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Abstract

We propose a regularized projection score method for estimating treatment ef-
fects in quantile regression in the presence of high-dimensional confounding covari-
ates. We show that the proposed estimator of the treatment effects is consistent and
asymptotically normal, with a root-rate of convergence. We also provide an effi-

cient algorithm for the proposed estimator. This algorithm can be easily implemented
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using existing software. Furthermore, we propose and validaefitted wild boot-
strapping approach for variance estimation. This enables us to construct confidence
intervals for treatment effects in high-dimensional settings. Simulation studies are
carried out to evaluate the finite sample performance of the proposed estimator. A

GDP growth rate dataset is used to demonstrate the applications of the method.

Key Words: Efficiency score; High dimension; Quantile regression; Wild bootstrap.

1 Introduction

Quantile regressiorKenker and Bassett 19¥8 an important tool for analyzing the re-
lationship between a response variable and a set of covariates. It has a wide range of
applications in the analysis of non-Gaussian data, which arises frequently in applied eco-
nomic research. Unlike least squares regression, which models the conditional mean of
a response given the covariates, quantile regression focuses on the conditional quantiles.
Thus, it is able to provide a description of the conditional distribution of the response
given the covariates. There is an extensive literature on the theoretical properties and com-
putational algorithms for quantile regression when the number of regressors is fixed or
increases at a lower rate than the sample size; see, for exafoaieker(2005 and the
references therein. In this paper, we estimate low-dimensional treatment effects in the
presence of a high-dimensional nuisance parameter vector.

There is now a substantial body of work on penalized methods for variable selection
in high-dimensional models. Several important penalty functions have been introduced,

including least absolute shrinkage and the selection operator (Lasso) 6r pemalty



(Tibshirani 199§, the smoothly clipped absolute deviation (SCAD) penafiginand Li

2001), and the minimax concave penalty (MCEh@ng 201). A common feature of these
penalties is that they are capable of producing exact zero solutions, which automatically
leads to variable selection. The penalized methods also have many attractive theoretical
properties concerning selection, estimation, and prediction in the sparse setting),
including the asymptotic oracle property under certain conditions. However, these meth-
ods provide no computable error assessment of the selection results in finite sample situ-
ations. The literature on this topic has grown too vast to be adequately summarized here,
so we refer to the book bgiihlmann and van de Ge&011), and the references therein

for the results on convex selection and the papeinisdsyand Li(2001); Zhang(2010 and

Zhang and Zhan¢r012 for concave selection.

Recently, many authors have studied the problem of statistical inference for low-
dimensional parameters in high-dimensional regression madetsig and Zhan2014)
proposed a semiparametric efficient score approach for constructing confidence inter-
vals of low-dimensional coefficients in high-dimensional linear models.de Geer et al.
(2014 considered the same problem using an approach that invertgptimization con-
ditions for the Lasso solution, extending the workafang and Zhan@2014 to gener-
alized linear models and problems with convex loss functidasanmard and Montanari
(2014 considered the problem of hypothesis testing in high-dinoeraé regression using
a method similar to that afhang and Zhan¢2014). Fang et al(2016 studied hypoth-
egs testing and confidence intervals in high-dimensional proportional hazards models.

Neykov et al(2018 proposed a unified theory of confidence regions and testingdor



dimensional estimating equation®Ning and Liu (2017 proposed a decorrelated score
approach for hypothesis tests and confidence regions in sparse high-dimensional mod-
els. Zhu and Bradiq2018 proposed an approach to test linear hypotheses without as-
sumptions on model sparsity or the loading vector representing the hypothesis in high-
dimensional linear models. For more related works using the regularized score method,
refer toBelloni et al.(2013; Dezeure et al(2019; Lockhart et al.(2014); Meinshausen
(20149; Meinshausen et a(2009; Ning and Liu(2017; Stucky and van de Ge¢2013);
Yang(2017).

Belloni et al.(2012 proposed a two-stage selection procedure with post-doelde-s
tion to estimate a single treatment effect parameter in a high-dimensional linear model.
Tibshirani et al (2016 considered the statistical inference for forward stepwisklaast
angle regression in high-dimensional models after selection. Recently, various researchers
have considered post-selection in the presence of high-dimensional parameters, includ-
ing Berk et al.(2013 2009; Lee et al(2016; Lee and Taylo(2014; Rgamer and Greven
(2018; Tibshirani et al(2016.

Belloni and Chernozhuko{2011) studied the/;-penalized quantile regression under
the high-dimensional setting and established a near-oracle property of the estilatgret al.
(2012 showed that the oracle property still holds when SCAD and M@fafiies are used.
Zhao et al(2014) provided a globally penalized framework for high-dimensikguantile
regression models by employing adaptiygoenalties; this approach could achieve con-
sistent shrinkage of regression quantile estimates across a continuous range of quantile

levels. Belloni et al.(2018 considered the robust inference of regression coefficients o



high-dimensional quantile regression models via an optinsafument, which was a resid-

ual from a density-weighted projection of the regressor of interest on other regressors.
Zheng et al(2019 proposed a robust and uniformly honest inference in highedsional
quantile regression using a debiased composite quantile estimator.

Inspired by the work oZhang and Zhan¢2014 andNing and Liu (2017, we con-
sider the estimation of a pre-conceived low-dimensional parameter based on a projected
score approach and study its statistical inference under linear quantile regression mod-
els. In particular, our proposed approach is similar to the decorrelated score method of
Ning and Liu(2017). In essence, these approaches extend the efficient scoredifeth
dealing with infinite-dimensional nuisance parameters in semiparametric mBagsl(et al.
1998) to the high-dimensional settings. However, the decorrdlat®re method assumes
a smooth loss function with second derivatives, which is not satisfied in the context of
quantile regression.

The rest of the paper is organized as follows. Seidascribes the estimation method
based on regularized projection scores. The asymptotic properties of estimates of pre-
conceived parameters are obtained in Secsiowe then propose a resampling approach
based on cross-validation and confirm its validity in SectbrAn efficient computation
algorithm is given in SectioB. On the basis of this algorithm, an one-step estimator is pro-
posed in Sectiorb. Numerical studies are used to assess the finite-sample parice of
the proposed method in Secti@nAll proofs are given in the Appendix. An R package im-

plementing the proposed method is availabletatps: / / gi t hub. cont xI i usuf e/ pqgr.


https://github.com/xliusufe/pqr

2 Regularized Projection Score Estimation

Suppose we have observatiofgy;, z;, z;),7 = 1,...,n} that are independent and iden-
tically distributed as(y, z, z), wherey € R is a response variable, ¢ R’ is a d-
dimensional vector containing covariates of main interest,zaadR? is a¢-dimensional
covariate with possibly confounding variables. Consider the linear quantile regression

model
Q- (yilzi, zi) = x380 + 2o, (1)

whereQ.(-|z;, z;) refers to the conditionatth quantile given the covariate;, z;). Here
for notional simplicity, we assume that an intercept term is include .iwWe would like
to estimate the effect of the covariate vectprepresented by,, on the response variable,
while taking into account the effect of the covariateepresented by,. We are interested
in the case wherd is small (fixed), buy is large and may be far larger than the sample
sizen.

In the standard linear quantile regression, the parameters of ni)@dek(estimated by
minimizing

Mo(B,n) =n™"> " pr(yi — i — 2in)
=1

with respect to5 andn, wherep, (u) = u{r — I(u < 0)}. This approach works well in
low-dimensional cases where batlandq are fixed and smaller than However, in the
case wherg > n, it no longer works owing to the singularity of the design matrix. There

has been much work on penalized methods for estimating the parameter (Vcipy).



An important method is the Lasso estimatoibghirani 199%

(Blasso; ﬁlasso) = ar%min Mn(6777> =+ A(Hﬁ”l =+ ”77”1>
5T

This provides a point estimate ¢8,,7,), denoted by(3,7). Owing to the shrinkage
effect of thel; penalty,3,.ss, d0es not converge at the usual reatate, and its asymptotic
distributional property is unknown. The penalized estimte,, cannot be directly used
for making statistical inferences abaoty, the main parameter of interest.

To reduce the shrinkage effect of penalization of the estimatigiy,ofre consider the

semi-penalized estimator
- R
(B, ) = avgmin = 3 pr (s = 8 = zim) + Ml 2)
i i=1

Note that heres is not penalized. Intuitively, the estimatdrshould be less biased than
Bmso, as it is not subject to penalization. However, becaysand z; are correlated, the
bias in7 will still lead to bias in3. This can be observed more clearly by considering the

score equations corresponding 2. (

1 n

5 > ey — @B — 2in); =0, 3)
=N

1 n

" > ey — aiB = zim)z =x0(|nlh), 4)
=1

where, (u) = 7 — I(u < 0) is the directional derivative op.(u), andd(||n|;) =
(O(ml), -+, 0(n,])). Here,d(|n;]) is the subdifferential ofn;|, that is,o(|n;|) = 1 if

n; > 0,9(n,]) = —1if n; < 0, andd(|n;|) € [~1,1] if n; = 0. The estimatot’, i)’



approximately satisfie)] and @). Therefore is a solution to
1 - / ! ~
- > ey — @B — i)z = 0.
=1

However, owing to the bias in the estimatpand the correlation between and z;, the
estimator3 does not have a root+ate of convergence.

To obtain an estimator gf, with a root« rate of convergence and an asymptotically
normal distribution, we propose a regularized projection score approach. To describe this
approach, we first consider the projection score functiorsfbased on the loss function
p. at the population level. The projection score is defined as the residual of the projection
of the score function), (y — 2/ — 2'n)x for § onto the closure of the linear span of the
score function), (y — 2’3 — z'n) z for the nuisance parametein the Hilbert spacé.,(P),
whereP is the distribution of(y, =, z) under model ). That is, we need to find a matrix

H, € R*4 that minimizes

Ellv-(y — 2'Bo — 2'no)x — -(y — 2By — Z’Wo)Hsz = E{wf(é)H:v - Hsz} (5)

with respect taf € R4, wheres = y — 2/3y — 2'ny. Here|| - || denotes the Euclidean

norm. Then the projection score function foin the directionH, is

Ur(y —a'B—2'n)x — ¥ (y — 2’8 — Z'n)Hoz = ¢, (y — &'B — 2'n)(x — Hoz).  (6)

In general, ) is a weighted least squares function. Under the quantileessgin

model (), it can be simplified considerably. By the law of iterated etpgons, we have

E{y2(e)lle — Hz||"} =E{E[¥(e)|v, 2]llw — Hz||*} -
=r(1 —7)E|z — Hz|?,



where the last equation follows fror)( Thus, minimizing §) is equivalent to minimizing

(7). As 7 is independent off, we have

Hy = argmin E||x — Hz||>.
HeRdx4

This is a least squares problem and can be solved explicitly. In parti¢gijaatisfies the

normal equation Ex — Hz)z'} = 0, which yields
Hy = E(x2){E(z2)} .

However, the sample version of £'), which is given byn ™' >~ | 2,2/, is not invert-
ible if ¢ > n. Therefore, we cannot estimat&, by simply using the sample versions
of E(z2’') and Ezz'). We need to regularize the projection calculation. We can con-
sider either the standard Lasso or the group Lasso for the multi-response linear regression
(Obozinski et al. 201;\Wang et al. 201Bestimation of the matrix/,. For anyH ¢ R4*¢,

denote itsjth column byrh,;. We estimatdd, by

H—argmm—Zsz HZZ|’2+)\QZZ|h]k‘ (8)

d
HGRX(I jlkl

or

H= argmln— Z |z: — Hz||? + Mg Z 1] (9)

HeRdxa 2
It is worth pointing out thaZhang and Zhan{2014) andvan de Geer et a{2014) use the
standard Lasso to calculate the approximate projection.

By the KKT conditions, we obtain

1 ~




This implies that the vectors ard x; — H z; are nearly orthogonal for a smalj. Further-
more, Lemma 1 of the Supplementary Material states that we need a sparsity assumption
on H, inthe sense that, > *_, ||| is small, wheréhy; is thejth column of . The or-
thogonality property is important in establishing the theoretical properties of the proposed
estimator described below.

We are now ready to describe the proposed regularized projection score estimator.

Define the score function in the directighas

As the parameter is unknown, we replace it by the initial estimatpgiven in ). We

also estimateéd by H. We then define the regularized projection score functiorfas
. - 1 . . .
Va(B) = Wu(B,)H] = ~ D ey — 7B — 2 (x; — Hz). (11)
i=1
Thus, we estimate the parametigrbased on the following estimating equation:
U (B) = 0. (12)

Owing to the nonsmoothness of, v, may not have an exact zero root. In that case, we
only need to solvel2) within o,(n~1/2) precision. In Section 5, we will consider a series
of minimization problems that corresponds to solvifig)(in an iterative way.

We summarize the proposed regularized projection score approach in two steps:
(S1) estimate the vectay and the matrix, by solving @) and Q), respectively;

(S2) estimate the parameter vectyrby solving the estimation equatioh?).
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3 Asymptotic Properties

In this section, we establish the asymptotic resultsfavheres is a solution of 12). The
agy/mptotic results of the Lasso estimatand the block Lasso estimatehave been given

by Belloni and Chernozhukof2011), Obozinski et al(2011), andWang et al(2013. To
simplify the presentation, we summarize their regularity conditions below; moreover, we

need to make some additional assumptions.

(Al) z follows N(0,3,), and the covariancE satisfies(z’, z')’ 0 < ¢y < Apin(X) <
Apax(2) < Cp < 00. || Boll + |Imol] + maxi<j<4 || hos]| < Co, whereCy is a constant

andhy; is thejth column of Hy,.

(A2) The coefficienty, is sparse withs = o(n), and\; = O(y/log(q)/n), whereS =

{]770] %07]:]-7 ,Q}andS: |S|

(A3) If the estimated coefficient matrii is obtained from#§), H, is sparse withs, , <
sp =o0(1)for1 <k < d,whereS,, ={j: ho; #0, j =1,--- ,q} ands,, =
Sy If H is obtained fromg), H, is sparse with;, = o(1), whereS, = {; : ho; #
0, =1, ,q}sn=|Sul 2V s2=o0(/a/log(q)), ands = O (\/W)
There exists a constang € (0, 1] such thatHEg;ShHOO < ¢y, Wherey, , is the

submatrix of: with row and column index set§ and/,, respectively.

(A4) |f(ulx,z) — f(0]x,2)| < C|ul'/? for some constan€ uniformly on (z, z) in a
neighborhood of zero.f(0|z, z) is uniformly bounded from above bf,.. < oo

and from below byf,.;, > 0 for all (z, z), wheref(-|z, z) is the density function of

11



e=y—a'fo— 2.

(A5) maxi<;j<q E{[|(z — Ho2)z|} = O(1), maxi<;<q E{[[(z — Hoz)z;[|} = O(1), and
{E[||2]|sc]2}2 < ¢, With (sVs,)¥2CuAs = 0(n1/?) andr, (sVsy) 1og(Cusp ot /%) =
o(1), wherer, = (s V s,)(\1 V \y). For anyw; betweent!(5 — (o) + 2(7 — 7o)

and 0, and for anyl € Uy,

= 0p(s™{log(q)} 1/?),

max
1<i<q

nt Z fwilzi, zi) (v — Hzi)zi
i=1

wherelly = {H € R4 : n=V23"" |[(H — Hy)zi|| = O,(slog(q)/n)}.
(A6) E{f(0|x, z)(x — Hyz)x'} is an invertible matrix.

Assumption (Al) imposes an eigenvalue restriction on the design matrix. Assumption
(A2) is the mutual incoherence and self-incoherence condition that bounds the difference
of the estimatof/ and the true matri¥l, and the difference of the estimatpand the true
parameter),. Under Assumptions (A1) and (A2), the condition®@filoni and Chernozhukov
(2011, Obozinski et al.(2017), andWang et al.(2013 are satisfied. Assumption (A3)
limits the increasing rate of the covariate dimension relative to the sample size to ensure
that the Bahadur representation of the estimatdrolds. Assumption (A4) is used to
obtain 3, which is widely used in the quantile regression literature. Assumption (A5) im-
poses the orthogonality of — Hz and z, wherez — Hz is the projection ofr to the

space of. As E{(z — Hyz)z;} = 0 from the definition ofH,, Assumption (A5) holds if

(x — Hyz)z; is weakly correlated witlf (0|z, ), the conditional density around 0. Thus, it

is weaker than the assumption of independence betyween ande, which is imposed by

12



Zhao et al (2014 andBradic and Kolar(2017. Similar conditions are used in Theorem

3.1 of van de Geer et a(2014 when generalized linear models are considered.
Theorem 1 Under model {), if Assumptions (A1l)—(A4) hold,
B = Bo-

Theorem 2 Under model {), if Assumptions (A1)—(A6) hold,

'35 — o) =+ N(0,Q7'DQ),
where@ = E{f(0|z, z)(x — Hoz)x'} andD = 7(1 — 7)E{(x — Hoz)(z — Hypz)'} .
Theorem2 establishes that the proposed estimator is asymptoticatiyalo However,
under the high-dimensional setting, it is challenging to estimate the asymptotic covariance
matrix Q~'DQ'~!, in which the density of the error term is involved. In the following

section, we propose a resampling method that avoids the estimation of the error density at

Zero.

4 Refitted Wild Bootstrap

Adopting the ideas of the refitted cross-validatiorFah et al(2011) and the wild boot-

strap of Feng et al.(2011), we propose a refitted wild bootstrap method to estimate the
agymptotic variance-covariance matrix 6f This resampling method accounts for hetero-
geneous errors and can bypass the estimation of different densities of errors at zero. Unlike

the method ofVang et al(2018, which only considered a fixed number of covariates, the

13



proposed refitted wild bootstrap method can deal with highedisional confounding co-
variates with divergent dimensiagn
We randomly split the original dataset into two even parts and carry out the refitted

wild bootstrapping using the following steps.

(B1) Estimate parameters using the method described in Se&xéind the first part of the

dataset, and denote the estimategas

(B2) Use the second part of the dataset to estimate parameters using the regular quantile
regression method based on the nonzero coefficient set determined by thejvector
and denote the estimate &3}, 77,), where the vectofj, includes those zero coeffi-

cients determined in Step (B1) for notation consistency.
(B3) Independently generate weigljtsatisfying the following conditions:
(B3.1) there are two positive constamtsandc, satisfyingsup{¢ € G : ( < 0} =
—cy andinf{¢ € G : ( > 0} = ¢,, whereG is the support of;

(B3.2) the distributiorG of ¢ satisfies[,"™ ¢ 'g(w)d¢ = — [°_ ¢ 1g(¢)d¢ = 1/2
and E¢[|¢|] < oo, whereg(() is the density of, and the expectatiof, is

taken undery;

(B3.3) therth quantile of the weigh{ is zero.

(B4) Use the second part of the dataset to obtain the bootstrapped samygles ﬁ@vz +

N

mhzi + G|74|, wherer; = y; — Bha; — 2.

14



(B5) Use the bootstrapped samples to estimate parametertheithethod of Sectio8,

ard denote the estimate 6f by 5*.
(B6) Repeat (B2)—(B5)B times, and denote the sample variancéafopies of3* asVs.

Similarly, we use the second part of the dataset to determine those variables with nonzero
coefficients, and the first part to estimate the variance-covariance matrix with the approach
described in (B1)—(B6). Denote the estimated matrikas\Ve use(\71 +‘72) /2 to estimate
the variance off and repeat the above procedure a certain number of times to reduce the
randomness effects of splitting data.

The growth rate of the dimension 6fin condition (A3) is too fast to ensure the validity

of the refitted wild bootstrap of (B1)—(B6). We need to further limit the rate to be
(A3) slog(q)/n'/? — 0.
Let P* denote the probability under the resampling procedure given in (B1)—(B6).

Theorem 3 Under Assumptions (A1l)-(A2), A(4)-A(6), and'jA8sing the resampling
approach described in steps (B1)-(B6), we have
sup P*(nl/Q(B* —p) < :1:) — P(nl/Q(B — o) < x)‘ 25 0.
z€R
Theorem3 provides a theoretical justification for using the refitteddabootstrap to
estimate the asymptotic variance-covariance matrix. This makes it possible to conduct
statistical inferences without estimating the error densities. In the following section, we

describe a computational algorithm for solving the estimating equati®)n (

15



5 Computation
As pointed out in Sectiof, a question is how to solve
1 n
— = (Y, — — Hz) =0. 13
n;w — 7 — 2ji)(w; — Hz) = (13)
Let Ui = Y; — 22/77 and:fi = T; — ﬁzz Write

ZQ/}T( yi — 8 — zin)( Hzl ZQ/}T{yZ sz — T8}
i1

Let 3* be the value at théth iteration,k = 0,1,2,.... We take the Lasso estimator by

solving @) as the initial estimatof’, and use the following iterative steps.

Step 1: Calculate

JF =g, — (Hz)'B".

Step 2: Solve
gy = proin > o = TB).
=1

Step 3: Set <+ k + 1; go to Step 1 until certain convergence criteria are satisfied.

Note that Step 2 is an optimization problem based on a low-dimensional quantile regres-
sion, so it can be solved using existing software. Refé&menker(2009 for details on its

computation.

6 One-Step Estimator

The procedure given in Secti@inspired the following one-step estimation approach.

16



First, we obtain an initial estimator ¢f by solving ). Recall that the projected score

function is
- 1 & . . -
V() = — Y e (ys — a3 — 247) (w: — Hz),
=1
whereH is obtained by solvingd). We consider a modified projected score function
T, 1 - ] / ] 12 ! ]
vL(8) =~ > {y — (@ — Hz)' B — (Hz) B — 2} (z; — Hz).
=1
Let; = y; — (Hz)' — 2/7. Then, solvingl*(3) = 0 is equivalent to solving
. 1< R -
Bone = arg;mn " ZpT (yZ — (z; — Hz;) ﬁ)
=1

Clearly, 3,.. can be considered a one-step update from the initial estirgator

We replace Assumption (A6) with the following assumption:
(A6") E{f(0|z,z)(x — Hoz)(x — Hyz)'} is an invertible matrix.
We then have the following result.
Theorem 4 Under model 1), if Assumptions (A1)—(A5) and (A®old, then
1" (Bone = Bo) = N(0,Q7'DQ™),
whereQ = E{f(0|z, 2)(z — Hyz)(z — Hyz)'} and D is defined as in Theoreh

Note that@ is different from the) in Theorem2, owing to the modification of the score
function. Also, the refitted wild bootstrap method of Sectiboan be similarly used to
edimate the asymptotic covariance matéjvb(lDQvfl. The computation of this estimator

is efficient because no iterations of (Step 1)—(Step 2) are needed.

17



7 Numerical Studies

7.1 A Simulation Study

We investigate the finite-sample performance of the estimation method of S2atiibim

the variance-covariance matrix estimated by the refitted wild bootstrap method described
in Sectiond. Two sample sizes; = 50 andn = 100, are used, and two quantile levels,

T = 0.5andr = 0.75, are considered.

We simulate data from the model
199

3
Yi Iu‘i‘zﬂfzjﬁj +Zzz’k77k+€ia i=1,---,n,
j=1 k=1
where all the covariate variables and the model efyare independently generated from
the standard normal distribution. We consider a sparsity structure with coefficients given
as
(1, B1, B2y B3y M1, M2, M3, -+ o) = (3,3,3,3,3,3,0,---,0).
We use the method ¢fuang et al(2012 to solve Q), with the Bayesian information
criterion for the choice of penalties, and the methodefloni and Chernozhuko(2011)
to solve @) at confidence levels 0.7 and 0.8, corresponding to samplesize 50 and
n = 100, respectively. For the bootstrap procedure, we repeat 1000 times to estimate the
covariance matrix, where the random weights follow the discrete distribution

l—7, w=2(1-71)
PW =w)= ,
T, w= —2T7
for 0 < 7 < 1. The R packageguantregand grpreg are used to solve2] and Q),

respectively. We generate 1,000 Monte Carlo samples to compare the performances of

18



the proposed method and the oracle method where the sparaitjuse is assumed to be
known.

We report the biases of the proposed and the oracle estimators, and the relative ef-
ficiency, which is the ratio of the mean square error, of the oracle estimator and of the
proposed one. We also estimate the coverage probabilities of the proposed method at the
95% confidence level. As demonstrated in Tabléhe bootstrap leads to overall conserva-
tive interval estimates, especially when the quantile level0.75. When the sample size
is as small as 50, the relative efficiencies vary frabt to 82%; these efficiencies can be
improved to be in the range 82% to 92% when the sample size is doubled. It is obvious
from the results shown in Tablethat the proposed method usually leads to estimates with
smaller biases. The relatively smaller biases of the proposed method are probably due to

the projection procedure used in our estimation.
7.2 Case Study of GDP Growth Rate

In this section, we analyze the national growth rate of GDP, using data collected by
Barro and Le€2013. Their results indicate that educational attainment seagesproxy

for the stock of human capital in a broad group of countries, as well as the economic
development. This dataset includes 138 countries and eight broad categories comprising
national income, education, population/fertility, government expenditure, PPP deflators,
political variables, and trade policy and others. A detailed description can be found at
http://www.barrolee.com/Data are presented either quinquennially for the years 1950—
2010 or as averages of five-year sub-periods over 1950-2010.

There is a subset of data including 90 complete observations (by country) with 61

19



Table 1: Estimated coverage probability (CPPaY confidence level, and the estimated
relative efficiencies (RE) and biases (Bias) of the proposed estimator (EC) and the oracle

estimator (Oracle).

n=>50 Parameter Bias of EC{10~3) Bias of Oracle £1073) RE CP &100%)

B -9.608 -0.971 0.811 95.9
T=0.5 B2 0.945 1.993 0.701 95.8
B3 -3.486 -8.541 0.813 96.2
b1 -2.744 -6.880 0.697 99.0
T=0.75 B2 2.891 -0.413 0.617 97.8
B3 -4.957 -12.802 0.690 98.7

n =100 Parameter Bias of EC{10~3) Bias of Oracle £1073) RE CP &100%)

B1 -2.245 -1.684 0.992 95.6
7=0.5 B2 -2.913 0.455 0.919 96.5
B3 -7.060 -6.316 0.948 96.2
b1 -5.663 -0.863 0.854 97.2
T=0.75 B2 1.615 1.790 0.927 97.7
B3 -8.156 -2.809 0.938 97.8

covariates, which can be downloaded in the R packaipe (Chernozhukov et al. 20}6
There are 41 observations out of 90 from 1965; the rest are from 1975. In this example, we
only consider the 49 observations from 1975. We choose the national GDP growth rates

per capita to be the respongeand denote the 61 scaled covariategpy: (z;1, - - , Zip)’,
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i=1,---,n, wheren = 49 andp = 61. We first take the logarithm or cubic root trans-
formation such that each predictor’s empirical distribution is more normally distributed.
There is a large body of literature on the relationship between economic development
and government consumption expenditure, suchaslau(1986), Barro (1990, Barro
(1991, Barro (1989, Devarajan et al(1996, d’Agostino et al.(2016, andDissou et al.
(2019, which demonstrates their association. Owing to the cdrogldbetween govern-
ment consumption expenditure and other variables characterizing population/fertility, po-
litical instability, the economic system, and so on, we need to reduce their influence by the
proposed regularized projection procedure.
The following two variables are important to understand the influence of government
consumption expenditure of a country on its economic growth R&io of real govern-
ment “consumption” expenditure to real GOGovsh41, denoted hy;;) andRatio of real
government “consumption” expenditure net of spending on defense and on education to
real GDP (gvxdxe41l, denoted hy;,). We use these two variables as treatments, denoted
by x; = (z1, %), and the remaining ones as confounders, denoted,liy= 1,--- | n.
Then we consider the linear quantile regression motled( these treatments and con-

founders:
2 59
Q- (Wilwi, z1) = Bo+ > wigB+ Dz, i =1,-++,49.
j=1 k=1
We report the estimated coefficients and the correspondiragues in Table.
Barro (1989 199Q 1997 found that both variablegiovsh4landgvxdxe4lwere neg-

atively associated with the GDP growth rate. However, our results indicate that it may be a

good strategy to promote GDP growth by increasing the total government consumption ex-
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penditure for those slowly growing economies. At the same,teaentries with relatively
slow GDP growth rates should limit government expenditure on defense and education to

ensure economic growth.

Table 2: List ofp-values of two variables for GDP growth rate. The numbers in the
parentheses are the estimated coefficient at corresponding quantile*tgweh41: Ratio

of real government “consumption” expenditure to real G2Rd *gvxdxe41l:Ratio of real government

“consumption” expenditure net of spending on defense and on education to real GDP.

Variable Name 7 =10.25 7=0.5 T=20.75

govsh41t 00122 (0.8215) 0.2722(0.1971) 0.9356 (-0.00498)

gvxdxe4t  0.0043 (-0.6523) 0.0026 (-0.3530) 0.7259 (-0.2403)

8 Conclusion

In this work, we used regularized projection scores to estimate low-dimensional pre-
conceived parameters in high-dimensional quantile regression models. The asymptotic
results we obtained facilitate classical statistical inference in high-dimensional scenarios,
which has been largely overlooked in the quantile regression literature. Also, we proposed
a refitted wild bootstrapping approach to bypass the estimation of the variance-covariance
matrix of the estimator, which involves the probability densities of the errors. To the best
of our knowledge, this is the first demonstration of wild bootstrapping in high-dimensional
circumstances in the quantile regression literature.

The proposed method can be easily implemented because its computation is carried

out based on existing algorithms, which can be accomplished using R packages. In prac-
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tice, we advocate the one-step estimator owing to its compuatdtefficiency in high-

dimensional settings, especially when the resampling approach is needed.
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