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Projection-based Inference

for High-dimensional Linear Models

Sangyoon Yi and Xianyang Zhang

Texas A&M University

Abstract: We develop a new method to estimate the projection direction in the

debiased Lasso estimator. The basic idea is to decompose the overall bias into

two terms corresponding to strong and weak signals respectively. We propose to

estimate the projection direction by balancing the squared biases associated with

the strong and weak signals as well as the variance of the projection-based esti-

mator. Standard quadratic programming solver can efficiently solve the resulting

optimization problem. In theory, we show that the unknown set of strong sig-

nals can be consistently estimated and the projection-based estimator enjoys the

asymptotic normality under suitable assumptions. A slight modification of our

procedure leads to an estimator with a potentially smaller order of bias compar-

ing to the original debiased Lasso. We further generalize our method to conduct

inference for a sparse linear combination of the regression coefficients. Numerical

studies demonstrate the advantage of the proposed approach concerning coverage

accuracy over some existing alternatives.

Key words and phrases: Confidence interval, High-dimensional linear models,

Lasso, Quadratic programming.
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1. Introduction

Uncertainty quantification after model selection has been an active field

of research in statistics for the past few years. The problem is challenging

as the Lasso type estimator does not admit a tractable asymptotic limit

due to its non-continuity at zero. Standard bootstrap and subsampling

techniques cannot capture such non-continuity and thus fail for the Lasso

estimator even in the low-dimensional regime. Several attempts have been

made in the recent literature to tackle this challenge. For example, (Multi)

sample-splitting and subsequent statistical inference procedures have been

developed in Wasserman and Roeder (2009) and Meinshausen, Meier, and

Bühlmann (2009). Meinshausen and Bühlmann (2010) proposed the so-

called stability selection method based on subsampling in combination with

selection algorithms. Chatterjee and Lahiri (2011, 2013) have considered

the bootstrap methods that can provide valid approximation to the limiting

distributions of the Lasso and adaptive Lasso estimators, respectively.

For statistical inference after model selection, Berk et al. (2013) devel-

oped a post-selection inference procedure by reducing the problem to one

of simultaneous inference. Lockhart et al. (2014) constructed a statistic

from the Lasso solution path and showed that it converges to a standard

exponential distribution. To account for the effects of the selection, Lee et
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al. (2016) developed an exact post-selection inference procedure by char-

acterizing the distribution of a post-selection estimator conditioned on the

selection event. By leveraging the same core of statistical framework, Tib-

shirani et al. (2016) proposed a general scheme to derive post-selection

hypothesis tests at any step of forward stepwise and least angle regression,

or any step along the Lasso regularization path. Barber and Candès (2015)

proposed an inferential procedure by adding knockoff variables to create

certain symmetry among the original variables and their knockoff copies.

By exploring such symmetry, they showed that the method provides finite

sample false discovery rate control. The knockoff procedure has been ex-

tended to the high dimensional linear model in Barber and Candès (2019)

and the settings in which the conditional distribution of the response is

completely unknown in Candès et al. (2018).

Along with a different line that is more closely related to the current

work, Zhang and Zhang (2014) first introduced the idea of regularized pro-

jection, which has been further explored and extended in van de Geer et al.

(2014) and Javanmard and Montanari (2014). The common idea is to find

a projection direction designed to remove the bias term in the Lasso esti-

mator. The resulting debiased Lasso estimator which is no longer sparse

was shown to admit an asymptotic normal limit. To find the projection
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direction, the nodewise Lasso regression by Meinshausen and Bühlmann

(2006) was adopted in both Zhang and Zhang (2014) and van de Geer et al.

(2014), while Javanmard and Montanari (2014) considered a convex opti-

mization problem to approximate the precision matrix of the design. Zhand

and Cheng (2017) and Dezeure, Bühlmann and Zhang (2017) proposed

boostrap-assisted procedures to conduct simultaneous inference based on

the debiased Lasso estimators. Belloni, Chernozhukov and Hansen (2014)

developed a two-stage procedure with the so-called post-double-selection as

first and least squares estimation as second stage. Ning and Liu (2017) pro-

posed a decorrelated score test in a likelihood based framework. Zhu and

Bradic (2018a,b) developed projection-based methods that are robust to the

lack of sparsity in the model parameter. More recent advances along this

direction include Neykov et al. (2018) and Chang et al. (2020). Focusing on

the theoretical aspects of debiased Lasso, Javanmard and Montanari (2018)

studied the optimal sample size for debiased Lasso and Cai and Guo (2017)

showed that the debiased estimator achieves the minimax rate. Although

the methodology and theory for the debiased Lasso estimator are elegant,

its empirical performance could be undesirable. For instance, the average

coverage rate for active variables could be far lower than the nominal levels

in finite sample [see, e.g., van de Geer et al. (2014)].
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A natural question to ask is whether there exist alternative projection

directions that can improve the finite sample performance in the original

debiased Lasso estimator. In this paper, we propose a new method to

estimate the projection direction and construct a novel Bias Reducing Pro-

jection (BRP) estimator, which is designed to further reduce the bias of

the original debiased Lasso estimator. Different from the nodewise Lasso

adopted in both Zhang and Zhang (2014) and van de Geer et al. (2014), we

propose a direct approach to estimate the projection direction. Our method

is related to the procedure in Javanmard and Montanari (2014) but differs

in the following aspects. (i) We formulate a different objective function

which appropriately balances the squared bias and the variance of the BRP

estimator; (ii) We decompose the bias term into two parts according to a

preliminary estimate of the signal strength: one associated with the strong

signals and the other one related to the weak signals and noise; (iii) We

develop new methods to estimate the set of strong signals and to select the

tuning parameters involved in the objective function.

Our approach relies crucially on the following observation in finite sam-

ple: the bias term associated with the strong signals contributes more to the

overall bias. Motivated by this fact, we estimate the projection direction

by minimizing an objective function that assigns different weights to the
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squared bias terms associated with the strong and weak signals. The set

of strong signals is unknown but can be consistently estimated based on a

preliminary debiased Lasso estimator. The resulting optimization problem

can be cast into a quadratic programming problem which can be efficiently

solved using a standard quadratic programming solver. We use residual

bootstrap to estimate the coverage probabilities associated with different

choices of weights and select the one that delivers the shortest interval width

while ensuring that the bootstrap estimate of the coverage probability is

close to the nominal level.

In theory, we show that the unknown set of strong signals can be consis-

tently estimated by a surrogate set based on a preliminary projection-based

Lasso estimator, where the projection direction is obtained using a novel

formulation. The BRP estimator is shown to enjoy the asymptotic normal-

ity under suitable assumptions. As one of the main contributions, we prove

that a slight modification of our BRP estimator leads to an estimator with a

potentially smaller order of bias comparing to the original debiased Lasso.

We further generalize our BRP estimator to conduct statistical inference

for a sparse linear combination of the regression coefficients under suitable

assumptions on a loading vector. We demonstrate the usefulness of the

proposed approach by comparing it with the state-of-the-art approaches in
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simulations.

The rest of the paper is organized as follows. We introduce the

projection-based estimator and develop a new formulation to find the pro-

jection direction in Section 2. We propose a method to estimate the set

of strong signals and show its consistency in Section 3.1. We establish the

asymptotic normality of the BRP estimator in Section 3.2 and the modified

BRP estimator which could result in a potentially smaller order of bias com-

pared to the original debiased Lasso is proposed in Section 3.3. Section 4

generalizes the method to conduct inference for a sparse linear combination

of the regression coefficients. We develop a bootstrap-assisted procedure

for choosing the tuning parameters in Section 5. Section 6 presents some

numerical results. Section 7 concludes. Technical details and additional

numerical results are gathered in Supplementary Material.

Throughout this paper, we use the following notations: For a matrix

A ∈ Rd×d and two sets I, J ⊆ [d] := {1, 2, . . . , d}, denote by AI,J (A−I,−J)

the submatrix of A with (without) the rows in I and columns in J . Write

A[d],−I = A−I . Similarly for a vector a ∈ Rq, write aI (a−I) the subvector

of a with (without) the components in I. Let ‖a‖q with 0 ≤ q ≤ ∞ be

the lq norm of a and write ‖a‖ = ‖a‖2. For two sets S1,S2, let S1 \ S2 be

the set of elements in S1 but not in S2. Denote by |S1| the cardinality of
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S1. For a square matrix A, let λmax(A) and λmin(A) be its largest and

smallest eigenvalues respectively. Define ‖A‖ = ‖A‖op = supa∈Sd−1 ‖Aa‖

as the operator norm of A, where Sd−1 is the unit sphere in Rd. The

sub-gaussian norm of a random variable X which we denote by ‖X‖ψ2 is

defined as ‖X‖ψ2 = supq≥1 q
−1/2(E|X|q)1/q. For a random vector X ∈ Rd,

its sub-gaussian norm can be defined as ‖X‖ψ2 = supa∈Sd−1 ‖a>X‖ψ2 . The

sub-exponential norm of a random variable X which we denote by ‖X‖ψ1

is defined as ‖X‖ψ1 = supq≥1 q
−1(E|X|q)1/q. For a random vector X ∈ Rd,

its sub-exponential norm can be defined as ‖X‖ψ1 = supa∈Sd−1 ‖a>X‖ψ1 .

Let (M, ρ) be a metric space and let ε > 0. A subset Nε ofM is called an

ε-net of M if every point x ∈ M can be approximated within ε by some

point y ∈ Nε, i.e., ρ(x, y) ≤ ε. The minimal cardinality of an ε-net ofM is

called the covering number of M.

2. Projection-based estimator

To illustrate the idea, we shall focus on the high-dimensional linear

model:

Y = Xβ + ε, (2.1)

where Y = (y1, . . . , yn)> ∈ Rn×1 is the response vector, X = (X1, . . . , Xp) ∈

Rn×p is the design matrix, β = (β1, . . . , βp)
> ∈ Rp×1 is the vector of un-
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known regression coefficients with ‖β‖0 = s0 and ε = (ε1, . . . , εn)> is the

vector of independent errors with the common variance σ2.

2.1 Motivation

Suppose we are interested in conducting inference for a single regression

coefficient βj for 1 ≤ j ≤ p. We first rewrite model (2.1) as

ηj := Y −X−jβ−j = Xjβj + ε. (2.2)

If the value of ηj is known, the problem would reduce to the inference about

βj in a simple linear regression model. As ηj is not directly observable, a

natural idea is to replace ηj by a suitable estimator defined as

η̂j = Y −X−jβ̂−j = Xjβj + ε+ X−j(β−j − β̂−j), (2.3)

where β̂ is a preliminary estimator for β. Here (2.3) is an approximation

to (2.2) with the extra term X−j(β−j − β̂−j) due to the estimation effect

by replacing β−j with β̂−j. In this paper, we focus on the Lasso estimator

given by

β̂ = argmin
β̃∈Rp

{
1

2n
‖Y −Xβ̃‖2 + λ‖β̃‖1

}
whose properties have now been well understood [see e.g. Bühlmann and

van de Geer (2011); Hastie, Tibshirani and Wainwright (2015)]. We also
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try the alternative Lasso formulation without penalizing βj in our numer-

ical studies and find that it does not improve the finite sample perfor-

mance. Now given a projection vector vj = (vj,1, . . . , vj,n)> ∈ Rn×1 such

that v>j Xj = n, we define the projection-based estimator for βj as

β̃j(vj) :=
1

n
v>j η̂j = βj +

1

n
v>j ε+R(vj, β−j), (2.4)

where R(vj, β−j) = n−1v>j X−j(β−j − β̂−j) is the bias term caused by the

estimation effect. (2.4) implies that

√
n(β̃j(vj)− βj) =

1√
n
v>j ε+

√
nR(vj, β−j).

To ensure that β̃j(vj) has asymptotically tractable limiting distribution, we

require the bias term
√
nR(vj, β−j) to be dominated by the leading term

n−1/2v>j ε, which converges to a normal limit under suitable assumptions.

In other words, the bias term
√
nR(vj, β−j) controls the non-Gaussianity

of β̃j(vj). A practical challenge here is that the bias
√
nR(vj, β−j) can be

hardly estimated directly from the data. It is common in the literature to

replace |
√
nR(vj, β−j)| by a conservative estimator using the l1− l∞ bound,

i.e.,

‖
√
n(β−j − β̂−j)‖1‖n−1v>j X−j‖∞. (2.5)

See Zhang and Zhang (2014), van de Geer et al. (2014), Javanmard and

Montanari (2014). We note that the variance of n−1/2v>j ε is equal to
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σ2n−1‖vj‖2. To achieve efficiency, we shall also try to minimize σ2n−1‖vj‖2

given that the bias
√
nR(vj, β−j) is properly controlled. Because the first

term in (2.5) is independent of vj, we can seek a projection direction to min-

imize a linear combination of ‖n−1v>j X−j‖2∞ and the variance σ2n−1‖vj‖2.

However, the l1 − l∞ bound on the whole bias term could be conservative

as it does not take into account the specific form of the bias term. We note

that the bias term can be written as

√
nR(vj, β−j) =

1√
n

∑
k 6=j

v>j Xk(βk − β̂k)

=
1√
n

∑
k∈S(1)j (ν)

v>j Xk(βk − β̂k) +
1√
n

∑
k∈S(2)j (ν)

v>j Xk(βk − β̂k)

=
√
nR(1)(vj, β−j) +

√
nR(2)(vj, β−j),

(2.6)

where S(1)
j (ν) := S(ν) \ {j} and S(2)

j (ν) := S(ν){ \ {j} denote the index

sets (except j) associated with the strong and weak signals respectively for

S(ν) := {k : |βk| ≥ ν} and both R(1)(vj, β−j) and R(2)(vj, β−j) are defined

accordingly. Here ν is a threshold that separates the coefficients into two-

groups namely the group with strong signals and the group with weak or

zero signal. For example, one can set ν = c0
√

log(p)/n for some large

enough constant c0, which is the minimax rate for support recovery.

The formulation (2.6) using the decomposition associated with signal

strengths can be emprically motivated. Specifically, it generally provides a
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smaller bias than the one without such decomposition with the simulated

data. Figure 4 illustrates one such representative case where we make a

comparison of the biases for projection vectors calculated based on two dif-

ferent methods: the one solves (2.8) by using the estimated set of strong

signals as in Section 3.1 (denoted by “With Decomposition”) and the other

one solves the same problem but with A(1)
j = ∅ (denoted by “Without De-

composition”). It can be seen that “With Decomposition” shows a smaller

bias than “Without Decomposition.” Similar results could be observed in

various simulation settings.

2.2 A new projection direction

In this subsection, we propose a novel formulation to find the projection

direction. When |S(1)
j (ν)| ≤ n, we have the freedom to choose vj to make

the term ‖n−1v>j XS(1)j (ν)
‖∞ arbitrarily small. In fact, we can always choose

vj such that it is orthogonal to all Xk with k ∈ S(1)
j (ν). The basic idea

here is to find a projection direction vj such that it is “more orthogonal”

to the space spanned by {Xk}k∈S(1)j (ν)
as compared to the space spanned

by {Xk}k∈S(2)j (ν)
. With this intuition in our mind and the goal to balance

the squared bias with the variance, we formulate the following optimization
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problem

min
vj

(
γ1 max

k∈S(1)
j (ν)

|n−1v>j Xk|2 + γ2 max
k∈S(2)j (ν)

|n−1v>j Xk|2 + σ2n−1‖vj‖2
)
,

s.t. v>j Xj = n, (2.7)

where γ1, γ2 > 0 are tuning parameters which control the trade-off between

the squared bias and the variance. The term γ1 max
k∈S(1)

j (ν)
|n−1v>j Xk|2

(γ2 max
k∈S(2)

j (ν)
|n−1v>j Xk|2) corresponds to the l1−l∞ bound for R2

(1) (R2
(2)).

By introducing two ancillary variables uj1, uj2, problem (2.7) can be cast

into the following quadratic programming problem

min
uj1,uj2,vj

(γ1u
2
j1 + γ2u

2
j2 + σ2n−1‖vj‖2),

s.t. v>j Xj = n,

− uj1 ≤ n−1v>j Xk ≤ uj1, k ∈ S(1)
j (ν),

− uj2 ≤ n−1v>j Xk ≤ uj2, k ∈ S(2)
j (ν),

which can be solved efficiently using existing quadratic programming solver.

The set S(1)
j (ν) is generally unknown and needs to be replaced by a

surrogate set A(1)
j with |A(1)

j | ≤ n. In Section 3.1, we describe a method to

select A(1)
j based on a preliminary projection-based estimators. We show

that A(1)
j converges asymptotically to a nonrandom limit, i.e.,

P
(
A(1)
j = B(1)

j

)
→ 1,
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for a nonrandom subset B(1)
j of [p]. We remark that B(1)

j does not need

to agree with S(1)
j (ν) for our procedure to be valid. To ensure that the

remainder term is negligible, the theoretical analysis in Section 3.2 suggests

that γ1 and γ2 should both be of the order O (σ2n/ log p). Combining the

above discussions, we now state the optimization problem for obtaining the

optimal projection direction

min
uj1,uj2,vj

(
C1

n

log p
u2j1 + C2

n

log p
u2j2 + n−1‖vj‖2

)
,

s.t. v>j Xj = n,

− uj1 ≤ n−1v>j Xk ≤ uj1, k ∈ A(1)
j ,

− uj2 ≤ n−1v>j Xk ≤ uj2, k ∈ A(2)
j ,

(2.8)

where A(2)
j :=

(
A(1)
j

){
\ {j} and C1, C2 > 0 are tuning parameters whose

choice will be discussed in Section 5.

Remark 1. A related method is the refitted Lasso by Liu and Yu (2013).

The idea is to refit the model selected by the Lasso and conduct inference

based on the refitted least squares estimator. Such an estimator fits into

the framework of the projection-based estimators. To see this, let Ŝ be

the set of active variables selected by the Lasso and note that β̂k = 0 for

k /∈ Ŝ. For each j ∈ Ŝ, let ŵj be the projection of Xj onto the orthogo-

nal space of XŜ\{j}. Then the refitted least squares estimator is given by
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ŵ>j (Y − X−jβ̂−j)/(ŵ
>
j Xj). It is easy to see that the bias for the refitted

least squares estimator is proportional to
∑

k/∈Ŝ ŵ
>
j Xkβk, which disappears

when the selected model contains all significant variables. However, when

the model selection consistency fails, such a procedure is no longer valid

due to the nonnegligible bias.

3. Methodology

3.1 Surrogate set

We describe a procedure to estimate the set of strong signals based

on a preliminary projection-based estimator. It should be noted that the

estimator here is different from the original debiased Lasso because it is

based on the novel formulation (2.8). Specifically, for some τ > 0, we define

our estimate for the set of strong signals as

A(τ) := {l : |Tl| >
√
τ log p} where Tl =

√
nβ̃l(v̂l)

σ̂n−1/2||v̂l||
(3.1)

where σ̂ is an estimator of the noise level σ and β̃l(v̂l) is a projection-based

estimator with v̂l being the solution to the following optimization problem

min
ul,vl

(
C0

n

log p
u2l + n−1‖vl‖2

)
,

s.t. v>l Xl = n,

− ul ≤ n−1v>l Xk ≤ ul, k 6= l.

(3.2)
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In practice, both C0 and τ need to be appropriately chosen. The details for

the selection will be discussed in Section S1. Note that (3.2) is a special

case of (2.8) when we have no knowledge about the set of strong signals,

that is, A(1)
l = ∅. We define the surrogate sets to be

A(1)
j (τ) := A(τ) \ {j}, A(2)

j (τ) := A(τ){ \ {j}. (3.3)

Throughout the paper, we consider the variance estimator

σ̂2 =
1

n
‖Y −Xβ̂‖2 (3.4)

which appears to outperform an alternative estimator ‖Y − Xβ̂‖2/(n −

‖β̂‖0) studied in Reid, Tibshirani and Friedman (2016), see Figure 22 in

the supplementary material for a comparison. Before presenting the main

result of this subsection, we introduce some assumptions.

Assumption 1. There exist a set B ⊆ [p] = {1, 2, . . . , p} and 0 ≤ d0 < d1

such that

max
l∈B{

|
√
nβl|
σ

≤
√
d0 log p,

min
l∈B

|
√
nβl|
σ

≥
√
d1 log p.

Assumption 2. The error ε is a mean-zero sub-Gaussian random vector

with the sub-Gaussian norm κε.

Assumption 3. The preliminary estimator satisfies that

√
n‖β̂ − β‖1 = Op(s0

√
log(p)).
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3. METHODOLOGY17

Assumption 4. The variance estimator σ̂2 is consistent in the sense that

σ̂/σ
p→ 1.

Assumption 5. Suppose the design matrix X ∈ Rn×p has i.i.d. rows with

zero population mean and covariance matrix Σ = (Σi,j)
p
i,j=1. Assume that

1. maxj Σj,j <∞;

2. λmin(Σ) ≥ Λmin > 0;

3. The rows of X are sub-Gaussian with the sub-Gaussian norm κ <∞.

Assumption 6. n, p and s0 satisfy the rate condition s0 log p/
√
n = o(1).

Assumption 1 allows the strengths of strong and weak signals to be

the same order and thus is much weaker than the “beta-min” condition

which requires the weak signals to be of smaller order. Assumptions 3 and

4 are satisfied for the Lasso estimator and the variance estimator σ̂ in (3.4)

under suitable regularity conditions [Bühlmann and van de Geer (2011)].

Assumptions 2 and 5 require the error and design to be sub-Gaussian.

Similar assumptions have been made in van de Geer et al. (2014). Like

Javanmard and Montanari (2014), the validity of our method does not rely

on the sparsity of the precision matrix of the design, which is required in the

nodewise Lasso regression for the original debiased Lasso. In view of Cai and
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Guo (2017), the rate condition in Assumption 6 cannot be relaxed without

extra information. Zhu and Bradic (2018a,b) proposed testing procedures

in high-dimensional linear models which impose much weaker restrictions on

model sparsity or the loading vector representing the hypothesis. However,

their methods require certain auxiliary sparse models, which are not needed

for our procedure.

Define Σj\−j = Σj,j − Σj,−jΣ
−1
−j,−jΣ−j,j and κ0j =

2

(
1 +

√
Λ−1minΣj,j

)
κ2 for 1 ≤ j ≤ p. The following proposition

shows that the surrogate set A(1)
j (τ) with a properly chosen τ converges to

B \ {j}.

Proposition 1. Define A(1)
j (τ) and A(2)

j (τ) as in (3.3) and let v̂l be the

solution to (3.2) for l 6= j. Suppose d0, d1 and τ satisfy

σ2

32eκ2ε
(
√
τ −

√
d0 max

l
Σl,l)

2 > 1 (3.5)

and
√
d1/M −

√
τ > 0 where

M =

(
min
1≤l≤p

Σl\−l

)2
(

2C0

(
min
1≤l≤p

1

8e2
1

(κ0l)2

)−1
+ max

1≤l≤p
Σl\−l

)
.

Then, under Assumptions 1-6, we have

P

(
max
l∈B(2)j

|Tl| ≤
√
τ log p

)
→ 1,

P

(
min
l∈B(1)j

|Tl| >
√
τ log p

)
→ 1,
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where B(1)
j := B \ {j} and B(2)

j :=
(
B(1)
j

){
\ {j}. As a consequence,

P
(
A(1)
j (τ) = B(1)

j

)
→ 1.

Remark 2. As shown in Proposition 1, the surrogate set in (3.3) has an

asymptotic (nonrandom) limit, which implies that the projection direction

obtained in (2.8) is asymptotically independent of the random error ε. This

fact is useful in the proof of Theorem 1 later. To ensure the independence

between the projection direction and the random error, we can also employ

the sample splitting strategy, i.e., we split the samples into two subsamples,

estimate the set of strong signals based on the first subsample and construct

the projection-based estimator based on another subsample. As we use all

samples in building the projection-based estimator, our method is more

efficient than the sample splitting strategy.

Remark 3. When d0 = 0, B coincides with the support of β. Proposition 1

suggests that one can consistently recover the support of β by thresholding

the projection-based estimator.

3.2 Bias reducing projection (BRP) estimator

In this subsection, we introduce the bias reducing projection (BRP)

estimator and study its asymptotic behavior. Let ṽj be the solution to

(2.8) based the surrogate sets in (3.3). Then the BRP estimator β̃j(ṽj) is
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defined as

β̃j(ṽj) =
1

n
ṽ>j η̂j =

1

n
ṽ>j (Y −X−jβ̂−j).

In the following, we introduce the two asymptotic results depending on

whether the surrogate set is estimated from the same data set used to

find the projection direction. We first state the following theorem on the

asymptotic normality when the surrogate set is estimated via (3.3).

Theorem 1. Denote by ṽj the solution to (2.8) with A(1)
j (τ) and A(2)

j (τ) in

(3.3). Suppose the assumptions in Proposition 1 hold and further assume

that for some δ > 0,

‖ṽj‖2+δ = oa.s.(‖ṽj‖). (3.6)

Then we have √
n
(
β̃j(ṽj)− βj

)
σ̂n−1/2‖ṽj‖

d→ N(0, 1). (3.7)

Thus an asymptotic 100(1− α)% confidence interval for βj is given by

CI(1− α) =

{
b ∈ R :

∣∣∣∣∣
√
n(β̃j(ṽj)− b)
σ̂n−1/2‖ṽj‖

∣∣∣∣∣ ≤ z1−α/2

}
, (3.8)

where z1−α/2 is the 1− α/2 quantile of N(0, 1).

(3.6) is a Lyapunov type condition which implies the central limit the-

orem. This type of assumption regarding the projection direction has also

been imposed in Dezeure, Bühlmann and Zhang (2017). It can be dropped
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under the Gaussian assumption on the errors. If the surrogate set is chosen

based on prior knowledge or estimated from an independent data set (e.g.,

based on sample splitting), then Assumptions 1-2 can be relaxed and we

have the following result.

Corollary 1. Suppose the surrogate set A(1)
j is independent of the data.

Under Assumptions 3-6 and further assuming that for some δ > 0,

E[|εi|2+δ] <∞ and ‖ṽj‖2+δ = oa.s.(‖ṽj‖), then (3.7) still holds.

3.3 Modified bias reducing projection (MBRP) estimator

We introduce a modified bias reducing projection (MBRP) estimator

which is motivated by Proposition 1 and the refitted Lasso idea. This new

estimator would lead to a potentially smaller order of bias compared to

that of the original debiased Lasso estimator under suitable assumptions

as shown in Proposition 2. Thus, it is expected to provide better empirical

coverage probability. See more details in Section 6. To motivate the MBRP

estimator, we note that the bias associated with the BRP estimator based

on some estimator β̌ for β can be written as

√
nR(vj, β−j) =

1√
n

∑
k 6=j

v>j Xk(βk − β̌k)

=
1√
n

∑
k∈B(1)j

v>j Xk(βk − β̌k) +
1√
n

∑
k∈B(2)j

v>j Xk(βk − β̌k)
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where B(1)
j ,B(2)

j are the same as in Proposition 1. When |B(1)
j | ≤ n, we can

always require vj to be exactly orthogonal to XB(1)j
. So, the bias associated

with the set of strong signals becomes zero. Thus it suffices to control the

bias term associated with B(2)
j by properly choosing vj and β̌, which will be

clarified below.

To find the projection direction for the MBRP estimator, we consider

the optimization problem

min
uj2,vj

(
C2

n

log p
u2j2 + n−1‖vj‖2

)
,

s.t. v>j Xj = n,

n−1v>j Xk = 0, k ∈ A(1)
j ,

− uj2 ≤ n−1v>j Xk ≤ uj2, k ∈ A(2)
j .

(3.9)

Different from (2.8), we require the projection direction to be orthogonal

to the column space of XA(1)
j

in (3.9). Instead of using the Lasso estimator

β̂, we shall adopt the refitted least squares estimator β̌ as our preliminary

estimator, i.e.,

β̌A(1)
j

= argmin
β̃

1

2n
‖Y −XA(1)

j
β̃‖2, β̌A(2)

j
= 0. (3.10)

The MBRP estimator is then defined as

β̃j(v̄j) =
1

n
v̄>j (Y −X−jβ̌−j) = βj +

1

n
v̄>j ε+R(v̄j, β−j) (3.11)
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where R(v̄j, β−j) = n−1v̄>j X−j(β−j − β̌−j) and v̄j is the solution to problem

(3.9). The MBRP estimator can be viewed as an intermediate estimator

between the refitted Lasso and the BRP estimator based on (2.8). While

(3.9) is a variant of (2.8) seeking for a projection direction that is exactly

orthogonal to the column space of XA(1)
j

, the modified procedure uses the

refitted estimator for β as the refitted Lasso does as noted in Remark 1.

We argue that the bias term
√
nR(v̄j, β−j) which controls non-

Gaussianity could have a potnetially smaller order compared to that of

the original debiased Lasso estimator in the following.

Proposition 2. Denote by v̄j the solution to (3.9) with A(1)
j (τ) and A(2)

j (τ)

defined in (3.3). Let β̌ be the refitted least square estimator in (3.10).

Conditional on the event {A(2)
j = B(2)

j }, we have

|
√
nR(v̄j, β−j)| ≤ Op

(√
d0‖βB(2)j

‖0
log p√
n

)
(3.12)

under Assumptions 1 and 5. If we further assume that

√
d0‖βB(2)j

‖0 = o(s0), (3.13)

the bias
√
nR(v̄j, β−j) is asymptotically negligible with smaller order than

that of the original debiased Lasso given by Op(s0 log p/
√
n).

In particular, (3.13) holds if d0 = o(1) and d1 = O(1), i.e., the strength

of weak signals is of smaller order compared to the strong signals. It is more
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stringent than Assumption 1 where the magnitudes of the set of strong sig-

nals and weak signals are allowed to be of the same order. However, it

should be mentioned that Proposition 2 is not necessary for the asymp-

totic normality in Corollary 2 to be achieved. The following result shows

the asymptotic normality of (3.11) which can be proved by using similar

arguments as those for Theorem 1.

Corollary 2. Under the assumptions in Theorem 1, we have
√
n
(
β̃j(v̄j)− βj

)
σ̂n−1/2‖v̄j‖

d→ N(0, 1),

where β̃j(v̄j) is defined in (3.11) and v̄j is the solution to (3.9).

4. Inference on a sparse linear combination of parameters

In some applications, one may be interested in conducting inference on

a>β for a (sparse) loading vector a = (a1, . . . , ap)
> ∈ Rp with ‖a‖0 = s� n.

Denote by S = S(a) = {1 ≤ j ≤ p : aj 6= 0} the support set of a. Our

method can be generalized to construct estimator and conduct inference for

a>β = a>SβS. Recall that β̂ is the preliminary estimator of β. Define

ηS = Y −X−Sβ−S = XSβS + ε

and

η̂S =Y −X−Sβ̂−S = XSβS + ε+ X−S(β−S − β̂−S).
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We construct an estimator for a>β in the form of n−1v>a η̂S, where va =

(va,1, . . . , va,n)> is a projection direction such that n−1v>a η̂S has tractable

asymptotic limit. Notice that

n−1v>a η̂S =n−1v>a XSβS + n−1v>a ε+ n−1v>a X−S(β−S − β̂−S)

=a>SβS + (n−1v>a XS − a>S )βS + n−1v>a ε+ n−1v>a X−S(β−S − β̂−S).

Under the equality constraint that n−1v>a XS − a>S = 0 and by rearranging

the above terms, we have

√
n(n−1v>a η̂S − a>SβS) = n−1/2v>a ε+

√
nR(va, β−S), (4.1)

where R(va, β−S) = n−1v>a X−S(β−S − β̂−S). Similar to (2.6), the bias term

can be decomposed into two parts corresponding to different strengths of the

signals. Let A(1)
S be the surrogate set for the set of strong signals (excluding

the elements in S), which can be obtained in a similar way as described in

Section 3.1. Following the derivations in Section 2, we can formulate the

following optimization problem to find va

min
ua1,ua2,va

(
C1

n

log p
u2a1 + C2

n

log p
u2a2 + n−1‖va‖2

)
,

s.t. v>a XS = na>S ,

− ua1 ≤ n−1v>a Xk ≤ ua1, k ∈ A(1)
S ,

− ua2 ≤ n−1v>a Xk ≤ ua2, k ∈ A(2)
S ,

(4.2)
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where A(2)
S :=

(
A(1)
S ∪ S

){
. Denote by (ũa1, ũa2, ṽa) the solution to (4.2).

Our estimator for a>β is thus given by n−1ṽ>a η̂S whose asymptotic normality

is established in the following theorem.

Theorem 2. With ‖a‖0 = s� n, suppose the assumptions in Proposition

1 hold and ‖ṽa‖2+δ = oa.s.(‖ṽa‖) for some δ > 0. Then, we have

√
n
(
n−1ṽ>a η̂S − a>β

)
σ̂n−1/2‖ṽa‖

d→ N(0, 1). (4.3)

Thus an asymptotic 100(1− α)% confidence interval for a>β is given by

CI(1− α) =

{
b ∈ R :

∣∣∣∣∣
√
n
(
n−1ṽ>a η̂S − b

)
σ̂n−1/2‖ṽa‖

∣∣∣∣∣ ≤ z1−α/2

}
,

where z1−α/2 is the 1− α/2 quantile of N(0, 1).

We mention some existing works for inference on linear combinations of

β. When the sparsity level s0 is known, Cai and Guo (2017) obtained the

minimax expected length of confidence intervals for a>β in both the sparse

and dense loading regions. They further showed that without the knowl-

edge of s0, rate-optimal adaptation in the sparse loading regime is only

possible under Assumption 6 and in the dense loading regime, adaptation

to s0 is impossible. In Zhu and Bradic (2018b), the authors proposed a test

for linear hypothesis, which does not impose restriction on model sparsity

or the loading vector representing the hypothesis. Nevertheless, compared
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to our method, the method by Zhu and Bradic (2018b) requires an addi-

tional sparse model to account for the dependence between the so-called

synthesized feature and the stabilized feature.

Parallel to Corollary 1, if the surrogate set is estimated based on prior

information or an independent data set, Assumptions 1-2 can be dropped

and the asymptotic normality can be established as follows.

Corollary 3. Suppose the surrogate set A(1)
j is independent of the data.

Under Assumptions 3-6 and further assuming that for some δ > 0,

E[|εi|2+δ] <∞ and ‖ṽa‖2+δ = oa.s.(‖ṽa‖), then (4.3) still holds.

5. Selecting the tuning parameters

Bootstrap for debiased Lasso has been recently studied in both Zhand

and Cheng (2017) and Dezeure, Bühlmann and Zhang (2017) to approxi-

mate the sampling distribution of the debiased Lasso estimator. Here we

propose a bootstrap-assisted approach for choosing the tuning parameters

in (2.8), (3.2) and (3.9). Specifically, the residual bootstrap is used to ob-

tain the empirical coverage rate and its standard error for selecting the

optimal tuning parameters. We focus our discussions on (2.8) and remark
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that the procedure is applicable to (3.2) and (3.9) as well. Let

ε = (ε1, . . . , εn)> = Y −Xβ̂

and ε̄i = εi − n−1
∑n

j=1 εj be the centered residual where β̂ denotes the

cross-validated Lasso estimator. Given a sequence of tuning parameters{(
c1,j,(k), c2,j,(k)

)}K
k=1

, we first calculate ṽj
(
c1,j,(k), c2,j,(k)

)
which is the solu-

tion to (2.8) given
(
c1,j,(k), c2,j,(k)

)
. Note that the projection direction ṽj

only needs to be calculated once for each pair of tuning parameters. Given{
ṽj
(
c1,j,(k), c2,j,(k)

)}K
k=1

, we do the following.

1. To generate the b-th bootstrap sample, we sample n residuals with

replacement from {ε̄i}ni=1 and denote the corresponding samples by

ε∗b = (ε∗b,1, . . . , ε
∗
b,n)>. Then, generate Y ∗b such that Y ∗b = Xβ̂ + ε∗b .

2. With (X, Y ∗b ), calculate the cross-validated Lasso estimator β̂∗b as well

as the projection-based estimator

β̃j(ṽj(c1,j,(k), c2,j,(k))) =
ṽj(c1,j,(k), c2,j,(k))

>(Y ∗b −X−jβ̂
∗
b,−j)

n
,

where β̂∗b,−j denotes β̂∗b without the j-th component. We then calculate

the 100(1− α)% confidence interval CI∗b,j,(k) by using (3.8). For each

j, calculate I(β̂j ∈ CI∗b,j,(k)) which is 1 if β̂j is covered by CI∗b,j,(k) and

0 otherwise. Also, calculate the length of CI∗b,j,(k) and denote it as

Len∗b,j,(k).
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3. Repeat the above steps for B bootstrap samples. We choose the

tuning parameters for βj as

(c∗1,j,(k), c
∗
2,j,(k)) = argmin

k
AvgLenj,(k)

s.t. Ĉoverj,(k) + SE(Ĉoverj,(k)) ≥ 1− α.

where AvgLenj,(k) = B−1
∑B

b=1 Len∗b,j,(k) and

Ĉoverj,(k) =

∑B
b=1 I(β̂j ∈ CI∗b,j,(k))

B
,

SE(Ĉoverj,(k)) =

√
Ĉoverj,(k)(1− Ĉoverj,(k))

B
.

In words, the optimal pair of tuning parameters is selected with the

minimum average interval length among all the pairs whose empirical

coverage rate increased by one standard error is at least the nominal

level 1− α.

6. Numerical results

6.1 Confidence interval for a single regression coefficient

We conduct simulations to evaluate the finite sample performance of the

proposed BRP and MBRP estimators. We use the R package quadprog to

solve the quadratic programming problems involved in our methods and the

R package doMC with 5 cores for parallel computation. All the other imple-

mentation details are the same as described in Section S1. For comparison,
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we implement the debiased Lasso in van de Geer et al. (2014) (denoted by

DB) using the R package hdi and the method in Javanmard and Montanari

(2014) (denoted by JM) using the code posted on the authors’ website. As

we encounter some numerical issue when implementing JM’s code for the

equicorrelation covariance structure of X in (ii). Therefore, we only report

the results of JM for the toeplitz covariance structure of X. In addition,

we present the results of the double selection approach in Belloni, Cher-

nozhukov and Hansen (2014) (denoted by BCH) using the R package hdm.

Due to the high computational cost of BCH in the case of equicorrelation

covariance, we only report the result for the active set. We also implement

the method in Zhu and Bradic (2018b) (denoted by “ZB” and “ZB2”). The

only difference between ZB and ZB2 lies on the choice of the constant c in

the tuning parameter η =
√
c(log p)/n in (12) of their paper. In ZB, we set

c = 2 as suggested by the authors while in ZB2, we let c = 10−3.

In (2.1), the rows of X are considered to be i.i.d realizations from

N(0,Σ) with Σjj = 1 under two scenarios: (i) Σj,k = 0.9|j−k| (denoted

as Tp); (ii) Σj,k = 0.8 for all j 6= k (denoted as Eq). To generate β, we

consider the following two cases,

Case 1) βj
i.i.d.∼ U(0, 4) with s0 = 3, 5, 10, 15.

Case 2) Half of the non-zero βj’s are independently generated from
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U(0, 0.5) and the rest are generated from U(2.5, 3) with s0 =

4, 8, 12, 16.

The errors are independently generated from (a) the standard normal distri-

bution; (b) the studentized t(4) distribution, i.e., t(4)/
√

2; (c) the central-

ized and studentized Gamma(4,1) distribution, i.e., (Gamma(4, 1) − 4)/2.

The simulation results for (b) and (c) are summarized in the supplementary

material. To save space, we only included the results of BCH, ZB and ZB2

for case (a). Throughout the simulations, we set n = 100, p = 500 and the

nominal level 1 − α = 0.95. All the simulation results are based on 100

independent simulation runs.

We summarize the empirical coverage probabilities, the corresponding

confidence interval lengths and the absolute value of the overall normalized

bias defined as

Bias =
|
√
nR(vj, β−j)|√
σ̂2n−1‖vj‖2

(6.1)

for both the active set and the inactive set in Figures 5-8. The R code of Ja-

vanmard and Montanari (2014) makes a finite sample adjustment. To avoid

unfair comparison, we do not include their method in the bias comparison.

As inverting the test statistic in Zhu and Bradic (2018b) doesn’t provide

a closed form of confidence interval, the interval lengths of ZB and ZB2

are numerically calculated by using the bisection-type method. To avoid
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computational burden therein, we only calculate the lengths of 5 confidence

intervals of ZB and ZB2 for inactive set in each simulation runs.

We observe that (i) BRP and MBRP generally provide more accurate

coverage for the active set in comparison to DB and JM. The coverage

probability for the active set based on DB can be significantly lower than

the nominal level. While BCH shows similar or slightly higher coverage

rate than BRP for the Toeplitz covariance structure, its coverage rate is

lower than the nominal level in the equicorrelation case; (ii) The interval

length of BCH is generally similar or wider than the lengths of BRP and

MBRP, which is in turn wider than that of DB for the active set. Both ZB

and ZB2 tend to provide wider confidence intervals compared to the other

methods. (iii) For the equicorrelation covariance structure and s0 ≥ 10, ZB2

delivers the most accurate coverage rate followed by MBRP. In contrast,

the other methods significantly undercover in these cases. (iv) The better

coverage of the active set for our method is closely related to the smaller

bias. Interestingly, the coverage rate for the inactive set seems not sensitive

to the bias; (v) The computation time of our method is between those of

DB and ZB as shown in Table 1; (vi) The bias associated with the active set

tends to be larger than that with the inactive set especially in the case of

Toeplitz covariance. BRP seems to overally reduce the bias associated with
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both the active and inactive sets in such case; (vii) The coverage rate for

the inactive set is usually close or above the nominal level for all methods

except for ZB. According to our extensive simulations, the over-coverage is

partly caused by the overestimation of the noise level as illustrated in Figure

22 in the supplementary material. Overall, our proposed method appears

to outperform DB, JM, BCH and ZB in terms of coverage accuracy.

Figures 9-10 plot the bias and length of BRP and MBRP against C2

selected by the procedure in Section 5. It is interesting to note that for

BRP, the interval width generally increases while the bias decreases with

C2. The pattern is less obvious for MBRP with most of the values of C2

concentrate around the lower end of the grid points in (S1.1).

6.2 Confidence interval for a sparse linear combination of regres-

sion coefficients

In this subsection, we investigate the finite sample performance of

the method in Section 4. We consider the case where a linear contrast

for two coefficients is of interest. We set the true regression coefficient

β = (b1, b1, b2, b3, 0, · · · , 0)>, where b1, b2, b3 are drawn independently from

U(0, 4). Depending on a, we consider the following two cases:

Contrast 1: a = (1,−1, 0, · · · , 0)> and a>β = b1 − b1 = 0;
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Contrast 2: a = (0, 0, 1,−1, , 0, · · · , 0)> and a>β = b2 − b3 6= 0.

We adopt the same procedures as before for choosing the surrogate set

and the tuning parameters but the results are based on 300 independent

simulation runs. The configuration for ε is the same as in the previous

subsection. The results for t-distributed and gamma errors are presented

in the supplementary material.

Figure 11 shows the empirical coverage rates, the corresponding confi-

dence interval widths as well as the bias for each contrast. For the Toeplitz

covariance structure, BRP and MBRP provide closer coverage rate to the

nominal level but with wider interval length than DB does. In particu-

lar, MBRP delivers the smallest bias. Thus, the better coverage for our

method is again closely related to the smaller bias in the finite sample.

For the equicorrelation covariance structure, the coverage rates of all the

methods are close to the nominal level. We also note that ZB2 provides

satisfactory coverage probabilities while ZB significantly undercovers in the

case of Toeplitz covariance structure. Similar to the case for a single regres-

sion coefficient, the lengths of ZB and ZB2 are generally wider than those

of the other methods.
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6.3 Real data analysis

As a real data application, we consider a dataset of riboflavin (vita-

min B2) production by Bacillus subtilis. The dataset is available in the

R package hdi and has also been analyzed in van de Geer et al. (2014)

and Javanmard and Montanari (2014). It contains n = 71 observations of

p = 4088 covariates of gene expressions and a response of riboflavin pro-

duction. We model the data using (2.1) and consider the following multiple

hypothesis testing for the significance of each gene:

Hj,0 : βj = 0 for j = 1, · · · , 4088.

We use Theorem 1 and Corollary 2 to calculate the p-values based on BRP

and MBRP respectively. The Holm procedure is adopted for multiplicity

adjustment with the 5% significance level. Neither of our methods finds

any significant predictors, which is also the case for DB while there turn

out to be two significant genes YXLD-at and YXLE-at identified by JM.

7. Concluding remark

We have proposed a new method to find the projection direction in the

debiased Lasso estimator and demonstrated its advantage over the original

debiased Lasso estimator in van de Geer et al. (2014) and the method in
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Javanmard and Montanari (2014). The main contributions of the paper are

summarized below.

• We propose a new formulation to estimate the projection direction

by properly balancing the biases associated with the strong and weak

signals respectively.

• We show that the set of strong signals can be consistently estimated

and establish the asymptotic normality of the proposed estimator.

• We further propose a modified estimator which can lead to a smaller

order of bias comparing to the original debiased Lasso both theoreti-

cally and empirically.

• We generalize our idea to conduct inference for a sparse linear com-

bination of regression coefficients.

As for future research, we expect that our method can be extended to other

settings such as the generalized linear models, the Cox proportional hazards

model and nonparametric additive models.

Supplementary Materials

The supplementary material provides the appendix for the main paper,

the technical details for and the additional numerical results.
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