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Abstract

We propose a regularized projection score method for estimating treatment ef-

fects in quantile regression in the presence of high-dimensional confounding covari-

ates. We show that the proposed estimator of the treatment effects is consistent and

asymptotically normal, with a root-n rate of convergence. We also provide an effi-

cient algorithm for the proposed estimator. This algorithm can be easily implemented
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using existing software. Furthermore, we propose and validate a refitted wild boot-

strapping approach for variance estimation. This enables us to construct confidence

intervals for treatment effects in high-dimensional settings. Simulation studies are

carried out to evaluate the finite sample performance of the proposed estimator. A

GDP growth rate dataset is used to demonstrate the applications of the method.

Key Words: Efficiency score; High dimension; Quantile regression; Wild bootstrap.

1 Introduction

Quantile regression (Koenker and Bassett 1978) is an important tool for analyzing the re-

lationship between a response variable and a set of covariates. It has a wide range of

applications in the analysis of non-Gaussian data, which arises frequently in applied eco-

nomic research. Unlike least squares regression, which models the conditional mean of

a response given the covariates, quantile regression focuses on the conditional quantiles.

Thus, it is able to provide a description of the conditional distribution of the response

given the covariates. There is an extensive literature on the theoretical properties and com-

putational algorithms for quantile regression when the number of regressors is fixed or

increases at a lower rate than the sample size; see, for example,Koenker(2005) and the

references therein. In this paper, we estimate low-dimensional treatment effects in the

presence of a high-dimensional nuisance parameter vector.

There is now a substantial body of work on penalized methods for variable selection

in high-dimensional models. Several important penalty functions have been introduced,

including least absolute shrinkage and the selection operator (Lasso) or theℓ1 penalty
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(Tibshirani 1996), the smoothly clipped absolute deviation (SCAD) penalty (Fan and Li

2001), and the minimax concave penalty (MCP) (Zhang 2010). A common feature of these

penalties is that they are capable of producing exact zero solutions, which automatically

leads to variable selection. The penalized methods also have many attractive theoretical

properties concerning selection, estimation, and prediction in the sparse setting (p ≫ n),

including the asymptotic oracle property under certain conditions. However, these meth-

ods provide no computable error assessment of the selection results in finite sample situ-

ations. The literature on this topic has grown too vast to be adequately summarized here,

so we refer to the book byBühlmann and van de Geer(2011), and the references therein

for the results on convex selection and the papers byFan and Li(2001); Zhang(2010) and

Zhang and Zhang(2012) for concave selection.

Recently, many authors have studied the problem of statistical inference for low-

dimensional parameters in high-dimensional regression models.Zhang and Zhang(2014)

proposed a semiparametric efficient score approach for constructing confidence inter-

vals of low-dimensional coefficients in high-dimensional linear models.van de Geer et al.

(2014) considered the same problem using an approach that inverts the optimization con-

ditions for the Lasso solution, extending the work ofZhang and Zhang(2014) to gener-

alized linear models and problems with convex loss functions.Javanmard and Montanari

(2014) considered the problem of hypothesis testing in high-dimensional regression using

a method similar to that ofZhang and Zhang(2014). Fang et al.(2016) studied hypoth-

esis testing and confidence intervals in high-dimensional proportional hazards models.

Neykov et al.(2018) proposed a unified theory of confidence regions and testing forhigh-
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dimensional estimating equations.Ning and Liu (2017) proposed a decorrelated score

approach for hypothesis tests and confidence regions in sparse high-dimensional mod-

els. Zhu and Bradic(2018) proposed an approach to test linear hypotheses without as-

sumptions on model sparsity or the loading vector representing the hypothesis in high-

dimensional linear models. For more related works using the regularized score method,

refer toBelloni et al.(2013); Dezeure et al.(2015); Lockhart et al.(2014); Meinshausen

(2014); Meinshausen et al.(2009); Ning and Liu(2017); Stucky and van de Geer(2018);

Yang(2017).

Belloni et al.(2012) proposed a two-stage selection procedure with post-double selec-

tion to estimate a single treatment effect parameter in a high-dimensional linear model.

Tibshirani et al.(2016) considered the statistical inference for forward stepwise and least

angle regression in high-dimensional models after selection. Recently, various researchers

have considered post-selection in the presence of high-dimensional parameters, includ-

ingBerk et al.(2013, 2009); Lee et al.(2016); Lee and Taylor(2014); Rgamer and Greven

(2018); Tibshirani et al.(2016).

Belloni and Chernozhukov(2011) studied theℓ1-penalized quantile regression under

the high-dimensional setting and established a near-oracle property of the estimator.Wang et al.

(2012) showed that the oracle property still holds when SCAD and MCP penalties are used.

Zhao et al.(2014) provided a globally penalized framework for high-dimensional quantile

regression models by employing adaptiveℓ1 penalties; this approach could achieve con-

sistent shrinkage of regression quantile estimates across a continuous range of quantile

levels. Belloni et al.(2018) considered the robust inference of regression coefficients of

4

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



high-dimensional quantile regression models via an optimal instrument, which was a resid-

ual from a density-weighted projection of the regressor of interest on other regressors.

Zheng et al.(2015) proposed a robust and uniformly honest inference in high-dimensional

quantile regression using a debiased composite quantile estimator.

Inspired by the work ofZhang and Zhang(2014) andNing and Liu(2017), we con-

sider the estimation of a pre-conceived low-dimensional parameter based on a projected

score approach and study its statistical inference under linear quantile regression mod-

els. In particular, our proposed approach is similar to the decorrelated score method of

Ning and Liu(2017). In essence, these approaches extend the efficient score method for

dealing with infinite-dimensional nuisance parameters in semiparametric models (Bickel et al.

1998) to the high-dimensional settings. However, the decorrelated score method assumes

a smooth loss function with second derivatives, which is not satisfied in the context of

quantile regression.

The rest of the paper is organized as follows. Section2describes the estimation method

based on regularized projection scores. The asymptotic properties of estimates of pre-

conceived parameters are obtained in Section3. We then propose a resampling approach

based on cross-validation and confirm its validity in Section4. An efficient computation

algorithm is given in Section5. On the basis of this algorithm, an one-step estimator is pro-

posed in Section6. Numerical studies are used to assess the finite-sample performance of

the proposed method in Section7. All proofs are given in the Appendix. An R package im-

plementing the proposed method is available athttps://github.com/xliusufe/pqr.
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2 Regularized Projection Score Estimation

Suppose we have observations{(yi, xi, zi), i = 1, . . . , n} that are independent and iden-

tically distributed as(y, x, z), wherey ∈ IR is a response variable,x ∈ IRd is a d-

dimensional vector containing covariates of main interest, andz ∈ IRq is aq-dimensional

covariate with possibly confounding variables. Consider the linear quantile regression

model

Qτ (yi|xi, zi) = x′iβ0 + z′iη0, (1)

whereQτ (·|xi, zi) refers to the conditionalτ th quantile given the covariate(xi, zi). Here

for notional simplicity, we assume that an intercept term is included inβ0. We would like

to estimate the effect of the covariate vectorx, represented byβ0, on the response variable,

while taking into account the effect of the covariatez, represented byη0. We are interested

in the case whered is small (fixed), butq is large and may be far larger than the sample

sizen.

In the standard linear quantile regression, the parameters of model (1) are estimated by

minimizing

Mn(β, η) = n−1

n∑

i=1

ρτ (yi − x′iβ − z′iη)

with respect toβ andη, whereρτ (u) = u{τ − I(u < 0)}. This approach works well in

low-dimensional cases where bothd andq are fixed and smaller thann. However, in the

case whereq ≫ n, it no longer works owing to the singularity of the design matrix. There

has been much work on penalized methods for estimating the parameter vector(β0, η0).
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An important method is the Lasso estimator (Tibshirani 1996)

(β̂lasso, η̂lasso) = argmin
β,η

Mn(β, η) + λ(‖β‖1 + ‖η‖1).

This provides a point estimate of(β0, η0), denoted by(β̂, η̂). Owing to the shrinkage

effect of theℓ1 penalty,β̂lasso does not converge at the usual root-n rate, and its asymptotic

distributional property is unknown. The penalized estimateβ̂lasso cannot be directly used

for making statistical inferences aboutβ0, the main parameter of interest.

To reduce the shrinkage effect of penalization of the estimation ofβ0, we consider the

semi-penalized estimator

(β̃, η̃) = argmin
β,η

1

n

n∑

i=1

ρτ (yi − x′iβ − z′iη) + λ1‖η‖1. (2)

Note that hereβ is not penalized. Intuitively, the estimatorβ̃ should be less biased than

β̂lasso, as it is not subject to penalization. However, becausexi andzi are correlated, the

bias inη̃ will still lead to bias inβ̃. This can be observed more clearly by considering the

score equations corresponding to (2):

1

n

n∑

i=1

ψτ (yi − x′iβ − z′iη)xi =0, (3)

1

n

n∑

i=1

ψτ (yi − x′iβ − z′iη)zi =λ1∂(‖η‖1), (4)

whereψτ (u) = τ − I(u < 0) is the directional derivative ofρτ (u), and∂(‖η‖1) =

(∂(|η1|), · · · , ∂(|ηq|))′. Here,∂(|ηj |) is the subdifferential of|ηj |, that is,∂(|ηj |) = 1 if

ηj > 0, ∂(|ηj |) = −1 if ηj < 0, and∂(|ηj |) ∈ [−1, 1] if ηj = 0. The estimator(β̃ ′, η̃′)′
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approximately satisfies (3) and (4). Therefore,̃β is a solution to

1

n

n∑

i=1

ψτ (yi − x′iβ − z′iη̃)xi = 0.

However, owing to the bias in the estimatorη̃ and the correlation betweenxi andzi, the

estimatorβ̃ does not have a root-n rate of convergence.

To obtain an estimator ofβ0 with a root-n rate of convergence and an asymptotically

normal distribution, we propose a regularized projection score approach. To describe this

approach, we first consider the projection score function forβ based on the loss function

ρτ at the population level. The projection score is defined as the residual of the projection

of the score functionψτ (y − x′β − z′η)x for β onto the closure of the linear span of the

score functionψτ (y−x′β−z′η)z for the nuisance parameterη in the Hilbert spaceL2(P ),

whereP is the distribution of(y, x, z) under model (1). That is, we need to find a matrix

H0 ∈ Rd×q that minimizes

E‖ψτ (y − x′β0 − z′η0)x− ψτ (y − x′β0 − z′η0)Hz‖2 = E{ψ2
τ (ε)‖x−Hz‖2} (5)

with respect toH ∈ Rd×q, whereε = y − x′β0 − z′η0. Here‖ · ‖ denotes the Euclidean

norm. Then the projection score function forβ in the directionH0 is

ψτ (y − x′β − z′η)x− ψτ (y − x′β − z′η)H0z = ψτ (y − x′β − z′η)(x−H0z). (6)

In general, (5) is a weighted least squares function. Under the quantile regression

model (1), it can be simplified considerably. By the law of iterated expectations, we have

E{ψ2
τ (ε)‖x−Hz‖2} =E{E[ψ2

τ (ε)|x, z]‖x−Hz‖2}

=τ(1− τ)E‖x−Hz‖2,
(7)
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where the last equation follows from (1). Thus, minimizing (5) is equivalent to minimizing

(7). As τ is independent ofH, we have

H0 = argmin
H∈Rd×q

E‖x−Hz‖2.

This is a least squares problem and can be solved explicitly. In particular,H0 satisfies the

normal equation E{(x−Hz)z′} = 0, which yields

H0 = E(xz′){E(zz′)}−1.

However, the sample version of E(zz′), which is given byn−1
∑n

i=1
ziz

′
i, is not invert-

ible if q > n. Therefore, we cannot estimateH0 by simply using the sample versions

of E(xz′) and E(zz′). We need to regularize the projection calculation. We can con-

sider either the standard Lasso or the group Lasso for the multi-response linear regression

(Obozinski et al. 2011; Wang et al. 2013) estimation of the matrixH0. For anyH ∈ Rd×q,

denote itsjth column byhj . We estimateH0 by

H̃ = argmin
H∈Rd×q

1

2n

n∑

i=1

‖xi −Hzi‖2 + λ2

d∑

j=1

q∑

k=1

|hjk| (8)

or

H̃ = argmin
H∈Rd×q

1

2n

n∑

i=1

‖xi −Hzi‖2 + λ2

q∑

j=1

‖hj‖. (9)

It is worth pointing out thatZhang and Zhang(2014) andvan de Geer et al.(2014) use the

standard Lasso to calculate the approximate projection.

By the KKT conditions, we obtain
∥∥∥∥∥
1

n

n∑

i=1

(xi − H̃zi)zij

∥∥∥∥∥ ≤ λ2, 1 ≤ j ≤ q.
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This implies that the vectorszi and xi−Hzi are nearly orthogonal for a smallλ2. Further-

more, Lemma 1 of the Supplementary Material states that we need a sparsity assumption

onH0 in the sense thatλ2
∑q

j=1
‖h0j‖ is small, whereh0j is thejth column ofH0. The or-

thogonality property is important in establishing the theoretical properties of the proposed

estimator described below.

We are now ready to describe the proposed regularized projection score estimator.

Define the score function in the directionH as

Ψn(β, η)[H ] ≡ 1

n

n∑

i=1

ψτ (yi − x′iβ − z′iη)(xi −Hzi). (10)

As the parameterη is unknown, we replace it by the initial estimatorη̃ given in (2). We

also estimateH by H̃. We then define the regularized projection score function forβ as

Ψ̃n(β) ≡ Ψn(β, η̃)[H̃ ] =
1

n

n∑

i=1

ψτ (yi − x′iβ − z′iη̃)(xi − H̃zi). (11)

Thus, we estimate the parameterβ0 based on the following estimating equation:

Ψ̃n(β) = 0. (12)

Owing to the nonsmoothness ofψτ , Ψ̃n may not have an exact zero root. In that case, we

only need to solve (12) within op(n−1/2) precision. In Section 5, we will consider a series

of minimization problems that corresponds to solving (12) in an iterative way.

We summarize the proposed regularized projection score approach in two steps:

(S1) estimate the vectorη0 and the matrixH0 by solving (2) and (9), respectively;

(S2) estimate the parameter vectorβ0 by solving the estimation equation (12).
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3 Asymptotic Properties

In this section, we establish the asymptotic results forβ̂, whereβ̂ is a solution of (12). The

asymptotic results of the Lasso estimateη̃ and the block Lasso estimatẽH have been given

by Belloni and Chernozhukov(2011), Obozinski et al.(2011), andWang et al.(2013). To

simplify the presentation, we summarize their regularity conditions below; moreover, we

need to make some additional assumptions.

(A1) z follows N(0,Σz), and the covarianceΣ satisfies(x′, z′)′ 0 < cΛ < Λmin(Σ) <

Λmax(Σ) < CΛ <∞. ‖β0‖+ ‖η0‖+max1≤j≤q ‖h0j‖ ≤ C0, whereC0 is a constant

andh0j is thejth column ofH0.

(A2) The coefficientη0 is sparse withs = o(n), andλ1 = O(
√
log(q)/n), whereS =

{j : η0j 6= 0, j = 1, · · · , q} ands = |S|.

(A3) If the estimated coefficient matrix̃H is obtained from (8), H0 is sparse withsh,k ≤

sh = o(1) for 1 ≤ k ≤ d, whereSh,k = {j : h0kj 6= 0, j = 1, · · · , q} andsh,k =

|Sh,k|. If H̃ is obtained from (9),H0 is sparse withsh = o(1), whereSh = {j : h0j 6=

0, j = 1, · · · , q}, sh = |Sh|. s2h ∨ s2 = o (
√
n/ log(q)), andλ2 = O

(√
log(q)/n

)
.

There exists a constantc0 ∈ (0, 1] such that‖Σ−1

ShSh
‖∞ ≤ c0, whereΣI1I2 is the

submatrix ofΣ with row and column index setsI1 andI2, respectively.

(A4) |f(u|x, z) − f(0|x, z)| ≤ C|u|1/2 for some constantC uniformly on (x, z) in a

neighborhood of zero.f(0|x, z) is uniformly bounded from above byfmax < ∞

and from below byfmin > 0 for all (x, z), wheref(·|x, z) is the density function of
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ε = y − x′β0 − z′η0.

(A5) max1≤j≤q E{‖(x − H0z)zj‖} = O(1), max1≤j≤d E{‖(x − H0z)xj‖} = O(1), and

{E[‖z‖∞]2}1/2 ≤ ζn with (s∨sh)3/2ζnλ2 = o(n1/2) andτn(s∨sh) log(ζnshλ2τ−1/2
n ) =

o(1), whereτn = (s ∨ sh)(λ1 ∨ λ2). For anywi betweenx′i(β̂ − β0) + z′i(η̃ − η0)

and 0, and for anyH ∈ UH ,

max
1≤j≤q

∥∥∥∥∥n
−1

n∑

i=1

f(wi|xi, zi)(xi −Hzi)zij

∥∥∥∥∥ = op(s
−1{log(q)}−1/2),

whereUH = {H ∈ Rd×q : n−1/2
∑n

i=1
‖(H −H0)zi‖ = Op(s log(q)/n)}.

(A6) E{f(0|x, z)(x−H0z)x
′} is an invertible matrix.

Assumption (A1) imposes an eigenvalue restriction on the design matrix. Assumption

(A2) is the mutual incoherence and self-incoherence condition that bounds the difference

of the estimator̃H and the true matrixH0 and the difference of the estimatorη̃ and the true

parameterη0. Under Assumptions (A1) and (A2), the conditions ofBelloni and Chernozhukov

(2011), Obozinski et al.(2011), andWang et al.(2013) are satisfied. Assumption (A3)

limits the increasing rate of the covariate dimension relative to the sample size to ensure

that the Bahadur representation of the estimatorβ̂ holds. Assumption (A4) is used to

obtainβ̂, which is widely used in the quantile regression literature. Assumption (A5) im-

poses the orthogonality ofx − H̃z and z, wherex − H̃z is the projection ofx to the

space ofz. As E{(x−H0z)zj} = 0 from the definition ofH0, Assumption (A5) holds if

(x−H0z)zj is weakly correlated withf(0|x, z), the conditional density around 0. Thus, it

is weaker than the assumption of independence between(x, z) andǫ, which is imposed by
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Zhao et al.(2014) andBradic and Kolar(2017). Similar conditions are used in Theorem

3.1 of van de Geer et al.(2014) when generalized linear models are considered.

Theorem 1 Under model (1), if Assumptions (A1)–(A4) hold,

β̂
p−→ β0.

Theorem 2 Under model (1), if Assumptions (A1)–(A6) hold,

n1/2(β̂ − β0) L−→ N(0, Q−1DQ
′−1),

whereQ = E{f(0|x, z)(x−H0z)x
′} andD = τ(1 − τ)E{(x−H0z)(x−H0z)

′} .

Theorem2 establishes that the proposed estimator is asymptotically normal. However,

under the high-dimensional setting, it is challenging to estimate the asymptotic covariance

matrixQ−1DQ
′−1, in which the density of the error term is involved. In the following

section, we propose a resampling method that avoids the estimation of the error density at

zero.

4 Refitted Wild Bootstrap

Adopting the ideas of the refitted cross-validation ofFan et al.(2011) and the wild boot-

strap of Feng et al.(2011), we propose a refitted wild bootstrap method to estimate the

asymptotic variance-covariance matrix ofβ̂. This resampling method accounts for hetero-

geneous errors and can bypass the estimation of different densities of errors at zero. Unlike

the method ofWang et al.(2018), which only considered a fixed number of covariates, the
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proposed refitted wild bootstrap method can deal with high-dimensional confounding co-

variates with divergent dimensionq.

We randomly split the original dataset into two even parts and carry out the refitted

wild bootstrapping using the following steps.

(B1) Estimate parameters using the method described in Section2 and the first part of the

dataset, and denote the estimates asη̃1.

(B2) Use the second part of the dataset to estimate parameters using the regular quantile

regression method based on the nonzero coefficient set determined by the vectorη̃1,

and denote the estimate as(β̂ ′
2, η̃

′
2), where the vector̃η2 includes those zero coeffi-

cients determined in Step (B1) for notation consistency.

(B3) Independently generate weightsζi satisfying the following conditions:

(B3.1) there are two positive constantsc1 andc2 satisfyingsup{ζ ∈ G : ζ ≤ 0} =

−c1 andinf{ζ ∈ G : ζ ≥ 0} = c2, whereG is the support ofζ ;

(B3.2) the distributionG of ζ satisfies
∫ +∞

0
ζ−1g(ω)dζ = −

∫ 0

−∞
ζ−1g(ζ)dζ = 1/2

andEζ [|ζ |] < ∞, whereg(ζ) is the density ofζ and the expectationEζ is

taken underG;

(B3.3) theτ th quantile of the weightζ is zero.

(B4) Use the second part of the dataset to obtain the bootstrapped samples asy∗i = β̂ ′
2xi+

η̃′2zi + ζi|r̂i|, wherer̂i = yi − β̂ ′
2xi − η̃′2zi.
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(B5) Use the bootstrapped samples to estimate parameters withthe method of Section2,

and denote the estimate ofβ0 by β̂∗.

(B6) Repeat (B2)–(B5)B times, and denote the sample variance ofB copies ofβ̂∗ asV̂2.

Similarly, we use the second part of the dataset to determine those variables with nonzero

coefficients, and the first part to estimate the variance-covariance matrix with the approach

described in (B1)–(B6). Denote the estimated matrix asV̂1. We use(V̂1+V̂2)/2 to estimate

the variance of̂β and repeat the above procedure a certain number of times to reduce the

randomness effects of splitting data.

The growth rate of the dimension ofβ in condition (A3) is too fast to ensure the validity

of the refitted wild bootstrap of (B1)–(B6). We need to further limit the rate to be

(A3′) s log(q)/n1/3 → 0.

Let P ∗ denote the probability under the resampling procedure given in (B1)–(B6).

Theorem 3 Under Assumptions (A1)–(A2), A(4)–A(6), and (A3′), using the resampling

approach described in steps (B1)–(B6), we have

sup
x∈R

∣∣∣P ∗
(
n1/2(β̂∗ − β̂) ≤ x

)
− P

(
n1/2(β̂ − β0) ≤ x

)∣∣∣ p−→ 0.

Theorem3 provides a theoretical justification for using the refitted wild bootstrap to

estimate the asymptotic variance-covariance matrix. This makes it possible to conduct

statistical inferences without estimating the error densities. In the following section, we

describe a computational algorithm for solving the estimating equation (12).
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5 Computation

As pointed out in Section2, a question is how to solve

Ψ̃n(β) =
1

n

n∑

i=1

ψτ (yi − x′iβ − z′iη̃)(xi − H̃zi) = 0. (13)

Let ỹi = yi − z′iη̃ andx̃i = xi − H̃zi. Write

n∑

i=1

ψτ (yi − x′iβ − z′iη̃)(xi − H̃zi) =
n∑

i=1

ψτ{ỹi − (H̃zi)
′β − x̃′iβ}x̃i.

Let βk be the value at thekth iteration,k = 0, 1, 2, . . .. We take the Lasso estimator by

solving (2) as the initial estimatorβ0, and use the following iterative steps.

Step 1: Calculate

ỹki = ỹi − (H̃zi)
′βk.

Step 2: Solve

βk+1 = argmin
β

n∑

i=1

ρτ (ỹ
k
i − x̃′iβ).

Step 3: Setk ← k + 1; go to Step 1 until certain convergence criteria are satisfied.

Note that Step 2 is an optimization problem based on a low-dimensional quantile regres-

sion, so it can be solved using existing software. Refer toKoenker(2005) for details on its

computation.

6 One-Step Estimator

The procedure given in Section5 inspired the following one-step estimation approach.
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First, we obtain an initial estimator ofβ by solving (2). Recall that the projected score

function is

Ψ̃n(β) =
1

n

n∑

i=1

ψτ (yi − x′iβ − z′iη̃)(xi − H̃zi),

whereH̃ is obtained by solving (9). We consider a modified projected score function

Ψ̃∗
n(β) =

1

n

n∑

i=1

ψ{yi − (xi − H̃zi)′β − (H̃zi)
′β̃ − z′iη̃}(xi − H̃zi).

Let ỹi = yi − (H̃zi)
′β̃ − z′iη̃. Then, solvingΨ̃∗(β) = 0 is equivalent to solving

β̂one = argmin
β

1

n

n∑

i=1

ρτ
(
ỹi − (xi − H̃zi)′β

)
.

Clearly,β̂one can be considered a one-step update from the initial estimatorβ̃.

We replace Assumption (A6) with the following assumption:

(A6′) E{f(0|x, z)(x−H0z)(x−H0z)
′} is an invertible matrix.

We then have the following result.

Theorem 4 Under model (1), if Assumptions (A1)–(A5) and (A6′) hold, then

n1/2(β̂one − β0) L−→ N(0, Q̃−1DQ̃−1),

whereQ̃ = E{f(0|x, z)(x−H0z)(x−H0z)
′} andD is defined as in Theorem2.

Note thatQ̃ is different from theQ in Theorem2, owing to the modification of the score

function. Also, the refitted wild bootstrap method of Section4 can be similarly used to

estimate the asymptotic covariance matrix̃Q−1DQ̃−1. The computation of this estimator

is efficient because no iterations of (Step 1)–(Step 2) are needed.

17

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



7 Numerical Studies

7.1 A Simulation Study

We investigate the finite-sample performance of the estimation method of Section2 with

the variance-covariance matrix estimated by the refitted wild bootstrap method described

in Section4. Two sample sizes,n = 50 andn = 100, are used, and two quantile levels,

τ = 0.5 andτ = 0.75, are considered.

We simulate data from the model

yi = µ+

3∑

j=1

xijβj +

199∑

k=1

zikηk + ei, i = 1, · · · , n,

where all the covariate variables and the model errorei are independently generated from

the standard normal distribution. We consider a sparsity structure with coefficients given

as

(µ, β1, β2, β3, η1, η2, η3, · · · , η199) = (3, 3, 3, 3, 3, 3, 0, · · · , 0).

We use the method ofHuang et al.(2012) to solve (9), with the Bayesian information

criterion for the choice of penalties, and the method ofBelloni and Chernozhukov(2011)

to solve (2) at confidence levels 0.7 and 0.8, corresponding to sample sizes n = 50 and

n = 100, respectively. For the bootstrap procedure, we repeat 1000 times to estimate the

covariance matrix, where the random weights follow the discrete distribution

P (W = w) =





1− τ, w = 2(1− τ)

τ, w = −2τ
,

for 0 < τ < 1. The R packagesquantregand grpreg are used to solve (2) and (9),

respectively. We generate 1,000 Monte Carlo samples to compare the performances of
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the proposed method and the oracle method where the sparsity structure is assumed to be

known.

We report the biases of the proposed and the oracle estimators, and the relative ef-

ficiency, which is the ratio of the mean square error, of the oracle estimator and of the

proposed one. We also estimate the coverage probabilities of the proposed method at the

95% confidence level. As demonstrated in Table1, the bootstrap leads to overall conserva-

tive interval estimates, especially when the quantile levelτ = 0.75. When the sample size

is as small as 50, the relative efficiencies vary from70% to 82%; these efficiencies can be

improved to be in the range of82% to 92% when the sample size is doubled. It is obvious

from the results shown in Table1 that the proposed method usually leads to estimates with

smaller biases. The relatively smaller biases of the proposed method are probably due to

the projection procedure used in our estimation.

7.2 Case Study of GDP Growth Rate

In this section, we analyze the national growth rate of GDP, using data collected by

Barro and Lee(2013). Their results indicate that educational attainment servesas a proxy

for the stock of human capital in a broad group of countries, as well as the economic

development. This dataset includes 138 countries and eight broad categories comprising

national income, education, population/fertility, government expenditure, PPP deflators,

political variables, and trade policy and others. A detailed description can be found at

http://www.barrolee.com/. Data are presented either quinquennially for the years 1950–

2010 or as averages of five-year sub-periods over 1950–2010.

There is a subset of data including 90 complete observations (by country) with 61
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Table 1: Estimated coverage probability (CP) at95% confidence level, and the estimated

relative efficiencies (RE) and biases (Bias) of the proposed estimator (EC) and the oracle

estimator (Oracle).

n = 50 Parameter Bias of EC (×10−3) Bias of Oracle (×10−3) RE CP (×100%)

β1 -9.608 -0.971 0.811 95.9

τ = 0.5 β2 0.945 1.993 0.701 95.8

β3 -3.486 -8.541 0.813 96.2

β1 -2.744 -6.880 0.697 99.0

τ = 0.75 β2 2.891 -0.413 0.617 97.8

β3 -4.957 -12.802 0.690 98.7

n = 100 Parameter Bias of EC (×10−3) Bias of Oracle (×10−3) RE CP (×100%)

β1 -2.245 -1.684 0.992 95.6

τ = 0.5 β2 -2.913 0.455 0.919 96.5

β3 -7.060 -6.316 0.948 96.2

β1 -5.663 -0.863 0.854 97.2

τ = 0.75 β2 1.615 1.790 0.927 97.7

β3 -8.156 -2.809 0.938 97.8

covariates, which can be downloaded in the R packagehdm (Chernozhukov et al. 2016).

There are 41 observations out of 90 from 1965; the rest are from 1975. In this example, we

only consider the 49 observations from 1975. We choose the national GDP growth rates

per capita to be the responseyi, and denote the 61 scaled covariates byx̃i = (x̃i1, · · · , x̃ip)′,
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i = 1, · · · , n, wheren = 49 andp = 61. We first take the logarithm or cubic root trans-

formation such that each predictor’s empirical distribution is more normally distributed.

There is a large body of literature on the relationship between economic development

and government consumption expenditure, such asLandau(1986), Barro (1990), Barro

(1991), Barro (1989), Devarajan et al.(1996), d’Agostino et al.(2016), andDissou et al.

(2016), which demonstrates their association. Owing to the correlation between govern-

ment consumption expenditure and other variables characterizing population/fertility, po-

litical instability, the economic system, and so on, we need to reduce their influence by the

proposed regularized projection procedure.

The following two variables are important to understand the influence of government

consumption expenditure of a country on its economic growth rate:Ratio of real govern-

ment “consumption” expenditure to real GDP(govsh41, denoted bỹxi1) andRatio of real

government “consumption” expenditure net of spending on defense and on education to

real GDP (gvxdxe41, denoted bỹxi2). We use these two variables as treatments, denoted

by xi = (x̃i1, x̃i2)
′, and the remaining ones as confounders, denoted byzi, i = 1, · · · , n.

Then we consider the linear quantile regression model (1) on these treatments and con-

founders:

Qτ (yi|xi, zi) = β0 +
2∑

j=1

xijβj +
59∑

k=1

zikηk, i = 1, · · · , 49.

We report the estimated coefficients and the correspondingp-values in Table2.

Barro(1989, 1990, 1991) found that both variables,govsh41andgvxdxe41, were neg-

atively associated with the GDP growth rate. However, our results indicate that it may be a

good strategy to promote GDP growth by increasing the total government consumption ex-
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penditure for those slowly growing economies. At the same time, countries with relatively

slow GDP growth rates should limit government expenditure on defense and education to

ensure economic growth.

Table 2: List ofp-values of two variables for GDP growth rate. The numbers in the

parentheses are the estimated coefficient at corresponding quantile level.*govsh41: Ratio

of real government “consumption” expenditure to real GDPand *gvxdxe41:Ratio of real government

“consumption” expenditure net of spending on defense and on education to real GDP.

Variable Name τ = 0.25 τ = 0.5 τ = 0.75

govsh41∗ 0.0122 (0.8215) 0.2722 (0.1971) 0.9356 (-0.00498)

gvxdxe41∗ 0.0043 (-0.6523) 0.0026 (-0.3530) 0.7259 (-0.2403)

8 Conclusion

In this work, we used regularized projection scores to estimate low-dimensional pre-

conceived parameters in high-dimensional quantile regression models. The asymptotic

results we obtained facilitate classical statistical inference in high-dimensional scenarios,

which has been largely overlooked in the quantile regression literature. Also, we proposed

a refitted wild bootstrapping approach to bypass the estimation of the variance-covariance

matrix of the estimator, which involves the probability densities of the errors. To the best

of our knowledge, this is the first demonstration of wild bootstrapping in high-dimensional

circumstances in the quantile regression literature.

The proposed method can be easily implemented because its computation is carried

out based on existing algorithms, which can be accomplished using R packages. In prac-
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tice, we advocate the one-step estimator owing to its computational efficiency in high-

dimensional settings, especially when the resampling approach is needed.
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