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Abstract: Analysis of tail quantiles of the response distribution is sometimes more impor-

tant than the mean in biomarker studies. Inference in quantile regression is complicated

when there exist a large number of candidate markers together with some pre-specified

controlled covariates. In this paper, we develop a new and simple testing procedure to

detect the effects of biomarkers in high-dimensional quantile regression in the presence of

protected covariates. The test is based on the maximum-score-type statistic obtained from

conditional marginal regression. We establish the asymptotic properties of the proposed

test statistic under both null and alternative hypotheses, and further propose an alternative

multiplier bootstrap method with theoretical justifications. We demonstrate through nu-

merical studies that the proposed method provides adequate controls of the family-wise

error rate with competitive power, and it can also be used as a stopping rule in the forward

regression. The proposed method is applied to a motivating genome-wide association study
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to detect single nucleotide polymorphisms associated with low glomerular filtration rates

in Type 1 diabetes patients.

Key words and phrases: Conditional marginal regression, Extreme value distribution, High

dimensional, Maximal score statistic, Multiplier bootstrap.

1. Introduction

Genome-wide association study (GWAS) screens for associations between a

large number of single-nucleotide polymorphisms (SNPs) and phenotypes such

as disease symptoms and clinical index. It has been known that genes often do

not function individually but tend to work together in a biological process; see

for instance Zou et al. (2004), de Leeuw et al. (2016), and Sun et al. (2019).

Therefore, it is important to identify gene sets, that is, classes of genes that

jointly have an association with disease phenotypes. Inference in the context of

gene set detection faces the challenges of both high-dimensionality and multi-

plicity, since the number of genes in a set can be much larger than the sample

size and genes in different sets may overlap.

This paper is motivated by a GWAS from the Diabetes Complication and

Control Trial (DCCT), where SNPs associated with the glomerular filtration rate

(GFR) are searched through a genome-wide screening. The GFR is an impor-

tant clinical index for the risks of nephropathy, one of the major microvascluar

complications in diabetic patients. The study has three unique features. Firstly,
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the mean level of GFR among participants is less clinically informative than the

left tail quantiles, because the mean values are usually driven by the majority of

participants without nephropathy, while the lower quantiles reflect the charac-

teristics of the subset of participants that progressed to nephropathy. Secondly,

the GFR data are skewed to the left even after log-transformation; see Figure

4.1 in Section 4. Thirdly, the data contains a large number of SNPs and some

“protected” covariates, which are known to impact GFR levels, such as age, du-

ration of diabetes and body mass index. Let Y be a scalar response variable,

corresponding to GFR, and (Z>,X>)> be a pn-dimensional set of covariates,

where n is the sample size, Z is a q-dimensional (q is fixed) conditioning set cor-

responding to the “protected” covariates, and X is the remaining dn-dimensional

covariates with dn = pn−q, corresponding to the SNPs. Our goal is to assess the

association between SNPs and the lower tails of the GFR distribution to iden-

tify SNPs and gene pathways associated with patients at higher risk of kidney

failure, after controlling the effect of the protected covariates.

In GWAS, the most commonly used approach is to test trait-SNP associa-

tions (conditioning on Z) for one SNP at a time, followed by a multiple com-

parison adjustment, e.g. Bonferroni adjustment or false discovery rate (FDR)

control. Bonferroni adjustment controls the family-wise error rate (FWER) well,

however, such adjustment is usually conservative, which may result in low power
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under the alternative. The FDR control works in a different way than FWER

control, which is suitable for the case where there exist many important covari-

ates. Other existing work in GWAS mainly focused on mean-regression-based

tests. Without the inclusion of Z, Zou et al. (2004) proposed a resampling pro-

cedure to assess the significance of genome-wide quantitative trait loci mapping

for Drosophila backcross, and McKeague and Qian (2015) proposed an adaptive

resampling test and applied it to the analysis of a glioblastoma cancer data. Guo

and Chen (2016) proposed to test the overall significance of X conditional on Z,

based on a quadratic form of the score functions. Tang et al. (2018) proposed a

hybrid test of maximum- and sum-squared-type statistics based on conditional

marginal regressions, by regressing Y on Z and eachXj separately. Based on the

sum of powered scores (Pan et al., 2014; Xu et al., 2016), Wu et al. (2019) pro-

posed an adaptive test for generalized linear models, by assuming that the errors

satisfy the sub-Gaussian condition and pn = o(n2). None of these mean-based

methods are suitable for analyzing the GFR data to meet the research goals.

As a valuable alternative to the mean regression, quantile regression pro-

vides a natural way to capture the impact of covariates on the tail of the response

distribution. Quantile regression generally does not require any parametric dis-

tributional assumptions, and can accommodate skewed distributions and het-

eroscedasticity automatically. There exist various inference methods for quantile
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regression, including Wald-type, quasi-likelihood-ratio and rank score tests, and

resampling-based approaches; see related discussions in Koenker (2005, Chapter

3), Kocherginsky et al. (2005), Feng et al. (2011), and Wang et al. (2018b). Un-

fortunately, the existing tests are for low-dimensional covariates, and they either

have low power for large pn or are infeasible for cases with pn ≥ n. For infer-

ence with high-dimensional X, one may first select a subset of predictors using

some variable selection methods (Wu and Liu, 2009; Belloni and Chernozhukov,

2011; Wang et al., 2012; Sherwood and Wang, 2016), and then conduct hypoth-

esis testing using conventional methods on the selected model. However, such

practice ignores the uncertainty involved in the model selection step and thus

often leads to inflated FWER (Leeb and Pötscher, 2003, 2005).

To detect significant predictors while accounting for uncertainties involved

in the selection stage, Wang et al. (2018a) proposed a quantile marginal effect

test, based on the maximum of the marginal t-statistics, and Wang et al. (2018b)

considered wild residual bootstrap inference for penalized quantile regression,

without the presence of Z. However, their theories only work for fixed dimen-

sion, and the method in Wang et al. (2018a) uses a computationally intensive

double bootstrap procedure for selecting the tuning parameter involved in the

test calibration. Furthermore, in clinical studies, prognostic factors should be se-

lected after accounting for the effects of some protected covariates with known
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impacts on the outcome. With the inclusion of Z, Park and He (2017) extended

the rank score test for quantile regression with fixed dimensions to settings with

diverging pn; however, this method still requires pn < n.

In this paper, we propose a conditional marginal score-type test for quan-

tile regression in the ultra-high-dimensional setting, to detect the overall signif-

icance of X on the quantile of Y , in the presence of “protected” covariates Z.

More specifically, for j = 1, . . . , dn, we evaluate the additional effect of eachXj

conditional on Z, through rescaled conditional marginal rank scores, and define

the final test statistic by the maximum of dn squared score statistics. Different

from the existing work, our method allows the dimension dn to diverge with n

and be much larger than n, for instance, dn = O{exp(nc0)} for some c0 > 0.

Under some regularity conditions, we establish the asymptotic properties of the

proposed test statistic under both null and alternative hypotheses. To improve the

finite-sample performance, we propose an alternative calibration method based

on a multiplier bootstrap procedure and provide theoretical justifications. Nu-

merical studies show that the proposed test provides adequate control of FWER

with competitive power. We demonstrate that the proposed procedures are com-

putationally efficient, taking much less time than those methods that require in-

tensive resampling or double bootstrap (McKeague and Qian, 2015; Wang et al.,

2018a; Tang et al., 2018). Different from the proposed maximum-type statistic,
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another common approach to determine group-wise significance is the combina-

tion test, for instance, the Cauchy combination test (Liu and Xie, 2019, CCT),

which combines the P -values obtained from individual test of each covariate into

a single P -value to assess the group-wise significance. However, our simulation

studies show that CCT tends to be conservative in high dimensions.

Besides the nice properties presented in the above paragraph, the proposed

test can be used as a stopping rule in forward selection, where in each step the

pre-selected set is treated as the conditioning set. Under the setting of high-

dimensional covariates, penalization and variable screening methods are com-

monly used to select significant covariates. For example, Wu and Liu (2009),

Belloni and Chernozhukov (2011), Peng and Wang (2015) and others, proposed

penalized variable selection methods in quantile regression. Zhao and Li (2015)

proposed a score-test-based variable screening method, while Li et al. (2015)

and Ma et al. (2017) proposed screening methods based on the quantile par-

tial correlation. The screening and penalized selection methods can only tell us

whether one covariate is selected or not, while the proposed method can assess

the significance of the covariate by providing a P -value that is more informative.

The rest of the paper is organized as follows. In Section 2, we describe the

proposed conditional marginal score-type test, present the asymptotic proper-

ties under the null and local alternative hypotheses, and introduce the multiplier
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bootstrap method. In Section 3, the finite sample performance of the proposed

test is assessed through simulation studies. In Section 4, we apply the proposed

method to the motivating GWAS data with GFR outcomes. In Section 5, we con-

clude the paper and give some discussions. Some additional simulation results

and all technical proofs are provided in the online Supplementary Materials.

2. Conditional maximum-score test

2.1 Model settings

Let {(Yi,Zi·,Xi·), i = 1, . . . , n} be independent and identical copies of the

triplet (Y,Z,X). Let Qτ (Yi | Zi·,Xi·) be the conditional τ -th quantile of Yi

given {Zi·,Xi·}. We assume the following linear quantile regression model:

Qτ (Yi | Zi·,Xi·) = Z>i·αZ,0(τ) + X>i·βX,0(τ), i = 1, . . . , n, (2.1)

where αZ,0(τ) = (α1,0(τ), . . . , αq,0(τ))> and βX,0(τ) = (β1,0(τ), . . . , βdn,0(τ))>

are the quantile-specific coefficient vectors of Z and X, respectively. We are in-

terested in testing the existence of association between X and the τ -th quantile

of Y , after accounting for the effect of Z, that is, testing

H0 : βX,0(τ) = 0dn versus Ha : βX,0(τ) 6= 0dn . (2.2)

The testing of (2.2) can be viewed as a first step in GWAS to assess the overall

significance of a gene set, and if H0 is rejected, a second step can be conducted

to identify important SNPs in the gene set.
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2.2 Proposed test statistic

We define

εi(τ) = Yi −Qτ (Yi|Zi·,Xi·) = Yi − Z>i·αZ,0(τ)−X>i·βX,0(τ), (2.3)

so thatQτ{εi(τ)|Zi·,Xi·} = 0. We let X = (X1·, . . . ,Xn·)
>, Z = (Z1·, . . . ,Zn·)

>,

X·j = (X1,j, . . . , Xn,j)
>, j = 1, . . . , dn, and fτ = diag(f1,τ (0), . . . , fn,τ (0)),

where fi,τ (·) is the density of εi(τ)|{Xi·,Zi·}. To detect the significance of X in

the presence of Z, we construct a score-type test statistic as follows.

First, we estimate the marginal effect of Z as

α̂Z(τ) = arg min
α∈Rq

n∑
i=1

ρτ (Yi − Z>i·α),

where ρτ (t) = t{τ − I(t < 0)} is the quantile check loss function. To evaluate

the additional effect of each Xj conditional on Z, we project Xj on Z with

weights fτ to obtain

X∗·j,τ =
{
In − fτZ(Z>f2τZ)−1Z>fτ

}
X·j

.
= (X∗1,j,τ , . . . , X

∗
n,j,τ )

>, (2.4)

so that the j-th component of X is orthogonal to Z in a weighted manner, i.e.,

Z>fτX∗·j,τ = 0, j = 1, . . . , dn. We consider the weighted projection to account

for the heteroscedasticity through fi,τ (·), to eliminate the first order difference;

see the proof of Theorem 1 in the Supplementary Materials (equation (S.16),

Section S3.2) for more details. Similar projections can also be found in the

quantile literature, for instance, Park and He (2017).
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Second, we define the rescaled conditional marginal score statistic as

Sτ,j(αZ) =
1√
n

n∑
i=1

X∗i,j,τψτ (Yi − Z>i·αZ)/{τ(1− τ)‖X∗·j,τ‖2/n}1/2, j = 1, . . . , dn,

where ψτ (t) = τ−I(t < 0). The score statistic Sτ,j(αZ) is the rescaled negative

subgradient of
∑n

i=1 ρτ (Yi − Z>i·αZ − βjX∗i,j,τ ) with respect to βj evaluated at

βj = 0, which captures the association between the j-th component of X and

the signs of the quantile residuals after accounting for the effect of Z.

Finally, the proposed maximum-score test statistic is defined as

Tn,1(τ) = max
1≤j≤dn

S2
τ,j{α̂Z(τ)}

= max
1≤j≤dn

[ 1√
n

n∑
i=1

X∗i,j,τψτ{Yi − Z>i· α̂Z(τ)}
]2
/{τ(1− τ)‖X∗·j,τ‖2/n}. (2.5)

In practice, fτ is unknown and has to be estimated and plugged in. We

propose to estimate fτ by the quotient method (Siddiqui, 1960), i.e.,

f̂i,τ (0) =
2h

Q̂τ+h(Yi | Zi·,Xi·)− Q̂τ−h(Yi | Zi·,Xi·)
, (2.6)

and f̂τ = diag(f̂1,τ (0), . . . , f̂n,τ (0)), where Q̂τ (Yi | Zi·,Xi·) = (Z>i· ,X
>
i· )θ̂(τ),

and θ̂(τ) is the L1-penalized estimator of θ0(τ) = (αZ,0(τ)>,βX,0(τ)>)> (Bel-

loni and Chernozhukov, 2011). The bandwidth h is specified by the “band-

width.rq” function of the R package quantreg. By the proofs in Section S3 of

the Supplementary Materials, the effect of the plug-in estimator f̂τ can be ig-

nored asymptotically, thus we ignore the difference between fτ and f̂τ for the

ease of presentation, but we need to be aware of the finite-sample difference.
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The test statistic Tn,1(τ) can be simplified in the special homoscedastic case

such that fi,τ (·) ≡ fτ (·) for some fτ (·), that is, the errors εi(τ) have a common

distribution that does not depend on covariates. In this case, fτ (·) cancels out in

the expression (2.4), and the test statistic Tn,1(τ) reduces to

Tn,2(τ) = max
1≤j≤dn

S̃2
τ,j{α̂Z(τ)},

where S̃τ,j(αZ) =
1√
n

n∑
i=1

X∗i,jψτ (Yi − Z>i·αZ)/{τ(1− τ)‖X∗·j‖2/n}1/2,

with X∗·j = {I − Z(Z>Z)−1Z}X·j
.
= (X∗1,j, . . . , X

∗
n,j)
>. Note that the score

function S̃τ,j{α̂Z(τ)} used to construct the test statistic Tn,2(τ) is the same as

the sample quantile partial correlation between Y and Xj given Z as defined

inMa et al. (2017). The test statistic Tn,2(τ) has a simpler form and it does not

depend on the unknown density function. In the low-dimensional quantile re-

gression setting, it was known that the score test assuming homoscedastic errors

still performs competitively well when the homoscedasticity assumption is vio-

lated; see Wang and Fygenson (2009) and Park and He (2017). We shall show

in Section 3 that the proposed test based on Tn,2(τ) is also robust against the

violation of homoscedasticity in the high-dimensional setting.

2.3 Asymptotic properties under the null

In this section, we present the asymptotic properties of Tn,k(τ), k = 1, 2 un-

der the null hypothesis. We define the partial correlation matrix of X conditional
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on Z, weighted by the density matrix fτ , as Rτ,X|Z = corr(X∗i,τ ) = (rj,l)
dn
j,l=1,

where X∗i,τ = (X∗i,1,τ , . . . , X
∗
i,dn,τ

)>. Under the special case of homoscedastic

errors, Rτ,X|Z = corr(X | Z). We assume the following conditions, where

Ck, k = 1, . . . , 5 are some positive constants.

A1. (i) The dimension of Z, q is fixed; (ii) the dimension of X, log(dn) =

o{n1/4/ log(n)3/4}; (iii) E(Xj) = 0, and Xj is sub-Gaussian, i.e.

E[exp{C1X
2
j /var(Xj)}] ≤ C2, j = 1, . . . , dn.

A2. For Rτ,X|Z = (rj,l)
dn
j,l=1: (i) C−13 ≤ λmin(Rτ,X|Z) ≤ λmax(Rτ,X|Z) ≤ C3;

(ii) max1≤j<l≤dn |rj,l| ≤ r0 < 1 for some constant 0 < r0 < 1; (iii)

max1≤j≤dn
∑dn

l=1 r
2
j,l ≤ C4.

A3. The density function fi,τ (·) and its derivative f ′i,τ (·) are continuous and

bounded from above, and fi,τ (0) is bounded away from zero, i = 1, . . . , n,

uniformly in n.

A4. Let h∗n be some positive sequence satisfying n1/5h∗n ≥ C5. For ν ∈ [τ −

h∗n, τ + h∗n], assume that Qν(Yi | Zi·,Xi·) = (Z>i· ,X
>
i· )θ0(ν), where sn =

maxν∈[τ−h∗n,τ+h∗n] ‖θ0(ν)‖0 is bounded, and Qν(Yi | Zi·,Xi·) is smooth in

ν and has bounded third derivative with respect to ν.

Condition A1 (i) requires the dimension of Z to be fixed, which is for tech-

nical convenience and also practically reasonable in the GWAS. We can relax
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this condition by allowing q to diverge slowly, and a possible relaxation is that

h∗n
−1(q + sn)

√
log(pn ∨ n)/n → 0, which is required in Lemma S.1. Our

Lemma S.2 is based on fixed q, and more careful investigation is needed for

diverging q. Conditions A1 (ii) and (iii) are about the dimension and distribu-

tion of X, which are standard in high-dimensional settings. Condition A3 is an

assumption on the density function that is standard in quantile regression. Con-

dition A4 ensures that fτ can be consistently estimated; see Lemma S.1 in the

Supplementary Materials for more details. Now we discuss the condition A2.

By the assumption that Xj is centralized, under H0, we have

corr(Sτ,j{αZ,0(τ)}, Sτ,l{αZ,0(τ)} | Z,X)

= corr
[∑n

i=1X
∗
i,j,τψτ{εi(τ)}

{τ(1− τ)‖X∗·j,τ‖2}1/2
,

∑n
i′=1X

∗
i′,l,τψτ{εi′(τ)}

{τ(1− τ)‖X∗·l,τ‖2}1/2
| Z,X

]
=

∑n
i=1X

∗
i,j,τX

∗
i,l,τ

‖X∗·j,τ‖‖X∗·l,τ‖
= rj,l +Op(n

−1/2).

Let Sτ{αZ,0(τ)} = (Sτ,1{αZ,0(τ)}, . . . , Sτ,dn{αZ,0(τ)})>, then corr[Sτ{αZ,0(τ)} |

Z,X] = Rτ,X|Z+Op(n
−1/2), where the convergence rateOp(n

−1/2) is component-

wise. That is, conditions A2 (i)-(iii) are essentially imposed on the score func-

tions under the null hypothesis, which are analogous to conditions 1, 3 and that

in Lemma 6 of Cai et al. (2014). Conditions A2 (i)-(ii) are mild, while A2 (iii) is

needed to control the number of positively correlated covariates, which is a key

condition in the proof of the asymptotic results.
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Theorem 1 presents the asymptotic null distribution of Tn,1(τ).

Theorem 1. Suppose that conditions A1-A4 hold. Then for any x ∈ R, we have

P [Tn,1(τ)− 2 log(dn) + log{log(dn)} ≤ x | H0]→ exp{−π−1/2 exp(−x/2)},

as n, dn →∞.

The proof of Theorem 1 consists of two parts, where the first part is to

control max1≤j≤dn |Sτ,j{α̂Z(τ)} − Sτ,j{αZ,0(τ)}|, and the second part is to de-

rive the asymptotic distribution of max1≤j≤dn S
2
τ,j{αZ,0(τ)}. The derivation of

the first part is challenging because the asymptotic difference between αZ,0(τ)

and α̂Z(τ) is reflected through the indicator function, and we overcome this

challenge by applying the Hoeffding inequality and a chaining argument as in

Lemma A.2 of Wang and He (2007). We prove the second part by using the fact

that for each j ∈ {1, . . . , dn}, #{l : |corr[Sτ,j{αZ,0(τ), Sτ,l{αZ,0(τ)]| > d−γ0n }

is well controlled by A2 (iii) for some γ0 > 0, which is similar to the proof of

Theorem 6 in Cai et al. (2014).

By Theorem 1, we can reject the null hypothesis at the significance level γ if

Tn,1(τ) > 2 log(dn)− log{log(dn)}+ qγ , where qγ = − log(π)− 2 log{log(1−

γ)−1}. Alternatively we can calculate the P -value as

1− exp
(
− π−1/2 exp

[
− Tn,1(τ)− 2 log(dn) + log{log(dn)}

2

])
.

For the homoscedastic case, we have the following corollary.
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Corollary 1. Assume that fi,τ (·) ≡ fτ (·) for some fτ (·) across i, and conditions

A1-A3 hold. Then for any x ∈ R, we have

P [Tn,2(τ)− 2 log(dn) + log{log(dn)} ≤ x | H0]→ exp{−π−1/2 exp(−x/2)},

as n, dn →∞.

2.4 Asymptotic properties under the local alternative

In this section, we study the asymptotic properties of Tn,k(τ), k = 1, 2 under

the local alternative,

Ha : Qτ (Yi|Zi·,Xi·) = Z>i·αZ,0(τ) + X>i·βX,n(τ), i = 1, . . . , n,

βX,n(τ) = b0(τ)
√

log(dn)/n, (2.7)

where b0(τ) = (b1,0(τ), . . . , bdn,0(τ))>. We assume that the number of nonzero

components in b0(τ), denoted as s0(τ), is fixed. Without loss of generality, we

assume that the first s0(τ) components of b0(τ) are nonzero.

To establish the asymptotic property of the test statistics under (2.7), we

make an additional assumption, with a discussion in Section S2.

A5. Let ω∗j,l,τ = E{fi,τ (0)X∗i,j,τX
∗
i,l,τ}/{τ(1 − τ)E(X∗2i,j,τ )}1/2. Assume that

max1≤j≤dn |
∑s0(τ)

l=1 bl,0(τ)ω∗j,l,τ | >
√

2 + ε for some positive constant ε.

Theorem 2. Assume that conditions A1-A5 hold, and s0(τ) is fixed. Under the

local alternative (2.7), for any γ > 0, we have

P [Tn,1(τ)− 2 log(dn) + log{log(dn)} > qγ | Ha]→ 1, as n, dn →∞.
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Since
√

log(dn)/n is the optimal convergence rate that can be obtained in

high-dimensional settings (Belloni and Chernozhukov, 2011), Theorem 2 indi-

cates that the proposed test is asymptotically sharp.

2.5 Multiplier bootstrap

The asymptotic results in Theorem 1 and Corollary 1 provide a simple cali-

bration method for the proposed maximum-score test statistic. Our preliminary

results show that this asymptotic calibration performs well for large samples,

but it tends to be conservative in finite samples. To achieve better finite sample

performance, we propose an alternative calibration method based on a multi-

plier bootstrap procedure. The idea of multiplier bootstrap was also considered

in other settings for low-dimensional data, e.g. He and Zhu (2003), Zhang et

al. (2014), Horowitz (2019). We shall show that the proposed multiplier boot-

strap method is computationally convenient and theoretically valid under the

high-dimensional setting. Below we describe the procedure for the test statistic

Tn,1(τ), which covers Tn,2(τ) as a special case.

Step 1. Let

Tn,1(τ)∗ = max
1≤j≤dn

{ 1√
n

n∑
i=1

wiX
∗
i,j,τψτ (ei)

}2

/
{
τ(1− τ)‖X∗·j,τ‖2/n

}
,

where {ei; i = 1, . . . , n} is a random sample with the τ -th quantile zero, and

{wi; i = 1, . . . , n} is a random sample independent of ei with zero mean, unit

variance and a finite third moment. We generate ei from N(−Φ−1(τ), 1) and wi
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from a two-point distribution with P (w = 1) = P (w = −1) = 1/2.

Step 2. Repeat Step 1M times to obtain bootstrap statistics {Tn,1(τ)∗1, . . . , Tn,1(τ)∗M},

and calculate the P -value as M−1∑M
b=1 I{Tn,1(τ)∗b > Tn,1(τ)}.

Unlike the conventional bootstrap methods, the multiplier bootstrap does not

require reanalyzing the data repeatedly and thus is computationally efficient. An

intuitive justification is given by (S.17) in Section S3.2, where we show

Sτ,j{α̂Z(τ)} = Sτ,j{αZ,0(τ)}+Op

{
n−1/4(log n)3/4

}
=

1√
n

n∑
i=1

X∗i,j,τψτ{εi(τ)}/{τ(1− τ)‖X∗·j,τ‖2/n}1/2 +Op

{
n−1/4(log n)3/4

}
under the null hypothesis. Theorem 3 provides the theoretical justification for

the multiplier bootstrap method in the high-dimensional setting. Similar results

can also be obtained under conditions A1-A3 for the homoscedastic case.

Theorem 3. Suppose that conditions A1-A4 hold. Then for any x ∈ R, we have

PD [Tn,1(τ)∗ − 2 log(dn) + log{log(dn)} ≤ x|H0]→ exp{−π−1/2 exp(−x/2)},

as n, dn →∞, where the superscript D means conditional on the observed data

{(Yi,Zi·,Xi,·), i = 1, . . . , n}.

2.6 Forward selection via a sequential conditional test

The proposed conditional maximum-score test aims to assess the overall

significance of X. If the test leads to the rejection of H0, indicating that at least
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one component of X is associated with the τ th quantile of Y after accounting for

the effect of Z, the next natural question is to identify those important variables.

The proposed test can be used as a stopping rule in forward regression to discover

significant components in X. To account for multiple testing in the sequential

procedure, we follow a similar two-stage selection as in Tang et al. (2018).

In the first stage, we initialize the forward regression by sequentially ap-

plying the proposed test. Specifically, we perform the conditional marginal test

with X(0) = X and Z(0) = Z. Let ĵ1 be the index of the predictor in X(0) that

gives the largest squared conditional marginal-score statistic and P1 be the as-

sociated P -value. If P1 > γ, the pre-specified significance level, we stop and

declare that there is no significant Xj’s. Otherwise, we move Xĵ1
from X(0) to

Z(0) and repeat the procedure until no more significant predictors are detected.

Assume that the selected covariate set is Z(K) = {Z, Xĵ1
, . . . , XĵK

}, with as-

sociated P -values as {P1, . . . , PK}. In the second stage, we perform multiple

test adjustment. Suppose that K ≥ 1. Define K∗ = 1 if P1 > γ/K, otherwise

K∗ = max1≤k≤K{k : Pl ≤ γ/(K− l+1), l = 1, . . . , k}, and the finally selected

covariate set is chosen as Z(K∗) = {Z, Xĵ1
, . . . , XĵK∗

}.

While it is challenging to establish a formal theoretical justification for the

proposed two-stage method due to its sequential nature, our numerical studies

in Section 3 show that the method performs well in terms of both false positives
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and false negatives for modest and large samples.

3 Simulation study

3.1 Size and power study

We generate the simulation data from the following model,

Yi = Z>i·αZ,0 + X>i·
√

log(dn)/nb0 + (1 + a0Xi,1)εi, i = 1, . . . , n,

where Zi· = (1, Z̃>i· )
>, a0 is the parameter controlling the heterogeneity of the

noises, αZ,0 = 1q=6, b0 = 0dn=pn−q underH0 and b0 = δ(1, 0.8, 0.6, 0.4, 0.2, 0>dn−5)
>

under Ha. We let δ ∈ (0, δmax,pn ] for some pre-specified δmax,pn .

We consider three cases to examine the performance of the proposed test.

In Case 1, (Z̃>i· ,X
>
i· )
> ∼ N(0, I(pn−1)×(pn−1)) and εi ∼ N(0, 1) with a0 =

0. In Case 2, (Z̃>i· ,X
>
i· )
> ∼ N(0,Σ), where Σ = (σl,l′)l,l′=1,...,pn−1, σl,l′ =

0.5|l−l
′| and εi ∼ t3 with a0 = 0. In Case 3, non-Gaussian regressors with

heteroscedastic errors are considered. Specifically, we first generate Ui· =

(Ui,1, . . . , Ui,pn−1)
> ∼ N(0,Σ), where Σ is the same as in case 2, and then

let Z̃i,l = 2
√

3Φ(Ui,l) −
√

3 for l = 1, . . . , 5, and Xi,l−5 = 2
√

3Φ(Ui,l) −
√

3

for l = 6, . . . , pn − 1. Furthermore, we let εi ∼ t3 with a0 = 1/2. Therefore, in

this heteroscedastic case, the true quantile coefficient of Xi,1 is β1,0(τ) = b0,1 +

a0F
−1
t3 (τ), which is nonzero and thus corresponds to the alternative model for all

τ 6= 0.5 even when b0 = 0dn . For all cases, we consider pn = 10, 50, 200, 1000

and n = 200, 800, and set the nominal level as γ = 0.05, and the number of rep-
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etitions in the multiplier bootstrap method as M = 500. We also consider a case

to mimic the motivating GFR study in Section S1.2, and the main observations

are similar to Cases 1-3.

The following tests are compared: (i) four variations of the proposed test,

TEn,1(τ), TBn,1(τ), TEn,2(τ), TBn,2(τ), where the superscript indicates using the asymp-

totic extreme value distribution (E) or the multiplier bootstrap procedure (B) to

obtain the critical value; (ii) RS, the regularized rank score test in Park and He

(2017), with pn < n; (iii) QME, the quantile marginal effect test from Wang

et al. (2018a) with the tuning parameter set as λn = 3
√
τ(1− τ) log n; (iv)

BON, Bonferroni adjustment method, where the individual P -values are based

on Sτ,j{α̂Z(τ)} and its asymptotic normality, j = 1, . . . , dn, i.e., the proposed

conditional marginal rank score statistics for heteroscedastic cases; (v) CCT,

Cauchy combination test in Liu and Xie (2019), where the individual P -values

are the same as in BON; (vi) CAR, the conditional adaptive resampling test

in Tang et al. (2018) for the mean model, with the tuning parameter set as

λn = max
[
3(log n)1/2,Φ−1 {1− γ/(2dn)}

]
; (vii) GC, the partial test in Guo

and Chen (2016) for the mean model, which is based on a sum-squared-type

U -statistic. The number of bootstraps is set as 500 for both QME and CAR. In

Wang et al. (2018a) and Tang et al. (2018), the tuning parameter is selected by

double bootstrap, which is computationally intensive, so we fix the parameter
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at one value that performs relatively better to save the computation time. Table

S.1 in the Supplementary Materials summarizes the average computing time for

each method. Results show that the methods that do not require the estimation

of fτ , namely RS, Tn,2(τ) and GC, are computationally more efficient than those

do, namely Tn,1(τ), BON and CCT. In addition, the resampling-bootstrap-based

methods QME and CAR are computationally much more expensive than all the

other methods, even if double bootstrap is not used for the tunings.

Table 3.1 summarizes the rejection percentages of different methods in Cases

1 and 3 with b0 = 0; empirical sizes from Case 2 are similar to those from

Case 1, thus are moved to Table S.2 in the Supplementary Materials. In all

scenarios but Case 3 with τ = 0.25, the null hypothesis is true so the rejec-

tion rate corresponds to the empirical size; while in Case 3 with τ = 0.25,

β1,0(τ) = 1
2
F−1t3 (0.25), thus the rejection rate corresponds to the power.

Under the null model, all four variations of the proposed test result in Type

I errors close to the nominal level, but the tests based on the asymptotic critical

values are slightly more conservative, especially for n = 200. Even though the

test based on Tn,2(τ) assumes homoscedastic errors, the method still performs

competitively well in the heteroscedastic Case 3 in terms of both Type I error and

power, and it is computationally much simpler than the test based on Tn,1(τ).

The RS performs well for small pn, but it becomes quite conservative for larger
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pn and it is not applicable when pn ≥ n. The QME is sensitive to the choice of

the tuning parameter; it gives deflated Type I error in most scenarios but inflated

Type I errors at τ = 0.25 for n = 200 and pn = 1000. The BON and CCT control

the Type I errors reasonably well, but in heteroscedastic Case 3 with τ = 0.25,

they are both more conservative than the proposed multiplier bootstrap method

for detecting signals, especially for n = 200. Finally, the mean-based tests CAR

and GC perform well in the homoscedastic cases, but they are not able to detect

the signal at tail quantiles caused by the heteroscedasticity as seen in Case 3.

The limited performance of QME is probably caused by three reasons. First,

the theory of QME only works for fixed-dimensional covariates. Second, QME

is proposed for the marginal test. When adapting it to the conditional test, the

method treats quantile residuals obtained from regressing Y on Z as the new re-

sponse and then applies marginal test over X. This may lead to inflated error rate

if components in Z and X are highly correlated, which is often seen in the high-

dimensional settings, due to the spurious correlation in the sample. Third, the

tuning parameter λn is chosen using the same rule of thumb across simulations

and thus is not data adaptive. Its performance may be improved by using double

bootstrap to select a data-adaptive λn, but the computation is heavily intensive

and not practical for large pn.

To compare the power of different tests, we focus on τ = 0.5 and n =
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200. We let the number of nonzero coefficients be s0(τ) = 5 and set b0 =

δ(1, 0.8, 0.6, 0.4, 0.2, 0>dn−5)
>, where δ varies from 0 to δmax,pn with δmax,pn = 6

for pn = 10 and δmax,pn = 5 for pn = 50, 200, 1000. In the following analysis,

we exclude QME because it is difficult to control the Type I error due to its

sensitivity to the choice of the tuning parameter, and we also exclude BON and

CCT since they were shown in Table 3.1 to be more conservative for detecting

signals in heteroscedastic cases with small samples.

Figure 3.1 presents the power curves of different methods. Both CAR and

GC are designed for detecting the mean effect. The CAR method gives higher

power in Case 1 with homoscedastic normal errors, but the method is less pow-

erful for models with heavy-tailed (Case 2) and heteroscedastic (Case 3) errors.

The GC test is based on a sum-squared-type test statistic so it is less powerful

to detect the sparse signal in all four cases, especially for large pn. In addition,

neither CAR nor GC can identify the signal at tails as shown in Table 3.1. The

rank score test (RS) performs competitively well for pn = 10 but it quickly loses

for larger pn and the method does not work for cases with pn ≥ n. The four

variations of the proposed test perform similarly, giving either competitive or

higher power than the other three methods. Among the four variations, the tests

based on the multiplier bootstrap tend to be more powerful than their asymptotic

counterparts, and the tests based on Tn,2(τ) assuming homoscedastic errors are
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slightly more powerful than those based on Tn,1(τ).

3.2 Forward selection

In this section, we assess the performance of forward selection by using the

proposed test as the stopping rule. Data are generated from the following model,

Yi = Z>i·αZ,0 + X>i·βX,0 + (1 + a0Xi,1)εi, i = 1, . . . , n,

where Zi· = (1, Z̃>i· )
>, αZ,0 = 16, βX,0 = (0, 1, 1, 0.8, 0.8, 0>pn−11)

>, with

n = 200, pn = 200 and 1000; (Z̃>i· ,X
>
i· )
> and εi are generated as in Cases

1 and 3 with a0 = 0 for Case 1 and 0.5 for Case 3, and 1000 replicates are

considered, with nominal level γ = 0.05. We compare the following forward

selection procedures: (i) TBn,1(τ), sequential test based on TBn,1(τ); (ii) L1, the

L1-penalized variable selection method in Belloni and Chernozhukov (2011),

without penalizing the coefficients of Z; (iii) QPCOR-L1, the quantile partial

correlation screening in Ma et al. (2017), and we use their algorithm 3 to re-

duce the dimension of X from dn to n/ log n, then followed by the L1-penalized

method in Belloni and Chernozhukov (2011); (iv) CAR, sequential test based on

CAR, with the same tuning parameter over replicates as in Section 3.1. For the

sequential-test-based methods TBn,1(τ) and CAR, multiple test adjustments as in

Section 2.6 are applied. For the quantile based methods, we focus on τ = 0.5.

In evaluating the performance of different methods, we consider the per-

centages of replicates in which Xj, j = 1, . . . , 5 are selected (PS), the average
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Figure 3.1: Power curves of different methods in Cases 1 (first row), 2 (second

row) and 3 (third row), with n = 200 and τ = 0.5: TEn,1(τ) (dashed), TBn,1(τ) (line

with solid square), TEn,2(τ) (line with solid dots), TBn,2(τ) (line with triangle),

RS (line with open circle); CAR (dotted); GC (line with diamond). The gray

horizontal line stands for the nominal level of 0.05.
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number of false positives (FP), percentages of replicates of under-fit (UF) in

which at least one important Xj is not selected, and percentages of replicates in

which the exact true model (TM) is selected. We find that: (i) the performance of

TBn,1(τ) is competitive or better in all the scenarios; (ii) both L1 and QPCOR-L1

tend to over-fit the model (higher FP), and further steps may be applied to the

selected model to refine the selection accuracy, but inherent uncertainty may be

accumulated; (iii) CAR performs well when the noise is homoscedastic normal

(Case 1), but the under-fit percentages (UF) can be high when the noises are

heavy-tailed with heteroscedasticity (Case 3).

4. Analysis of the glomerular filtration rate

A single-nucleotide polymorphism (SNP) is a substitution of a single nu-

cleotide that occurs at a specific position in the genome, some of which are

linked to genes affecting specific phenotypes. In this section, we apply the pro-

posed test and forward selection procedure to screen a large number of SNPs in

a thorough search for mutations associated with phenotypes of interests, in the

presence of some “protected” demographic covariates. Over a million SNPs are

mapped in the GWAS of the Diabetes Control and Complications Trial (DCCT),

a randomized clinical trial studying the effects of intensive monitoring of glu-

cose levels on long-term microvascular complications, among Type 1 diabetes

patients. The response variable of interest is the glomerular filtration rate (GFR,
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Table 3.3: Forward selection results in Cases 1 and 3, n = 200.

Case pn Method PS FP UF TM
X1 X2 X3 X4 X5

1 200 TBn,1(τ) 0.0 100.0 100.0 100.0 100.0 0.071 0.0 93.1
L1 0.0 100.0 100.0 99.6 99.9 0.085 0.5 91.5

QPCOR-L1 0.1 100.0 100.0 100.0 99.9 0.276 0.1 76.2
CAR 0.0 100.0 100.0 100.0 100.0 0.058 0.0 94.4

1000 TBn,1(τ) 0.0 100.0 99.8 99.8 99.8 0.071 0.2 92.9
L1 0.0 99.9 100.0 97.5 98.0 0.092 4.5 87.0

QPCOR-L1 0.4 100.0 100.0 99.9 100.0 0.688 0.1 50.0
CAR 0.0 100.0 100.0 100.0 100.0 0.071 0.0 93.3

3 200 TBn,1(τ) 0.0 99.2 99.9 97.9 99.3 0.074 2.8 90.4
L1 0.6 100.0 100.0 100.0 100.0 0.112 0.0 89.9

QPCOR-L1 0.9 100.0 100.0 100.0 100.0 0.332 0.0 72.3
CAR 0.1 96.4 95.1 83.2 88.4 0.045 30.0 66.3

1000 TBn,1(τ) 0.0 98.7 98.7 94.2 98.0 0.071 8.1 85.5
L1 0.3 100.0 100.0 100.0 100.0 0.085 0.0 91.8

QPCOR-L1 0.5 100.0 100.0 100.0 100.0 0.813 0.0 43.4
CAR 0.1 93.2 92.8 75.7 83.1 0.033 43.9 54.6

TB
n,1(τ): forward selection based on TB

n,1(τ); L1: the L1-penalized variable selection method in

Belloni and Chernozhukov (2011); QPCOR-L1: the QPCOR in Ma et al. (2017); CAR: forward

selection based on CAR in Tang et al. (2018). PS: percentages of being selected; FP: average

number of false positives; UF: percentages of replicates in which at least one important Xj is

not selected; TM: percentages of replicates in which the exact true model is selected.

measured in percentages), a well-used clinical index of overall kidney func-

tion. Although multiple GFR measurements were collected during follow-up,

we are interested in the most severe status of nephropathy risks, which is usu-

ally measured by the most recent kidney functions, i.e. the GFR measurement

at the last visit. The “protected” covariates includes gender, treatment, age (in
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years, centered), duration of diabetes (in weeks, centered) and body mass index

(BMI, centered), where the duration of diabetes measures the different stages of

nephropathy development across the patients.

The GWAS of DCCT contains in total 1.18 million candidate SNPs, while

the number of patients is only 1304, far less than the number of SNPs. One

important statistical issue concerns assessing the overall significance of groups

of SNPs, i.e. whether there exists SNPs in a set of genes that has effect on the

disease, while controlling for the family-wise error rate. Most work in GWAS

considered mean-based tests. However, in this study, the mean of GFR is less

important clinically than the tail quantiles, because the mean values are usually

driven by the majority of participants with normal kidney function, while the

lower quantiles reflect the characteristics of the subset of participants with ele-

vated risks of nephropathy. Furthermore, GFR values are skewed to the left even

after logarithm transformation (Figure 4.1), thus quantile regression at several

lower quantile levels could provide more clinically relevant information than the

mean regression, and it also enables us to work on the original scale providing

better interpretation to clinicians and patients. For these reasons, we would like

to assess the significance of SNPs on lower quantiles of GFR, to identify SNPs

and gene pathways associated with patients at higher risks of nephropathy, and

we consider quantile levels τ = 0.1, 0.25 and 0.5.
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Figure 4.1: Log-transformed GFR% from the type 1 diabetes patients at the last visit in the

DCCT study.

To apply the proposed method, we focus on a subset of SNPs, which be-

long to genes related to nephropathy in MSigDB Curated Gene Sets (http://

software.broadinstitute.org/gsea/msigdb/), including 2908 SNPs

after deleting those not satisfying the Hardy-Weinberg equilibrium (Crow, 1999).

For further pre-processing, we (i) delete one female patient who has 98% of the

SNPs missing; (ii) delete SNPs with any missing values; (iii) delete SNPs with

minor allele frequency less than 5%; (iv) prune highly correlated SNP pairs, de-

fined as correlation coefficients larger than 0.99. Finally, we have 1303 patients,

consisting of 695 males and 608 females, and 981 SNPs. The SNPs are coded as

-1, 0, 1, that is, the number of minor alleles minus 1. Previous work suggested

that the risk factor mechanisms of nephropathy may be different in males and

females (Silbiger and Neugarten, 2003). Therefore, we study male and female
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participants separately, and the forward selection presented later shows that dif-

ferent sets of SNPs are identified for men and women, which further validates

our stratified analysis by gender.

We first apply all the four variations of the proposed test for overall signifi-

cance test at different quantiles. Conditional on Z, all variations of the proposed

test conclude that there exist significant SNPs, at τ = 0.1, 0.25, 0.5, with P -

values smaller than 0.0001. We also apply CAR in Tang et al. (2018) for overall

significance test on the conditional mean. We consider the test with tuning pa-

rameter λn = max
[
a(log n)1/2,Φ−1 {1− γ/(2dn)}

]
, a ∈ {3, 4, 5, 6, 7}, and all

the λn’s lead to the same P -values, which are 0.572 and 0.324 for male and

female groups, respectively, which indicates that no SNP is significantly associ-

ated with the conditional mean of the GFR.

Next we proceed to forward selection by applying TBn,1(τ) (sequentially), L1

and QPCOR-L1 to select the significant SNPs. To account for the randomness

in the selection procedure, the covariate selection procedure is repeated in ran-

domly selected subsets of size 0.8n in each gender group. No SNP is selected by

either L1 or QPCOR-L1 in any random split, which is probably caused by weak

signals and/or over penalization. Table 4.1 presents the frequencies of the SNPs

which are selected at least 10 times by our method, over 50 random subsets.

For further verification, we regress Y on Z at the τ -th quantile, obtaining the
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residuals under the null model. In general, if one SNP has effect on the response,

residuals with different genotypes would have different distributions. We calcu-

late the variance, mean and the τ -th quantile of the residuals in genotype “AA”

and “Aa” for each SNP, and report the ranks of the differences among 981 SNPs

in Table 4.1. We find that, most of the SNPs selected with high frequencies have

high ranks in at least one of the three criteria, which provides further evidence

for the impacts of the selected SNPs on the lower quantiles of GFR.

Furthermore, we searched PubMed for publications that studied the SNPs

identified in our analysis as validation from external data for the functions of

the reported SNPs. Specifically, rs9331949 and rs1044506 were found to be

associated with dementia, epilepsy and Alzhermer’s disease (Bennet et al., 2011;

Du et al., 2016; Stage et al., 2016; Tan et al., 2016) and rs3830041 was found

to be associated with HepB-related hepatocellular carcinoma (Yu et al., 2017).

Further study of the functions of these two SNPs in dbSNP (https://www.

ncbi.nlm.nih.gov/snp) shows that rs9331949 is involved in cell death

while rs3830041 belongs to the NOTCH family which plays a role in vascular,

renal and hepatic development.

Finally, we discuss the selected SNPs via gene pathways. The 11 selected

SNPs in females belong to nine different genes (EML1, FAM53B, PPM1F, PT-

GIS, PTPRB, PTPRM, UGT2B7, UNC5B, ZCCHC24), which have significant
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overlaps with three known gene sets:

BAELDE DIABETIC NEPHROPATHY UP (P -value=6.48× 10−22),

GO TRANSMEMBRANE RECEPTOR PROTEIN PHOSPHATASE ACTIVITY

(P -value=5.25×10−6), and GO PHOSPHOPROTEIN PHOSPHATASE ACTIVITY

(P -value=5.92 × 10−6). The first set include genes up-regulated in glomeruli

of kidneys from patients with diabetic nephropathy (type 2 diabetes mellitus),

while the other two gene sets are related to catalysis which controls the state of

phosphorylation of cell proteins and thereby provide an important mechanism

for regulating cellular activity. The 15 selected SNPs in males belong to 10 dif-

ferent genes (ATP10B, CAPN3, CLU, FAM53B, NOTCH4, PTGIS, PTPRM,

SLC6A7, TEK, ZCCHC24), which also overlaps significantly with

BAELDE DIABETIC NEPHROPATHY UP (P -value=1.38 × 10−24). Further-

more, the markers selected in males also overlaps with gene set

GO CELLULAR COMPONENT MORPHOGENESIS (P -value=2.44×10−6),

which functions in the process of cellular structure generation and organization.

5. Discussion

The proposed method is based on a maximum-type test statistic, which is

known to be powerful when the signals are sparse. In some studies, it is possible

that the signals are weak and dense, that is, groups of markers jointly affect the

phenotype, while the signal of each marker is faint. To adapt different types of
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Table 4.1: Summary of SNPs selected in the random subsets.
τ Gender SNP Frequency rvar rmean rQτ
0.1 M rs11742097 A 19 22 14 94

rs6866731 G 12 26 15 89

F rs8091758 T 27 3 4 13
rs16952201 T 13 1 95 21

0.25 M rs2240785 C 26 3 6 5
rs9331949 C 20 1 1 1

F rs2083564 A 18 902 822 741
rs16952201 T 14 1 3 9

0.5 M rs9331949 C 28 1 1 1
rs2240785 C 26 5 9 5

rs28364433 A 26 921 208 578
rs28364475 T 26 443 5 401
rs1982285 T 26 2 23 4
rs3830041 T 24 386 8 158
rs1044506 T 22 889 90 623

rs11002952 A 21 730 955 720
rs10050146 T 14 259 31 32
rs7099298 A 12 18 254 10

rs10129739 C 10 26 34 77

F rs11002951 T 40 249 4 87
rs10999763 C 24 17 242 21
rs10050146 T 22 65 11 860
rs7099298 A 22 48 343 52
rs2567136 T 20 792 375 60
rs2241199 C 11 4 26 19

rs11746151 C 10 697 360 220

Frequency: selected times among 50 random partitions; rvar, rmean, rQτ
: rank of differences in

residual variances, means and quantiles, in two genotypes “AA” and “Aa”.

signals, we may consider a hybrid test statistic by taking a weighted average of

the maximum- and sum-squared-type statistics as in Tang et al. (2018). However,

the existing literature for sum-squared-type test requires either smoothed loss
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functions (Guo and Chen, 2016), or limited dimensionality of markers (Park

and He, 2017), or stronger conditions on the noises (Wu et al., 2019). Further

investigation is needed in this direction for high-dimensional quantile regression

with possibly heavy-tailed noises.

Supplementary Materials

The Supplementary Materials include some additional numerical results,

discussion of condition A5, and the proofs of Theorems 1-3.
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