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Abstract:

During the past few decades, missing-data problems have been studied exten-

sively, with a focus on the ignorable missing case, where the missing probability

depends only on observable quantities. By contrast, research into non-ignorable

missing data problems is quite limited. The main difficulty in solving such prob-

lems is that the missing probability and the regression likelihood function are tan-

gled together in the likelihood presentation, and the model parameters may not

be identifiable even under strong parametric model assumptions. In this paper

we discuss a semiparametric model for data with non-ignorable missing respons-

es and propose a maximum full semiparametric likelihood estimation method,

which is an efficient combination of the parametric conditional likelihood and

the marginal nonparametric biased sampling likelihood. We further show that

the proposed estimators for the underlying parameters and the response mean

are semiparametrically efficient. Extensive simulations and a real data analysis
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demonstrate the advantage of the proposed method over competing methods.

Key words and phrases: Density ratio model; Empirical likelihood; Non-ignorable

missing data.

1. Introduction

Missing data is ubiquitous in many areas, such as survey sampling, epidemi-

ology, economics, sociology, and political science. Missing-data problems

have been studied extensively during the last few decades. Most research

focuses on missing data that are ignorable or missing at random in the sense

that the missing probability or propensity score is a function only of the

observed data (Little and Rubin, 2002; Rubin, 1987).

Non-ignorable missing or missing-not-at-random data occur if the propen-

sity score depends on the missing data, even conditionally on the observed

data. Let D be the missing indicator of the variable of interest Y asso-

ciated with some covariate variables X, and D = 1 if Y is observed and

D = 0 otherwise. Non-ignorable missing implies that the propensity score

pr(D = 1|x, y) = pr(D = 1|X = x, Y = y) depends on y and possibly

on x. Inference for non-ignorable missing data is more challenging than

that for ignorable missing data for at least two reasons. First, the equality

pr(y|x, D = 1) = pr(y|x, D = 0), which holds for ignorable missing data,
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does not hold for non-ignorable missing data. This implies that simply ig-

noring the missing data can lead to substantial selection bias (Groves et

al., 2004). Second, unlike the ignorable missing case, the propensity score

and the regression likelihood function are tangled together in non-ignorable

missing-data problems, and hence cannot be estimated separately.

These challenges require new modelling strategies for non-ignorable

missing data. The most popular strategy is to make assumptions about

pr(D = 1|x, y) and pr(y|x), based on the selection model factorization

pr(y,D|x) = pr(D|x, y)pr(y|x) of Little and Rubin (2002). Parametric

models (Greenless et al., 1982; Baker and Laird, 1988; Liu and Zhou, 2010)

are at risk of model mis-specification (Little, 1985), while completely non-

parametric models suffer from the identifiability issue (Robins and Ritov,

1997). Attention has been paid to the case where one of these probabili-

ties is parametric or semiparametric and the other is left unspecified. See

Tang et al. (2003); Qin et al. (2002); Chang and Kott (2008); Kott and

Chang (2010) and Kim and Yu (2011). An alternative approach is to make

parametric model assumptions on the observed Y given X (Lee and Marsh,

2000; Riddles et al., 2016). An obvious advantage of this model over a com-

pletely parametric model for pr(y|x) is that it is checkable with available

data.
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There have been many estimation approaches for identifiable model pa-

rameters developed in recent years, including pseudo-likelihood approaches

(Tang et al., 2003; Zhao and Shao, 2015), empirical likelihood method (Zhao

et al., 2013; Tang et al., 2014), and the generalized method of moments with

an instrument variable (Wang et al., 2014; Shao and Wang, 2016; Shao,

2018). See Tang and Ju (2018) for a review of the most recent advances

in dealing with nonignorable missing data. Under a parametric model for

the observed Y given X, Riddles et al. (2016); Morikawa et al. (2017) and

Morikawa and Kim (2016) proposed estimating equation methods based on

Louis (1982)’s mean score equation. However these approaches are either

not efficient, or suffer from the curse of dimensionality and requires a band-

width selection. To avoid this dilemma, Ai et al. (2018) proposed a new

estimation method based on the generalized method of moments with a di-

verging number of estimating equations. As the number of estimating equa-

tion increases, their estimator attains the semiparametric efficiency lower

bound of Morikawa and Kim (2016). However, the constrained generalized

method of moments may have numerical convergence problems, especially

when some of the estimating equations are highly correlated.

In this paper, we consider parametric models for both pr(y|x, D = 1)

and pr(D = 1|x, y). In particular, we assume that pr(D = 1|x, y) follows a
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logistic regression model,

pr(D = 0|x, y) =
exp(α∗ + x>β + yγ)

1 + exp(α∗ + x>β + yγ)
, (1.1)

which is commonly used in practice. Under these assumptions, we find

that the two distribution pairs {pr(y|x, D = 1), pr(y|x, D = 0)} and

{pr(x|D = 1), pr(x|D = 0)} satisfy two density ratio models (Anderson,

1979, DRMs), see Equations (2.4) and (2.5), which share some key unknown

parameters. We give an easy-to-check condition to verify the identifiabil-

ity of the model parameters. This condition is satisfied by many existing

identification conditions such as the existence of an instrument or ancillary

variable (Wang et al., 2014; Miao et al., 2016). For parameter estimation,

the completely observed covariate data can be used to estimate the key un-

known parameters, which can be further used to estimate pr(y|x, D = 0),

since pr(y|x, D = 1) can be estimated directly using the conditional maxi-

mum likelihood method. These, together with the empirical distribution of

D, lead to estimation of the conditional density pr(y|x); consequently the

characteristics of Y can be consistently estimated.

Given the completely observed covariate data and the fact that {pr(x|D =

1), pr(x|D = 0)} follows a DRM, we use Owen (1988, 2001)’s empirical like-

lihood (EL) to estimate the underlying parameters. The DRM-based EL

has been demonstrated to be very flexible and efficient, and it has attracted
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much attention in recent decades; see Qin and Zhang (1997), Chen and Liu

(2013), Cai et al. (2007), and the references therein.

We show that the maximum EL estimators of the underlying parameters

are asymptotically normal, and the EL ratio for all the parameters follows

an asymptotically central chisquare distribution. This makes it much more

convenient to conduct hypothesis testing or construct confidence intervals

for these parameters. We propose a maximum likelihood estimator (M-

LE) for the marginal mean of the response variable, and we establish its

asymptotic normality. We further show that the proposed MLEs for all pa-

rameters attain the corresponding semiparametric efficiency lower bounds

under parametric assumptions for the propensity score and the conditional

density of Y given X and D = 1. Compared with the existing methods,

the proposed maximum semiparametric full likelihood approach has at least

the following advantages:

1. It is able to identify the underlying parameters whether an instru-

ment variable exists or not if the conditions in Proposition 1 are sat-

isfied. The methods of Shao and Wang (2016), Riddles et al. (2016),

Morikawa et al. (2017), Morikawa and Kim (2016) and Ai et al. (2018)

all require an instrument variable. Further, it is able to produce con-

sistent estimators for all the model parameters, if they are identifiable.
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Extra information about the parameter γ in (1.1) is not needed.

2. It applies to data of any dimension and is free of bandwidth selection.

The methods of Kim and Yu (2011), Shao and Wang (2016), Morikawa

and Kim (2016), and Morikawa et al. (2017) all suffer from the curse

of dimensionality and bandwidth selection, and may not work well for

multivariate covariates. Ai et al. (2018)’s method has an increasing

calculation burden as the number of estimating equation increases.

3. Existing methods handling non-ignorable missing-data problems un-

der semiparametric setups are mainly based on estimating equations

and may not be the most efficient in general. Since full likelihood ap-

proaches are generally the most efficient, it can be expected that the

proposed maximum semiparametric full likelihood approach would

outperform the existing methods. Even though Morikawa and Kim

(2016) calculated the semiparametric efficiency lower bound with the

specification of propensity score only, their lower bound is not achiev-

able unless the conditional density of Y given (X, D = 1) is fully speci-

fied. In this paper we show that with the knowledge of pr(y|x, D = 1),

Morikawa and Kim (2016)’s method is no longer optimal anymore.

Our new lower bound is lower than theirs.
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4. Our method is also applicable to retrospectively collected data. For

example, when the number of nonresponse individuals (with D = 0)

is large, we can randomly select some covariate x from them to save

cost. Based on this data together with the fully observed data, our

method still provides valid inference about the underlying popula-

tion. However, the existing methods may produce biased estimators

because they are designed for prospective data.

The rest of this paper is organized as follows. In Section 2, we intro-

duce the proposed model, show its equivalence to two DRMs, and provide

sufficient conditions for the identifiability of the model parameters. Section

3 presents the proposed semiparametric DRM-based EL method and the

resulting MLEs for the underlying parameters and the mean of the response

variable. Their asymptotic normalities and semiparametric efficiencies are

also established. Section 4 reports extensive simulation results. A real-life

set of data is analyzed for illustration in Section 5. All technical details are

given in the supplementary material.
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2. Model and its identifiability

2.1 Model set-up

Suppose {(yi,xi, di), i = 1, . . . , n} are n independent and identically dis-

tributed copies of (Y,X, D), where the covariates xi are always observed,

and yi is observed if and only if di = 1. We assume that the missing

probability satisfies the logistic regression model in (1.1), i.e.,

pr(D = 0|x, y) =
exp(α∗ + x>β + yγ)

1 + exp(α∗ + x>β + yγ)
.

The parameter γ is called the tilting parameter (Kim and Yu, 2011). It

quantifies the extent to which the model departs from ignorable missing,

and γ = 0 corresponds to the ignorable missing-data case. We are interested

in estimating the underlying parameters (α∗, β, γ) and the marginal mean

µ of Y .

Based on the observed data, the full likelihood is

n∏
i=1

[
{pr(D = 1|xi, yi)pr(yi,xi)}di

{∫
pr(D = 0|xi, y)pr(y,xi)dy

}1−di
]
.

(2.1)

Unlike the case of ignorable missing, here pr(D = 1|x, y) and pr(y,x) can

not be separated and hence can not be separately estimated. To make

inference based on the full likelihood, one may postulate parametric as-

sumptions on pr(D = 1|y,x) and pr(y|x), which are sensitive to model
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mis-specification (Little, 1985; Kenward and Molenberghs, 1988).

We crack this nut by an alternative method. The logistic regression

model (1.1) is equivalent to the two-sample DRM (Qin and Zhang, 1997)

pr(x, y|D = 0) = exp(α + x>β + yγ)pr(x, y|D = 1), (2.2)

where α = α∗ + log{η/(1 − η)} and η = pr(D = 1) is the probability of

being observed. Clearly, η can be consistently estimated by data and is

therefore identifiable. Then the identifiability of α∗ is equivalent to that of

α.

Integrating out y, we have

pr(x|D = 0) = exp(α + x>β)pr(x|D = 1)

∫
exp(yγ)pr(y|x, D = 1)dy.

Therefore, the conditional densities of Y = y given (X = x, D = 0) and

given (X = x, D = 1) satisfy

pr(y|x, D = 0) =
pr(x, y|D = 0)

pr(x|D = 0)
=

exp(yγ)pr(y|x, D = 1)∫
exp(yγ)pr(y|x, D = 1)dy

. (2.3)

Although pr(y|x, D = 1) is directly estimable based on the observed (yi,xi)’s

with di = 1, it is impossible to estimate pr(y|x, D = 0) since γ is unknown

in general. As a consequence, the conditional approach is not viable, as

demonstrated by Kim and Yu (2011), who rely on external data to identify

γ. In practical applications, however, external data are often unavailable,

which makes the estimation of γ impossible.
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Fortunately, the marginal information on the (xi, di)’s can help to i-

dentify γ, which solves the thorny identifiability problem in non-ignorable

missing-data problems. Since (yi,xi)’s with di = 1 are available, with-

out loss of generality, we can postulate a parametric model f(y|x, ξ) for

pr(y|x, D = 1) with an identifiable parameter ξ. The parameter ξ can be

consistently estimated from the directly observed data. This parametric

model together with Equation (2.3) implies two DRMs:

pr(y|x, D = 0) = exp{γy − c(x, γ, ξ)}f(y|x, ξ), (2.4)

pr(x|D = 0) = exp{α + x>β + c(x, γ, ξ)}pr(x|D = 1), (2.5)

where

c(x, γ, ξ) = ln

{∫
exp(yγ)f(y|x, ξ)dy

}
. (2.6)

Equations (2.4)–(2.6) are the foundation of our inference method. We note

that the second DRM involves all the underlying parameters in the model

and is dependent only on pr(x|D = 0) and pr(x|D = 1). Since the (xi, di)’s

with di = 0 or 1 are not subject to missingness, the parameters can be

consistently estimated by their maximum DRM-based EL estimators (Qin

and Zhang, 1997) provided they are identifiable.
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2.2 Model identifiability

Miao et al. (2016) pointed out that even under full parametric models for

pr(D = 1|x, y) and pr(y|x), the underlying model parameters may not be

identifiable. This phenomenon also arises under Model (2.5), where even

pr(x|D = 1) is completely known, the model parameters in (2.5) may not

be identifiable. We present a simple-to-check sufficient condition for the

identifiability of the underlying parameters in (2.5). We have assumed that

ξ is identifiable. Hence, we focus here on the identifiability of the parameters

α, β, and γ. Given the data {(xi, di), i = 1, . . . , n}, the conditional density

functions pr(x|D = 0) and pr(x|D = 1) are clearly identifiable and can be

consistently estimated by, for example, the kernel method. The log ratio

log{pr(x|D = 0)/pr(x|D = 1)} is also identifiable. Since

log{pr(x|D = 0)/pr(x|D = 1)} = α + x>β + c(x, γ, ξ),

the model identification is equivalent to the identification of the parameters

α, β, and γ in α + x>β + c(x, γ, ξ).

Proposition 1. Let S be the common support of pr(x|D = 0) and pr(x|D =

1), and Ω = {h(x) : S 7→ R | ∃(α, β, γ) such that h(x) = α + x>β +

c(x, γ, ξ) ∀ x ∈ S}. If for any h(x) ∈ Ω, there exists a unique (α, β, γ) such

that h(x) = α + x>β + c(x, γ, ξ), then (α, β, γ) is identifiable.
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Next we apply the above proposition to some special cases. We need

the concept of an instrument variable, which can be helpful to identify γ.

Suppose x can be written as x = (z, u>)>. If

pr(D = 0|z, u, y) = pr(D = 0|u, y) =
exp(α∗ + u>β + yγ)

1 + exp(α∗ + u>β + yγ)

and pr(y|x) = pr(y|z, u) depends on z and possibly on u, then z is an

instrument variable. That is, an instrument variable is defined to be a

covariate that does not affect the missingness but may affect the conditional

distribution of the response variable.

With the above preparation and Proposition 1, we find that (α, β, γ) is

identifiable in the following two cases.

Corollary 1. Suppose the logistic regression model in (1.1) holds and that

the density function of Y given (X = x, D = 1) is f(y|x, ξ). (a) If there

exists an instrument variable z in x, then (α, β, γ) is identifiable. (b) As-

sume that the set S in Proposition 1 contains an open set, and c(x, γ, ξ)

can be expressed as c(x, γ, ξ) =
∑k

i=1 ai(γ)gi(x) + ak+1(γ) + x>ak+2(γ) for

some positive integer k, and continuous functions ai(γ) (i = 1, . . . , k + 2)

and gi(x) (i = 1, . . . , k), where 1,x, g1(x), . . . , gk(x) are linearly indepen-

dent, and aj(γ) (j = 1, . . . , k) are not equal to the zero functions. If(
a1(γ1), . . . , ak(γ1)

)
6=
(
a1(γ2), . . . , ak(γ2)

)
for any γ1 6= γ2, then (α, β, γ) is

identifiable.
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As an application of the above results, we consider the normal model

in which f(y|x, ξ) is the density function of N
(
µ(x, ξ), σ2(x, ξ)

)
. Direc-

t calculations give c(x, γ, ξ) = γµ(x, ξ) + 0.5γ2σ2(x, ξ). Further, assume

µ(x, ξ) = x>b1(ξ)+b2(ξ)x
>x and σ2(x, ξ) = exp{b3(ξ)+x>b4(ξ)} for nonze-

ro functions bi(ξ). We have the following observations:

(I) If b2(ξ) 6= 0, then according to Corollary 1, (α, β, γ) is identifiable.

(II) If b2(ξ) = 0 and b4(ξ) = 0, then

α + x>β + c(x, γ, ξ) = α + 0.5γ2 exp{b3(ξ)}+ x>{β + γb1(ξ)},

which together with Lemma 1 implies that (α, β, γ) is not identifiable.

(III) If b2(ξ) = 0 and b4(ξ) 6= 0, then

α + x>β + c(x, γ, ξ) = α+x>{β+γb1(ξ)}+0.5γ2 exp{b3(ξ)+x>b4(ξ)}.

If further γ = 0, then Proposition 1 implies that (α, β, γ) is identifi-

able. Otherwise, (α, β, γ) is not identifiable.

3. Semiparametric empirical likelihood inference

3.1 Empirical likelihood

Suppose there are n1 completely observed data and n2 partially observed

data. Without loss of generality, we assume that di = 1, i = 1, . . . , n1 and
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di = 0, i = n1 + 1, . . . , n. The full likelihood in (2.1) can be written as

n1∏
i=1

{pr(yi|xi, D = 1)pr(xi|D = 1)pr(D = 1)} ·
n∏

i=n1+1

{pr(xi|D = 0)pr(D = 0)}.

Let θ = (α, β>, γ, ξ>)> and t(x, θ) = α+x>β+ c(x, γ, ξ). Since pr(y|x, D =

1) = f(y|x, ξ) by assumption, it follows from η = pr(D = 1) and Equation

(2.5) that the full log-likelihood is ˜̀= `1(η) + ˜̀
2, where

`1(η) = n1 log(η) + (n− n1) log(1− η)

is the marginal likelihood based on the di’s, and

˜̀
2 =

n1∑
i=1

log{f(yi|xi, ξ)}+
n∑

i=n1+1

t(xi, θ) +
n∑
i=1

log{pr(xi|D = 1)}

is a conditional likelihood given the di’s.

We leave the conditional density pr(x|D = 1) completely unspecified,

and use the celebrated EL method of Owen (1988, 1990) to handle it. Let

pi = pr(xi|D = 1) = dF (xi|D = 1), where F (x|D = 1) is the cumulative

distribution function corresponding to the density pr(x|D = 1). Following

the principle of EL, ˜̀
2 becomes an empirical log-likelihood

˜̀
2 =

n1∑
i=1

log{f(yi|xi, ξ)}+
n∑

i=n1+1

t(xi, θ) +
n∑
i=1

log(pi),

where the pi’s are subject to the constraints

pi ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

pi[exp{t(xi, θ)} − 1] = 0.
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Maximizing ˜̀
2 with respect to the pi’s, we arrive at

pi =
1

n

1

1 + λ[exp{t(xi, θ)} − 1]
, (3.1)

where λ is the solution to

n∑
i=1

exp{t(xi, θ)} − 1

1 + λ[exp{t(xi, θ)} − 1]
= 0. (3.2)

Substituting these pi’s into ˜̀
2 leads to the profile log-likelihood of θ,

`2(θ) =

n1∑
i=1

log{f(yi|xi, ξ)}+
n∑

i=n1+1

t(xi, θ)−
n∑
i=1

log
{

1 + λ[exp{t(xi, θ)} − 1]
}
.

The profile log-likelihood of (η, θ) is then defined as

`(η, θ) = `1(η) + `2(θ). (3.3)

3.2 Estimation of the underlying parameters

With the profile log-likelihood of (η, θ) in (3.3), the MLE of (η, θ) is

(η̂, θ̂) = arg max
η,θ

`(η, θ).

Equivalently, η̂ maximizes `1(η), which gives η̂ = n1/n, and θ̂ = (α̂, β̂>, γ̂, ξ̂>)> =

arg maxθ `2(θ). The likelihood ratio function of θ is defined as

R(θ) = 2{max
η,θ

`(η, θ)−max
η
`(η, θ)} = 2{`2(θ̂)− `2(θ)}.

Next we study the large-sample properties of the MLE and the likeli-

hood ratio. Denote the truth of (η, θ) by (θ0, η0) with θ0 = (α0, β
>
0 , γ0, ξ

>
0 )>

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



3.2 Estimation of the underlying parameters17

and η0 ∈ (0, 1). Define

π(x; θ, η) =
(1− η) exp{t(x, θ)}

η + (1− η) exp{t(x, θ)}

and we write π(x) = π(x; θ0, η0) for abbreviation. Let dθ denote the dimen-

sion of θ and e1 be a dθ × 1 vector with the first component being 1 and

the remaining components 0. Finally, define

V = E[{1− π(X)}π(X){∇θt(X, θ)}⊗2] + E[DIe{∇ξf(Y |X, ξ)}⊗2I>
e ], (3.4)

where∇θ is the differentiation operator with respect to θ, I>
e = (0dξ×(2+dβ), Idξ×dξ),

and B⊗2 = BB> for any matrix or vector B.

Theorem 1. Assume Conditions A1–A4 in the supplementary material.

Suppose that the logistic regression model in (1.1) holds with (α0, β0, γ0) in

place of (α, β, γ), and that the density function of Y given (X = x, D = 1)

is f(y|x, ξ0). Further, assume that θ is identifiable. Then as n → ∞, (1)

√
n(θ̂−θ0)→ N

(
0, V −1−{η0(1−η0)}−1e1e

>
1

)
in distribution with V defined

in (3.4); (2) R(θ0)→ χ2
dθ

in distribution.

Theorem 1 implies that the MLEs of all the parameters are asymp-

totically normal. The likelihood ratio for the parameters follows a central

chisquare limiting distribution, which makes the resulting hypothesis test-

ing or interval estimation about θ very convenient. Although the proposed

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



3.2 Estimation of the underlying parameters18

approach is developed based on prospective data, we emphasize that it can

also apply to retrospectively collected data. This is because the subsequent

inferences are mainly based on `2 or equivalently

˜̀
2 = log

[
n1∏
i=1

{pr(yi,xi|D = 1)}
n∏

i=n1+1

{pr(xi|D = 0)

]
,

which is actually a retrospective log-likelihood. If η = pr(D = 1) or η̂ is

available, based on retrospectively collected data, the proposed approach

can still make valid inference.

Given the MLE of all the underlying parameters, we are able to con-

struct the MLE of the population mean µ of the response Y . Under

our model, µ depends not only on the underlying parameters θ but al-

so on pr(x|D = 1) or the corresponding cumulative distribution function

F (x|D = 1). With the MLEs θ̂ and η̂ = n1/n, we show in the supplemen-

tary material that λ̂ = n2/n, where λ̂ satisfies (3.2) with θ̂ in the place of

θ. With (3.1), the MLE of pi is

p̂i =
1

n

1

1 + (n2/n)[exp{t(xi, θ̂)} − 1]
=

1

n

1

η̂ + (1− η̂) exp{t(xi, θ̂)}
.

Accordingly the MLE of F (x|D = 1) is F̂ (x|D = 1) =
∑n1

i=1 p̂iI(xi ≤ x),

where for two vectors x1 and x2, x1 ≤ x2 implies that the inequality holds

elementwise.
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3.3 Estimation of the response mean

To obtain the MLE of the response mean µ, we write µ in terms of the

underlying parameters η, θ, and F (x|D = 1) as follows:

µ =

∫
y

∫
x
ypr(y|x, D = 1)pr(x|D = 1)pr(D = 1)dxdy

+

∫
y

∫
x
ypr(y|x, D = 0)pr(x|D = 0)pr(D = 0)dxdy

=

∫
y

∫
x
ypr(y|x, D = 1)pr(x|D = 1)ηdxdy

+

∫
y

∫
x
y exp(α + x>β + γy)pr(y|x, D = 1)pr(x|D = 1)(1− η)dxdy

=

∫
x

[∫
y

y{η + (1− η) exp(α + x>β + γy)}f(y|x, ξ)dy
]
dF (x|D = 1),

where in the last step we replace pr(y|x, D = 1) and pr(x|D = 1)dx by

f(y|x, ξ) and dF (x|D = 1), respectively. Then the MLE of µ is

µ̂ =
n∑
i=1

p̂i

[∫
y

y{η̂ + (1− η̂) exp(α̂ + x>
i β̂ + γ̂y)}f(y|xi, ξ̂)dy

]

=
1

n

n∑
i=1

∫
y
y{η̂ + (1− η̂) exp(α̂ + x>

i β̂ + γ̂y)}f(y|xi, ξ̂)dy

η̂ + (1− η̂) exp{t(xi, θ̂)}
. (3.5)

We use the normal model as an illustrating example: f(y|x, ξ) is chosen

to be the density function of N
(
µ(x, ξ), σ2(x, ξ)

)
. In this example, the

proposed mean estimator in (3.5) becomes

µ̂ =
1

n

n∑
i=1

η̂µ̂i + (1− η̂)(µ̂i + γ̂σ̂2
i ) exp(α̂ + x>

i β̂ + µ̂iγ̂ + 0.5γ̂2σ̂2
i )

η̂ + (1− η̂) exp(α̂ + x>
i β̂ + µ̂iγ̂ + 0.5γ̂2σ̂2

i )
, (3.6)

where µ̂i = µ(xi, ξ̂) and σ̂2
i = σ2(xi, ξ̂).
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3.3 Estimation of the response mean20

The next theorem establishes the asymptotic normality of the proposed

estimator µ̂ in (3.5).

Theorem 2. Under the conditions of Theorem 1, as n goes to infinity,

√
n(µ̂ − µ) → N(0, σ2) in distribution, where σ2 = Var{K(X; θ0, η0)} +

A>V −1A with

K(x; θ, η) =

∫
y{η + (1− η) exp(α + x>β + γy)}f(y|x, ξ)dy
η + (1− η) exp{α + x>β + c(x, γ, ξ)}

and A = E {∇θK(X; θ0, η0)}.

When Wald-type intervals are constructed for µ based on Theorem 2,

we need a consistent estimator of σ2, which can be constructed based on

consistent estimators of A, Var{K(X; θ0, η0)}, and V . Reasonable estima-

tors for these three quantities are Â = n−1
∑n

i=1∇θK(xi; θ̂, η̂),

V̂ar{K(X; θ0, η0)} = n−1

n∑
i=1

{K(X; θ̂, η̂)}2 −

{
n−1

n∑
i=1

K(X; θ̂, η̂)

}2

,

and

V̂ = n−1

n∑
i=1

[{1−π(xi, θ̂, η̂)}π(xi, θ̂, η̂){∇θt(xi, θ̂)}⊗2+diIe{∇ξf(yi|xi, ξ̂)}⊗2I>
e ].

These estimators are consistent because (θ̂, η̂) is consistent and K is smooth

in all its arguments. Consequently a consistent estimator of σ2 is

σ̂2 = V̂ar{K(X; θ0, η0)}+ Â>V̂ −1Â. (3.7)
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3.4 Semiparametric efficiency

We make the same model assumptions as Riddles et al. (2016): the logistic

model in (1.1) for the propensity score and a parametric model f(y|x, ξ)

for pr(y|x, D = 1), and leave pr(x|D = 1) completely unspecified. There-

fore our model setup is semi-parametric. Next we show that the estimators

(θ̂, η̂) and µ̂, which are built on the above semi-parametric model, are semi-

parametrically efficient.

Theorem 3. Under the conditions of Theorem 1, the MLEs (θ̂, η̂) and µ̂ are

both semiparametrically efficient in sense that their asymptotic variances

attain the corresponding semiparametric efficiency lower bounds.

We make some comments on Theorem 3 and the results in Riddles et al.

(2016), Morikawa and Kim (2016) and Ai et al. (2018). Note that Riddles et

al. (2016)’s estimator was constructed under the same model assumptions

as ours. Theorem 3 implies that the asymptotic variance of their mean

estimator is no less than σ2, the asymptotic variance of the MLE µ̂ and

also the semiparametric efficiency lower bound for estimating µ.

When only the parametric propensity score assumption is made, Morikawa

and Kim (2016) derived the semiparametric efficiency lower bound for the

parameter of interest such as the response mean, and proposed two adap-
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tive estimators whose asymptotic variances attain the lower bound. Ai et

al. (2018) proposed an estimation method based on the generalized method

of moments, and showed that as the number of moments increases appro-

priately their estimator also attains the lower bound of Morikawa and Kim

(2016). According to Tsiatis (2006), the semiparametric efficiency lower

bound is equal to the supremum of the asymptotic variances of the MLEs

under all parametric submodels. Since the model assumptions in Morikawa

and Kim (2016) is weaker than ours, the set of all parametric submodels

considered in Morikawa and Kim (2016) contains all parametric submodels

considered in this paper. Consequently, when the parameter of interest is

the response mean, the semiparametric efficiency lower bound of Morikawa

and Kim (2016) is no less than σ2. Hence the asymptotic variances of

Morikawa and Kim (2016)’s two adaptive estimators and Ai et al. (2018)’s

estimator are no less than that of our estimator µ̂.

3.5 Model checking

Based on the completely observed data {(yi,xi, di = 1), i = 1, . . . , n1}, we

can directly examine the correctness of the model assumption pr(y|x, D =

1) = f(y|x, ξ) by residual analysis. For example, the goal of checking

the normal model assumed in the real data analysis in Section 5 can be
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achieved by commonly-used normality tests such as the Shapiro-Wilk test

based on the residuals. We can perform model diagnostics by using Cox and

Snell (1968)’s general residuals for other types of continuous responses and

Yang (2019)’s surrogate empirical residual distribution function for discrete

responses.

Another question about the proposed model is the reliability of the

parametric model assumption on the propensity score pr(D = 1|x, y). Since

we do not observe yi’s for {(xi, di = 0), i = n1 + 1, . . . , n}, we do not have

direct data to check this. However, the question can be answered indirectly

by testing the goodness-of-fit of the DRM (2.5). The latter problem has

been studied by many researchers and can be solved by the tests of Qin and

Zhang (1997), Cheng and Chu (2004), Bondell (2007), and others.

4. Simulation

4.1 Set-up

We carry out simulations to investigate the finite-sample performance of

the proposed estimator for the population mean of the response. We com-

pare the proposed mean estimator µ̂ with four others: (1) Morikawa and

Kim (2016)’s adaptive estimator with correctly specified parametric form

for pr(y|x, D = 1), µ̃t, (2) Morikawa and Kim (2016)’s adaptive estima-
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tor without specifying a parametric form for pr(y|x, D = 1), µ̃np, (3) the

sample mean of the observed response, ȳr, and (4) the sample mean of all

the responses when there are no missing data, ȳ. When pr(y|x, D = 1) is

correctly specified, Morikawa and Kim (2016) showed that µ̃t is more effi-

cient than Riddles et al. (2016)’s estimator, and further Ai et al. (2018)’s

estimator has the same asymptotic variance as µ̃t. Hence Riddles et al.

(2016)’s and Ai et al. (2018)’s methods are not included in the comparison.

We have also compared the proposed estimator of the unknown parameters

in the missing probability model (1.1) with Morikawa and Kim (2016)’s

two adaptive estimators. The results are summarized in Section S7 of the

supplementary material.

We generate data from the following four examples.

Example 1. Let x = (z, u)>, where u is a Bernoulli random variable with

success probability 0.5, z follows the uniform distribution on (−1, 1), and

u and z are independent. We choose pr(D = 1|x, y) = 1/{1 + exp(−1.7 −

0.4u + 0.5y)} and set pr(y|x, D = 1) = f(y|x, ξ) to the density function of

N
(
µ(x), σ2

)
, where µ(x) = exp(0.5− u+ 1.5z) and σ2 = 1 or 4.

Example 2. Let x = (z, u)>, where u ∼ N(1, 1), z ∼ N(0, 1) and u

and z are independent. We choose pr(D = 1|x, y) = 1/{1 + exp(−1.7 −

0.4u + 0.5y)} and set pr(y|x, D = 1) = f(y|x, ξ) to the density function of
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N
(
µ(x), σ2

)
, where µ(x) = 2.5− u+ 1.5z and σ2 = 1 or 4.

Example 3. The covariate x follows N(0, 1). We choose pr(D = 1|x, y) =

1/{1 + exp(−2.7 − 0.4x + 0.5y)} and set pr(y|x,D = 1) = f(y|x, ξ) to

the density function of N
(
µ(x), σ2e0.5x

)
, where µ(x) = 2 − x + x2 and

σ2 = 1 or e0.7.

Example 4. The setup is the same as Example 2 except that pr(y|x, D =

1) is set to the density function of a normal mixture 0.95N
(
µ(x), 1

)
+

0.05N
(
µ(x), σ2

)
, where µ(x) = 2.5− u+ 1.5z and σ2 = 3 or 6.

Example 1 is Scenario 2 of Morikawa and Kim (2016) except that we

consider σ2 = 1 and 4, while Morikawa and Kim (2016) only considered

σ2 = 1. Example 2 represents the case where the mean function is a linear

function of x. Both Examples 1 and 2 have an instrument variable so the

model parameters are identifiable. Example 3 represents the case that there

is no instrument variable, but the model parameters are still identifiable.

In Examples 1–3, the model for pr(y|x, D = 1) is correctly specified when

implementing the proposed method. In Example 4, we choose f(y|x, ξ) to

be the density function of N
(
µ(x), σ2

)
when implementing the proposed

method, although the true density function for pr(y|x, D = 1) is a normal

mixture. In this situation, f(y|x, ξ) is a misspecified model for pr(y|x, D =

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



4.2 Point estimation26

1). The true values of µ and the missing probability 1 − η for the four

examples are tabulated in Table 1.

Table 1: True values of µ and the missing probability 1 − η in Examples

1–4.

Example σ2 µ 1− η Example σ2 µ 1− η
1 1 1.748 0.294 1 4 2.326 0.362

2 1 1.638 0.275 2 4 2.177 0.339

3 1 3.127 0.277 3 e0.7 3.289 0.299

4 3 1.657 0.277 4 6 1.704 0.282

4.2 Point estimation

In this section, we evaluate the performance of the five mean estimators

in terms of the relative bias (RB) and mean square error (MSE). We set

n = 500 and 2000 for all the four examples, and use 2000 for the number of

repetitions in all our simulations. The simulation results are summarized

in Table 2.

It is worth mentioning that we encountered some numerical problems

in the implementation of Morikawa and Kim (2016)’s adaptive estimator

µ̃t, in Example 1 with n = 500, 2000 and σ2 = 4, Example 2 with n = 500

and σ2 = 4, Example 3 with n = 500 and σ2 = e0.7, and Example 4 with

n = 500, 2000 and σ2 = 6. Morikawa and Kim (2016)’s algorithm either
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does not converge or produces too big (greater than 5) or too small (less

than 0) mean estimates. Throughout the simulation study, the performance

of µ̃t are evaluated based only on the estimates between 0 and 5.

Table 2: Relative bias (RB; ×100) and mean square error (MSE; ×100) of

five estimates of µ.

n µ̂ µ̃t µ̃np ȳr ȳ µ̂ µ̃t µ̃np ȳr ȳ

Example 1: σ2 = 1 Example 1: σ2 = 4

500 RB -0.12 -0.39 -1.31 -32.61 -0.19 0.35 -1.18 -8.45 -51.71 -0.19

500 MSE 0.93 0.98 1.04 33.10 0.81 4.00 7.17 7.18 146.23 1.78

2000 RB 0.10 0.04 -0.33 -32.54 0.03 0.18 -0.11 -4.21 -51.57 0.01

2000 MSE 0.22 0.24 0.24 32.49 0.19 0.98 1.24 1.91 144.24 0.44

Example 2: σ2 = 1 Example 2: σ2 = 4

500 RB -0.15 -0.28 -4.49 -35.83 0.01 0.18 -0.68 -18.62 -56.27 0.05

500 MSE 1.09 1.12 1.62 35.49 0.93 3.97 5.68 19.45 152.19 1.90

2000 RB 0.14 0.13 -2.85 -35.69 0.11 0.15 0.09 -15.01 -56.05 0.09

2000 MSE 0.26 0.27 0.48 34.43 0.23 0.97 1.40 11.43 149.48 0.47

Example 3: σ2 = 1 Example 3: σ2 = e0.7

500 RB 0.01 -0.24 -2.29 -18.70 0.06 0.02 -0.71 -3.08 -23.00 0.06

500 MSE 1.01 1.82 1.48 34.79 0.90 1.59 3.99 2.52 58.19 1.21

2000 RB 0.05 -0.02 -1.20 -18.70 -0.04 0.05 -0.11 -1.67 -23.06 0.00

2000 MSE 0.25 0.38 0.39 34.35 0.23 0.41 0.80 0.69 57.76 0.29

Example 4: σ2 = 3 Example 4: σ2 = 6

500 RB -0.39 -0.29 -5.08 -36.78 -0.07 -1.48 -0.39 -6.97 -38.68 0.22

500 MSE 1.10 1.18 1.78 38.19 0.94 1.25 1.77 2.56 44.52 1.02

2000 RB -0.14 0.01 -3.52 -36.67 0.09 -1.50 0.02 -5.56 -38.84 0.14

2000 MSE 0.27 0.30 0.61 37.16 0.23 0.36 0.53 1.19 44.05 0.26
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We first look at the results for Example 1. When σ2 = 1, the rela-

tive biases of the proposed estimator and Morikawa and Kim (2016)’s two

adaptive estimators are all small. The proposed estimator has slightly s-

maller mean square errors than Morikawa and Kim (2016)’s two adaptive

estimators, whose mean square errors are quite close to each other. When

σ2 is increased to 4, the relative biases of µ̃np become much bigger. The

proposed estimator has much smaller mean square errors than Morikawa

and Kim (2016)’s two adaptive estimators. The comparison between µ̂ and

µ̃t in Example 2 is similar to that for Example 1. For Example 2, compared

with µ̃t, µ̃np has much bigger relative biases and mean square errors espe-

cially for larger σ2. Next, we examine the results for Example 3, in which

there is no instrumental variable. The proposed estimator has small rela-

tive biases in all situations. Its mean square errors are significantly smaller

than Morikawa and Kim (2016)’s two adaptive estimators. For Example 4,

although the model for pr(y|x, D = 1) is misspecified, the relative biases

of µ̂ is still small, which shows that the proposed method is quite robust

to model misspecification. The comparison between µ̂ and Morikawa and

Kim (2016)’s two adaptive estimators in Example 4 is similar to that in

Example 2. Finally, as expected, ȳr has large relative biases and the largest

mean square errors in all examples, while the ideal estimator ȳ has small
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relative biases and the smallest mean square errors in all situations. When

σ2 is small, the proposed estimator has almost the same performance as

the ideal estimator ȳ, indicating that it is nearly optimal and can be hardly

improved.

4.3 Interval estimation

This section is devoted to comparing the coverage of Wald confidence in-

tervals based on µ̂, µ̃t, and ȳr. The nonparametric bootstrap method with

200 bootstrap samples is used to estimate the asymptotic variance for each

of the three mean estimators. Although the variance estimator in (3.7) can

be used in the Wald-type confidence intervals based on µ̂, its complicated

form makes it more difficult to calculate than bootstrap variance estimate.

The bootstrap method is quite computationally intensive for µ̃np. For ex-

ample, in Example 1, it takes around 9 minutes and 2 hours respectively

to calculate the bootstrap variances for µ̃np for a single replication when

n = 500 and n = 2000. Hence we do not include it for comparison. Again

the number of repetitions is 2000 in all cases. The simulation results are

summarized in Table 3.

In most cases, both Wald confidence intervals based on µ̂ and µ̃t have

very close and accurate coverage probabilities. The exceptions are Example
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1 and Example 3 with the smaller sample size n = 500, and Example 4.

For Example 1, both intervals have slight under coverage, while for Exam-

ple 3, the Wald confidence interval based on µ̃t has much over-coverage,

in particular when σ2 is large. When the sample size n is increased to

2000, both intervals have perfect coverage accuracy. For Example 4, the

Wald confidence interval based on µ̃t has under-coverage, especially when

n = 2000. The Wald confidence interval based on µ̂ has the similar problem

when σ2 = 6 and n = 2000. This is probably the cost of model misspeci-

fication. It is worth noting that for the Wald confidence interval based on

µ̃t, the results with µ̃t outside [0, 5] or not convergent were not taken into

consideration. In all cases, the Wald confidence interval based on ȳr has

unacceptable coverage accuracy, which is most probably caused by the se-

vere bias of ȳr. Overall the Wald confidence interval based on the proposed

estimator µ̂ is the most accurate and desirable among the three interval

estimators under comparison.

5. An application

We apply the proposed method to analyze the human immunodeficiency

virus (HIV) data from AIDS Clinical Trials Group Protocol 175 (ACT-

G175) (Hammer et al., 1996; Zhang and Wang, 2020), in which n =2139
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Table 3: Simulated coverage probabilities (%) of bootstrap Wald-type

confidence intervals based on µ̂, µ̃t, and ȳr in Examples 1–4.

Example σ2 n µ̂ µ̃t ȳr Example σ2 n µ̂ µ̃t ȳr

1 1 500 93.6 94.4 0 1 4 500 95.1 95.7 1.0

1 1 2000 95.3 95.1 0 1 4 2000 94.7 94.2 0

2 1 500 94.5 94.7 0.1 2 4 500 95.2 95.3 0

2 1 2000 95.1 95.2 0 2 4 2000 95.4 95.2 0

3 1 500 94.9 96.0 0 3 e0.7 500 95.7 97.5 0

3 1 2000 95.0 94.7 0 3 e0.7 2000 94.8 95.5 0

4 3 500 95.7 94.4 0 4 6 500 94.8 93.6 0

4 3 2000 95.1 93.9 0 4 6 2000 92.7 92.1 0

HIV-infected patients were enrolled. The patients were randomly divided

into four arms according to the regimen of treatment they received: (I)

zidovudine monotherapy, (II) zidovudine + didanosine, (III) zidovudine +

zalcitabine, and (IV) didanosine monotherapy. The data records many mea-

surements from each patient, including his/her age (in years), weight (in

kilograms), CD4 cell count at baseline (cd40), CD4 cell count at 20±5 weeks

(cd420), CD4 cell count at 96±5 weeks (cd496), CD8 cell count at baseline

(cd80), CD8 cell count at 20±5 weeks (cd820), and arm number (arms).

The data is available from the R package speff2trial. The effectiveness

of a HIV treatment can be assessed by monitoring the CD4 cell counts of

HIV positive patients: an increase in such counts is an indication of im-
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provement on the patients’ health. An interesting problem is how much the

mean of the CD4 cell counts was in each arm after the patients were treat-

ed for about 96 weeks. We take cd496 as a response variable Y , and take

age, weight, cd40, cd420, cd80, and cd820 as covariates X1, . . . , X6. Due to

the end of trial or loss to follow-up, 62.74% of the patients’ responses were

missing.

As patients with lower CD4 counts are more likely to drop out from the

scheduled study visits (Yuan and Yin, 2010), we believe that the missingness

of Y is likely dependent on Y itself. That is, Y is non-ignorable missing

(Zhang and Wang, 2020). We use the proposed estimator µ̂ and Morikawa

and Kim (2016)’s estimator µ̃t to estimate the mean of CD4 cell counts

of the patients in Arm I; the estimations for other arms are similar and

omitted.

We take X = (X3, X4, X6), and choose f(y|x, ξ) to be the normal den-

sity with mean µ(x, ξ) = ξ1 + ξ2x3 + ξ3x4 + ξ4x6 + ξ5x
2
4 and a constant

variance σ(x, ξ) = ξ6. This model is chosen by all subset section method

coupled with Bayesian information criterion among the six covariates and

their quadratic terms. As f(y|x, ξ) is a normal model, checking its cor-

rectness can be achieved by testing the normality of the residuals. Three

commonly-used normality tests, Shapiro-Wilk test, Kolmogorov-Smirnov
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test and Anderson-Darling test, give p-values 0.1422, 0.8547, and 0.2646,

respectively, all supporting the postulated normal model for f(y|x, ξ) at the

5% significance level.

We consider two models for the missing probability model

Model I : pr(D = 0|x, y) =
exp(α∗ + x3β1 + x4β2 + x6β3 + yγ)

1 + exp(α∗ + x3β1 + x4β2 + x6β3 + yγ)
,

Model II : pr(D = 0|x, y) =
exp(α∗ + x4β1 + x6β2 + yγ)

1 + exp(α∗ + x4β1 + x6β2 + yγ)
.

In Model I, there is no instrumental variable, and in Model II, X3 is the

instrumental variable. According to Corollary 1, all model parameters are

identifiable.

Since Y is subject to missingness, directly checking the validation of the

proposed missing probability model is infeasible. Instead we achieve this

purpose indirectly by checking the validation of DRM (2.5). Zhang and Qin

(1997)’s Kolmogorov-Smirnov test produces test statistics 3.03 and 3.01 for

the goodness of fit of Models I and II, respectively. Based on 1000 bootstrap

samples, their p-values are found to be 0.335 and 0.397, respectively, which

support partially the assumed logistic models for the missing mechanism.

We report the point and Wald interval estimates (at the 95% confidence

level) for the mean of CD4 cell counts of the patients in Arm I in Table

4. The results of the naive estimator ȳr are also included. The asymptotic
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standard deviation of each estimator was estimated based on 1000 bootstrap

samples. We observe that the proposed estimate µ̂ and Morikawa and

Kim (2016)’s estimate µ̃t are quite close. However, the proposed interval

estimates have much smaller lengths. The naive estimator ȳr seems to have

a upward bias as we have justified the non-ignorable missing mechanism.

Table 4: Point estimates and interval estimates of the mean of CD496 cell

counts (Y ) of the patients in Arm I for the ACTG175 data.

Model I Model II

Point Estimate Interval Estimate Point Estimate Interval Estimate

ȳr 287.62 [269.91, 305.32] 287.62 [269.91, 305.32]

µ̂ 258.14 [198.26, 318.02] 256.25 [220.39, 292.11]

µ̃t 258.53 [168.55, 348.50] 255.34 [198.82, 311.85]

Supplementary Material

The online supplementary material contains necessary regularity con-

ditions, proofs of Corollary 1 and Theorems 1-3, and additional simulation

results.
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