibility factor and the weak cone invertibility factor defined above. Define τ :=

L(ζ+1)d∗λ1
2[C(ζ,H)]2

≤ 1
2e
−1. Then, assume that (C.1), (C.2) and the event Kλ hold, we have

‖β̂ − β∗‖1 ≤
e2aτ (ζ + 1)d∗Hλ1

2C2(ζ,H)
and ‖β̂ − β∗‖q ≤

2e2aτ ζd∗H
1/qλ1

(ζ + 1)Cq(ζ,H)
(10)

where aτ ≤ 1
2 is the smaller solution of the equation ae−2a = τ .

On the one hand, the Theorem 1 contains basic oracle inequalities conditioning

on the random event, which needs further refinements. What remains to be done is

to focus the probability upper bound of event Kλ. With assumption (C.3), we have

z∗ ≤ ‖ ˙̀(β∗)‖∞ + 2λ2B. Our aim of proof is to have

P (Kcλ) ≤ P (|| ˙̀(β∗)||∞ + 2λ2B ≥
ζ − 1

ζ + 1
λ1)→ 0 as n, p→∞. (11)

That all we need is to apply some concentration inequality in terms of NB empiri-

cal processes, i.e. sum of independent weighted NB random variables, these types of

concentration inequalities have been constructed recently, see Zhang and Wu (2019)

and references therein. As the dispersion parameter θ is known, then NB random

variables {Yi}ni=1 belong to the exponential family f(yi; ηi) ∝ exp{yiηi − ψ(ηi)} with

ηi := XT
i β
∗ + log(θ + eX

T
i β
∗
) ∈ Θ, where Θ is the compact parameter space.

On the other hand, the methods in term of compatibility factor and weak CIR that
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we employ in this section are yet random constants. It contains the Hessian matrix of

the true coefficient vector and thus it encapsulates the random quantities {Yi}ni=1. We

should note that deriving the lower bound for these random quantities will decrease the

probability that oracle inequalities are true, but the loss is negligible in next theorem.

Next, we successfully show by NB concentration inequality again with some tricks that

there exist much reasonable non-random lower bounds of the compatibility factor (or

the weak CIR) such that the upper bounds are constants with high probability, thus

the rigorous convergence rate of β̂ is well established. It should be noted that Yu et

al. (2020) directly assumes that the inverse of compatibility factor of ῭(β∗) for the Cox

model is Op(1), they call it “a high-level condition”. The Hessian matrix of the Cox

model is also a random element.

Two events for truncating the compatibility factor and the weak CIR, is defined

by Ec := {C2(ζ,H) > C2
t (ζ,H)} and Ew := {Cq(ζ,H) > Cqu(ζ,H)} respectively, where

C2
t (ζ,H) and Cqu(ζ,H) are non-random constants defined in the proof.

Theorem 2. Under assumptions of Theorem 1, we further assume (C.2). Let B1

be the constant satisfying Cξ,B1 := ζ−1
ζ+1 − 2B1 > 0. Let λ1 =

CLBL
Cξ,B1

√
2r log p
n where

C2
LB := eLB + e2LB

θ is a variance-depending constant and r > 1 is a constant. Put

λ2 = B1λ1/B. On the event K ∩ Ec (or K ∩ Ew), we have:

P

(
‖β̂ − β∗‖1 ≤

e2aτ (ζ + 1)d∗Hλ1

2C2
t (ζ,H)

)
≥ 1− 2

pr−1
− 2p2e

− nt2

2[d∗
H
CLB(1+ς)L2]

2
(12)

or P

(
‖β̂ − β∗‖q ≤

2e2aτ ζd∗H
1/qλ1

(ζ + 1)Cqu(ζ,H)

)
≥ 1− 2

pr−1
− 2p2e

− nu2

2[d∗
H
CLB(1+ς)L2]

2
. (13)

If we presume case d∗H = O(1) in Theorem 2, which implies that the error bounds

is of the order
√

log p
n so the Elastic-net estimates have consistent property for the `1-
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error when dimension of covariates could increase with order eo(n). As we know, the

MLE has the convergence rate 1√
n

. Nevertheless, in order to pay the price in high-

dimensional condition, we have to magnify
√

log p to the convergence rate of MLE. If

we assume d∗H = o(
√

n
log p), i.e. p = eo(n/d

∗
H), thus d∗Hλ = o(1) and it also implies the

consistent property. Under the random designs, the purpose of next section is to give

a new approach that avoids the random upper bound for the `1 or `2 estimation error

and provides square prediction error oracle inequality.

2.4 The prediction error via stabil condition with random design

In this section, we focuses on the prediction error. We presume that the n × p design

matrix X = (X1, · · · ,Xn)T is random. In applications, the test data set is a new design

X∗ which is an independent copy of X, thus it requires the randomness assumption of

the design matrix. This section aims to predict the response Yn+1 by the new random

covariates Xn+1 by resorting Elastic-net estimator β̂ to estimates the unknown Yn+1.

The Y ∈ Rn contains n independently (ind. in short) responses {Yi}ni=1, thus

the covariates and responses are considered as a pair of random vectors (X,Y). When

{Xi}ni=1 is degenerate distributed, it is just a case of fixed design and hence the result in

this part also holds for fixed design. Through the paper, we denote the element in design

matrix {xij} as fixed design, {Xij} as random design. The conditional distribution of

a single observations is Yi|Xi = xi is assumed to be conditional NB distributed with

E(Yi|Xi = xi) = ex
T
i β.
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Let β∗ be the true coefficients vector, which is defined by the minimiser

β∗= argmin
β∈Rp

El(Y,X,β) (14)

where l(Y,X,β) = YXTβ − (θ + Y ) log(θ + eX
Tβ) is the NB loss.

To derive non-asymptotical bounds for `1-estimation and square prediction error,

we have to focus on the empirical process for any possible β [on NB loss function in

(14) with random X]

Pnl(X, Y,β) := − 1

n

n∑
i=1

[YiX
T
i β − (θ + Yi) log(θ + eX

T
i β)]

where Pn is the empirical measure of samples {(Xi, Yi)}ni=1
ind.∼ (X, Y ).

The analysis of concentration and fluctuation of the empirical process is crucial to

evaluate the consistent properties of the estimates. For simplicity, we use the symbol

language of the empirical process in this section. We need some assumptions such that

β̂ could be consistent in high-dimensional NBR.

• (H.1): All the variables Xi are bounded: there exists a constant L > 0 such that

|||X|||∞ := sup
1≤i≤∞

‖Xi‖∞ ≤ L a.s.

• (H.2): Assume that ||β∗||1 ≤ B.

• (H.3): There exists a large constant M0 such that β̂ is in the `1-ball:

β̂ ∈ SM0(β∗) := {β ∈ Rp : ‖β − β∗‖1 ≤M0}.

• (H.4): Let θ > 1. The negative log-density of n independent NB responses

ψ(y) := − log pY (y) for Y = (Y1, · · · , Yn)T satisfies the strongly midpoint log-
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convex properties for some γ > 0

ψ(x) + ψ(y)− ψ(d1
2
x+

1

2
ye)− ψ(b1

2
x+

1

2
yc) ≥ γ

4
‖x− y‖22 ∀x,y ∈ Zn. (15)

Remark 1. The (H.1) and (H.2) are mentioned in Blazere et al. (2014), and the (H.3)

is a high technique condition due to the non-canonical link GLMs. The constraint in

the optimization is equivalent to α ‖β‖1 + (1− α)‖β‖22 ≤ t with unknown α ∈ [0, 1] and

t ∈ R, it lead to ‖β̂‖1 ≤ M0 if we suppose that t/α ≤ M0. There is a constant K > 0

such that max
1≤i≤n

∣∣XT
i β
∗∣∣ ≤ K a.s. for all n. A convex function F is called strongly con-

vex if the Hessian matrix of F has a (uniformly) lower bounded eigenvalue. In learning

exponential families in high-dimensions, Kakade et al. (2010) assumed that continuous

exponential families is a strongly convex log-likelihood function with ηi in a sufficiently

small neighborhood. For fixed dimensional MLE, Balabdaoui et al. (2013) shown that

discrete log-concave maximum likelihood estimator is strongly consistent under some

settings. Our assumption (H.4) is a technique condition which makes sure the suprema

of the multiplier empirical processes of n independent responses have sub-Gaussian con-

centration phenomenon. For the case of fixed design in Section 2.3, we do not require

(H.4) to derive oracle inequalities.

In this section, we give sharp bounds for `1-estimation and square prediction errors

for NBR models by looking for a weaker condition which is analogous to the restricted

eigenvalue condition (RE) proposed by Bickel et al. (2009) and the weak CIF and

compatibility factor conditions presented in Section 3.2. Here we borrow a condition

which is from the Stabil Condition introduced by Bunea (2008) for `1 and `1 + `2

penalized logistic regressions.
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For c, ε > 0, we define the fluctuated cone set for some bias vector b as

V(c, ε,H) := {b ∈ Rp : ||bHc ||1 ≤ c||bH ||1 + ε}. (16)

which is a fluctuated (or measurement error) version of the cone set S(s,H) := {b ∈

Rp : ||bHc ||1 ≤ s||bH ||1} mentioned in (7).

We will plugging b = β̂ − β∗ in the proof. For real data, let β̂ be the estimator

based on true covariates and β̂me be the the estimator from covariates with measurement

error. Note that under the cone condition ||bHc ||1 ≤ c||bH ||1 for b = β̂ − β∗, we get

||(β̂me − β∗)Hc ||1 − ||(β̂ − β̂me)Hc ||1 ≤ ||(β̂ − β∗)Hc ||1 ≤ c||(β̂ − β∗)H ||1

≤ c||(β̂me − β∗)H ||1 + c||(β̂ − β̂me)H ||1

Then,

||bmeHc ||1 ≤ c||bmeH ||1 + ε for bme := β̂me − β∗

where ε = c||(β̂me − β∗)H ||1 + ||(β̂ − β̂me)Hc ||1. This argument indicates that the

fluctuated cone set quantifies the level of measurement error if β̂me is misspecified as β̂.

On fluctuated cone set, we assume that the p×pmatrix Σ fulfills the Stabil condition

as below. For example, the Σ = EXXT is the expected empirical covariance matrix.

Definition 2. (Stabil Condition with measurement error) For given c, ε > 0, the matrix

Σ satisfies the Stabil condition S(c, ε, k) if there exists 0 < k < 1 such that

bTΣb ≥ k||bH ||22 − ε

for any b ∈ V (c, ε,H). Here the restriction 0 < k < 1 can be attained by scaling the X.

Let l1(β) := l1(β,X, Y ) := −Y [XTβ − log(θ + exp{XTβ})] which is a linear

function of response, and let l2(β) := l2(β,X) := θlog(θ+exp{XTβ}) which is free of
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response. The NB loss function l(β,X, Y ) = l1(β,X, Y )+ l2(β,X) is thus decomposed

into two part. Let Pl(β) := El(β,X, Y ) be the expected risk function, where the

expectation is under the randomness of (X, Y ). We are fond of the centralized empirical

loss (Pn − P) l(β) which represents the fluctuation between the expected loss and sample

loss, rather than the loss itself. We break down the empirical process into two parts:

(Pn − P) l(β) = (Pn − P) l1(β) + (Pn − P) l2(β). (17)

In the following, we give upper bounds for the first and second part of the empirical

process: (Pn−P)(lm(β∗)− lm(β̂)), for m = 1, 2. It will be shown that (Pn−P)(lm(β∗)−

lm(β̂)) has stochastic Lipschitz properties (see Chi (2010)) with respect to ‖β̂ − β∗‖1.

Let the `1-ball be SM0(β∗) := {β ∈ Rp : ‖β − β∗‖1 ≤M0} which is referred as the local

set. Then,

Proposition 1. Let the centred responses be {Y c
i := Yi − EYi}ni=1 and the (H.1)-(H.4)

are satisfied. If λ1 ≥ 4L(2C̃LB + A
√

2γ)
√

2 log 2p
n ,(A ≥ 1, C̃2

LB := eLB + (1+θ)e2LB

θ ),

define the event A for suprema of the multiplier empirical processes by

A :=

{
sup

β1,β2∈SM0
(β∗)

∣∣∣∣∣ 1n
n∑
i=1

Y c
i θX

T
i (β1 − β∗)

(θ+exp{XT
i β2})‖β1 − β∗‖1

∣∣∣∣∣ ≤ λ1

4

}
,

we have P (A) ≥ 1− (2p)−A
2
. Moreover,

P

{
(Pn − P)(l1(β∗)− l1(β̂)) ≤ λ1

4
‖β̂ − β∗‖1

}
≥ 1− (2p)−A

2
.

This proposition indicates the discrepancy between the first part of the empirical

process and its expectation is bounded from above by the tuning parameter multiplied

by the `2 norm of the difference between the estimated vector and the target vector.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



21

The λ1
4 can be seen as Lipschitz constant of the first part of the centralized empirical

process.

Similar to A, we provide a crucial lemma which is to bound the second part of the

empirical process with responses. Let νn(β,β∗) := (Pn−P)(l2(β∗)−l2(β))
‖β−β∗‖1+εn

the normalized

second part of the empirical process which is a random variable index by β, then we

define the local stochastic Lipschitz constant for a certain M > 0

ZM (β∗) := sup
β∈SM (β∗)

|νn(β,β∗)|, and a random event B := {ZM (β∗) ≤ λ1

4
}

which is by bounding the local stochastic Lipschitz constant with the rescaled tuning

parameter λ1
4 . Moreover, by definition we have |νn(β̂,β∗)| ≤ supSM (β∗) |νn(β̂,β∗)| ≤ λ1

4 ,

which gives following bound.

|(Pn − P)(l2(β̂)− l2(β∗))| ≤ λ1

4
(‖β̂ − β∗‖1 + εn) on B. (18)

provided that β̂ ∈ SM (β∗).

The following lemma in accordance with the phenomenon that, in the event A
⋂
B,

the estimator β̂ lies in a known neighborhood of the true coefficient vector β∗.

Lemma 3. Under (H.2), let 8Bλ2 + 4M = λ1, we have

‖β̂ − β∗‖1 ≤ 16||β∗||+ 2εn on A
⋂
B.

The proof of Lemma 3 is rely on the optimization (1) and the definition of the

minimizer β∗ from the expected loss (14). By Lemma 3, on the event A
⋂
B we imme-

diately get β̂ ∈ S16B+2εn(β∗). Note that we assume that β̂ ∈ SM0(β∗) for some finite

M0 > M = 16B + 2εn in (H.3). That is to say the Lemma 3 sharpen the β̂ in the `1-

ball SM (β∗), while β̂ is originally assumed in the `1-ball SM0(β∗). Therefore, the follow

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



22

probability analysis of the event A
⋂
B is indispensable. The the event A∩B associated

with empirical loss functions play an important role in deriving the oracle inequalities

for general loss functions, since we could bound the `1-estimation error conditioning on

event A
⋂
B. We now give the result that the event A∩B occurs with high probability.

Proposition 2. Let M = 16B + 2εn. Suppose that β̂ ∈ SM0(β∗) for ∞ > M0 > M ,

and (H.1)-(H.4) is true. If

λ1 ≥ max

(
20θAML

M + εn

√
2 log 2p

n
, 4L(2C̃LB +A

√
2γ)

√
2 log 2p

n

)
, A ≥ 1, (19)

then P (A ∩ B) ≥ 1− 2(2p)−A
2
.

The proof of Theorem 3 is based on some lemmas in Appendix A which show that

the event A ∩ B holds with high probability.

On the back of the above probability analysis, now we can formulate the main result

of this section that gives bounds for the estimation and prediction error as the target

model is sparse and log p is tiny as compared to n. Especially, the oracle inequality of

estimation error is useful in the following sections.

Theorem 3. Assume condition S(3.5, εn, k), (H1)-(H4) is fulfilled. Let λ1 be chosen

by (19) and λ2 ≤ λ1
8B . Then, in the event A ∩ B, we have P (β̂ − β∗ ∈ V(3.5, εn2 , H)) ≥

1− 2(2p)−A
2

and

P

{
‖β̂ − β∗‖1 ≤

2.252λ1d
∗
H

ak + 2λ2
+ (1 +

a

λ1
)εn

}
≥ 1− 2(2p)−A

2
. (20)

Moreover, let the test data (X∗, Y ∗) be an independent copy of the the training data

(X, Y ), and denote E∗(·) := E(·|X∗). Conditioning on the event A ∩ B, the square
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prediction error is

E∗[X∗T (β̂ − β∗)]2 ≤
17.71875d∗Hλ

2
1

a(ak + 2λ2)
+ (

4λ1

a
+ 3.5)εn (21)

where a := min
{|x|≤LM+K,|y|≤K}

{1
2
θex(ey+θ)

[θ+ex]2
} > 0.

Comparing to the upper bounds under compatibility factor condition in Section 2.3,

in much the same fashion, we observe that when d∗ = O(1) and the number of covariates

increases as large as o(exp(n)). Then the bound on the estimation error is of the order

o (1) and the Elastic-net estimator ensures the consistent property. The Theorem 3 is

also an improvement of Lemma 3 from a big neighbourhood of β∗ to the desired small

neighbourhood of β∗.

Remark 2. Discussion of the measurement error εn when d∗H <∞:

• 1. If εn = o(
√

log p
n ), then ‖β̂ − β∗‖1 ≤ O(

√
log p
n ), E∗[X∗T (β̂ − β∗)]2 ≤ O( log p

n );

• 2. If εn = O(
√

log p
n ), then ‖β̂−β∗‖1 ≤ O(1), but E∗[X∗T (β̂ − β∗)]2 ≤ O(

√
log p
n );

More typical examples for εn are 1
n or even 0. Under the restricted condition β̂ − β∗ ∈

V (3.5,
εn
2
, H), Case 2 tells us that if the order of fluctuations εn is sightly lower than

the order of tuning parameter, Elastic-net with λ2 ≤ λ1
8B guarantees that the square

prediction error is asymptotical being zero with a lower rate O(
√

log p
n ).

3 Applications of oracles results

The previous sections above pave the way for the non-asymptotic or asymptotic results

in the consecutive sections. In this section, the applications of oracles results are derived
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from oracle inequalities about `1-estimation error, and we assume that the design matrix

is fixed for simplicity.

3.1 Grouping effect from oracle inequality

Zou and Hastie (2005) shows that the Elastic-net has a grouping effect, which asserts

that strongly correlated predictors tend to be in or out of the model together when the

coefficients have the same sign. Zhou (2013) proves the grouping effect of the elastic-

net estimates holds without the assumption of the sign. Yu (2010) derives asymptotical

result of grouping effect for Elastic-net estimates of the Cox models. Based on ora-

cle inequalities we put forward, we provide an asymptotical version of grouping effect

inequality as p, n→∞ for fixed design case.

Theorem 4. Under the assumption of Theorem 2 with d∗H < ∞, suppose that the

covarates (non-random) are standardized as

1

n

n∑
i=1

x2
ij = 1,

1

n

n∑
i=1

xij = 0, for j = 1, 2, · · · , p. (22)

Denote ρkl = 1
n

n∑
i=1

xikxil as the correlation coefficient. For any constant Es > 0, with

probability at least 1− 2
pr−1 − 2p2e

− nt2

2[d∗
H
CLB(1+ζ)L2]

2
− σ2

n
nE2

s
, we get

(i). |β̂k − β̂l|2 ≤ (1− ρkl)[Ke2LMO(1) + 1
λ22

(Es + µs)];

(ii). If the asymptotic correlation between two random predictors are asymptotically

up to 1, i.e. ρkl = 1− o(λ2
2) with λ2

2 = O( log p
n )→ 0, thus

|β̂k − β̂l| ≤
√
op(1)[λ2

2e
2LMO(1) + (E + µ)].
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This grouping effect oracle inequality asserts that if ρkl tends to 1 then with high-

probability elastic-net is able to select covariates k, l ∈ {1, 2, . . . , p} together. Combining

with Lasso sparse estimation, the `1 + `2 penalty enables that strongly correlated pre-

dictors are inclined to be in or out simultaneously. In addition to the sparse estimation,

intuitively, highly related covariates should have similar regression coefficients, but lasso

cannot select them at one time.

3.2 Sign Consistency

Sign consistency is another criteria to show if one estimate is good. A few researchers

have studied the sign consistency property of the Elastic-net. One condition for sign

consistency is the Irrepresentable Condition (IC). Zhao and Yu (2006) explores the

IC to enjoy the sign consistency for linear regression under Lasso penalty. Moreover,

model selection consistency of Elastic-net are studied by Jia and Yu (2010), which

follows the lines of Zhao and Yu (2006). Along the same line, for Elastic-net penalized

Cox model, Yu (2010) investigates the selection consistency. Their basic idea is that

KKT condition is the necessary and sufficient condition for global minimizer of target

function. In similar fashion, we pay attention to selection consistency of Elastic-net

penalized NBR model based some reasonable assumptions. It is interesting to see that

under the bounded covariates assumption we do not need the IC which is assume in Yu

(2010), Lv et al. (2018), we only rely on the assumptions in Theorem 2.

Uniform Signal Strength Condition.

β∗ := min
j∈H
|β∗j | ≥

e2aτ (ζ + 1)d∗Hλ1

2C2(ζ,H)
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with λ1 = O(
√

log p
n ), Bλ2 = B1λ1.

Assume d∗H < ∞, Zhang (2014) pointed out that the selection consistency theory

characteristically necessitates a uniform signal strength condition (or beta-min condi-

tion) that the smallest non-zero regression coefficients β∗ := min{|βj | : j ∈ H} should

be greater in size than a thresholded level O(
√

log p
n ). When β∗ is less than the level,

the presence of weak signals cannot be detected by statistical inferences procedures.

Theorem 5. Suppose that the Uniform Signal Strength Condition and assumptions of

Theorem 2 hold. Let λ1 = O(
√

log p
n ), d∗H < ∞. Then, for

√
log p
n = o(1) and suitable

tuning parameter r in Theorem 2, we have the sign consistency:

lim
n,p→∞

P (signβ̂ = signβ∗) = 1. (23)

3.3 Honest variable selection and detection of weak signals

As a special case of random design in Section 2.4, we focus on the fixed design in this

section where the {Xi}ni=1 are deterministic.

Recall that Ĥ := {j : β̂j 6= 0}, so Ĥ is an estimator of the true variable set

H := {j : βj 6= 0} (or the set of positives). Let δ1, δ2 be constants such that P (Ĥ 6⊂

H) ≤ δ1, P (H 6⊂ Ĥ) ≤ δ2, we have P (H 6= Ĥ) ≤ P (Ĥ 6⊂ H) + P (H 6⊂ Ĥ) ≤ δ1 + δ2.

Here, if we treat H as null hypothesis, the P (Ĥ 6⊂ H) is often called false positive

rate in the language of ROC curve (or Type I error in statistical hypothesis testing,

the estimate is Ĥ but it makes decision Ĥ ⊂ Hc); the P (H 6⊂ Ĥ) is often called false

negative rate (or Type II error). Thus the probability of correct subset selection under
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some random events W (the assumptions hold with probability P (W )) is

P (H = Ĥ) ≥ P (W )− δ1 − δ2. (24)

From the `1-estimation error obtained in Theorem 3, we could easily bound the false

negative rate P (H 6⊂ Ĥ) in Proposition 3. But the upper bound of false positive rate

P (Ĥ 6⊂ H) cannot be directly obtained, more addition assumptions on the covariates

correlation is required.

Proposition 3. Let δ ∈ (0, 1) be a fixed number and the assumption of Theorem 3

is satisfied, and the weakest signal and strongest signal meet the condition: B0 :=

2.252λ1d∗H
ak+2λ2

+ (1 + a
λ1

)εn ≤ min
j∈H
|β∗j | ≤ B. If p = exp{ 1

A2−1
log 21−A

2

δ } with A > 1, then

P (H ⊂ Ĥ) ≥ P (‖β̂ − β∗‖1 ≤ B0) ≥ 1− δ/p.

It is worth noting here that the lower bound we derived may be too large in some

setting. For example, if d∗H is as large as λ1d
∗
H = O(1), and min

j∈H
|β∗j | ≥

2.252O(1)
ak+2λ2

=: D

where D is also a moderate large constant compared to the strongest signal threshold B.

Then we can only detect few parts of the whole signals. To deal with this problem, we

will use a new approach (inspired by Section 3.1.2 in Bunea (2008)) to find constant-free

weakest signal detection threshold which only relies on the tuning parameter λ1. There

are no free lunch for getting a desirable results in statistics. Under some mild condition

on design matrix, we will illustrate that the lower bounds could be considerably sharpen.

First, we assume that the covariates are centered and standardized like (22). This

crucial method of processing covariates is also employed similarly in studying the group-

ing effect in Section 3.1. Second, let ρkl = 1
n

n∑
i=1

XikXil, k, l ∈ {1, 2, · · · , p} be the

correlation constants between covarates k and l. For constant h ∈ (0, 1), we pose the

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



28

Identifiable Condition: max
k,l∈H,k 6=l

|ρkl| ≤ h
θd∗H

, θ
n

n∑
i=1

X2
ik = 1.

This assumption of maximal correlation constant of two distinct covariates on the

true set H, measures the dependence structure by a constant h in the whole predictor.

The less h is, the more degree of separation is, and the easier to detect weak signals.

Bunea (2008) explained the intuition that:“ If the signal is very weak and the true

variables are highly correlated with one another and with the rest, one cannot hope

to recover the true model with high probability”. Interestingly, the grouping effect in

previous, says that the Elastic-net is able to simultaneously estimate highly correlated

true variables, and this grouping effect is valid without the premise that the signal

is enough strong. If both faint signals under the level of detection bounds, then the

Elastic-net estimates are both zero, and grouping effect is also true.

Additionally, we require two technical conditions as we have to build some connec-

tions between P (H 6⊂ Ĥ), P (Ĥ 6⊂ H) and the `1-estimation error in Theorem 3. Let

ai (bi) is the intermediate point between XT
i β̂ and XT

i β
∗ by the first order Taylor ex-

pansion of the function f(t) = et

θ+et (g(t) = 1
θ+et ), and L1, L2 ∈ [1,∞). By (H.1)-(H.3),

it leads to for all i

|ai| or |bi| ≤ |X∗Ti β̃ −X∗Ti β
∗|+ |X∗Ti β∗| ≤ |X∗Ti β̂ −X∗Ti β

∗|+ |XT
i β
∗| ≤ L(M +B).

We pose some weighted correlation conditions (WCC in short):

Weighted Correlation Condition (1):

sup
k,j∈H,

|ai|≤L(M+B)

1

n

(
|
n∑
i=1

XijXik
θ2eai

(θ + eai)2 | ∨ |
n∑
i=1

θXijXik(1−
θeai

(θ + eai)2 )|

)
≤ hL1

d∗H
.
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Weighted Correlation Condition (2) holds with high probability:

P

 sup
k,j∈H,

|bi|≤L(M+B)

| 1
n

n∑
i=1

XikXijYi · θ2ebi

(θ + ebi)
2 | ≤ hL2

d∗H

 = 1− εn,p,

where εn,p is a constant satisfying lim
n,p→∞

εn,p = 0.

By (H.1) and (H.2), ai, bi are uniformly bounded random variables and they are

viewed as ignorable constant in asymptotic analysis, so do θeai

(θ+eai )2
and (1 − θeai

(θ+eai )2
).

We can check WCC(2) by the similar approach in the concentration phenomenon for

suprema of the multiplier empirical processes, see the proof of Lemma A.6. The con-

ditions above can be obtained by make a linear transformation of the covariates, i.e.

scaling the covariates. The WCC(1) is a technical condition which has been used by

Bunea (2008) for the case of logistic regression. This assumption means that the max-

imum weighted-correlation version of ρkl, (k 6= l) is less than hL1
θd∗H

. However, NBR is

more complex than logistic regression since its Hessian matrix dependents on random

responses, thus WCC(2) should be assumed with high probability.

Together with above ingredients, we have the following constant-free weakest signal

detection threshold for correct subset selection.

Theorem 6. If assumptions in Theorem 3 hold with εn = 0, under the Identifiable Con-

dition, WCC(1,2) with h ≤ a+2λ2
20.25Li+8a ∧

1
8 for i = 1, 2. Let p = exp{ 1

1−A2 log(2A
2−1δ)},

P (H = Ĥ) ≥ 1− 2(1 + d∗H/p)δ − 2pe−nλ
2
1/32C2

LBL
2 − εn,p

provided that the minimal signal condition min
j∈H
|β∗j | ≥ 2λ1 is satisfied.
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3.4 De-biased Elastic-net and confidence interval

Introduced by Zhang (2014), the de-biased Lasso was further studied in van de Geer et

al. (2014) and Janková and van de Geer (2016) within some generalized linear models.

Following the the de-biasing idea, we deal with the de-biased estimator b̂ =: β̂− Θ̂ ˙̀(β̂),

which is asymptotic normality based on the established oracle inequality in Section 2.

Let β̂ be defined in optimization problem (1). Let Θ̂ be an approximated estimator of the

inverse of the Hessian −῭(β∗)(for example, the CLIME or nodewise Lasso estimator for

estimated Hessian matrix). If ˙̀(β̂) is continuously differentiable, by Taylor’s expansion

of vector-valued functions, we have

˙̀(β∗) = ˙̀(β̂)− ῭(β∗)(β̂ − β∗)− r(‖β̂ − β∗‖2)

= ῭(β∗)[β∗ − β̂ − ῭(β∗)−1 ˙̀(β̂)]− r(‖β̂ − β∗‖2)

= ῭(β∗)[β∗ − β̂ + Θ̂ ˙̀(β̂)]− ῭(β∗)[῭(β∗)−1 + Θ̂] ˙̀(β̂)− r(‖β̂ − β∗‖2)

=: ῭(β∗)[β∗ − β̂ + Θ̂ ˙̀(β̂)] +Rn

where r(‖β̂ − β∗‖2) = op(‖β̂ − β∗‖2) is a vector-valued function.

Operate
√
nΘ̂ in the equation above, if

√
nRn = op(1), then

√
n(b̂− β∗) ≈ Θ̂[

√
nRn −

√
n ˙̀(β∗)]

d−→ N(0, Θ̂ΣΘ̂T )

where the notation ≈ means the asymptotic equivalence under some regular conditions.

Here Σ is asymptotic variance of
√
n ˙̀(β∗), where Var ˙̀(β∗) = 1

n

n∑
i=1

θeX
T
i β
∗

θ+eX
T
i
β∗XiX

T
i . We

could plug in a consistent estimator for Σ in high-dimensional case.

The asymptotic a confidence level of 1− α for β∗j is then given by

[
b̂j − c(α, n, σ), b̂j + c(α, n, σ)

]
, c(α, n, σ) := Φ−1(1− α/2)

√
(Θ̂Σ̂Θ̂T )j,j/n,
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where Φ(·) denotes the c.d.f. of N(0, 1).

By KKT conditions in Lemma 1, the de-biased Elastic-net estimator is written as

b̂ = β̂ − Θ̂ ˙̀(β̂) = β̂(Ip − 2λ2Θ̂)− Θ̂λ1sign(β̂).

The theoretical analysis of de-biased Elastic-net estimator (includes precision matrix

estimation, confidence interval and hypothesis testing) is beyond the length and scope

of the this paper, and the interested reader could refer to the proofs in Janková and van

de Geer (2016) for some technical details.

A simulation study for the de-biased Elastic-net is presented in Appendix A, which

illustrates that de-biased Elastic-net has less bias than de-biased Lasso. When do sim-

ulation, it is of paramount importance to estimate the nuisance parameter θ and the

estimation of the inverse of the Hessian.

4 Conclusions and Discussions

In this technical paper, we thoroughly study sparse high-dimensional negative binomial

regression problems via several consistency results such as prediction or `q-estimation

error bounds. Negative binomial regressions are widely used in modeling count data.

We show that under a few conditions, the Elastic-net estimator has oracle properties,

which means that when sample size is large enough, our sparse estimator is very close

to the true parameter if the tuning parameters are properly chosen. We also show the

sign consistency property under beta-min condition. We discuss the detection of weak

signals, and give a constant-free weakest signal threshold for correct subset selection

under some correlation conditions of covariates. Asymptotic normality of the de-biased
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Elastic-net estimator is also discussed and the further study is beyond the scope of this

paper. These results provide theoretical understanding of the proposed sparse estimator

and provide practical guidance for the use of the Elastic-net estimator.

It should be noticed that oracles inequalities in Section 2.4 and Section 3 could

be extended to many `1 or `1 + `2 regularized M-estimation regression with the corre-

sponding empirical process (17) has stochastic Lipschitz properties which is presented

in Proposition 1. For example, the analysis of stochastic Lipschitz properties of the av-

erage negative log-likelihood empirical process can be employed to Elastic-net or Lasso

penalized COM-Poisson regression (see Sellers and Shmueli (2008)).

As we can see in the simulation, it demonstrates that the two-step estimation of θ̂ is

not behave well. Like the misspecified models in Example 5.25 of van der Vaart (1998),

the θ which is nuisance parameter, is not an important estimate in the consistency

results. It will be interesting and important to find a better estimator of dispersion

parameter in the further research, since θ is a crucial quantization in constructing con-

fidence interval.
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Supplementary Materials:

Elastic-net Regularized High-dimensional Negative Binomial Regression

A Main Proofs

A.1 Proof of Theorem 1

With the aim of deriving the targeted oracle inequalities (10), we first prove the lower

bound for symmetric Bregman divergence Ds
g(β + δ,β) with g = 0.

Lemma A.4. Assume that (C.1) and (C.2) are satisfied, then we have

Ds(β + δ,β) ≥ δT ῭(β)δe−2L‖δ‖1 .

Proof. We assume that XT
i δ 6= 0 by identifiability (C.2). Use the expression of ˙̀

n(β),

we obtain

δT [ ˙̀
n(β + δ)− ˙̀(β)] = −δT 1

n

n∑
i=1

Xiθ[
θ + Yi

θ + eX
T
i (β+δ)

− θ + Yi

θ + eX
T
i β

]

= δT
1

n

n∑
i=1

XiX
T
i θ ·

(θ + Yi)e
XTi β

[θ + eX
T
i (β+δ)][θ + eX

T
i β]
· e

XTi δ − 1

XT
i δ − 0

δ

≥ δT 1

n

n∑
i=1

{
XiX

T
i ·

θ(θ + Yi)e
XTi β

[θ + eX
T
i β]

2 · θ + eX
T
i β

θ + eX
T
i (β+δ)

e−(|XTi δ|∨0)

}
δ

where the last inequality is from ex−ey
x−y ≥ e

−(|x|∨|y|).

It remains to prove that

θ + eX
T
i β

θ + eX
T
i (β+δ)

≥ e−L‖δ‖1 . (A.25)

To show the (A.25), just note that by (C.1)
θ+eX

T
i β

θ+eX
T
i
(β+δ)

≥ e−XTi δ ≥ e−L‖δ‖1 if XT
i δ ≥ 0

θ+eX
T
i β

θ+eX
T
i
(β+δ)

≥ 1 if XT
i δ ≤ 0.
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Last, combining inequality min{e−(|XTi δ|), 1} ≥ e−L‖δ‖1 and (A.25), it implies by

the expression of ῭(β) that

δT [ ˙̀(β+δ)− ˙̀(β)] ≥ bT · 1
n

n∑
i=1

{
XiX

T
i ·

θ(θ + Yi)e
XTi β

(θ + eX
T
i β)2

}
δe−2L‖δ‖1 = δT ῭(β)δe−2L‖δ‖1 .

Next, we give the proof of Theorem 1 based on Lemma A.4.

Proof. Let β̃ = β̂ − β∗ 6= 0 and b = β̃/‖β̃‖1, and then `(β∗ + bx) is a convex function

in x due to the convexity of `(β). By (5), we have

bT [ ˙̀(β∗ + bx)− ˙̀(β∗)] ≤ 2 ζλ1

ζ + 1
‖bH‖1 −

2λ1

ζ + 1
‖bHC‖1 ≤

2 ζλ1

ζ + 1
‖bH‖1 (A.26)

holds for x ∈ [0, ‖β̃‖1] and b ∈ S(ζ,H).

By the Lemma A.4, we get (bx)T [ ˙̀
n(β∗ + bx) − ˙̀

n(β∗)] ≥ e−2Lx(bx)T ῭
n(β)(bx).

Since x ≥ 0, then

bT [ ˙̀
n(β∗ + bx)− ˙̀

n(β∗)] ≥ xe−2LxbT ῭
n(β)b. (A.27)

Assume we know the Hessian matrix at the true coefficient β∗, write compatibility

factor as C(ζ,H) =: C(ζ,H, ῭
n(β∗)). By the definition of compatibility factor and the

two inequality above, we have

Lxe−2Lx[C(ζ,H)]2‖bH‖21/d∗H ≤ Lxe−2LxbT ῭
n(β)b

(by (A.27)) ≤ LbT [ ˙̀
n(β∗ + bx)− ˙̀

n(β∗)]

(by (A.26)) ≤ L(
2 ζλ1

ζ + 1
‖bH‖1 −

2λ1

ζ + 1
‖bHC‖1)

= L[
2 ζλ1

ζ + 1
‖bH‖1 −

2λ1

ζ + 1
(1− ‖bH‖1)]

≤ L(2λ1‖bH‖1 −
2λ1

ζ + 1
) ≤ L(ζ + 1)‖bH‖21λ1

2
.
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where the last step is due to the elementary inequality 2λ1
ζ+1 +

(ζ+1)‖bH‖21λ1
2 ≥ 2λ1‖bH‖1.

Then we have

Lxe−2Lx ≤
L(ζ + 1)d∗Hλ1

2[C(ζ,H)]2
=: τ (A.28)

for any x ∈ [0, ‖β̃‖1]. aτ is the small solution of the equation {z : ze−2z = τ}. Notice

that the maximum of ze−2z is 1
2e
−1, we need to assume τ ≤ 1

2e
−1.

Again, since `n(β) is a convex in β, then bT [ ˙̀
n(β + bx) − `n(β)] is increasing in

x. Thus the solution of (A.28) w.r.t. x is a closed interval x ∈ [0, x̃]. By the fact that

x ∈ [0, ‖β̃‖1] implies x ∈ [0, x̃], thus we have ‖β̃‖1 ≤ x̃. Use (A.28) again, it implies

Lx̃e−2Lx̃ ≤ τ . Then, for ∀x ∈ [0, x̃], we have

‖β̃‖1 ≤ x̃ ≤
aτ
L

=
e2aτ τ

L
=
e2aτ (ζ + 1)d∗Hλ1

2[C(ζ,H)]2
(A.29)

where the last equality is by the definition of τ .

Similarly, by the definition of weak CIF, we have

xe−2Lx ≤ xe−2LxbT ῭
n(β)b

Cq(ζ,H)(‖bH‖1/(d∗H
1/q)‖b‖q

≤ bT [ ˙̀
n(β∗ + bx)− ˙̀

n(β∗)]

Cq(ζ,H)(‖bH‖1/(d∗H
1/q)‖b‖q

(by (A.26)) ≤
2ζd∗H

1/qλ1

(ζ + 1)Cq(ζ,H)‖b‖q
.

Let x = ‖β̃‖1, by the identity ‖β̂−β∗‖q = ‖β̃‖1‖b‖q, we have ‖β̂−β∗‖q ≤
2e2aτ ζd∗H

1/qλ1
(ζ+1)Cq(ζ,H)

due to the same argument in (A.29).

A.2 Proof of Theorem 2

To show the high probability events K∩Ec ( or K∩Ew), we will adopt the sub-Gaussian

type concentration inequalities for the exponential family random variables with re-

stricted parameter space.
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Lemma A.5 (Lemma 6.1 in Rigollet (2012)). Let {Yi}ni=1 be a sequence of random

variables whose distribution belongs to canonical exponential family with f(yi; θi) =

c(yi) exp(yiθi − ψ(θi)). We assume uniformly bounded variances condition: there exist

compact set Ω and some constant C2
ψ such that sup

θi∈Ω
ψ̈(θi) ≤ C2

ψ for all i. Let w :=

(w1, · · · , wn)T ∈ Rn be a non-random and define the weighted sum Swn =:
n∑
i=1

wiYi, we

have

P{|Swn − E(Swn )| > t} ≤ 2 exp{− t2

2C2
ψ‖w‖22

}. (A.30)

Moreover, we have E|Swn −ESwn |k ≤ Dk,C ‖w‖k2 where Dk,C = k(2C2
ψ)k/2Γ(k/2) and Γ(·)

stands for the Gamma function.

Since dispersion parameters θ is assumed to be known, this NB distribution belongs

to exponential families. With assumption (C.1) and (C.3), the boundedness of sup
θi∈Ω

ψ̈(θi)

holds uniformly by noticing that

sup
θi∈Ω

ψ̈(θi) = sup
µi

(µi +
µ2
i

θ
) = sup

|XT
i β
∗|≤LB

(eX
T
i β
∗

+
e2XT

i β
∗

θ
) = eLB +

e2LB

θ
:= C2

LB.

(A.31)

Now, we can apply concentration inequality Lemma A.5 to go on the proof. The first

step is to evaluate the event K :=
{
z∗ ≤ ζ−1

ζ+1λ1

}
from the inequality in (11). By

assuming Bλ2 := B1λ1, we have

P (z∗ ≥ ζ − 1

ζ + 1
λ1) ≤ P (‖ ˙̀

n(β∗)‖∞ ≥
ζ − 1

ζ + 1
λ1 − 2λ2B)

≤
p∑
j=1

P

(∣∣∣∣∣
n∑
i=1

xij(Yi − EYi)θ

n(θ + EYi)

∣∣∣∣∣ ≥ ζ − 1

ζ + 1
λ1 − 2λ1B1

)
.

and define Cξ,B1 := ζ−1
ζ+1−B1 > 0 for some B1. It is worth noting that Bunea (2008) and

Blazere et al. (2014) also proposed assumption λ2B = O(λ1) for two turning parameters
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in Elastic-net estimates.

Therefore, by using Lemma A.5, we have

P

{∣∣∣∣∣
n∑
i=1

1

n

xij(Yi − EYi)θ

θ + EYi

∣∣∣∣∣ ≥ Cξ,B1
λ1

}
≤ 2 exp{−

C2
ξ,B1

λ2
1

2C2
LB||w(j)||22

} ≤ 2 exp{−
C2
ξ,B1

λ2
1n

2C2
LBL

2
},

where ||w(j)||22 :=
n∑
i=1

x2ijθ
2

n2(θ+EYi)
2 ≤ L2

n .

Consequently,

P (z∗ ≥ ζ − 1

ζ + 1
λ1) ≤ 2p exp{−

C2
ξ,B1

λ2
1n

2C2
LBL

2
} =:

2

pr−1
, r > 1. (A.32)

The expression of tuning parameter λ1 is solved by the equality in (A.32), we obtain

λ1 =
CLBL
Cξ,B1

√
2r log p
n .

The second step is to evaluate the probability of the event of truncated random vari-

ables: Ec := {C2(ζ,H, ῭
n(β∗)) ≥ C2

t (ζ,H)} and Ew := {Cq(ζ,H, ῭
n(β∗)) ≥ Cqt(ζ,H)},

where C2
t (ζ,H) and Cqt(ζ,H) are some constant such that these two events could hold

with high probability.

Let b̃c, b̃w be the random points such that the infimum of in the following `1-ball

restricted compatibility factor and weak cone invertibility factors,

C2(ζ,H, ῭
n(β∗)) := inf

b∈Λ

d∗H
1/2(bT ῭

n(β∗)b)

‖bH‖21
=:

d∗H(b̃c ῭n(β∗)b̃c)

‖(b̃c)H‖21
> 0, (s ∈ R),

Cq(ζ,H, ῭
n(β∗)) := inf

b∈Λ

d∗H
1/qbT ῭

n(β∗)b

||bH ||1 · ||b||q
=:

d∗H
1/qb̃Tw

῭
n(β∗)b̃w

||(b̃w)H ||1 · ||b̃w||q
> 0, (ζ ∈ R)

are attained respectively, where Λ := {b ∈ Rp : 0 6= b ∈ S(ζ,H), ‖b‖1 = 1}.

Consider the event Ec and Ew, let

Scn(b, Y ) :=
d∗H(bT ῭

n(β∗)b)

‖bH‖21
, Swn (b, Y ) :=

d∗H
1/qbT ῭

n(β∗)b

||bH ||1 · ||b||q
.
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For all b ∈ Λ, the difference of Scn(b, Y ) and EScn(b, Y ) is bound by

|Scn(b, Y )− EScn(b, Y )| ≤
d∗H‖b‖21
‖bH‖21

max
j,k
|(῭

n(β∗)− E῭
n(β∗))j,k|

≤ d∗H(1 + ζ)2 max
j,k
|(῭

n(β∗)− E῭
n(β∗))j,k|

where the last inequality is from (6).

Note that the term d∗H(1 + ζ)2 is a constant, so it sufficient to bound

max
j,k
|(῭

n(β∗)− E῭
n(β∗))j,k| = max

j,k

∣∣∣∣∣ 1n
n∑
i=1

xijxikθe
XT
i β
∗

(θ + eX
T
i β
∗
)
2 (Yi − EYi)

∣∣∣∣∣
by Lemma A.5. Then,

P{|Scn(b, Y )− EScn(b, Y )| ≥ t, ∀b ∈ Λ} ≤ P{max
j,k
|(῭

n(β∗)− E῭
n(β∗))j,k| ≤ t/d∗H(1 + ζ)2}

≤ p2P{|(῭
n(β∗)− E῭

n(β∗))j,k| ≤ t/d∗H(1 + ζ)2}

≤ 2p2 exp{− nt2

2C2
LB[d∗H(1 + ζ)L2]2

} (A.33)

where the last inequality is by using Lemma A.5 with ||w||22 ≤ L4/n.

We define

P (Ec) := P{C2(ζ,H) ≥ C2
t (ζ,H)} = P{Scn(b̃c, Y )− EScn(b̃c, Y ) ≥ −t}.

Since the inequality (A.33) is free of b, thus by the (A.33) for Λ 3 b̃c we have

P (Ec) = P{Scn(b̃c, Y )− EScn(b̃c, Y ) ≥ −t} ≥ 1− 2p2 exp{− nt2

2[d∗HCLB(1 + ζ)L2]2
}.

Hence we could find C2
t (ζ,H). For example, the t can be chosen as 1

2EScn(b̃c, Y ) or

others. The the probability of the intersection of two events K and Ec is at least

P (K ∩ Ec) ≥ P (K) + P (Ec)− 1 ≥ 1− 2

pr−1
− 2p2 exp{− nt2

2[d∗HCLB(1 + ζ)L2]2
}.
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Next we consider similar arguments for concerning Ew. For all b ∈ Λ, the difference of

Swn (b, Y ) and ESwn (b, Y ) is bound by

|Swn (b, Y )− ESwn (b, Y )| ≤
d∗H

1/q‖b‖21
||bH ||1 · ||b||q

max
j,k
|(῭

n(β∗)− E῭
n(β∗))j,k|

≤
d∗H

1/q(1 + ζ)2‖bH‖21
||bH ||1 · ||b||q

max
j,k
|(῭

n(β∗)− E῭
n(β∗))j,k|

(By Hölder’s inequality) ≤
d∗H

1/q(1 + ζ)2d∗H
(1−1/q) ‖bH‖q

‖bH‖q
max
j,k
|(῭

n(β∗)− E῭
n(β∗))j,k|

≤ d∗H(1 + ζ)2 max
j,k
|(῭

n(β∗)− E῭
n(β∗))j,k|

where the second last inequality is from (6).

Let u = 1
2ESwn (b̃w, Y ). The same derivation show that

P (Ew) = P{Swn (b̃w, Y )− ESwn (b̃w, Y ) ≥ −u} ≥ 1− 2p2 exp{− nu2

2[d∗HCLB(1 + ζ)L2]2
}

and

P (K ∩ Ew) ≥ P (K) + P (Ew)− 1 ≥ 1− 2

pr−1
− 2p2 exp{− nu2

2[d∗HCLB(1 + ζ)L2]2
}.

A.3 Proof of Lemma 3

Proof. Judging from the convexity of the loss function and the Elastic-net penalty, the

chief ingredients of the proof is similar in spirit to the one used by Theorem 6.4 in

Bühlmann and van de Geer (2011) for initially restricting the penalized estimator in a

ball centred at its true value, and see also Lemma III.4 in Blazere et al. (2014).

Put t = M
M+‖β̂−β∗‖1

and β̃ := tβ̂ + (1− t)β∗, so β̃ − β∗ := t(β̂ − β∗). Therefore,

t =
M

M + ‖β̂ − β∗‖1
=

M

M + 1
t ‖β̃ − β

∗‖1
.

Then

‖β̃ − β∗‖1 ≤M(1− t) ≤M, i.e. β̃ ∈ SM .
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By the definition, β̂ satisfies

Pnl(β̂) + λ1‖β̂‖1 + λ2‖β̂‖22 ≤ Pnl(β∗) + λ1‖β∗‖1 + λ2‖β∗‖22. (A.34)

By convexity of the optimization function (1), combined with (A.34), we get

Pnl(β̃)+λ1‖β̃‖1 +λ2‖β̃‖22 ≤ Pnl(β̂)+λ1‖β̂‖1 +λ2‖β̂‖21 ≤ Pnl(β∗)+λ1‖β∗‖1 +λ2‖β∗‖22.

Thus

P(l(β̃)− l(β∗)) + λ1‖β̃‖1 + λ2‖β̃‖22 ≤ (Pn − P)(l(β∗)− l(β̃)) + λ1‖β∗‖1 + λ2‖β∗‖22.

On the event A, using Proposition 1, we have

(Pn − P)(l1(β̃)− l1(β∗)) ≤ λ1

4
‖β̃ − β∗‖1.

Since β̃ ∈ SM , by definition of B, it yields

(Pn − P)(l2(β̃)− l2(β∗)) ≤ λ1

4
(‖β̃ − β∗‖1 + εn).

These two inequalities imply

P(l(β̃)− l(β∗)) +λ1|β̃‖+λ2|β̃‖22 ≤
λ1

2
‖β̃−β∗‖1 +λ1

εn
4

+λ1‖β∗‖1 +λ2‖β∗‖22. (A.35)

Note that P(l(β̃) − l(β∗)) ≥ 0 from the definition of β∗, and by using the triangular

inequality, we obtain

λ1‖β̃ − β∗‖1 ≤ λ1‖β̃‖1 + λ1‖β∗‖1 ≤ [P(l(β̃)− l(β∗)) + λ1‖β̃‖1] + λ1‖β∗‖1

[by (A.35)] ≤ λ1

2
‖β̃ − β∗‖1 +

λ1εn
4

+ 2λ1‖β∗‖1 + (λ2‖β∗‖22 − λ2‖β̃‖22). (A.36)

From the assumption that 8Bλ2 + 4M = λ1 and (H.2), then the quadratic part in last

expression is bounded from above by

λ2(‖β∗‖22 −‖β̃‖22) =

p∑
j=1

λ2(β∗j + β̃j)(β
∗
j − β̃j) ≤ (2B +M)λ2‖β̃−β∗‖1 :=

λ1

4
‖β̃−β∗‖1
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where the inequality in above expression is by the fact

β∗j + β̃j = t(β̂j − β∗j ) + 2β∗ ≤M + 2B uniformly in j.

Therefore, (A.36) implies

λ1‖β̃ − β∗‖1 ≤
3λ1

4
‖β̃ − β∗‖1 +

λ1εn
4

+ 2λ1‖β∗‖1.

Cancelling λ1 in the inequality above, it gives ‖β̃ − β∗‖1 ≤ εn + 8‖β∗‖1. We have

t‖β̂ − β∗‖1 ≤ ‖β̃ − β∗‖1 ≤ εn + 8‖β∗‖1 =:
M

2
.

Plugging in the definition of t, we have M‖β̂−β∗‖1
M+‖β̂−β∗‖1

≤ M
2 . It derives ‖β̂−β∗‖1 ≤M .

A.4 Proof of Proposition 1 and 2

We deduce Proposition 2 by showing the following key lemma.

Lemma A.6. Let λ1 ≥ 20θAML
M+εn

√
2 log 2p
n (A ≥ 1). Then

P (B) ≥ 1− (2p)−A
2

under (H.1).

Lemma A.6 and Proposition 1 jointly tell us that P (A), P (B)→ 1 as p→ 0. If λ1

are chosen such that

λ1 ≥ max

(
20θAML

M + εn

√
2 log 2p

n
, 4(2LC̃LB +A

√
2γ)

√
2 log 2p

n

)
,

thus we obtain

P (A ∩ B) ≥ P (A) + P (B)− 1 ≥ 1− 2(2p)−A
2
.

which finishes the proof of Proposition 2.

It remains to show the Lemma A.6 and and Proposition 1 used in the proof of

Proposition 2.
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A.4.1 Proof of Lemma A.6

The proof rests on the following lemma.

Lemma A.7. Given M > 0, if A ≥ 1, under (H.1), we have

P (ZM (β∗) ≥ 5θAML

(M + εn)

√
2 log(2p)

n
) ≤ (2p)−A

2
. (A.37)

where ZM (β∗) = sup
β∈SM

{ |(Pn−P)(l2(β∗)−l2(β))|
‖β∗−β‖1+εn

}.

In order to apply following McDiarmid’s inequality (also called bounded differ-

ence inequality, see Theorem 3.3.14 of Giné and Nickl (2015)), we replaced Xi by X
′
i

meamwhile maintaining the others fixed.

Theorem A.7 (McDiarmid’s inequality). Let A be a measurable set. Assume f : An →

R is a multivariate measurable function with bounded differences conditions

sup
x1,...,xn,x

′
i∈A
|f(x1, ..., xn)− f(x1, ..., xi−1, x

′
i, xi+1, ..., xn)| ≤ ci.

Let X1, .., Xn be independent random variables with values in the set A. Then, for all

t > 0, we have

P (f(X1, ..., Xn)− Ef(X1, ..., Xn) ≥ t) ≤ e−2t2/
∑n
i=1 c

2
i .

First, we will to show that ZM (β∗) is fluctuated of no more than 2θLM
n(M+εn) . Let us

check it. Put

Pn =
1

n

n∑
j=1

1Xj ,Yj and P
′
n = (

1

n

n∑
j=1,j 6=i

1Xj ,Yj + 1
X
′
i,Y
′
i
),
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it deduces

sup
β∈SM

|(Pn − P)(l2(β∗)− l2(β))|
‖β∗ − β‖1 + εn

− sup
β∈SM

|(P′n − P)(l2(β∗)− l2(β̂))|
‖β∗ − β‖1 + εn

≤ sup
β∈SM

|l2(β∗,Xi)− l2(β,Xi)− l2(β∗,X′i) + l2(β,X′i)|
n(‖β∗ − β‖1 + εn)

≤ sup
β∈SM

1

n

∣∣∣∣∣ θeX
T
i

˜β

θ + eX
T
i

˜β

∣∣∣∣∣ · |XT
i β
∗ −XT

i β|
‖β∗ − β‖1 + εn

+ sup
β∈SM

1

n

∣∣∣∣∣ θeX
T
i

˜β

θ + eX
T
i

˜β

∣∣∣∣∣
1

· |X
′T
i β
∗ −X′Ti β|

‖β∗ − β‖1 + εn

≤ sup
β∈SM

2θL

n

‖β∗ − β‖1
‖β∗ − β‖1 + εn

≤ 2θLM

n(M + εn)

with XT
i β̃ (X′Ti β̃) being an intermediate point between XT

i β (X′Ti β) and β∗TXi (β∗TX′i)

from the Taylor’s expansion of function f(x) := log (θ + ex), and the first inequality

stems from |f(x)| − sup
x
|g(x)| ≤ |f(x)− g(x)| (and take suprema over x again).

Apply McDiarmid’s inequality to ZM (β∗), thus we have

P (ZM (β∗)− EZM (β∗) ≥ λ) ≤ exp{−n(M + εn)2λ2

2M2L2θ2
}.

Now, we put λ ≥ θAML
(M+εn)

√
2 log(2p)

n for A > 0, therefore

P (ZM (β∗)− EZM (β∗) ≥ λ) ≤ (2p)−A
2
. (A.38)

The next step is to estimate the sharper upper bounds of EZM (β∗) by the sym-

metrization theorem and the contraction theorem below. It can be found in van der

Vaart (1998), Bühlmann and van de Geer (2011).

Lemma A.8 (Symmetrization Theorem). Let ε1, ..., εn be a Rademacher sequence with

uniform distribution on {−1, 1}, independent of X1, ...,Xn and f ∈ F . Then we have

E

[
sup
f∈F

∣∣∣∣∣
n∑
i=1

[f(Xi)− E {f(Xi)}]

∣∣∣∣∣
]
≤ 2E

[
Eε

{
sup
f∈F

∣∣∣∣∣
n∑
i=1

εif(Xi)

∣∣∣∣∣
}]

.

where E[·] refers to the expectation w.r.t. X1, ...,Xn and Eε {·} w.r.t. ε1, ..., εn.
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Lemma A.9 (Contraction Theorem). Let x1, ..., xn be the non-random elements of X

and ε1, ..., εn be Rademacher sequence. Consider c-Lipschitz functions gi, i.e. |gi(s)− gi(t)| ≤

c |s− t| ,∀s, t ∈ R. Then for any function f and h in F , we have

Eε

[
sup
f∈F

∣∣∣∣∣
n∑
i=1

εi [gi {f(xi)} − gi {h(xi)}]

∣∣∣∣∣
]
≤ 2cEε

[
sup
f∈F

∣∣∣∣∣
n∑
i=1

εi {f(xi)− h(xi)}

∣∣∣∣∣
]
.

Note that (Pn − P) {l2(β∗)− l2(β)} = Pn {l2(β∗)− l2(β)} − E{l2(β∗)− l2(β)}, af-

ter using symmetrization theorem, the expected terms is canceled. To see contraction

theorem, for

nZM (β∗) = sup
β∈SM


|
n∑
k=i

θ[log(θ + eX
Tβ∗)− log(θ + eX

Tβ)]− nE[l2(β∗)− l2(β)]|

‖β − β∗‖1 + εn


as the suprema of the normalized empirical process (a local random Lipschitz constant),

it is required to check the Lipschitz property of gi in Lemma A.9 with F = Rp. Let

f(xi) =
xTi β

‖β−β∗‖1+εn
and gi(t) = log[θ+et(‖β−β

∗‖1+εn)]
‖β−β∗‖1+εn

. Then

The function gi(t), (|t| ≤ LB) here is θ-Lipschitz. In fact

|gi(s)− gi(t)| =
θet̃

θ + et̃
· |s− t| ≤ θ|s− t|, t, s ∈ [−LB,LB]

where t̃ ∈ [−LB,LB] is an intermediate point between t and s given by applying

Lagrange mean value theorem for function gi(t).
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Via the symmetrization theorem and the contraction theorem we have

EZM (β∗) ≤ 4θ

n
E

(
sup
β∈SM

∣∣∣∣∣
n∑
i=1

εiX
T
i (β∗ − β)

‖β − β∗‖1 + εn

∣∣∣∣∣
)

≤ 4θ

n
E

(
sup
β∈SM

max
1≤j≤p

∣∣∣∣∣
n∑
i=1

εiXij

∣∣∣∣∣ · ‖β − β∗‖1
‖β − β∗‖1 + εn

)

[due to ‖β − β∗‖1 ≤M ] ≤ 4θM

n(M + εn)
E

(
max

1≤j≤p

∣∣∣∣∣
n∑
i=1

εiXij

∣∣∣∣∣
)

=
4θM

n(M + εn)
E

(
Eε max

1≤j≤p

∣∣∣∣∣
n∑
i=1

εiXij

∣∣∣∣∣
)

where Eε is the conditional expectation E[·|X].

From Proposition 4, with Eε[εiXij ] = 0 we get

4θM

n(M + εn)
E(Eε max

1≤j≤p
|
n∑
i=1

εiXij |) ≤
4θM

n(M + εn)

√
2 log 2p·

√
nL2 =

4θML

(M + εn)

√
2 log 2p

n
.

Thus, for A ≥ 1 we have

EZM (β∗) ≤ 4θML

(M + εn)

√
2 log 2p

n
≤ 4θAML

(M + εn)

√
2 log 2p

n
. (A.39)

So we can conclude from (A.38) and (A.39) that

P (ZM (β∗) ≥ 5θAML

(M + εn)

√
log 2p

n
) ≤ P (ZM (β∗) ≥ λ+ EZM (β∗)) ≤ (2p)−A

2
. (A.40)

Finally, we complete the proof of Lemma A.6 by letting λ1
4 ≥

5θAML
(M+εn)

√
2 log 2p
n and

setting β = β̂ in ZM (β∗).

A.4.2 Proof of Proposition 1

Applying the Lagrange form of Taylor’s expansion log (θ + ex) = log (θ + ea)+ eã

θ+eã
(x−

a) for some real number ã between a and x, let XT
i β̃ be a point between XT

i β̂ and
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XT
i β
∗, i.e. β̃ =


t1β̂1

...

tpβ̂p


+


(1− t1)β∗1

...

(1− tp)β∗p


for {tj}pj=1 ⊂ [0, 1]. Observe that

(Pn − P)(l1(β∗)− l1(β̂)) =
−1

n

n∑
i=1

(Yi − EYi)X
T
i [(β∗ − β̂)− log(

θ+exp{XT
i β
∗}

θ+exp{XT
i β̂}

)]

=
−1

n

n∑
i=1

(Yi − EYi)X
T
i [(β∗ − β̂)− exp{XT

i β̃}XT
i (β∗ − β̂)

θ+exp{XT
i β̃}

]

=
−1

n

n∑
i=1

(Yi − EYi)
θXT

i (β∗ − β̂)

θ+exp{XT
i β̃}

. (A.41)

If we have β̂ ∈ SM0(β∗) for some finite M0, thus β̃ ∈ SM0(β∗) via

‖β̃ − β∗‖ ≤
p∑
j=1

tj |β̂j − β∗1 | ≤ ‖β̂ − β∗‖ ≤M0,

Note that the random sum in (A.41) is not independent, but the weights { θ
θ+exp{XT

i β̃}
}ni=1

are uniformly stochastic bounded with upper bound 1. We have to alternatively analysis

the suprema of the multiplier empirical processes instead of A, if we can derive some

concentration inequality for the process

fn(Y ,X,β∗) := sup
β1,β2∈SM0

(β∗)

∣∣∣∣∣ 1n
n∑
i=1

Y c
i θX

T
i (β1 − β∗)

(θ+exp{XT
i β2})‖β1 − β∗‖1

∣∣∣∣∣ .
with exponential decay rate, where Y = (Z1, · · · , Zn)T with {Y c

i := Yi − EYi}ni=1.

In the proof below, we will verify that f(Z,X) is Lipschitz with respect to Euclidean

norm via conditioning of design matrix X. Then we apply the concentration inequalities

of Lipschitz functions for strongly log-concave distribution distributions. We check the

`2-Lipschitz condition for fn(Y ,X,β∗) w.r.t. Y by using the convexity of maximum
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function. Let Z = (Z1, · · · , Zn)T be a copy of Y . Then

fn(Z,X,β∗)− fn(Y ,X,β∗)

≤ sup
β1,β2∈SM0

(β∗)

∣∣∣∣∣ 1n
n∑
i=1

XT
i (β1 − β∗)(Y c

i − Zci )θ
(θ+exp{XT

i β2})‖β1 − β∗‖1

∣∣∣∣∣
≤ sup
β1,β2∈SM0

(β∗)

1

n

√√√√ n∑
i=1

[XT
i (β1 − β∗)θ]2

[(θ+exp{XT
i β2})‖β1 − β∗‖1]2

√√√√ n∑
i=1

(Y c
i − Zci )

2

≤ |||X|||∞√
n

√√√√ n∑
i=1

(Y c
i − Zci )

2.

where the second last inequality is obtained by Cauchy’s inequality.

Thus the function fn(Y ,X,β∗) is L√
n

-Lipschitz w.r.t. Euclidean norm of Y . By

using concentration inequalities of Lipschitz functions for γ-strongly log-concave discrete

distributions [See Theorem C.8 in Appendix C. The Theorem 3.16 in Wainwright (2019)

is for continuous case], it implies for t > 0

P (fn(Y ,X,β∗)− EY fn(Y ,X,β∗) ≥ t|X) ≤ exp{− γnt2

4|||X|||2∞
}. (A.42)

provided that (H.4) holds.

By (H.1): |||X|||∞ ≤ L, we get

P (fn(Y ,X,β∗)− Efn(Y ,X,β∗) ≥ t) ≤ E exp{− γnt2

4|||X|||2∞
} ≤ exp{−γnt

2

4L2
}. (A.43)

The details of the value γ can be founded in Appendix C.

It remains to obtain the upper bound of Efn(Y ,X,β∗) which is proved by the

symmetrization theorem with difference functions.

Lemma A.10 (Symmetrization Theorem with difference functions). Let ε1, ..., εn be a

Rademacher sequence with uniform distribution on {−1, 1}, independent of X1, ...,Xn
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and gi ∈ Gi. Then we have

E

(
sup

g1,··· ,gn∈G1,··· ,Gn

∣∣∣∣∣
n∑
i=1

[gi(Xi)− E {gi(Xi)}]

∣∣∣∣∣
)
≤ 2E

[
Eε sup

g1,··· ,gn∈G1,··· ,Gn

∣∣∣∣∣
n∑
i=1

εigi(Xi)

∣∣∣∣∣
]
.

where E[·] refers to the expectation w.r.t. X1, ...,Xn and Eε {·} w.r.t. ε1, ..., εn.

Proof. Let {X ′i}ni=1 be an independent copy of {Xi}ni=1. The E′ denote the exportation

w.r.t. (X ′i)
n
i=1, then let F ′n = σ (X ′1, · · · , X ′n). So

E

(
sup

g1,··· ,gn∈G1,··· ,Gn

∣∣∣∣∣
n∑
i=1

[gi(Xi)− E {gi(Xi)}]

∣∣∣∣∣
)

= E

(
sup

g1,··· ,gn∈G1,··· ,Gn

∣∣∣∣∣E′
n∑
i=1

[gi (Xt)− gi
(
X ′i
)
]|F ′n

∣∣∣∣∣
)

≤ E

(
sup

g1,··· ,gn∈G1,··· ,Gn
E′

∣∣∣∣∣
n∑
i=1

[gi (Xt)− gi
(
X ′i
)
]

∣∣∣∣∣ |F ′n
)

(Jensen’s inequality of absolute function)

≤ E

(
E′ sup

g1,··· ,gn∈G1,··· ,Gn

∣∣∣∣∣
n∑
i=1

[gi (Xt)− gi
(
X ′i
)
]

∣∣∣∣∣ |F ′n
)

(Jensen’s inequality of max function)

= E

(
sup

f1,··· ,fn∈G1,··· ,Gn

∣∣∣∣∣
n∑
i=1

[gi (Xt)− gi
(
X ′i
)
]

∣∣∣∣∣
)
,

= E

(
sup

g1,··· ,gn∈G1,··· ,Gn

∣∣∣∣∣
n∑
i=1

εi
(
gi (Xi)− gi

(
X ′i
))∣∣∣∣∣
)
≤ 2E

[
Eε sup

g1,··· ,gn∈G1,··· ,Gn

∣∣∣∣∣
n∑
i=1

εigi(Xi)

∣∣∣∣∣
]
,

where the last equality is from εi[gi (Xi)− gi (X ′i)]
d
= gi (Xi)− gi (X ′i), and the referred

Jensen’s inequalities are conditional expectation version.

Then the symmetrization theorem implies

Efn(Y ,X,β∗) ≤ 2

n
E

(
sup

β1,β2∈SM0
(β∗)

∣∣∣∣∣
n∑
i=1

εiYiθX
T
i (β1 − β∗)

(θ+exp{XT
i β2})‖β1 − β∗‖1

∣∣∣∣∣
)

≤ 2

n
E

(
sup

β1,β2∈SM0
(β∗)

max
1≤j≤p

∣∣∣∣∣
n∑
i=1

εiYiXij

∣∣∣∣∣ · θ

θ+exp{XT
i β2}

)

≤ 2

n
E

(
max

1≤j≤p

∣∣∣∣∣
n∑
i=1

εiYiXij

∣∣∣∣∣
)

=
2

n
E

(
Eε max

1≤j≤p

∣∣∣∣∣
n∑
i=1

εiYiXij

∣∣∣∣∣
)
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Now we are going to use a maximal inequality mentioned by Blazere et al. (2014), p2316.

The proof is a consequence of Hoeffding’s lemma (see Lemma 14.10 in Bühlmann and

van de Geer (2011)) and we will give a proof in end of Appendix B.

Proposition 4 (Maximal inequality). Let X1, ..., Xn be independent random vector that

takes on a value in a measurable space X and f1, ..., fn real-valued functions on X which

satisfies for all j = 1, ..., p and all i = 1, ..., n

Efj(Xi) = 0, |fj(Xi)| ≤ aij .

Then

E

(
max

1≤j≤p

∣∣∣∣∣
n∑
i=1

fj(Xi)

∣∣∣∣∣
)
≤
√

2 log(2p) max
1≤j≤p

√√√√ n∑
i=1

a2
ij .

By Proposition 4, with E[εiYiXij |X,Y ] = 0 we get

2

n
E

(
Eε max

1≤j≤p

∣∣∣∣∣
n∑
i=1

εiYiXij

∣∣∣∣∣
)
≤ 2

n

√
2 log 2pE

√√√√ n∑
i=1

Y 2
i |X


[By Jensen’s inequality] ≤ 2L

n

√
2 log 2p

√√√√E

(
n∑
i=1

Y 2
i |X

)

≤ 2L

n

√
2 log 2p

√
nC̃2

LB = 2LC̃LB

√
2 log 2p

n

where the last inequality stems from

E(Y 2
i |Xi) = Var(Yi|Xi) + [E(Yi|Xi)]

2 = µi +
(1 + θ)µ2

i

θ
≤ C̃2

LB =: eLB +
(1 + θ)e2LB

θ
,

using (H.1) and (H.2).

Thus, we get

Efn(Y ,X,β∗) ≤ 2LC̃LB

√
2 log 2p

n
. (A.44)

In equation (A.43), if we choose t = AL
√

2γ
√

2 log 2p
n such that

P (fn(Y ,X,β∗) ≥ t+ 2LC̃LB

√
2 log 2p

n
) ≤ exp{−γnt

2

4L2
} = (2p)−A

2
. (A.45)
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where A > 0 is positive constant.

Thus with λ1
4 ≥ L(2C̃LB +A

√
2γ)
√

2 log 2p
n , we have by (A.45)

P

(
sup

β1,β2∈SM0
(β∗)

∣∣∣∣∣ 1n
n∑
i=1

Y c
i θX

T
i (β1 − β∗)

(θ+exp{XT
i β2})‖β1 − β∗‖1

∣∣∣∣∣ ≤ λ1

4

)
≥ 1− (2p)−A

2
.

In (A.41), observe that β̂, β̃ ∈ SM0(β∗), then with probability at least 1− (2p)−A
2
,

we have (Pn−P)(l1(β∗)−l1(β̂))

‖β̂−β∗‖1
≤ λ2

4 which gives

P{(Pn − P)(l1(β∗)− l1(β̂)) ≤ λ1

4
‖β̂ − β∗‖1} ≥ 1− (2p)−A

2
.

A.5 Proofs of big Theorem 3.

The proof techniques follow the guidelines in Wegkamp (2007), Bunea (2008).

A.5.1 Step1: Check β̂ − β∗ ∈ V(3.5, εn2 , H) from Stabil Condition

Using the mere definition of Elastic-net estimate β̂, we have

Pnl(β̂) + λ1

p∑
j=1

|β̂j |+ λ2

p∑
j=1

|β̂j |2 ≤ Pnl(β∗) + λ1

p∑
j=1

|β∗j |+ λ2

p∑
j=1

|β∗j |2. (A.46)

So we obtain

P(l(β̂)−l(β∗)) ≤ (Pn−P)(l(β∗)−l(β̂))+λ1

p∑
j=1

(|β∗j |−|β̂j |)+λ2

p∑
j=1

(|β∗j |2−|β̂j |2). (A.47)

In order to bounded the empirical process, we break down the empirical process into

two parts which is or is not a function of Yi. On the event A∩B, the Proposition 1 and

Proposition 18 implies.

(Pn − P)(l(β∗)− l(β̂)) = (Pn − P)(l1(β∗)− l1(β̂)) + (Pn − P)(l2(β∗)− l2(β̂n))

≤ λ1

4

p∑
j=1

|β̂j − β∗j |+
λ1

4
(

p∑
j=1

|β̂j − β∗j |+ εn) =
λ1

2

p∑
j=1

|β̂j − β∗j |+
λ1

4
εn. (A.48)
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By summing λ1
2

p∑
j=1
|β̂j − β∗j | and λ2

∑
j∈H
|β̂j − β∗j |2 to both sides of the inequality (A.47),

and combining with the inequality (A.48), it gives

λ1

2

p∑
j=1

|β̂j − β∗j |+ (Pl(β̂)− l(β∗))+λ2

∑
j∈H
|β̂j − β∗j |2

≤ λ1

p∑
j=1

(|β̂j − β∗j |+ |β∗j | − |β̂j |) +
λ1εn

4
+ λ2(|β∗|22 − |β̂|22) + λ2

∑
j∈H
|β̂j − β∗j |2.

(A.49)

On the one hand, |β̂j − β∗j | + |β∗j | − |β̂j | = 0 for j /∈ H and |β̂j | − |β∗j | ≤ |β̂j − β∗j | for

j ∈ H. On the other hand, the sum of last two terms in (A.49) is bounded by

λ2[(|β∗|22 − |β̂|22) +
∑
j∈H
|β̂j − β∗j |2] ≤ 2λ2

∑
j∈H

(|β∗j |2−β∗j β̂j) = λ2

∑
j∈H

β∗j (β∗j−β̂j)

≤ 2λ2B
∑
j∈H
|β∗j − β̂j | ≤

1

4
λ1

∑
j∈H
|β∗j − β̂j |.

due to the setting 8Bλ2 ≤ 8Bλ2 + 4M = λ1.

Therefore the inequality (A.49) is rewritten as

λ1

2

p∑
j=1

|β̂j − β∗j |+ P(l(β̂)− l(β∗))+λ2

∑
j∈H
|β̂j − β∗j |2

≤ 2λ1

∑
j∈H
|β̂j − β∗j |+

λ1εn
4

+
1

4
λ1

∑
j∈H
|β∗j − β̂j |.

(A.50)

Using the definition of β∗, it implies l(β̂)− l(β∗)+λ2
∑
j∈H
|β̂j − β∗j |2 > 0. Hence

λ1

p∑
j=1

|β̂j − β∗j | ≤ 4.5λ1

∑
j∈H
|β̂j − β∗j |+

λ1εn
2

.

So we have
∑
j∈Hc

|β̂j − β∗j | ≤ 3.5
∑
j∈H
|β̂j − β∗j | + εn

2 . Thus β̂ − β∗ ∈ V(3.5, εn2 , H) under

the event A ∩ B.
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A.5.2 Step2: Find a lower bound for P(l(β̂)− l(β∗))

The next proposition is a crucial result which provides a lower bound for P(l(β̂)− l(β∗))

based on the definition of the minimizer β∗.

Proposition 5 (Quadratic lower bound for the expected discrepancy loss). Under the

(H.1) and (H.3), we have

P(l(β̂)− l(β∗)) ≥ aE∗[X∗T (β̂ − β∗)]2

with a := min
{|x|≤L(M+B),|y|≤K}

{1
2
θex(ey+θ)

[θ+ex]2
}.

Proof. Let X∗T β̃ is an intermediate point between X∗T β̂ and X∗β∗ given by the first

order Taylor’s expansion of l(Y,X,β) = YXTβ − (θ + Y ) log(θ + eX
Tβ), we have by

the fact that X∗ is an independent copy of X:

P(l(β̂)− l(β∗)) = E[E{l(β)− l(β∗)|X}]|β=β̂ = E∗{E{l(β)− l(β∗)|X∗}]|β=β̂

= E∗E
{

[YX∗T (β∗ − β) + (Y + θ)[log(θ + eX
∗Tβ)− log(θ + eX

∗Tβ∗)]|X∗
}
|β=β̂

= E∗
[
E(Y |X∗)X∗T (β∗ − β) + (E(Y |X∗) + θ)[log(θ + eX

∗Tβ)− log(θ + eX
∗Tβ∗)

]
|β=β̂

= E∗[eX
∗Tβ∗X∗T (β∗ − β)− eX

∗Tβ∗X∗T (β∗ − β) +
θeX

∗T β̃(eX
∗Tβ∗ + θ)

2(θ + eX
∗T β̃)

2 [X∗T (β∗ − β)]2]|β=β̂

= E∗[
θeX

∗T β̃(eX
∗Tβ∗ + θ)

2(θ + eX
∗T ˜β)

2 [X∗T (β∗ − β)]2]|β=β̂

Then, by triangle inequality and the definition of restricted parameter space SM ,

we obtain by (H.1) and (H.2)

|X∗Ti β̃| ≤ |X∗Ti β̃ −X∗Ti β
∗|+ |X∗Ti β∗| ≤ |X∗Ti β̂ −X∗Ti β

∗|+ |XT
i β
∗| ≤ L(M +B).

(A.51)
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Thus we conclude

P(l(β̂)− l(β∗)) = E∗[
θeX

∗T β̃(eX
∗Tβ∗ + θ)

2(θ + eX
∗T ˜β)

2 [X∗T (β∗ − β)]2]|β=β̂ ≥ aE∗[X∗T (β∗ − β̂)]2

by letting a := min
{|x|≤L(M+B),|y|≤LB}

{1
2
θex(ey+θ)

[θ+ex]2
} > 0.

From Propositon 5 and (A.50) we deduce that

λ1

p∑
j=1

|β̂j − β∗j |+ aE∗[X∗T (β̂ − β∗)]2 + 2λ2

∑
j∈H
|β̂j − β∗j |2 ≤ 4.5λ1

∑
j∈H
|β̂j − β∗j |+

λ1εn
2

.

(A.52)

A.5.3 Step3: Derivations of error bounds from Stabil Condition

Let Σ = EX∗X∗T be the expected p× p covariance matrix. Taking expectation w.r.t.

X∗ only, we have the expected prediction error:

E∗[X∗T (β̂ − β∗)]2 = (β̂ − β∗)TΣ(β̂ − β∗).

Since β̂ − β∗ ∈ V(3.5, εn2 , H) is verified under the event A ∩ B. Multiplying by the

constant a, we have

a(β̂ − β∗)TΣ(β̂ − β∗) ≥ ak
∑
j∈H
|β̂j − β∗j |2 −

εn
2
a.

Then substitute the above inequality to (A.52),

λ1

p∑
j=1

|β̂j−β∗j |+ak
∑
j∈H
|β̂j − β∗j |2+2λ2

∑
j∈H
|β̂j − β∗j |2 ≤ 4.5λ1

∑
j∈H
|β̂j − β∗j |+

εn(λ1 + a)

2
.

By using Cauchy-Schwarz inequality, we get

λ1

p∑
j=1

|β̂j − β∗j |+ (ak + 2λ2)
∑
j∈H
|β̂j − β∗j |2 ≤ 4.5λ1

√
d∗H

√∑
j∈H
|β̂j − β∗j |2 +

εn(λ1 + a)

2
.

(A.53)
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Apply the elementary inequality 2xy ≤ Tx2 + y2/T to (A.53) for all t > 0, it leads to

λ1

p∑
j=1

|β̂j−β∗j |+(ank+2λ2)
∑
j∈H
|β̂j − β∗j |2 ≤ 2.252Tλ2

1d
∗
H+

1

T

∑
j∈H
|β̂j − β∗j |2+

εn(λ1 + a)

2
.

(A.54)

We choice T = 1
ank+2λ2

in (A.54), we obtain

‖β̂ − β∗‖1 :=

p∑
j=1

|β̂j − β∗j | ≤
2.252λ1d

∗
H

ak + 2λ2
+ (1 +

a

λ1
)εn.

For the square prediction error, we deduce from (A.52) by dropping the term

2λ2
∑
j∈H
|β̂j − β∗j |2

λ1

p∑
j=1

|β̂j − β∗j |+ aE∗[X∗T (β∗ − β̂)]2 ≤ 4.5λ1(

p∑
j=1

|β̂j − β∗j | −
∑
j∈Hc

|β̂j − β∗j |) +
λ1εn

2
.

(A.55)

Then using the upper bounds of ‖β̂ − β∗‖1, it derives

aE∗[X∗T (β∗ − β̂)]2 ≤ 3.5λ1(

p∑
j=1

|β̂j − β∗j |) +
λ1εn

2

≤ [
3.5 · 2.252λ2

1d
∗
H

ak + 2λ2
+ 3.5λ1εn + 3.5aεn] +

λ1εn
2

.

Note that the term
∑
j∈Hc

|β̂j − β∗j | =
∑
j∈Hc

|β̂j | that we have discarded in the right-hand

side of (A.55), it is very small for j ∈ Hc. Thus we have

E∗[X∗T (β∗ − β̂)]2 ≤
17.71875d∗Hλ

2
1

a(ak + 2λ2)
+ (

4λ1

a
+ 3.5)εn.

Finally we conclude the proof using Proposition 2.

A.6 Proof of Theorem 4

The next lemma for estimating grouping effect inequality which is easily proved when

we detailedly analyze the KKT conditions.
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Lemma A.11. Let β̂ be the Elastic-net estimate of NBR defined in (1). Suppose that

λ2 > 0. Then for any k, l ∈ {1, 2, . . . , p},

|β̂k − β̂l| ≤
1

2nλ2

n∑
i=1

θ |xik − xil| |eX
T
i β̂ − Yi|

θ + eX
T
i β̂

. (A.56)

Then, we show the asymptotical version of grouping effect inequality as p, n→∞.

When deriving the grouping effect inequality from `1-estimation error, we need to

bound some random sums by WLLN (weak law of large numbers) with high probability.

Lemma A.12. Assume that (C.1) and (C.3) is true, then

(1). Let Sn = 1
n

n∑
i=1
|Yi − EYi|2, we have ESn ≤ µ for some constant µ;

(2). The square of centered responses have finite variance with a common bound,

i.e. max
1≤i≤n

{Var|Yi − EYi|2} ≤ σ2 for some constant σ2.

The proof of Lemma A.12 is straightforward which is given in Appendix B, and we

present the proof of Theorem 4 in advance.

By Lemma A.11, Cauchy inequality, triangle inequality and Taylor expansion, we

have

|β̂k − β̂l|2 ≤ (
1

2nλ2

n∑
i=1

|Xik −Xil||eX
T
i

ˆβ − Yi|)2

≤ 1

4λ2
2

· 1

n

n∑
i=1

|Xik −Xil|2 ·
1

n

n∑
i=1

|eX
T
i

ˆβ − Yi|2

=
1

4λ2
2

· 2(1− ρkl)
1

n

n∑
i=1

|eX
T
i

ˆβ − eX
T
i β
∗

+ eX
T
i β
∗
− Yi|2

≤ 1

4λ2
2

· 2(1− ρkl){
2

n

n∑
i=1

|eX
T
i

ˆβ − eX
T
i β
∗
|2 +

2

n

n∑
i=1

|eXi
Tβ∗ − Yi|2}

=
1

4λ2
2

· 2(1− ρkl){
2

n

n∑
i=1

e2XT
i β̃|XT

i (β̂ − β∗)|2 +
2

n

n∑
i=1

|eX
T
i β
∗
− Yi|2}.

where the last inequality is due to (a+ b)2 ≤ 2(a2 + b2).
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Under the assumption of oracle inequality (12), with probability 1− 2
pr−1−exp{− nt2

2C2
LBd

2
cL

4 },

we have

|β̂k − β̂l|2 ≤
1

λ2
2

· (1− ρkl){Ke2LMO(λ2
1) +

1

n

n∑
i=1

|EYi − Yi|2}

=: (1− ρkl)[Ke2LMO(1) +
1

λ2
2

Sn].

For the second part, by using Chebyshev’s inequality, it implies

P (|Sn − ESn| ≤ E) ≥ 1− σ2
n

nE2
⇒ Sn ≤ E + ESn ≤ E + µ

with probability at least 1− σ2
n

nE2 in the event C(E) =: {Sn ≤ E + µ}.

Then, on the three events K ∩ Ec ∩ C(E), we have

|β̂k − β̂l|2 ≤ (1− ρkl)[Ke2LMO(1) +
1

λ2
2

(E + µ)]

with probability P (K ∩ Ec ∩ C(E)) ≥ 1− 2p2e
− nt2

2[d∗
H
CLB(1+ζ)L2]

2
− σ2

nE2 .

Moreover, if 1− ρkl = op(λ
2
2), we have |β̂k − β̂l| ≤

√
op(1)[λ2

2e
2LMO(1) + (E + µ)].

A.7 Proof of Theorem 5

By KKT condition (see Lemma 3.1 and (2)), then we claim that sgnβ̂ = sgnβ∗ if

signβ̂j = signβ∗j , j ∈ H

˙̀
j(β̂)+2λ2β̂j = −λ1signβ̂j , β̂j 6= 0

| ˙̀j(β̂)| ≤ λ1, β̂j = 0

(A.57)

Let βH = {βj , j ∈ H} and β̂H = {β̂j , j ∈ H} be the sub-vector for β. Since signβ̂j =

signβ∗j , j ∈ H, then β̂ = (β̂H , 0)T is the solution of the KKT conditions. So, the (A.57)

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



61

holds if 
signβ̂j = signβ∗j , j ∈ H

| ˙̀j(β̂H)| ≤ λ1, j /∈ H
⇐


|β̂j − β∗j | < |β∗j |, j ∈ H

| ˙̀j(β̂H)| ≤ λ1, j /∈ H
(A.58)

where β̂H is the solution of ˙̀
j(β̂H)+2λ2β̂j = −λ1signβ∗j , j ∈ H.

Notice that the right expression in (A.58) holds if
‖β̂ − β∗‖1 < β∗ := min{|βj | : j ∈ H}

| ˙̀j(β̂H)| ≤ λ1, j /∈ H

Let η ∈ (0, 1), the above events hold if

E1 : ‖β̂ − β∗‖1 < β∗,

E2 : max
j /∈H
| ˙̀j(β∗)| ≤ ηλ1,

E3 : max
j /∈H
| ˙̀j(β̂H)− ˙̀

j(β
∗)| ≤ (1− η)λ1,

which is from the triangle inequality | ˙̀j(β̂H)| ≤ | ˙̀j(β̂H)− ˙̀
j(β
∗)|+ | ˙̀j(β∗)|.

Let E = E1 ∩E2 ∩E3, we want to show that each event in Ei, i = 1, 2, 3 holds with

high probability. And we utilize the basic sets inequality P (E) ≥ P (E1) + P (E2) +

P (E3)− 2. Put XiH = (· · · , x̃ih, · · · )T with x̃ih = xih if h ∈ H and x̃ih = 0 if h /∈ H.

For E1, by Theorem 2, we have

P (E1) ≥ P (‖β̂ − β∗‖1 ≤
e2aτ (ζ + 1)d∗Hλ1

2C2
t (ζ,H)

) ≥ 1− 2

pr−1
− 2p2e

− nt2

2[d∗
H
CLB(1+ζ)L2]

2
. (A.59)

For E2, thus we get

P (E2) = P (max
j /∈H
| ˙̀j(β∗)| ≥ ηλ1) ≤

∑
j /∈H

P

(∣∣∣∣∣
n∑
i=1

xij(Yi − EYi)θ

n(θ + EYi)

∣∣∣∣∣ ≥ ηλ1

)

≤ 2p exp{− η2λ2
1

2C2
LB||w(j)||22

} ≤ 2p exp{− η2λ2
1n

2C2
LBL

2
}.

where we use ||w(j)||22 ≤ L2

n in Lemma A.5.
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This implies that

P (E2) ≤ ηλ1) ≥ 1− 2p exp{− η2λ2
1n

2C2
LBL

2
} = 1− 2

p
1−rη2/C2

ξ,B1

. (A.60)

where the last equality is by observing that λ1 =
CLBL
Cξ,B1

√
2r log p
n .

For E3, note that

max
j /∈H
| ˙̀j(β̂H)− ˙̀

j(β
∗)| = max

j /∈H
| ˙̀j(β̂H)− ˙̀

j(β
∗
H)|

= max
j /∈H

1

n

∣∣∣∣∣
n∑
i=1

xijθ[
θ + Yi

θ + eX
T
iH

ˆβH
− θ + Yi

θ + eX
T
iHβ

∗
H

]

∣∣∣∣∣
= max

j /∈H

1

n

∣∣∣∣∣∣
n∑
i=1

xij
θ(θ + Yi)e

XTiHβ
∗
H [eX

T
iH(

ˆβH−β
∗
H) − 1]

(θ + eX
T
iH

ˆβH )(θ + eX
T
iHβ

∗
H )

∣∣∣∣∣∣
≤ L

n

n∑
i=1

∣∣∣∣(θ + Yi)[e
XT
iH(

ˆβH−β
∗
H) − 1]

∣∣∣∣
≤ L

n

n∑
i=1

∣∣∣(θ + Yi)[X
T
iH(β̂H − β∗H) + op(|XT

iH(β̂H − β∗H)|)]
∣∣∣

≤ CXL
2

n

n∑
i=1

|θ + Yi|||β̂H − β∗H ||1. (A.61)

where the second last inequality is by (12) and the boundedness of |XT
iH(β̂H − β∗H)|,

the last inequality (A.61) stems from ‖Xi‖∞ ≤ L and CX is determined by

|XT
iH(β̂H − β∗H) + op(|XT

iH(β̂H − β∗H)|)| ≤ LCX ||β̂H − β∗H ||1.

Let An := 1
n

n∑
i=1
|θ + Yi|, similar to the proof of Lemma A.12, we have

EAn :=
1

n

n∑
i=1

E|θ + Yi| ≤
1

n

n∑
i=1

√
E|θ + Yi|2 <∞, σ2

n(A) :=
1

n

n∑
i=1

Var|θ + Yi| <∞.

And we can find a constant µ(A) > 0 such that EAn ≤ µ(A).

By Chebyshev’s inequality P (|An − EAn| ≤ A) ≥ 1− σ2
n(A)
nA2 , we get

An ≤ A+ EAn ≤ A+ µ(A)
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with probability at least 1− σ2
n(A)
nA2 .

Then (A.61) turns to

max
j /∈H
| ˙̀j(β̂H)− ˙̀

j(β
∗)| ≤ CXL2(A+ µ(A))||β̂H − β∗H ||1

Under the event {An ≤ A+ µ(A)}, with probability 1− σ2
n(A)
nA2 we obtain

P (max
j /∈H
| ˙̀j(β̂H)− ˙̀

j(β
∗)| ≤ (1− η)λ1)

≥ P (‖β̂ − β∗‖1 ≤
(1− η)λ1

CXL2(A+ µ(A))
)

= P (‖β̂ − β∗‖1 ≤
e2aτ (ζ + 1)d∗H

2C2
t (ζ,H)

· 2C2
t (ζ,H)(1− η)λ1

e2aτ (ζ + 1)d∗HCXL
2(A+ µ(A))

).

Let

λ̃1 =: C̃λ1, with C̃ :=
2C2

t (ζ,H)(1− η)

e2aτ (ζ + 1)d∗HCXL
2(A+ µ(A))

where λ1 =
CLBL
Cξ,B1

√
2r log p
n .

Since by (12) with high probability in Theorem 2 and (A.32), we conclude that

P (E3) ≥ P (‖β̂ − β∗‖1 ≤
e2aτ (ζ + 1)d∗H λ̃1

2C2
t (ζ,H)

)

≥ P (|An − EAn| ≤ A)− 2p exp{−
C2
ξ,B1

λ̃2
1n

2C2
LBCXL

2
} − 2p2e

− nt2

2[d∗
H
CLB(1+ζ)L2]

2

≥ 1− σ2
n(A)

nA2
− 2

p1−rC̃2
− 2p2e

− nt2

2[d∗
H
CLB(1+ζ)L2]

2
. (A.62)

Combining (A.59),(A.60) and (A.62), we get

P (signβ̂ = signβ∗) ≥ 1− 2

pr−1
− 4p2e

− nt2

2[d∗
H
CLB(1+ζ)L2]

2
− 2

p
1−rη2/C2

ξ,B1

− σ2
n(A)

nA2
− 2

p1−rC̃2
.

Without loss of generality, we assume that r, C̃2r, rη2/C2
ξ,B1

> 1 since r is tuning pa-

rameter. Let p, n→∞, it leads to sign consistency:

P (signβ̂ = signβ∗)→ 1.
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A.8 Proof of Proposition 3

Given sample size n, Bunea (2008) studied conditions under which P (H ⊂ Ĥ) ≥ 1− δ

for the number of parameters p and confidence 1− δ by the following lemma.

Lemma A.13. (Lemma 3.1 in Bunea (2008)) For any true parameter β∗ and for any

estimate β̂, we have P (H 6⊂ Ĥ) ≤ P (‖β̂ − β∗‖1 ≥ min
j∈H
|β∗j |).

Based on the lemma above, we give the proof of Proposition 3.

Proof. Note that

P (A ∩ B) ≥ 1− 2(2p)−A
2
.

Solving 2(2p)−A
2

= δ/p for p, we have p = exp{ 1
A2−1

log 21−A
2

δ } with A > 1. Then

P (H ⊂ Ĥ) ≥ P (‖β̂ − β∗‖1 ≤ min
j∈H
|β∗j |) ≥ P (‖β̂ − β∗‖1 ≤ B0) ≥ 1− δ/p

which is directly followed from Lemma A.13.

A.9 Proof of Theorem 6

The following lemma is a fancy and tractable event by virtue of KKT condition. It

derives a nice bound of P (H 6⊂ Ĥ), yet is worthy of to be singled out here.

Lemma A.14 (Proposition 3.3 in Bunea (2008)).

P (H 6⊂ Ĥ) ≤ d∗H max
k∈H

P (β̂k = 0 and β∗k 6= 0).

Consider the KKT condition of {β̂k = 0} (Lemma 1). That is, {β̂k = 0} is a solution

of (1) iff β̂k satisfies ∣∣∣∣∣ 1n
n∑
i=1

Xik
θ(eX

T
i β̂ − Yi)

θ + eX
T
i β̂

∣∣∣∣∣ ≤ λ1 , k = 1, 2, . . . , p.
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Next, the proof of Theorem 6 is divided into two steps. The key fact adopted in

theoretical analysis in Step1 is that, when decomposing the nth partial sum in the

KKT conditions, one must split it into four partial sum. The event of each one in

sums whose absolute value exceeds the tuning parameter λ1, is asymptotically high-

dimensional negligible. The decomposing method goes back to Bunea (2008) who deal

with linear and logistic regression, and our decomposition for NBR is different from

linear and Logistic cases.

Step1: Find P (H 6⊂ Ĥ).

By Lemma A.14, we have

P (H 6⊂ Ĥ) ≤ d∗H max
k∈H

P (β̂k = 0 and β∗k 6= 0)

= d∗H max
k∈H

P (

∣∣∣∣∣ 1n
n∑
i=1

Xik
θ(eX

T
i β̂ − Yi)

θ + eX
T
i β̂

∣∣∣∣∣ ≤ λ1;β∗k = 0)

= d∗H max
k∈H

P (
1

n
|
n∑
i=1

Xikθ{(
eX

T
i β̂

θ + eX
T
i β̂
− eX

T
i β

∗

θ + eX
T
i β

∗ ) + (
Yi

θ + eX
T
i β

∗ −
Yi

θ + eXi
T β̂

)

− Yi − eX
T
i β

∗

θ + eX
T
i β

∗ }| ≤ λ1;β∗k = 0)

Let

A(k)
n =

1

n

n∑
i=1

Xikθ(
eX

T
i β̂

θ + eX
T
i β̂
− eX

T
i β

∗

θ + eX
T
i β

∗ ), C(k)
n =

1

n

n∑
i=1

Xikθ(
Yi

θ + eX
T
i β

∗ −
Yi

θ + eX
T
i β̂

),

D(k)
n =

1

n

n∑
i=1

Xikθ(
Yi − eX

T
i β

∗

θ + eX
T
i β

∗ ), B(k)
n =

p∑
j=1

(β̂j − β∗j )
θ

n

n∑
i=1

XikXil,

thus with {β∗k = 0} and assumption θ
n

n∑
i=1

X2
ik = 1, we have

∣∣∣B(k)
n

∣∣∣ = |(β̂k − β∗k)
θ

n

n∑
i=1

X2
ik +

p∑
j 6=k

(β̂j − β∗j )
θ

n

n∑
i=1

XijXik|

≥ |β̂k| − |
p∑
j 6=k

(β̂j − β∗j )
θ

n

n∑
i=1

XijXik|.
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Let B̃
(k)
n :=

p∑
j 6=k

(β̂j − β∗j ) θn

n∑
i=1

XijXik, thus

|B(k)
n | ≥ min

j∈H
|β∗j | − |B̃(k)

n | ≥ 2λ1 − |B̃(k)
n | (A.63)

Together with the above notation, we obtain

P (H 6⊂ Ĥ) ≤ d∗H max
k∈H

P (|B(k)
n +A(k)

n −B(k)
n + C(k)

n −D(k)
n | ≤ λ1;β∗k = 0)

≤ d∗H max
k∈H

P (|B(k)
n | − |A(k)

n −B(k)
n | − |C(k)

n | − |D(k)
n | ≤ λ1;β∗k = 0)

≤ d∗H max
k∈H

P (2λ1 − |B̃(k)
n | − |A(k)

n −B(k)
n | − |C(k)

n | − |D(k)
n | ≤ λ1;β∗k = 0)

= d∗H max
k∈H
{P (|B̃(k)

n |+ |A(k)
n −B(k)

n |+ |C(k)
n |+ |D(k)

n | ≥ λ1}

≤ d∗H max
k∈H
{P (|B̃(k)

n | ≥
λ1

4
) + P (|A(k)

n −B(k)
n | ≥

λ1

4
) + P (|C(k)

n | ≥
λ1

4
) + P (|D(k)

n | ≥
λ1

4
)}.

To bound the first probability inequality, we assume that 1
4hLi

≥ 2.252

ak+2λ2
, (i = 1, 2)

where k is defined by Identifiable Condition and constant a is given in Theorem 3. Next,

we will apply the lemma below.

Lemma A.15 (Lemma 2.1 in Bunea (2008)). Given the constants k > 0, ε ≥ 0 defined

in Definition 2, if Identifiable Condition holds for some 0 < h < 1
1+2c+ε , then the Stabil

Condition with measurement error is true for any 0 < k < 1− h(1 + 2c+ ε).

By Lemma A.15 with εn = 0, Identifiable Condition derives Stabil Condition with

k ≤ 1−8h since Theorem 3 shows that c = 3.5. By solving a system of two inequalities:

1
4h ≥

2.252

ak+2λ2
, k ≤ 1 − 8h, it implies h ≤ ak+2λ2

20.25+8a ∧
1
8 . Applying Identifiable Condition
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and provability bound in Proposition 3, we therefore have

P (|B̃(k)
n | ≥

λ1

4
) ≤ P (

p∑
j 6=k
|β̂j − β∗j ||

θ

n

n∑
i=1

XijXik| ≥
λ1

4
)

≤ P (

p∑
j=1

|β̂j − β∗j | ≥
λ1d
∗
H

4h
)

≤ P (

p∑
j=1

|β̂j − β∗j | ≥
2.252λ1d

∗
H

ak + 2λ2
) ≤ δ

p
. (A.64)

For the second probability, P (|A(k)
n −B(k)

n | ≥ λ1
4 ), by Taylor’s expansion, we have

A(k)
n =

p∑
j=1

(β̂j − β∗j )
1

n

n∑
i=1

XikXij · θ2eai

(θ + eai)2

where ai be the intermediate point between XT
i β̂ and XT

i β
∗. So solving a system of

two inequalities: 1
4L1h

≥ 2.252

ak+2λ2
, k ≤ 1− 8h, we get h ≤ ak+2λ2

20.25L1+8a ∧
1
8 .

|A(k)
n −B(k)

n | = |
p∑
j=1

(β̂j − β∗j )
1

n

n∑
i=1

θXikXij · (1−
θeai

(θ + eai)2 )|

≤
p∑
j=1

|β̂j − β∗j ||
1

n

n∑
i=1

θXikXij · (1−
θeai

(θ + eai)2 )| ≤
p∑
j=1

|β̂j − β∗j |
hL1

d∗H

where the last inequality is by using WCC(1).

Therefore, by the same argument like |B̃(k)
n |, we have

P (|A(k)
n −B(k)

n | ≥
λ1

4
) ≤ P (

p∑
j=1

|β̂j − β∗j | ≥
2.252λ1d

∗
H

ak + 2λ2
) ≤ δ

p
(A.65)

from Corollary 3.

To bound the third probability, notice that

C(k)
n =

1

n

n∑
i=1

Xikθ(
Yi

θ + eX
T
i β

∗ −
Yi

θ + eX
T
i β̂

)=

p∑
j=1

(β̂j − β∗j )
1

n

n∑
i=1

XikXijθYi · ebi

(θ + ebi)
2

Under the event WCC(2), similar derivation by solving the system of two inequalities:

1
4L2h

≥ 2.252

ak+2λ2
, k ≤ 1− 8h, we have h ≤ ak+2λ2

20.25L2+8a ∧
1
8 . Then

P (|C(k)
n | ≥

λ1

4
) ≤ P (

p∑
j=1

|β̂j − β∗j | ≥
2.252λ1d

∗
H

ak + 2λ2
) ≤ δ

p
. (A.66)
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It remains to obtain the upper bound for the fourth term. This can adopt Lemma A.5

by letting w
(j)
i :=

θXij

θ+eX
T
i
β∗ , so ||w(j)||22 :=

n∑
i=1

X2
ijθ

2

n2(θ+eX
T
i
β∗ )

2 ≤ L2

n and then conditioning

on X. With (A.31), we get

P (|D(k)
n | ≥

λ1

4
) = P (| 1

n

n∑
i=1

Xikθ

θ + eX
T
i β

∗ (Yi − EYi)| ≥
λ1

4
} ≤ 2 exp{− nλ2

1

32C2
LBL

2
}.

(A.67)

In summary, the four probabilities (A.64),(A.65),(A.66) and (A.67) imply

P (H 6⊂ Ĥ) ≤
3d∗H
p
δ + 2d∗H exp{− nλ2

1

32C2
LBL

2
}.

Step2: Find P (Ĥ 6⊂ H).

From the KKT conditions, we define the set

K :=
⋂
k/∈H

{

∣∣∣∣∣ 1n
n∑
i=1

Xik
θ(eX

T
i β̂ − Yi)

θ + eX
T
i β̂

∣∣∣∣∣ ≤ λ1}.

Thus, we have β̂k = 0 if k /∈ H. And thus ∀k /∈ H ⇒ k /∈ Ĥ which gives ∀k ∈ Ĥ ⇒ k ∈

H. We conclude that event K implies Ĥ ⊂ H. Subsequently,

P (Ĥ 6⊂ H) ≤ P (Kc) ≤
∑
k/∈H

P (

∣∣∣∣∣ 1n
n∑
i=1

Xik
θ(eX

T
i β̂ − Yi)

θ + eX
T
i β̂

∣∣∣∣∣ ≥ λ1)

=
∑
k/∈H

P (|A(k)
n + C(k)

n −D(k)
n | ≥ λ1)

≤
∑
k/∈H

{P (|A(k)
n | ≥

λ1

3
) + P (|C(k)

n | ≥
λ1

3
) + P (|D(k)

n | ≤
λ1

3
)}

≤
∑
k/∈H

{P (|A(k)
n | ≥

λ1

4
) + P (|C(k)

n | ≥
λ1

4
) + P (|D(k)

n | ≤
λ1

4
)}

≤
∑
k/∈H

P (|A(k)
n | ≥

λ1

4
) + (p− d∗H)[

δ

p
+ 2e−nλ

2
1/32C2

LBL
2
],

where the last inequality is similarly obtained from (A.66) and (A.67).

It remains to bound the first term as the summation of P (|A(k)
n | ≥ λ1

4 ). By WCC
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(1) we have

|A(k)
n | = |

p∑
j=1

(β̂j − β∗j )
θ

n

n∑
i=1

XikXij ·
θeai

(θ + eai)2 )|

≤
p∑
j=1

|β̂j − β∗j ||
θ

n

n∑
i=1

XikXij ·
θeai

(θ + eai)2 )| ≤
p∑
j=1

|β̂j − β∗j |
hL1

d∗H
.

So by the bounds in Proposition 3 we have

P (|A(k)
n | ≥

λ1

4
) ≤ P (

p∑
j=1

|β̂j − β∗j |
hL1

d∗H
≥ λ1

4
) ≤ P (

p∑
j=1

|β̂j − β∗j | ≥
1

4
·
d∗Hλ1

hL1
)

≤ P (

p∑
j=1

|β̂j − β∗j | ≥
2.252λ1d

∗
H

ak + 2λ2
) ≤ δ

p
.

We conclude that

P (Ĥ 6⊂ H) ≤ (p− d∗H)
δ

p
+ (p− d∗H)[

δ

p
+ 2e−nλ

2
1/18C2

LBL
2
] ≤ (p− d∗H)[

2δ

p
+ 2e−nλ

2
1/32C2

LBL
2
].

Judging from the above two steps and relation, we obtain

P (H = Ĥ, WCC(2)) ≥ 1−P (H 6⊂ Ĥ)−P (Ĥ 6⊂ H) ≥ 1−(2+d∗H/p)δ−2pe−nλ
2
1/32C2

LBL
2
.

Since WCC(2) holds with probability 1− εn,p. By the inequality (24), it gives

P (H = Ĥ) ≥ 1− 2(1 + d∗H/p)δ − 2pe−nλ
2
1/32C2

LBL
2 − εn,p.

B Assisted lemmas

We fix Yi = yi in the proof of Lemma 1,A.11. Rewrite β̂(λ1, λ2), β̂k(λ1, λ2), β̂l(λ1, λ2)

as β̂, β̂k, β̂l respectively.

B.1 Proof of Lemma 1

For β̂ ∈ Rp, define the following multivariate function:

F (β̂) =
n∑
i=1

[(θ + yi) log(θ + eX
T
i β̂)− yiXT

i β̂] + λ1

p∑
i=1

|β̂i|+ λ2

p∑
i=1

|β̂i|
2
. (B.68)
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And let ek = (0, · · · , 0, 1︸ ︷︷ ︸
k

, 0, · · · , 0). Next, we simply write β̂k(λ1, λ2) as β̂k.

Case 1. If β̂k 6= 0, for sufficiently small ε ∈ (−|β̂k|, |β̂k|), we have

F (β̂ + εek)− F (β̂) =
n∑
i=1

[(θ + yi) log
θ + eX

T (β̂+εek)

θ + eX
T
i β̂

− yixikε] + λ1(|β̂k + ε| − |β̂k|)

+ λ2(2β̂ε+ ε2).

Notice that the ranges of ε, we obtain |β̂k + ε|−|β̂k| = sign(β̂k)ε. The Taylor’s expansion

implies that

log
θ + eX

T
i (β̂+εek)

θ + eX
T
i β̂

= log(1 +
1

θ
eX

T
i (

ˆβ+εek))− log(1 +
1

θ
eX

T
i β̂)

=
1

1 + 1
θe

XTi β̂
· 1

θ
eX

T
i β̂(exikε − 1) + o[

1

θ
eX

T
i β̂(exikε − 1)]

=
1

θ + eX
T
i β̂
· eXi

T β̂(xikε+ o(ε)) + o[
1

θ
eX

T
i β̂(xikε+ o(ε))]

=
eX

T
i β̂xikε

θ + eX
T
i β̂

+ o(ε).

Since the aim is to minimize the object function, we must have

0 < F (β̂ + εek)− F (β̂) =

n∑
i=1

xik[
(θ + yi)e

XTi β̂

θ + eX
T
i β̂

− yi]ε+ λ1sign(β̂k)ε+ λ2(2β̂kε+ ε2)

= [

n∑
i=1

xik
θ(eX

T
i

ˆβ − yi)

θ + eX
T
i

ˆβ
+ λ1sign(β̂k) + 2λ2β̂k]ε+ λ2ε

2 + o(ε)

Note that λ2 6= 0, for any sufficiently small ε ∈ (−|β̂k|, |β̂k|), in order to make sure that

the above inequality is valid, iff

n∑
i=1

[xik
θ(eX

T
i β̂ − yi)

θ + eX
T
i β̂

] + λ1sign(β̂k) + 2λ2β̂k = 0, (k = 1, 2, · · · , p).

Thus we get

∣∣∣∣ n∑
i=1

xik
θ(eX

T
i β̂−yi)

θ+eX
T
i
β̂

∣∣∣∣ = λ1 + 2λ2|β̂i| > λ1.

Case 2. If β̂i = 0, for sufficiently small ε ∈ R, by (B.68) we have

F (β̂ + εek)− F (β̂) =

n∑
i=1

[(θ + yi) log
θ + eX

T
i (β̂+εek)

θ + eX
T
i β̂

− yixikε] + λ1(|ε|) + λ2ε
2.
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According to the Taylor expansions of F (β̂ + εek) − F (β̂) in Case 1, and observing∣∣∣∣ n∑
i=1

[xik
θ(eX

T
i β̂−yi)

θ+eX
T
i
β̂

]

∣∣∣∣ 6= 0. We must have

0 < F (β̂ + εek)− F (β̂) =
n∑
i=1

[xik
θ(eX

T
i β̂ − yi)

θ + eX
T
i β̂

]ε+ λ1(|ε|) + λ2ε
2 + o(ε)

= {
n∑
i=1

[xik
θ(eX

T
i β̂ − yi)

θ + eX
T
i β̂

] + λ1signε}ε+ λ2ε
2 + o(ε).

Note that λ2 6= 0, in order to make sure that the above inequality is valid for any

sufficiently small ε ∈ R, iff

n∑
i=1

[xik
θ(eX

T
i β̂ − yi)

θ + eX
T
i β̂

] + λ1signε = 0, (k = 1, 2, · · · , p). (B.69)

In other words,
n∑
i=1

xik
θ(eX

T
i β̂−yi)

θ+eX
T
i
β̂

> −λ1 for ε ≥ 0 and
n∑
i=1

xik
θ(eX

T
i β̂−yi)

θ+eX
T
i
β̂

< λ1 for ε ≤ 0.

Thus we get

∣∣∣∣ n∑
i=1

xik
θ(eX

T
i β̂−yi)

θ+eX
T
i
β̂

∣∣∣∣ ≤ λ1.

B.2 Proof of Lemma A.11

The KKT conditions is crucial for us to derive the upper bound of grouping effect

inequality associated with the difference between the coefficient paths of predictors Xi

and Xj .

Case 1. When β̂kβ̂l > 0. According to Lemma 1, we have

n∑
i=1

xik
θ(eX

T
i β̂ − yi)

θ + eX
T
i β̂

= sign(β̂k)(λ1+2λ2|β̂k|),
n∑
i=1

xil
θ(eX

T
i β̂ − yi)

θ + eXi
T β̂

= sign(β̂l)(λ1+2λ2|β̂l|)

Taking the subtraction of two equations above, we obtain

2λ2

∣∣∣β̂k(λ1, λ2)− β̂l(λ1, λ2)
∣∣∣ =

∣∣∣∣∣
n∑
i=1

(xik − xil)
θ(eX

T
i β̂ − yi)

θ + eX
T
i β̂

∣∣∣∣∣ ≤
n∑
i=1

θ |(xik − xil)| · |eX
T
i β̂ − yi)|

θ + eX
T
i β̂

.

and therefore inequality (A.56) is proved.
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Case 2. When β̂kβ̂l < 0, i.e. sign(β̂k) = −sign(β̂l). According to Lemma 1, we

have∣∣∣∣∣
n∑
i=1

(xik − xil)
θ(eX

T
i β̂ − yi)

θ + eX
T
i β̂

∣∣∣∣∣ =
∣∣∣2[sign(β̂k)λ1 + λ2(β̂k − β̂l)]

∣∣∣
=
∣∣∣2sign(β̂k)[λ1 + λ2|β̂k − β̂l|]

∣∣∣ ≥ ∣∣∣2λ2sign(β̂k)|β̂k − β̂l|
∣∣∣ .

and therefore inequality (A.56) is also proved.

Case 3. When β̂k 6= 0, β̂l = 0. By the Case 1 in Lemma 1 and (B.69), by subtracting

these two expressions we have

n∑
i=1

(xik − xil)
θ(eX

T
i β̂ − yi)

θ + eX
T
i β̂

= λ1[signε+ sign(β̂k)] + 2λ2sign(β̂k)|β̂k|).

If sign(ε + sign(β̂k) = 0, it is apparently that (A.56) is true. If signε + sign(β̂k) =

−2 (or 2), it derives that

n∑
i=1

(xik − xil)
θ(eX

T
i β̂ − yi)

θ + eX
T
i β̂

= −2λ1 − 2λ2|β̂k|, (or 2λ1+2λ2|β̂k|).

Then ∣∣∣∣∣
n∑
i=1

(xik − xil)
θ(eX

T
i β̂ − yi)

θ + eX
T
i β̂

∣∣∣∣∣ =
∣∣∣2λ1 + 2λ2|β̂k|

∣∣∣ ≥ 2λ2|β̂k| = 2λ2|β̂k − β̂l|.

Thus (A.56) is proved. If β̂l 6= 0, β̂k = 0, the proof is by the same method.

Case 4. When β̂k = β̂l = 0, (A.56) is obviously.

B.3 Proof of Lemma A.12

The variance and kurtosis of Yi are

VarYi =
θpi

(1− pi)2 , Kurt(Yi) :=
E|Yi − EYi|4

(E|Yi − EYi|2)2 = 3 +
6

θ
+

(1− pi)2

θpi
,
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see p216 of Johnson et al. (2005). By (C.1) and (C.3), we get

0 <
e−LB

θ + e−LB
≤ pi =

eX
T
i β
∗

θ + eX
T
i β
∗ ≤

eLB

θ + eLB
< 1.

Let Qi := pi
(1−pi)2

∈ [ e
−LB(θ+e−LB)

θ2
, e

LB(θ+eLB)
θ2

], then

ESn =
1

n

n∑
i=1

E|Yi − EYi|2 =
1

n

n∑
i=1

θQi ≤
eLB(θ + eLB)

θ
:= µ.

For (2), we obtain

Var|Yi − EYi|2 = E|Yi − EYi|4 − (E|Yi − EYi|2)2 = (VarYi)
2[Kurt(Yi)− 1]

=
θ2p2

i

(1− pi)4

(
2 +

6

θ
+

(1− pi)2

θpi

)
= (2θ2 + 6θ)Q2

i + θQi.

So, it implies

Var|Yi − EYi|2 ≤ (2 +
6

θ
)e2LB(θ + eLB)2 +

eLB(θ + eLB)

θ
:= σ2.

B.4 Proof of Proposition 4

Lemma B.16. Hoeffding’s lemma Let Y1, · · · , Yn be independent centralized random

variables on R satisfying bound condition

EYi = 0, |Yi| ≤ ci for i = 1, 2, · · · , n. (B.70)

holds. We have

E exp{λ
n∑
i=1

Yi} ≤ exp{1

2
λ2

n∑
i=1

c2
i } for λ > 0.

Proof. Let Vj =
n∑
i=1

fj(Xi), then by Jensen’s inequality and Hoeffding’s lemma I, we
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have

E max
1≤j≤p

|Vj | =
1

λ
E log e

λ max
1≤j≤p

|Vj |
≤ 1

λ
log Ee

λ max
1≤j≤p

|Vj |

≤ 1

λ
log

n∑
i=1

Eeλ|Vj | ≤ 1

λ
log[

p∑
j=1

2e
1
2
λ2

n∑
i=1

a2ij
] [Apply Lemma B.16 to Eeλ|Vj |]

≤ 1

λ
log [2pe

1
2
λ2 max

1≤j≤p

n∑
i=1

a2ij
] =

1

λ
log (2p) +

1

2
λ max

1≤j≤p

n∑
i=1

a2
ij .

Then E max
1≤j≤p

|Vj | ≤ inf
λ>0
{ 1
λ log (2p) + 1

2λ max
1≤j≤p

n∑
i=1

a2
ij} =

√
2 log(2p) · max

1≤j≤p

n∑
i=1

a2
ij .

C The the proof of (A.42) and the value γ

C.1 The the proof of (A.42)

In this section, we illustrate the use of concentration inequalities in application to em-

pirical processes. Here we use the convex geometry method to derive various tail bounds

on the suprema of empirical processes, i.e. for random variables that are generated by

taking suprema of sample averages over function classes. The following discrete ver-

sion of Prékopa–Leindler inequality is extracted from Theorem 1.2 in Halikias et al.

(2019), it is essential the discrete variants of Brunn-Minkowski type inequalities in con-

vex geometry, see Halikias et al. (2019). In fact, discrete variants of Prékopa–Leindler

inequality is of paramount importance to derive concentration inequalities for strong-

ly log-concave counting measures, similar to continuous Prékopa–Leindler inequality

presented in Theorem 3.15 of Wainwright (2019).

Lemma C.17 (discrete Prékopa–Leindler inequality). Let λ ∈ [0, 1] and suppose f, g, h, k :

Zn → [0,∞) satisfy

f(x)g(y) ≤ h(bλx+ (1− λ)yc)k(d(1− λ)x+ λye) ∀x,y ∈ Zn (C.71)
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where bxc = (bx1c , . . . bxnc) and dxe = (dx1e , . . . , dxne) . Then

(
∑
x∈Zn

f(x))(
∑
x∈Zn

g(x)) ≤ (
∑
x∈Zn

h(x))(
∑
x∈Zn

k(x)),

where brc = max{m ∈ Z;m ≤ r} is the lower integer part of r ∈ R and dre = −b−rc

the upper integer part.

From a geometric point of view, the Prékopa-Leindler inequality is useful tool to

establish some advanced concentration inequalities of Lipschitz functions for strongly

log-concave distributions. Motivated by Moriguchi et al. (2020), we define a distribution

Pγ with a density p(x) (w.r.t. the counting measure) is said to be strongly discrete log-

concave if the log function ψ(x) =: − log p(x) : Zn → R is strongly midpoint log-convex

for some γ > 0

ψ(x) + ψ(y)− ψ(d1
2
x+

1

2
ye)− ψ(b1

2
x+

1

2
yc) ≥ γ

4
‖x− y‖22 ∀x,y ∈ Zn. (C.72)

Let γ = 1/2. The (C.72) is a slightly extension strongly convex with modulus of

convexity γ for continuous functions on Rn

λψ(x)+(1−λ)ψ(y)−ψ(λx+(1−λ)y) ≥ γ

2
λ(1−λ)‖x−y‖22 ∀x,y ∈ Rn and ∀α ∈ [0, 1]

see Chapter 2 of Mahoney et al. (2018). Strongly discrete log-convex property requires

the restricted behavior of continuous functions on lattice space. If γ = 0, (C.72) will

leads to the definition of is discrete midpoint convexity for ψ(x) mentioned by Moriguchi

et al. (2020)

ψ(x) + ψ(y) ≥ ψ(d1
2
x+

1

2
ye) + ψ(b1

2
x+

1

2
yc) ∀x,y ∈ Zn.

Howsoever, directly restrict some continuous function to a lattice space does not neces-

sarily yield a discretely convex function, the counter-example in Yüceer (2002).
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For Pγ being one-dimensional, it say that the probability mass function p(x) are

log-concave if the sequence {p(x)}x∈Z is a log-concave sequence which means that for

any m,n ∈ Z and λ ∈ (0, 1) such that λn+ (1− λ)m ∈ Z, we have

p(λn+ (1− λ)m) ≥ p(n)λp(m)1−λ.

Equivalently, p(n)2 ≥ p(n−1)p(n+1) for every x ∈ Z (or x in a subset of Z), see Klartag

and Lehec (2019).

Theorem C.8 (Concentration for strongly log-concave discrete distributions). Let Pγ

be any strongly log-concave discrete distribution index by γ > 0 on Zn. Then for any

function f : Rn → R that is L-Lipschitz with respect to Euclidean norm, we have

Pγ{|f(X)− Ef(X)| ≥ t} ≤ 2e−
γt2

4L2 . (C.73)

The Theorem C.8 allows for some dependence due to a function of vector X will

be a dependence summation.

Proof. Let h be an arbitrary zero-mean function with Lipschitz constant L with respect

to the Euclidean norm. It suffices to show that Eeh(x) ≤ e
L2

τ . Indeed, if this inequality

holds, then, given an arbitrary function f with Lipschitz constant K and λ ∈ R, we

can apply this inequality to the zero-mean function h(X) := λ(f(X)− Ef(X)), which

has Lipschitz constant L = λK. The zero-mean function h is L-Lipschitz and for given

λ ∈ (0, 1) and x,y ∈ Zn, define the proximity operator of h

l(y) := inf
x∈Zn

{
h(x) +

γ

4
‖x− y‖22

}
as the functional minimizer of the rescaled h with Euclidean norm.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



77

Next, with this functional minimizer, the proof is based on adopting the discrete

Prekopa-Leindler inequality Lemma C.17 with λ = 1/2 and h(t) = k(t) =: p(t) = e−ψ(t)

and the pair of functions given by f(x) := e−h(x)−ψ(x) and g(y) := el(y)−ψ(y).

It is sufficient to check the (C.74) in Lemma C.17 is satisfied with λ = 1/2, i.e.

e
1
2

[l(y)−h(x)−ψ(y)−ψ(x)] ≤ e−
1
2
ψ(d 1

2
x+ 1

2
ye) · e−

1
2
ψ(b 1

2
x+ 1

2
yc) ∀x,y ∈ Zn (C.74)

Indeed, by discrete strong convexity of the function ψ and the proximity operator of h

1

2
[ψ(x) + ψ(y)−ψ(d1

2
x+

1

2
ye)− ψ(b1

2
x+

1

2
yc) ≥ γ

8
‖x− y‖22,

we have

−1

2
ψ(d1

2
x+

1

2
ye)− 1

2
ψ(b1

2
x+

1

2
yc)

≥ 1

2

{
l(y)− h(x)− γ

4
‖x− y‖22

}
−1

2
ψ(d1

2
x+

1

2
ye)− 1

2
ψ(b1

2
x+

1

2
yc)

≥ 1

2
{l(y)− h(x)} − 1

2
ψ(y)− 1

2
ψ(x).

which verifies (C.74).

Note that
∑
x∈Zn h(x) =

∑
x∈Zn k(x) = 1, the Lemma C.17 implies that

Eel(Y )Ee−h(X) =
∑
x∈Zn

e−h(x)−ψ(x)
∑
y∈Zn

el(y)−ψ(y) ≤ 1

Rearranging and Jensen’s inequality yield

Eel(Y ) ≤ (Ee−h(X))−1 ≤ (eE[−h(X)])−1 = 1

where the last equality due to E[−h(X)] = E[λ(f(X)− Ef(X))] = 0.
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So we have by definition of the proximity operator

1 ≥ Eel(y) = Eeinfx∈Zn{h(x)+ γ
4
‖x−Y ‖22} = Eeinfx∈Zn{h(Y )+[h(x)−h(Y )]+ γ

4
‖x−Y ‖22}

≥ Eeh(Y )+infx∈Rn{−L‖x−Y ‖2+ γ
4
‖x−Y ‖22}

= Eeh(Y )−L2/γ .

where the second last inequality is from the fact that h is L-Lipschitz, i.e. |h(x) −

h(Y )| ≤ L‖x− Y ‖2.

It yields that

Eeλ(f(X)−Ef(X)] ≤ e
1
2
·λ2· 2L

2

γ for all λ ∈ R,

This implies that f(X)−Ef(X) has a sub-Gaussian tail bound as claimed in (C.73).

C.2 The value γ

For Yi ∼ NBD(µi, θ) with known θ > 1. The log-density for y = (y1, · · · , yn)T is

log p(y) =:

n∑
i=1

logpi(yi) =:

n∑
i=1

ψ(yi)

=

n∑
i=1

{log Γ(θ + yi) + yi logµi + θ log θ − log Γ(θ)− log yi!− (θ + yi) log(θ + µi)}.

Then

ψ′(yi) :=
∂ log p(y)

∂y

∣∣∣∣
yi

= log
Γ(θ + yi)

Γ(yi + 1)
− yi log(θ + µi).

Let us find the γ. Taylor’s expansion implies

ψ(y) = ψ(
⌈

1
2x+ 1

2y
⌉
) + 1

2ψ
′(
⌈

1
2x+ 1

2y
⌉
)(y − x) + 1

8(y − x)2ψ′′(a1)

ψ(x) = ψ(
⌊

1
2x+ 1

2y
⌋
) + 1

2ψ
′(
⌊

1
2x+ 1

2y
⌋
)(x− y) + 1

8(y − x)2ψ′′(a2)

where a1 = t1y + (1− t1)(x+ y)/2, a2 = t2y + (1− t1)(x+ y)/2 with t1, t2 ∈ [0, 1].
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So we have

1
2ψ(x) + 1

2ψ(y) = 1
2ψ(
⌊

1
2x+ 1

2y
⌋
) + ψ(

⌈
1
2x+ 1

2y
⌉
)

+ x−y
4

[
ψ′(
⌊

1
2x+ 1

2y
⌋
)− ψ′(

⌈
1
2x+ 1

2y
⌉
)
]

+ ψ′′(a1)+ψ′′(a2)
16 (y − x)2

Define

∆(x, y) :=
x− y

4

[
ψ′(

⌊
1

2
x+

1

2
y

⌋
)− ψ′(

⌈
1

2
x+

1

2
y

⌉
)

]
+
ψ′′(a1) + ψ′′(a2)

16
(y − x)2

We have

∆(x, y) ≥ |x− y|2
{
ψ′′(a1) + ψ′′(a2)

16
− sup
x6=y;x,y∈Zn

|[ψ′(b(x+ y)/2c)− ψ′(d(x+ y)/2e)]|
4 |x− y|

}

Let

Cψ := sup
x6=y;x,y∈Zn

|[ψ′(b(x+y)/2c)−ψ′(d(x+y)/2e)]|
4|x−y|

= sup
x6=y;x,y∈Zn

∣∣∣[log Γ(θ+b(x+y)/2c)Γ(d(x+y)/2e+1)
Γ(θ+d(x+y)/2e)Γ(b(x+y)/2c+1) −

(b(x+y)/2c−d(x+y)/2e)
log−1(θ+µi)

]∣∣∣/4 |x− y|
We can see that Cψ ≈ |[log(θ+µi)]|

4 or 0.

Note that

ψ′′(y) := ∂2 log p(y)
∂y2

∣∣∣
y=yi

= d
dyi

log Γ(θ+yi)
Γ(yi+1) =

∞∑
k=1

( 1
k+1 −

1
k+θ+yi

)−
∞∑
k=1

( 1
k+1 −

1
k+yi+1)

=
∞∑
k=1

( 1
k+yi+1 −

1
k+θ+yi

) ≥ inf
yi∈Z

∞∑
k=1

( 1
k+yi+1 −

1
k+θ+yi

) = Cψ′′ .

Now, we get

∆(x, y) ≥ |x− y|2
{
ψ′′(a1) + ψ′′(a2)

16
− Cψ

}
≥ |x− y|2

(
Cψ′′

8
− Cψ

)
which gives γ =:

Cψ′′
8 − Cψ > 0 from (H.4).

D Simulation Studies

In practice, the nuisance parameter θ is often unknown. We need a proper estimation

for θ in the NB regression, although it is a nuisance parameter. Many dispersion estima-
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tors and its algorithms for non-penalized NBR are available, see section 8.4.2 of Hilbe

(2011), Robinson and Smyth (2007) and references therein. Here we prefer to use a two

subproblem iteratively algorithms which is applied by Wang et al. (2016). Firstly, we

fit a NB regression by MLE with dispersion parameter θ and mean µi without consider-

ing covariates information. Secondly, we optimize the penalized log-likelihood (1) and

estimate β with the θ being estimated in the first step. Thirdly, and estimating θ with

the current estimates fixed (1). Repeated iteration when the desired stoping criteria is

attained.

Well-chosen tuning parameters is also crucial in the NBR optimization problem.

The BIC criterion (an adjusted AIC criterion) is employed to determine tuning param-

eters by the principal proposed by Zou et al. (2007). The negative likelihood with ridge

terms is considered as our modified likelihood, thus the BIC criterion for Elastic-net

regularized NBR is defined as

BICβ̂(λ1,λ2) := − 1

n

n∑
i=1

[YiX
T
i β̂ − (θ + Yi) log(θ + eX

T
i

ˆβ)]−λ2‖β̂‖22+
log n

n
d̂f(en) (D.75)

where d̂f(en) := ||β̂(λ1, λ2)||0 is the number of estimated nonzero coefficients.

We use the BIC to find a nearly optimal tuning parameters and then further tune

the λ1 such that support recovery rate is high and not all coefficients are penalized to

zero.

A simulated comparison by Elastic-net and Lasso estimator for NBR is performed

by using R, and we also give the confidence intervals for both de-biased Lasso and de-

biased Elastic-net estimator. The package mpath is employed to estimate the solution

path based on a sequence of turning parameters. The function rnegbin() is used to
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generate negative binomial r.v. with mean µi and variance µi+
µ2i
θ in the package MASS,

and its also includes the estimation of the the dispersion parameter θ by the function

fitdistr().

In confidence intervals based on de-biased estimators, the package fastclime is

adopted for computing high-dimensional precision matrix (i.e. the inverse Hessian ma-

trix of NBR), it contains an efficient and fast algorithm for solving a family of regularized

linear programming problems, see Pang et al. (2014).

In Table 1 and 2, we simulate responses via the model

Yi ∼ NB(eX
T
i β
∗
, θ)

with θ = 5 and true regression vector

β∗ = (10|N(0, 1)|+ 0.2, · · · , 10|N(0, 1)|+ 0.2︸ ︷︷ ︸
10

, 0, · · · , 0︸ ︷︷ ︸
p−10

).

Thus H = {1, 2, · · · , 10} and d∗ = 10. The {Xij} are i.i.d. simulated from N(0, 1) and

then do standardization (22) which renders that {Xij} are approximately bounded.

In Table 1, let ‖X(β̂ − β∗)‖n := 1
n‖X(β̂ − β∗)‖1 and ‖δ‖H :=

∑
i∈H |δi|. The

de-biased estimator for Elastic-net (or Lasso) is b̂ = β̂ − Θ̂ ˙̀(β̂). The true coefficient is

simulated as

β∗ = (0.242, 0.648, 0.676, 0.313, 0.602, 0.236, 0.851, 0.796, 0.531, 0.404, · · · )T ,

with ‖β∗‖1 = 5.300.

Thus by our assumption λ2 ≤ λ1
8B in Theorem 3, we put λ2 ≈ 0.02λ1. By referring

the BIC criterion (D.75) and the oracle inequality (20) in Theorem 3, we set λ1,or λ ≈

10
√

log p
n in Elastic-net or Lasso.
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Table 1 shows that the proposed Elastic-net estimators for NBR are more accurate

than the Lasso estimators, with help of the ridge penalty it reflects that Elastic-net is

able to improve the accuracy of the estimation in aspects of estimation and prediction

errors, due to the bias-variance tradeoff. We can also see that the increasing p will hinder

the estimated accuracy by thinking about the curse of dimensionality. We should note

that penalized estimations always have bias, and the bias is corrected by de-biased

procedures. The de-biased estimators have less `1-estimation errors in the support H,

and de-biased Elastic-net outperforms the de-biased Lasso.

Table 1 The `1 prediction error and support recovery for Elastic-net (Lasso) and its debiased version

in NBR, n = 500.

Elastic-net

p ‖β̂ − β∗‖1 (‖β̂ − β∗‖H) P (H = Ĥ) ‖X(β̂ − β∗)‖n ‖b̂− β∗‖H λ1 θ̂

400 1.491 (1.376) 1.000 0.222 0.723 0.12 2.927

600 1.749 (1.405) 1.000 0.326 0.731 0.13 2.350

700 1.767 (1.709) 1.000 0.340 0.955 0.14 2.952

Lasso λ

400 1.505 (1.405) 1.000 0.230 0.730 0.12 2.836

600 1.779 (1.719) 1.000 0.341 0.896 0.13 2.262

700 1.784 (1.739) 1.000 0.351 0.966 0.14 2.862

Table 2 Confidence intervals for the de-biased estimates with 95% confidence level, n = 500, p = 700.
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Elastic-net (λ1 = 0.11, λ2 = 0.02λ1) Lasso (λ = 0.11)

j β∗j β̂j b̂j [b̂Lj , b̂
U
j ] β̂j b̂j [b̂Lj , b̂

U
j ]

1 0.828 0.753 0.810 [0.677,0.944] 0.758 0.783 [0.377,1.190]

2 1.218 1.059 1.119 [0.986,1.252] 1.077 1.103 [0.726,1.481]

3 0.321 0.098 0.122 [-0.010,0.253] 0.107 0.109 [-0.209,0.428]

4 0.991 0.829 0.891 [0.769,1.013] 0.839 0.860 [0.602,1.118]

5 1.052 0.934 1.000 [0.872,1.129] 0.947 0.972 [0.622,1.322]

6 0.268 0.231 0.265 [0.145,0.385] 0.235 0.246 [-0.023,0.516]

7 0.510 0.351 0.384 [0.260,0.509] 0.374 0.384 [0.075,0.693]

8 0.838 0.728 0.773 [0.641,0.905] 0.755 0.772 [0.421,1.124]

9 1.183 0.988 1.048 [0.925,1.172] 0.974 0.998 [0.661,1.336]

10 0.382 0.276 0.314 [0.193,0.435] 0.295 0.303 [0.018,0.588]

covering number 7 10

Table 2 presents the de-biased Elastic-net and de-biased Lasso estimates of low

dimensional coefficients in sparse high-dimensional NBR, and confidence intervals are

given with 95% confidence level. We resort the package fastclime to get a sparse pre-

cision matrix estimate for −῭(β∗)−1, the tuning parameter is assigned as 0.2 in CLIME

method. The covering number is the number of true coefficients that are contained in

the 95% confidence level. The de-biased lasso confidence intervals cover 10 true coeffi-

cients, while the covering number of de-biased Elastic-net is 7. The de-biased Elastic-net

has shorter length of confidence interval than the de-biased Lasso.

Table 3 Simulation for grouping effect.
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β̂ β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 β̂9 β̂10

Elastic-net 2.025 0.421 0.422 1.00 0 0 0 0 0 0

Lasso 1.838 0 0 1.469 0 0 0 0 0 0

Ridge 2.059 0.861 0.861 0.664 -0.199 -0.035 -0.164 0.027 -0.006 0.170

MLE 2.620 2.783 NA NA -0.142 0.083 -0.092 0.076 -0.063 0.180

β∗ 2 0.5 0.5 1 0 0 0 0 0 0

A numerically demonstration of the grouping phenomenon (see Theorem 4) is

given in Table 3. The covariates are correlated simulated as: X1 ∼ U [0, 1], X2 ∼

U [0, 1], X3 = X2, X4 = 0.7X3 + X2 + 0.3X1. The true coefficient vector is β∗ =

(2, 0.5, 0.5, 1, 0, · · · , 0︸ ︷︷ ︸
6

)T . We consider the Elastic-net (λ1 = 0.3, λ2 = 0.3λ1), Las-

so (λ = 0.3), Ridge (λ = 0.3), MLE. The results show that the Elastic-net successfully

select both X2 and X3 together into the model and the MLE the estimated coefficients

fit better than other methods. Except X5 to X10, the Lasso shrinkages the coefficients

of X2, X3 to zero, and MLE performs worst due to the correlated covariates X2, X3, X4.

The results indicate that the the Elastic-net can select the strongly related variables

X2, X3 into the model, reflecting the grouping effect.
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