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Abstract: Due to the rapid development of social networking sites, the spatial au-

toregressive (SAR) model has played an important role in social network studies.

However, the underlying structure of SAR implicitly assumes that all nodes (or

actors or users) within the network have the same influential power measured by

the common autocorrelation parameter. Hence, the classical SAR is unable to

identify influential nodes. This paper proposes the adaptive SAR model by intro-

ducing the network influence index, which includes the classical SAR model as a

special case. Using this proposed model without imposing any specific error dis-

tribution, we apply Lee’s (2004) quasi-maximum likelihood approach to estimate

the unknown parameters of the index, which can then be used to characterize

the influential power of each node. The asymptotic properties of parameter es-

timates are established and three test statistics for assessing the homogeneity of

the network influence indices are presented. The usefulness of the adaptive SAR

model and its associated network index are illustrated via simulation studies and

an empirical investigation of the spillover effects in Chinese mutual fund cash
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flows.

Key words and phrases: Network influence; Quasi-maximum likelihood estima-

tion; Spatial autoregressive model; Weighted chi-squared test.

1. INTRODUCTION

In the last three decades, online social network sites (SNS) have been

developing rapidly across different disciplines and professions. Accordingly,

many SNS, such as Facebook, Twitter and Weibo, possess a large amount of

data encompassing both users’ personal information and network relation-

ships. These important and valuable types of data have attracted consider-

able attention from both industry practitioners and academic researchers.

For example, Wang et al. (2012) demonstrated that advertising agencies can

effectively promote new products through social network sites; Kass-Hout

and Alhinnawi (2013) found that social network sites allow researchers to

investigate the person-to-person spread of communicable diseases and be-

haviors; Ozsoylev et al. (2014) employed network information to study the

trading behavior of investors and found that central investors earn higher

returns; Fracassi (2017) indicated that managers’ social networks can affect

their corporate policy decisions. The above examples are illustrative of how

extensively social networks have been applied in practice.
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To understand the network structure, we construct a network with n

nodes, and denote aij = 1 if a direct connection leads from node i to node

j and aij = 0 otherwise. For the sake of completeness, define ajj = 0

for any 1 ≤ j ≤ n. Accordingly, the matrix A = (aij)n×n ∈ Rn×n with

i, j = 1, · · · , n, describes the network relationships among the n nodes. In

social network studies, A is called the adjacency matrix and presents useful

information relating any two adjacent nodes (see, e.g., Zhu et al., 2017; Zou

et al., 2017). For node i, let Yi be its associated response variable. To assess

the influential power of each node, one needs to understand the relationship

among the Yis via the network structure. Hence, we first consider the spatial

autoregressive process below, which has been commonly used for modeling

social network information,

Yi = λ

n∑
j=1

wijYj + εi, (1.1)

where λ > 0 is the autocorrelation (or influence) parameter, wij = aij/
∑n

j=1

aij, and εi is the random error for i = 1, · · · , n. Some useful references for

model (1.1) can be found in Whittle (1954), Ord (1975), LeSage and Pace

(2009), and Zhou et al. (2017).

Model (1.1) basically decomposes Yi into two parts: (i) the total amount
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of information allocated to node i from nodes j ̸= i in the network, which is∑n
j=1wijYj together with the influence parameter λ; (ii) information from

the outside of the network, denoted by εi.

Although model (1.1) is widely used in extant literature to characterize

the relationship among the Yis, it is unable to identify influential nodes.

The reason is that model (1.1) simply assumes all the nodes have the same

influential power measured by the parameter λ. In practice, however, node

i can have more (or less) influence than node j for any two connected nodes

i and j. Accordingly, the influence parameter can be different across nodes.

To this end, let λj be the influence measure of node j for j = 1, · · · , n in the

network. Then the information of node i received from node j is Yjwijλj.

Accordingly, we propose the following model,

Yi =
n∑

j=1

Yjλjwij + εi. (1.2)

This model allows us to identify influential nodes via their associated in-

fluence measures λjs, which is an interesting problem in applications; for

example, Anagnostopoulos et al. (2008) stated that “A marketing firm, for

example, can use this information to design viral marketing campaigns or

give out coupons to influential nodes in the network.”
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From model (1.2), the influence of Yj on Yi is λjwij. Accordingly, it

includes two components: (i) λj, which characterizes the influential power

of node j; (ii) wij, which describes the interaction between nodes i and

j. When all the λis are equal, model (1.2) reduces to the classical spatial

autoregressive (SAR) model (1.1) (e.g., see Lee, 2004; LeSage and Pace,

2009). Since model (1.2) is able to characterize the influential power of each

node, we refer to it as the adaptive SAR model, and name its associated

vector (λ1, · · · , λn)
⊤ ∈ Rn the network influence index.

It is worth noting that Dou et al. (2016) proposed the model Yi =

λi

∑n
j=1wijYj + εi, and they also studied influential effects. However, the

λi in their model measures the magnitude of node i being influenced by

its connected nodes. In contrast, λj in model (1.2) denotes node j’s own

influential power, which can affect its connected nodes.

The aim of this paper is to demonstrate the novelty and usefulness of the

proposed adaptive SAR model. To this end, we study parameter estimators

and their properties in the proposed model without imposing any specific

error distribution, and then we make inferences on the influence index and

illustrate its usefulness. We find that the adaptive SAR model can play

an important role in identifying the most influential nodes, which is a key
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problem in social network analysis.

The rest of this paper is organized as follows. Section 2 presents the

detailed adaptive SAR model structure, applies the quasi-maximum likeli-

hood approach of Lee (2004) to estimate unknown parameters, and explores

asymptotic properties. In addition, Section 2 provides three test statistics,

(quasi-likelihood ratio test, quasi-score test and quasi-Wald test) to examine

the significance of the adaptive SAR model versus the classical SAR model.

This allows us to determine the contribution of the influence index. Monte

Carlo studies and an empirical analysis of the Chinese mutual fund market

are given in Sections 3 and 4, respectively. A short discussion and some

concluding remarks are presented in Section 5. The Appendix presents five

useful conditions to establish the theoretical results. The technical materi-

als, additional simulation studies and empirical results are relegated to the

Supplementary Material.

2. MODELS AND METHODOLOGY

2.1 Models with Parametrization

In addition to the network effect in model (1.2), the response Yi can

also be affected by node i’s own attributes. Accordingly, we extend model
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(1.2) as follows,

Yi =
n∑

j=1

Yjλjwij +X⊤
i α + εi (i.e., Y = WΛY+ Xα + E), (2.1)

where Xi = (xi1, · · · , xip)
⊤ ∈ Rp represents the p-dimensional covariates as-

sociated with their corresponding attributes, α = (α1, · · · , αp)
⊤ is the p×1

unknown regression vector, Y = (Y1, · · · , Yn)
⊤, W = (wij)n×n ∈ Rn×n,

E = (ε1, · · · , εn)⊤, X = (X1, · · · , Xn)
⊤, and Λ = diag{λ1, · · · , λn} denotes

the diagonal matrix with λ1, · · · , λn being its diagonals. The error compo-

nents εis of E are assumed to be independent and identically distributed

with mean 0 and finite variance σ2.

In the adaptive SAR model (2.1), one needs to estimate n parameters of

λ and p parameters of α, which is infeasible with only n observations. Note

that λi measures the node i’s influential power, which should be affected by

its own attributes. For example, a movie star in the Weibo network often

has larger influential power than normal users. That is, the influential power

of node i is affected by its vocation. To this end, let Zi = (zi1, · · · , zid)⊤ ∈

Rd×1, zi1 ≡ 1, and Z−1,i = (zi2, · · · , zid)⊤ be the d − 1 possible attributes

that may affect the influential power of node i. In addition, we assume that

Z−1 = (Z−1,1, · · · , Z−1,n)
⊤ ∈ Rn×(d−1) is of full rank. Then, we parameterize
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the network influence index λi by λi(β) = F (Z⊤
i β), where F (·) is a strictly

monotone and known function and β = (β1, · · · , βd)
⊤ ∈ Rd×1 is an unknown

influence coefficient vector. Accordingly, zi1 ≡ 1 is associated with the

intercept β1 for i = 1, · · · , n. If β2 = · · · = βd = 0, then λi = F (β1), that is,

all the λis are equal. This implies that the classical SAR model is a special

case of the adaptive SAR model. Since Λ is a function of β, we further

express (2.1) as

Y = WΛ(β)Y+ Xα + E . (2.2)

In the above equation, the parameter vector α is associated with the

covariate matrix X. Analogous to classical regression models, α can be

interpreted as the effect of covariate matrix Xon the mean of vector {In −

WΛ(β)}Y. On the other hand, the vector β is the effect of attributes Z on

influence indices, λ1, · · · , λn.

To make the proposed model (2.2) practically useful, one needs to spec-

ify the link function F (·). One often assumes the influence parameter λ

satisfies |λ| < 1 in the SAR model setting to ensure the invertibility of

In − λW for any weighting matrix W (see, e.g., LeSage and Pace 2009),

where In is the n× n identity matrix. Recently, Zhou et al. (2017) further

indicated that non-negative λ could provide more precise interpretation in
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social network analysis. This motivates us to consider the following three

known link functions, which are often considered in binary regression mod-

els: logistic, inverse of the probit, and inverse of the log-log. In fact, the

parameter λ in the SAR model can be any value as long as In − λW is

invertible, as mentioned in Lee (2004). Hence, we adopt the inverse of the

canonical link function from the Poisson regression model and propose the

exponential link function, which can be larger than 1 in our adaptive SAR

model by requiring instead that In −WΛ(β) in (2.2) be invertible.

The four link functions mentioned above can be summarized as follows:

LINK I (logistic), F (Z⊤
i β) = eZ

⊤
i β/(1 + eZ

⊤
i β); LINK II (inverse of the pro-

bit), F (Z⊤
i β) = Φ(Z⊤

i β), where Φ(·) is the cumulative distribution func-

tion of the standard normal distribution; LINK III (inverse of the log-log),

F (Z⊤
i β) = 1 − e−eZ

⊤
i β ; and LINK IV (exponential), F (Z⊤

i β) = eZ
⊤
i β. We

next study parameter estimators of Model (2.2) under a given link function.

2.2 Quasi-Maximum Likelihood Estimation

We follow Lee’s (2004) approach and employ the quasi-maximum like-

lihood estimation (QMLE) method to estimate the unknown parameters

in model (2.2). Specifically, the estimator is derived from a normal likeli-

hood but the random errors in model (2.2) are not required to be normally
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distributed and the corresponding assumptions are stated below equation

(2.1).

Define S(β) = In −WΛ(β). We then have E = S(β)Y−Xα. Based on

the Jacobian transformation, the normal log-likelihood function of (2.2) is

ℓ(θ) = −n

2
log(2π)−n

2
log σ2− 1

2σ2
{S(β)Y− Xα}⊤ {S(β)Y− Xα}+log |det{S(β)}|,

where θ = (α⊤, β⊤, σ2)⊤. Define E(α, β) = S(β)Y−Xα, which is a function

of α and β. It is worth noting that E is E(α, β) evaluated at the true

parameter values of α and β. We then adopt Lee’s (2004) concentrated

quasi-likelihood approach and estimate the parameters. Specifically, given

β, we maximize ℓ(θ) with respect to α and σ2, which leads to

α̂(β) =
(
X⊤X

)−1X⊤S(β)Y, and

σ̂2(α̂(β), β) =
1

n
E(α̂(β), β)⊤E(α̂(β), β) = 1

n
Y⊤S(β)⊤MXS(β)Y,

where E(α̂(β), β) = MXS(β)Y and MX = In−X
(
X⊤X

)−1X⊤. Accordingly,

the resulting concentrated quasi-log-likelihood is

ℓc(β) = ℓ(α̂(β), β, σ̂2(α̂(β), β)) = −n

2
log(2π)−n

2
−n

2
log σ̂2(α̂(β), β)+log |det{S(β)}|.
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Maximize the above equation with respect to β, which yields the QMLE β̂ =

argmaxβ ℓc(β). We then obtain the QMLEs of α and σ2, and they are α̂ =

α̂(β̂) and σ̂2 = σ̂2(α̂, β̂). We next introduce notations and equations that

will be used in developing the asymptotic distribution of θ̂ = (α̂⊤, β̂⊤, σ̂2)⊤.

Let Λβk
(β) := ∂Λ(β)/∂βk = diag{z1kF ′(Z⊤

1 β), · · · , znkF ′(Z⊤
n β)} for

k = 1, · · · , d. In the following, we use a generic notation (gk1k2)K1×K2 to

denote a matrix that has dimension K1×K2 and whose (k1, k2)-th element is

gk1k2 for k1 = 1, · · · , K1 and k2 = 1, · · · , K2. After algebraic simplification,

the Fisher information matrix of the quasi-log-likelihood ℓ(θ) is

In(θ) := −n−1E

{
∂ℓ2(θ)

∂θ∂θ⊤

}
=


σ−2n−1X⊤X Iαβ,n 0p×1

Iβα,n Iββ,n Iβσ2,n

01×p Iσ2β,n 2−1σ−4

 , where

(2.3)

Iαβ,n =
1

nσ2

(
X⊤WΛβ1(β)S

−1(β)Xα, · · · , X⊤WΛβd
(β)S−1(β)Xα

)
,

Iββ,n = n−1

(
tr
{
WΛβk1

(β)S−1(β)WΛβk2
(β)S−1(β)

}
+tr

{
WΛβk1

(β)S−1(β)S−1(β)⊤Λβk2
(β)W⊤

}
+

1

σ2
α⊤X⊤S−1(β)⊤Λβk1

(β)W⊤WΛβk2
(β)S−1(β)Xα

)
d×d

,
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Iβσ2,n =
1

nσ2

(
tr
{
WΛβ1(β)S

−1(β)
}
, · · · , tr

{
WΛβd

(β)S−1(β)
})⊤

,

Iβα,n = I⊤
αβ,n and Iσ2β,n = I⊤

βσ2,n.

Let ◦ be the Hadamard product of matrices, ln = (1, · · · , 1)⊤ ∈ Rn×1,

and Xj = (x1j, · · · , xnj)
⊤ ∈ Rn for j = 1, · · · , p. Since the random error

vector E = (ε1, · · · , εn)⊤ in model (2.2) is not required to be normally

distributed, the third order moment µ(3) = E(ε3i ) and the fourth order

moment µ(4) = E(ε4i ) will be involved in the asymptotic distribution of θ̂.

We then denote the matrix Jn(θ, µ
(3), µ(4)) as follows:

Jn(θ, µ
(3), µ(4)) =


0p×p Jαβ,n

µ(3)X⊤ln
2nσ6

Jβα,n Jββ,n Jβσ2,n

µ(3)l⊤n X
2nσ6 Jσ2β,n

µ(4)−3σ4

4σ8

 , where

Jαβ,n =
µ(3)

nσ4

(
tr
[(
Xjl

⊤
n

)
◦
{
WΛβk

(β)S−1(β)
}])

p×d

, Jβα,n = Jαβ,n
⊤,
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Jββ,n =
µ(4) − 3σ4

nσ4

(
tr
[{

WΛβk1
(β)S−1(β)

}
◦
{
WΛβk2

(β)S−1(β)
}])

d×d

+
µ(3)

nσ4

(
tr
[{

WΛβk1
(β)S−1(β)Xαl⊤n

}
◦
{
WΛβk2

(β)S−1(β)
}])

d×d

+
µ(3)

nσ4

(
tr
[{

WΛβk2
(β)S−1(β)Xαl⊤n

}
◦
{
WΛβk1

(β)S−1(β)
}])

d×d

,

Jβσ2,n =
µ(4) − 3σ4

2nσ6

(
tr
{
WΛβk

(β)S−1(β)
})

d×1

+
µ(3)

2nσ6

(
l⊤nWΛβk

(β)S−1(β)Xα

)
d×1

,

Jσ2β,n = Jβσ2,n
⊤, and ln = (1, · · · , 1)⊤ ∈ Rn. The asymptotic distribution

of θ̂ is given in the following theorem.

Theorem 1. Under Conditions (C1)-(C5) in Appendix,
√
n(θ̂−θ) is asymp-

totic normal with mean 0 and covariance matrix I−1(θ)+I−1(θ)J (θ, µ(3), µ(4))

I−1(θ), where I(θ) and J (θ, µ(3), µ(4)) are stated in Condition (C5) and they

are the convergences of matrices In(θ) and Jn(θ, µ
(3), µ(4)), respectively.

In practice, both I(θ) and J (θ, µ(3), µ(4)) are unknown. To make the above

theorem practically useful, one needs to find their consistent estimators. Us-

ing the fact that In(θ) → I(θ) and Jn(θ, µ
(3), µ(4)) → J (θ, µ(3), µ(4)), we can

show that the asymptotic covariance matrix I−1(θ) + I−1(θ)J (θ, µ(3), µ(4))

I−1(θ) can be consistently estimated by I−1
n (θ̂)+I−1

n (θ̂)Jn(θ̂, µ̂
(3), µ̂(4))I−1

n (θ̂),

where µ̂(s) = n−1
∑n

i=1 ε̂
s
i for s = 3, 4 and (ε̂1, · · · , ε̂n)⊤ = E(α̂, β̂).
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2.3 Homogeneous Influence Test

After obtaining the parameter estimator θ̂ and its asymptotic property,

we next assess the homogeneity of the influence in (2.2) by testing the effect

of different influence indices λi. To this end, we consider the following null

and alternative hypotheses:

H0,λ : λ1 = · · · = λn = λ v.s. H1,λ : λi1 ̸= λi2 for some i1 ̸= i2.

According to the definition λi(β) = F (Z⊤
i β) for i = 1, · · · , n, the above

hypotheses are equivalent to

H0 : β2 = · · · = βd = 0 v.s. H1 : at least one of β2, · · · , βd is not zero,

(2.4)

under the assumptions that the link function F (·) is strictly monotone and

the covariate matrix Z−1 is of full rank. If one does not reject the null hy-

pothesis, then the SAR model and its associated estimators and properties

can be considered (e.g., see Lee, 2004).

Within the maximum likelihood framework, there are three commonly

used tests for making inferences about β. They are likelihood ratio test,
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Wald test, and score (i.e., Lagrange multiplier) test. This motivates us to

employ them to test (2.4). Since we consider the quasi-likelihood function

and QMLE, we name them quasi-likelihood ratio test, quasi-Wald test, and

quasi-score test. We first consider the quasi-likelihood ratio test. Given

θ̂ = (α̂⊤, β̂⊤, σ̂2)⊤, we obtain the estimated quasi-log-likelihood function

ℓ(θ̂) = ℓ(α̂, β̂, σ̂2). Under the null hypothesis of H0 : β2 = · · · = βd = 0,

we can also obtain the constrained QMLE, θ̂(r), and its associated quasi-

log-likelihood function ℓ(θ̂(r)). Accordingly, the quasi-likelihood ratio test

statistic is

Tlr = −2
{
ℓ(θ̂(r))− ℓ(θ̂)

}
.

To show the theoretical property of Tlr, we introduce additional nota-

tions and equations as below. Let

∆c =


Ip 0p×1 0p×(d−1) 0p×1

01×p 1 01×(d−1) 0

01×p 0 01×(d−1) 1

 ∈ R(p+2)×(p+d+1),

where 0K1×K2 denotes a K1 ×K2 matrix with all the elements being zeros.
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Let I11(θ) = ∆cI(θ)∆⊤
c and

I−1
11 (θ) =

(
∆cI(θ)∆⊤

c

)−1
=:

ι11(θ) ι12(θ)

ι21(θ) ι22(θ)

 ,

where ι11(θ) ∈ R(p+1)×(p+1), ι12(θ) ∈ R(p+1)×1, ι21(θ) ∈ R1×(p+1) and ι22(θ) ∈

R1×1. In addition, let

I1(θ) =


ι11(θ) 0(p+1)×(d−1) ι12(θ)

0(d−1)×(p+1) 0(d−1)×(d−1) 0(d−1)×1

ι21(θ) 01×(d−1) ι22(θ)

 , (2.5)

and denote K(θ, µ(3), µ(4)) = I(θ) + J (θ, µ(3), µ(4)). Then the asymptotic

distribution of Tlr is given below.

Theorem 2. Assume Conditions (C1)-(C5) in Appendix hold. Under the

null hypothesis H0, the quasi-likelihood ratio test statistic Tlr is asymptoti-

cally distributed as
∑p+d+1

l=1 λl(θ, µ
(3), µ(4))χ2

l (1) as n → ∞, where λl(θ, µ
(3),

µ(4)) is the l-th largest eigenvalue of the matrix K1/2(θ, µ(3), µ(4)){I−1(θ)−

I1(θ)}K1/2(θ, µ(3), µ(4)), and χ2
l (1) are independent chi-squared random vari-

ables with degree of freedom 1 for l = 1, · · · , (p+d+1). Furthermore, under

the normal assumption of E, Tlr is asymptotically χ2(d− 1).
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In practice, λl(θ, µ
(3), µ(4)) is unknown, and it can be estimated by λn,l(θ̂

(r),

µ̂(3,r), µ̂(4,r)), where λn,l(θ̂
(r), µ̂(3,r), µ̂(4,r)) is the l-th largest eigenvalue of

the (p + d + 1) × (p + d + 1) matrix K1/2
n (θ̂(r), µ̂(3,r), µ̂(4,r)){I−1

n (θ̂(r)) −

In,1(θ̂
(r))}K1/2

n (θ̂(r), µ̂(3,r), µ̂(4,r)). Note first that Kn(θ̂
(r), µ̂(3,r), µ̂(4,r)) = In(θ̂

(r))

+Jn(θ̂
(r), µ̂(3,r), µ̂(4,r)) is a consistent estimator of K1/2(θ, µ(3), µ(4)), second

that In,1(θ̂
(r)) is a consistent estimator of I1(θ), θ̂(r) = (α̂(r)⊤, β̂(r)⊤, {σ̂(r)}2)⊤,

and finally that µ̂(s,r) = n−1
∑n

i=1{ε̂
(r)
i }s for s = 3, 4 with (ε̂

(r)
1 , · · · , ε̂(r)n )⊤ =

E(α̂(r), β̂(r)).

An alternative approach for testing H0 is the quasi-Wald test. Let

∆ =

(
0(d−1)×p 0(d−1)×1 Id−1 0(d−1)×1

)
∈ R(d−1)×(p+d+1).

Then, the quasi-Wald test statistic for testing H0 can be constructed as

follows:

Tw = (∆θ̂)⊤
[
∆
{
n−1I−1

n (θ̂)Kn(θ̂, µ̂
(3), µ̂(4))I−1

n (θ̂)
}
∆⊤
]−1

∆θ̂,

and its asymptotic distribution is below.

Corollary 1. Assume Conditions (C1)-(C5) in Appendix hold. Then, under

the null hypothesis H0, we have Tw
d−→ χ2(d− 1) as n → ∞.
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We lastly consider the quasi-score test. The advantage of this test is

that we only need to obtain the constrained estimator θ̂(r) under the null

hypothesis of H0 : β2 = · · · = βd = 0. Specifically, the quasi-score test can

be constructed by

Ts = n−1

{
∂ℓ(θ̂(r))

∂θ

}⊤

I−1
n (θ̂(r))

∂ℓ(θ̂(r))

∂θ
,

where the detailed expression of ∂ℓ(θ)/∂θ can be found in (S.6) of the

Supplementary Material. The asymptotic distribution of Ts is given in the

following corollary.

Corollary 2. Assume Conditions (C1)-(C5) in Appendix hold. Under the

null hypothesis H0, the test statistic Ts = Tlr + oP(1) as n → ∞.

The above corollary indicates that the quasi-score test and the quasi-

likelihood ratio test are asymptotically equivalent with weighted chi-squared

distribution. Based on our understanding, such an asymptotic result ob-

tained without imposing any specific error distribution has not been rig-

orously discussed in the SAR literature. It is also known that under the

normal assumption, the quasi-likelihood ratio test, the quasi-Wald test and

the quasi-score test are all asymptotically equivalent as n → ∞, whereas
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this may not be true under the non-normal assumption. A good review

paper about these three tests can be found in Rao (2005). Since these three

tests can be different in terms of finite sample performance, we evaluate

them in the following simulation studies.

3. SIMULATION STUDIES

To demonstrate the finite sample performance of our proposed adaptive

SAR model, we conduct simulation studies with various settings. Let the

diagonals of the adjacency matrix A be zeros and the off-diagonals of A be

independent and identically generated from the Bernoulli distribution with

probability 5/n. Then, the weighting matrix is set to be W = (wij)n×n ∈

Rn×n with wij = aij/
∑n

j=1 aij for i, j = 1, · · · , n. Consider the 2 × 1

covariate vector Xi = (xi1, xi2)
⊤ with xi1 ≡ 1 and xi2 being independent

and identically generated from the standard normal distribution N(0, 1),

and their corresponding regression parameters are α = (α1, α2)
⊤ = (2, 1)⊤.

In addition, consider the 3 × 1 influential covariates Zi = (zi1, zi2, zi3)
⊤,

where zi1 ≡ 1, and zi2 and zi3 are independent and identically generated

from the uniform distribution U(−0.25, 0.25) and the normal distribution

N(0, 0.22), respectively. Six sets of parameters β = (β1, β2, β3)
⊤ ∈ R3 are
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associated with the influential covariates Zi: (β1, β2, β3) = (−1, 5ϱ,−2ϱ),

where ϱ = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 measure the signal strengths of

the covariates, and ϱ = 0.0 corresponds to the classical SAR model. As

a result, the network influence matrix is Λ = diag{F (Z⊤
1 β), · · · , F (Z⊤

n β)},

where the link functions F (·)s are LINKs I - IV presented in Section 2.1. It is

worth noting that the above model settings satisfy our technical Conditions

(C1)-(C5) in Appendix. Finally, the response vector Y is generated from

model (2.2) with the above setting, and its associated random error terms

εi (i = 1, · · · , n) are independent and identically generated from the four

distributions: the normal distribution N(0, σ2) and σζ, where ζ follows

a mixture normal distribution 0.9N(0, 5/9) + 0.1N(0, 5), a standardized t3

distribution, and a standardized exponential distribution, respectively, with

σ2 = 1. This allows us to examine the robustness of parameter estimates

with respect to the error distributions.

For each setting, we consider three sample sizes: n=200, 500 and 1,000.

In addition, all simulations are conducted via 1,000 realizations. To assess

the performance of parameter estimators, we define θ̂(k) = (α̂
(k)
1 , α̂

(k)
2 , β̂

(k)
1 ,

β̂
(k)
2 , β̂

(k)
3 , σ̂2(k))⊤ ∈ R6 as the vector estimate of θ obtained via the QMLE

approach in the k-th realization. For each component of θ, say θj, the aver-
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aged bias of θ̂(k)j , k = 1, · · · ,1,000, is BIAS = 1000−1
∑

k(θ̂
(k)
j − θj), and the

standard deviation of θ̂(k)j is SD =
{
1000−1

∑
k(θ̂

(k)
j − 1000−1

∑
k θ̂

(k)
j )2

}1/2.
Thus, the root mean squared error is RMSE =

√
SD2 + BIAS2.

For normal random errors, Table S.1 in the Supplementary Material

reports the BIAS, SD and RMSE of the QMLEs via 1,000 realizations across

the four link functions with three sample sizes. To save space, we only

present the results for the setting with coefficients (β1, β2, β3) = (−1, 5,−2),

since the setting with coefficients (β1, β2, β3) = (−1, 5ϱ,−2ϱ) yields similar

findings for ϱ = 0.0, 0.2, 0.4, 0.6 and 0.8. According to Table S.1, we find

that the absolute values of BIAS and SD generally become smaller for all

parameter estimates and for all four link functions when n gets large. It is

not surprising that RMSE shows the same pattern.

We further study the performance of QMLE when the random errors

are mixture normal, standardized t3, and standardized exponential. Tables

S.2-S.4 in the Supplementary Material indicate that the resulting estimators

yield qualitatively similar conclusions to those obtained from the Gaussian

errors. Hence, our estimates still exhibit nice properties under these three

non-normal cases. The above findings support our theoretical result that

the QMLEs are consistent and asymptotically normal.
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We next assess the finite sample performance of the quasi-likelihood

ratio test, the quasi-Wald test and the quasi-score test. It is worth not-

ing that both the quasi-likelihood ratio test statistic Tlr and the quasi-

score test statistic Ts are asymptotically weighted chi-squared distributed

with the weights λl(θ, µ
(3), µ(4)) under the null hypothesis. In order to con-

duct these two tests, we independently and identically generate {χ2
l,m : l =

1, · · · , (p + d + 1), and m = 1, · · · , 10, 000} from the chi-squared distribu-

tion with 1 degree of freedom. Let T be either of these two test statistics

Tlr or Ts. We can compute the p-values of the quasi-likelihood ratio test

and the quasi-score test approximately by p-value1 = 10000−1
∑

m I{T >∑p+d+1
l=1 λl(θ, µ

(3), µ(4))χ2
l,m} and p-value2 = 10000−1

∑
m I{T >

∑p+d+1
l=1

λn,l(θ̂
(r), µ̂(3,r), µ̂(4,r))χ2

l,m}, respectively, where λn,l(θ̂
(r), µ̂(3,r), µ̂(4,r)) is a con-

sistent estimator of λl(θ, µ
(3), µ(4)) under the null hypothesis stated below

Theorem 2, and I{·} is the indicator function. Based on our simulation

studies, we find that p-value1 and p-value2 yield very similar results under

the null hypothesis. In addition, p-value1 is not applicable since θ, µ(3) and

µ(4) are unknown. As a result, we use p-value2 to assess the performance of

the quasi-likelihood ratio test and the quasi-score test in the rest of studies.

We evaluate the empirical sizes of the quasi-likelihood ratio test, the
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quasi-Wald test and the quasi-score test with the significance levels ranging

from 0.01 to 0.30 and examine their empirical powers with the significance

level 0.05. For the exponential link function under the mixture normal

distribution, Figures 1 and 2 depict sizes and powers, respectively, when

n = 200, 500, and 1,000. The testing results of the other three link func-

tions under the mixture normal, as well as under the other three random

error distributions, yield similar findings, so we do not present them here.

The empirical size and power are the percentages of rejections under H0

and H1, respectively, via the hypothesis test (2.4) with 1,000 realizations.

Specifically, the empirical size is the percentage of rejections under the set-

ting of (β1, β2, β3) = (−1, 0, 0), while the empirical power is the percentage

of rejections under the settings of (β1, β2, β3) = (−1, 5ϱ,−2ϱ), where the

signal strength ϱ > 0.

From Figures 1 and 2, we obtain four interesting findings. The first is

that the empirical sizes of the three tests are almost identical to the prede-

termined significance levels as n=1,000. The second is that the empirical

powers of the three tests tend to 100% when the sample size n or the signal

strength ϱ gets larger. These two findings indicate that the three homoge-

neous influence tests perform well when n is large. The third is that the



24

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●

●

0

10

20

30

0 0.05 0.10 0.15 0.20 0.25 0.30
Significance Level

Pe
rc

en
ta

ge
 o

f R
ej

ec
tio

ns
 (%

)

n=200

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

0

10

20

30

0 0.05 0.10 0.15 0.20 0.25 0.30
Significance Level

Pe
rc

en
ta

ge
 o

f R
ej

ec
tio

ns
 (%

)

n=500

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●

0

10

20

30

0 0.05 0.10 0.15 0.20 0.25 0.30
Significance Level

Pe
rc

en
ta

ge
 o

f R
ej

ec
tio

ns
 (%

)

n=1000

●  Quasi−Likelihood Ratio Test     Quasi−Wald Test     Quasi−Score Test     Benchmark    

Figure 1: The empirical sizes of the three homogeneous influence tests
for the significance levels ranging from 0.01 to 0.30 under the setting of
the exponential link function. The benchmark represents the ideal case
when the percentage of rejections from 1,000 realizations is equal to the
significance level. The independent and identically distributed random er-
rors are simulated from σζ, where ζ follows a mixture normal distribution
0.9N(0, 5/9) + 0.1N(0, 5).
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Figure 2: The empirical powers of the three homogeneous influence tests
at a nominal level of 0.05 under the exponential link function with 1,000
realizations. The signal strengths ϱ = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0, which
correspond to the settings of (β1, β2, β3) = (−1, 5ϱ,−2ϱ), respectively. The
independent and identically distributed random errors are simulated from
σζ, where ζ follows a mixture normal distribution 0.9N(0, 5/9)+0.1N(0, 5).
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quasi-likelihood ratio test is sometimes oversized (anticonservative) and the

quasi-Wald test is undersized (conservative) when n is not large enough (see

Figure 1). In contrast, the quasi-score test enables us to control the size

reasonably well, especially at the significance level 0.05. Lastly, Figure 2

shows that the powers of the quasi-score and quasi-likelihood ratio tests are

very close to each other for different ns and ϱs. However, the quasi-Wald

test is not powerful when the signal strength ϱ is small. Based on the above

four findings, we conclude that the quasi-score test performs best at the sig-

nificance level 0.05. In addition, the calculation of the quasi-score test only

involves the constrained QMLE under H0, which is easier to compute than

the other two tests. Consequently, we recommend using the quasi-score

test to compare between the SAR and adaptive SAR models in practice,

particularly when the sample size is not large enough.

4. REAL DATA ANALYSIS

4.1 Network and Covariates

To demonstrate the usefulness of the proposed adaptive SAR model,

we present a real example of the spillover effect using Chinese mutual fund

cash flows, where this effect is crucial for both fund managers and general
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investors (Spitz, 1970; Sirri and Tufano, 1998; Zheng, 1999; Nanda et al.,

2004). For example, for fund managers, these cash flow are usually compen-

sated from the management fees that are charged as a fixed proportion of

the total net assets under management. To explore the mechanism of cash

flows, existent studies (see e.g., Spitz, 1970; Sirri and Tufano, 1998; Zheng,

1999; Nanda et al., 2004; Brown and Wu, 2016) address the characteristics

of the mutual funds themselves, and do not consider the influence of mutual

funds on cash flows from the network perspective, i.e., the spillover effect.

The proposed adaptive SAR model enables us to discuss this mechanism

of influence from one mutual fund to another via cash flows by combining

the characteristics of fund itself and network structure among mutual funds

together.

To this end, we collect data on actively managed open-ended mutual

funds in the second semiannual period of 2015 from the WIND financial

database, which is one of the most authoritative databases regarding Chi-

nese financial market. After removing funds in existence for less than one

year, there are totally 420 mutual funds in our study. To assess the network

influence of mutual funds, we construct the network as follows. Define the

funds i and j being connected (i.e., aij = aji = 1) if these two funds allo-
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cate at least 2.5% of their portfolios to the same stock (see Pareek, 2012).

Otherwise, we consider these two funds are disconnected, i.e., aij = 0. For

the sake of a robustness check, the allocations of funds at 1% and 5% are

also considered, and they yield similar results.

We next define the response variable, cash flow, as follows. The cash

flow of fund i at time t, Cit, is calculated from the equation (Zheng, 1999;

Nanda et al., 2004)

Cit =
TAit − TAi,t−1(1 + rit)

TAit

,

where TAit is the total net asset of fund i at time t and rit is the fund

return at time t. To avoid the impact of outliers induced by cash flow, we

remove the top 2.5% observations, i.e., 11 funds, from the data set so there

remain 409 observations in our study, and the resulting network density

for these 409 funds is 20.9%. Removing the top percentage of observations

is not uncommon in finance applications; for instance, Choi et al. (2016)

proposed removing the top 2.5% mutual funds by cash flow and Li and

Schürhoff (2019) suggested eliminating the top percentage of observations in

studying financial networks. In addition, after removing those observations,
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the distribution of the remaining cash flow is not heavy-tailed. Thus, the

moment assumption in Condition (C1) can be satisfied.

In the spirit of the pioneering work of Spitz (1970), we include four

control variables as X covariates to account for their effect on cash flow.

(i) Size: the logarithm of the total net asset of fund i at time t − 1; (ii)

Age: the logarithm of the age of fund i at the end of t − 1; (iii) Return:

the raw return of fund i at time t− 1; (iv) Alpha: the risk-adjusted return

of fund i measured by the intercept of Carhart’s (1997) four-factor model.

To quantify the influential power on the spillover effect on cash flow, we

include three variables as Z covariates. (1) Size defined above; (2) Volatility:

the standard deviation of the weekly returns of fund i at time t − 1; (3)

Degree: the number of funds connected to fund i. It seems natural that

both volatility and size can be influential. We also include the degree in

Z covariates. This is motivated by the empirical work of Ozsoylev et al.

(2014), who found that the central investor not only performs better, but

also yields larger impact on its neighbor investors. Finally, both X and

Z covariates have been standardized to have zero mean and unit standard

deviation in our study.

4.2 Empirical Results
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We fit the data with the proposed adaptive SAR model under four dif-

ferent link functions: exponential, logistic, inverse of the probit and inverse

of the log-log link. Their corresponding quasi-loglikelihood values evaluated

at their associated QMLEs are -460.731, -463.549, -463.674, and -463.549.

Motivated by Vuong (1989), we apply the exponential link function in the

rest of study since it has the largest estimated quasi-loglikelihood value.

Based on this link function, Table 1 reports the resulting parameter esti-

mators and their associated standard errors and t-statistics as well as the

p-values of the three homogeneous influence tests.

Table 1: The regression results of the adaptive SAR model with the expo-
nential link function.

Estimate Standard-Error t-statistic p-value
X Intercept -0.1584 0.0111 -14.3178 0.0000

Size 0.0180 0.0083 2.1717 0.0299
Age 0.0101 0.0084 1.2053 0.2281
Return 0.0633 0.0083 7.5817 0.0000
Alpha 0.0107 0.0094 1.1371 0.2555

Z Intercept -15.2207 8.7928 -1.7310 0.0835
Degree 4.4926 2.1233 2.1158 0.0344
Size 0.6434 0.7159 0.8987 0.3688
Volatility -5.4266 2.7665 -1.9616 0.0498
σ2 0.0233 0.0030 7.8225 0.0000

For the X covariates, we find that the cash flow after adjusting for

influential effects is positively and significantly related to the past size and
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raw return at the 5% significance level. For example, α̂Size = 0.0180 on

Table 3 implies that fund i’s size has a significantly positive effect on the

corresponding response Yi (cash flow) after removing the influence of other

connected cash flows. As for fund age and alpha, their coefficients are

positive but not significant. The above findings are consistent with existing

research (see, e.g., Brown et al., 1996; Sirri and Tufano, 1998; Zheng, 1999).

This implies that investors tend to invest in big funds. In addition, investors

pay more attention on the raw return than the risk adjusted return since

the former one is more easily observed.

For Z covariates, we employ the quasi-score test to assess the influ-

ential effect. The resulting p-value is 0.019, which indicates that the in-

fluential power of the spillover on cash flow among mutual funds indeed

depends on funds’ influential characteristics. For more details, Table 1

shows three interesting findings. Firstly, the influential power is positively

and significantly related to degree at the 5% significance level. Specifi-

cally, β̂Degree = 4.4926 on Table 3 indicates that there is a significantly

positive effect of fund i’s degree on its influential power λi. This finding

is not surprising since more connections yield bigger influential power after

controlling the size and volatility. It is also consistent with the results of
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Ozsoylev and Walden (2011) and Sirri and Tufano (1998). Secondly, the

coefficient of size is positive, but not significant. It means that influential

powers may not strongly depend on funds sizes. Lastly, the coefficient of

volatility is negative and significant at the 5% significance level. This find-

ing is consistent with the intuition that a stable fund would have a larger

impact on other funds.

To further illustrate the usefulness of the adaptive SAR model, we com-

pute the estimated influence index λ̂i = exp(Z⊤
i β̂) for i = 1, · · · , n. We then

sort the λ̂is and obtain λ̂(1) ≥ · · · ≥ λ̂(n). Figure 3 depicts the sorted influ-

ence indices. We next conduct k-means clustering analysis based on these

sorted λ̂is via the R package NbClust. Accordingly, the best number of

clusters is 4, as shown in Figure 3. Cluster I only consists of the mutual

fund with the largest influence index. Cluster II consists of the mutual

funds with the second and third largest influence indices. Cluster III con-

sists of the mutual funds with the fourth, fifth, sixth, seventh, and eighth

largest influence indices. The other mutual funds, whose influence indices

are all close to zeros, are categorized into Cluster IV.

To visualize the influential power, Figure 4 depicts the four clusters in

the network of 409 mutual funds. Each node in Figure 4 is a mutual fund,
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Figure 3: The sorted influence indices (λ̂(i)) of the i = 1, · · · , 409 mutual
funds.
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Figure 4: The network of 409 mutual funds and the subnetwork of the top
8 most influential mutual funds with their associated codes.

and we configure node sizes from large to small to represent Clusters I –

IV, respectively. Specifically, the left panel of Figure 4 reveals the whole
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network structure of the 409 mutual funds and the top 8 most influential

mutual funds in Clusters I – III are marked in colors. The detailed subnet-

work structure among these eight most influential mutual funds is presented

on the right panel of Figure 4. Note that the location of each node in the

left panel is constructed based on the number of connections of each node

(i.e., the degree of each node). As a result, the greater connections a node

has, the closer to the center of the network. However, none of the top

eight most influential mutual funds is located in the center. This indicates

that a larger degree does not necessarily lead to greater influence. This is

because volatility also plays a significant role in constructing the influence

index. For the sake of illustration, we present the eight largest influence

indices along with their two significant covariates, degree and volatility,

in Table S.9 of the Supplementary Material. It shows that although the

second, third, fourth and seventh influential funds have more connections

than the most influential fund, their volatilities are higher. Accordingly,

the fund with the largest influence index does not have the highest number

of connections. It is also of interest to note that the right panel of Figure 4

indicates that the fund 202211.OF with the largest influential power is con-

nected to the other top seven influential funds. We also observe that these
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top eight influential funds are almost all connected to each other within the

network constructed by the 409 Chinese mutual funds. In sum, we have

used the adaptive SAR model to effectively identify influential funds with

valuable findings.

5. CONCLUDING REMARKS

In this article, we propose the adaptive SAR model and then introduce an

influence index for identifying influential nodes in a large network. In ad-

dition, we obtain the asymptotic properties of parameter estimates, which

allow us to make inferences on the network influence index. The usefulness

of the adaptive SAR model and its associated network influence index are

demonstrated via Monte Carlo studies and an application from the Chinese

mutual fund market. We believe empirical finance researchers can apply the

proposed model in order to investigate other possible factors (e.g., central-

ity) that can determine the influential power of individual mutual funds.

In practical applications, one usually considers positive influence pa-

rameters (e.g., Zhou et al., 2017). However, using the fact that F (Z⊤
i β) ∈

(0, 1) for LINKs I-III, the transformation G(Z⊤
i β) = 2F (Z⊤

i β)−1, can lead

to λi(β) ∈ (−1, 1) if we specify λi(β) = G(Z⊤
i β) in model (2.2). Thus,
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one can assume a negative influence index if it is needed to broaden the

application of the adaptive SAR model. We next identify four avenues for

future research. The first avenue is employing a non-parametric approach

to constructing network influence indices. The second avenue is using the

screening or regularization method to obtain the sparse solution for con-

structing n influence indices λi (e.g., see Zhu et al. 2019a) or to develop

the test statistic for testing a subset of λis being equal. The third avenue

is proposing a computationally feasible estimation approach (e.g., the least

squares method in Huang et al. 2019 and Zhu et al. 2019b), to overcome the

computational challenge of QMLE under large scale networks (see numeri-

cal illustrations in Section S.4 of the Supplementary Material). The fourth

avenue is motivated by an anonymous referee’s comment, which extends

the adaptive SAR model (1.2) to Yi =
∑n

j=1 λijYj + εi so that the closeness

between node i and node j can be characterized via the influence parameter

λij. We believe that these efforts would further increase the application of

the adaptive SAR model.

Appendix

This Appendix introduces five useful conditions. As defined in details
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in Section S.1 of the Supplementary Material, ∥ · ∥s denotes the vector s-

norm or the matrix s-norm for 1 ≤ s ≤ ∞ and |G|∞ = ∥vec(G)∥∞ denotes

the element-wise ℓ∞ norm for any generic matrix G. The discussions of

the following conditions are presented in Section S.2 of the Supplementary

Material.

(C1) Assume that the random errors εi are independent and identically

distributed with mean 0, and there exists some η > 0 such that

E|εi|4+η < ∞.

(C2) Assume supn≥1 ∥W∥1 < ∞, supn≥1 ∥W∥∞ < ∞ and supn≥1 |X|∞ <

∞.

(C3) Assume that S(β) = In − WΛ(β) is nonsingular uniformly over β

in a compact parameter space B and the true parameter β is in the

interior of B. In addition, assume supβ∈B supn≥1 ∥S−1(β)∥1 < ∞ and

supβ∈B supn≥1 ∥S−1(β)∥∞ < ∞.

(C4) Assume, for the true parameter β,

sup
n≥1

max
1≤i≤n

|zik1F ′(Z⊤
i β)| < ∞, sup

n≥1
max
1≤i≤n

|zik1zik2F ′′(Z⊤
i β)| < ∞, and
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sup
β∈B

sup
n≥1

max
1≤i≤n

|zik1zik2zik3F ′′′(Z⊤
i β)| < ∞

for any k1, k2, k3 ∈ {1, · · · , d}, where the link function F is assumed

to be three times differentiable.

(C5) Assume In(θ) → I(θ) and Jn(θ, µ
(3), µ(4)) → J (θ, µ(3), µ(4)) as n →

∞, where In(θ) and Jn(θ, µ
(3), µ(4)) are defined above Theorem 1. We

further assume I(θ) and I(θ) +J (θ, µ(3), µ(4)) are finite and positive

definite.
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