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Statistica Sinica

AN APPROXIMATE BAYESIAN APPROACH
TO MODEL-ASSISTED SURVEY ESTIMATION
WITH MANY AUXILIARY VARIABLES

Shonosuke Sugasawa! and Jae Kwang Kim?

YThe University of Tokyo and *Iowa State University

Abstract: Model-assisted estimation with complex survey data is an important
practical problem in survey sampling. When there are many auxiliary variables,
selecting significant variables associated with the study variable would be nec-
essary to achieve efficient estimation of population parameters of interest. In
this paper, we formulate a regularized regression estimator in the framework of
Bayesian inference using the penalty function as the shrinkage prior for model se-
lection. The proposed Bayesian approach enables us to get not only efficient point
estimates but also valid credible intervals. Results from two limited simulation

studies are presented to compare with existing frequentist methods.

Key words and phrases: Generalized regression estimation; Regularization; Shrink-

age prior; Survey Sampling



1. Introduction

Probability sampling is a scientific tool for obtaining a representative sam-
ple from the target population. In order to estimate a finite population total
from a target population, Horvitz-Thompson (HT) estimator obtained from
a probability sample satisfies design-consistency and the resulting inference
is justified from the randomization perspective (Horvitz and Thompson,
[952). However, the HT estimator uses the first-order inclusion probability
only and does not fully incorporate all available information in the finite
population. To improve its efficiency, regression estimation is often used
by incorporating auxiliary information in the finite population. [Deville

and Sarndal (IQQ'Z)7 Fulled ('ZDD'Z)7 Kim and Park (2010), and Breidf_and

Y
Opsomer (2017) present comprehensive overviews of variants of regression

estimation in survey sampling. There are also other directions of improve-

ment on the HT estimator based on prediction using augmented models

The regression estimation approaches in survey sampling assume a

model for the finite population, i.e., the superpopulation model, such as

yi = B+ e, (1.1)



where y; is a response variable, x; and 3 are vectors of auxiliary variables
and regression coefficients, respectively, and e; is an error term satisfying
E(e;) = 0 and Var(e;) = 0. The superpopulation model does not neces-
sarily hold in the sample as the sampling design can be informative (e.g.
Pfeffermann and Sverchkov, 1999; [Liffld, 2004). Under the regression super-
population model in (), Isaki and Fullex (T982) show that the asymptotic
variance of the regression estimator achieves the lower bound of (Goadambe
and _Joshi (T965). Thus, the regression estimator is asymptotically efficient
in the sense of achieving the minimum anticipated variance under the joint
distribution of the sampling design and the superpopulation model in ().

On the other hand, the dimension of the auxiliary variables x; could
be large in practice. Even when the number of observed covariates is not
necessarily large, the dimension of @; could be very large once we include
polynomial or interaction terms to achieve flexible modeling, as considered
in Section [. However, in this case, the optimality of the regression estima-
tor is untenable. When there are many auxiliary variables, the asymptotic
bias of the regression estimator using all the auxiliary variables is no longer
negligible and the resulting inference can be problematic. Simply put, in-
cluding irrelevant auxiliary variables can introduce substantial variability in

point estimation, but its uncertainty is not fully accounted for by the stan-



dard linearization variance estimation, resulting in misleading inference.

To overcome the problem, variable selection techniques for regression
estimation have been considered in literatures (e.g. Silva_and Skinned, T997;
Sarndal and Taindsfrom, P005). The classical selection approach is based
on a step-wise method. However, the step-wise methods will not necessarily
produce the best model (e.g. Dempster et all, 1977) although the potential
effect on prediction could be limited. Another approach is to employ reg-
ularized estimation of regression coefficients. Recently, McConville ef al’
(2017) propose a regularized regression estimation approach based on the
LASSO penalty of Mibshirani (T996). However, there are two main prob-
lems with the regularization approach in regression estimation. First, the
choice of the regularization parameter is not straightforward under survey
sampling. Second, the frequentist inference accounting for model selection
uncertainty is notoriously difficult to make.

In this paper, to overcome the above difficulties, we adopt a Bayesian
framework in the regularized regression estimation. We first introduce an
approximate Bayesian approach for regression estimation when p + 1 =
dim(x) is fixed, using the approximate Bayesian approach considered in
Wang et al] (201R). The proposed Bayesian method fully captures the un-

certainty in parameter estimation for the regression estimator and has good



coverage properties. Second, the proposed Bayesian method is extended to
the problem of large p in regularized regression estimation. By incorpo-
rating the penalty function for regularization into the prior distribution,
the uncertainty associated with model selection and parameter estimation
is fully captured in the Bayesian machinery. Furthermore, the choice of
the penalty parameter can be handled by using its posterior distribution.
Hence, the proposed method provides a unified approach to Bayesian infer-
ence with sparse model-assisted survey estimation. The proposed method
is a calibrated Bayesian (ILiffle, P0T2) and it is asymptotically equivalent
to the frequentist model-assisted approach for a fixed p.

The paper is organized as follows. In Section 2, the basic setup is intro-
duced. In Section 3, the approximate Bayesian inference using regression
estimation is proposed under a fixed p setup. In Section 4, the proposed
method is extended to high dimensional setup by developing sparse re-
gression estimation using shrinkage prior distributions. In Section 5, the
proposed method is extended to non-linear regression models. In Section
6, results from two limited simulation studies are presented. The proposed
method is applied to the real data example in Section 7. Some concluding
remarks are made in Section 8. R code is available at GitHub repository

(https://github.com/sshonosuke/ABMASE).


https://github.com/sshonosuke/ABMASE

2. Basic setup

Consider a finite population of a known size N. Associated with unit ¢ in the
finite population, we consider measurement {x;, y; } where x; is the vector of
auxiliary variables with dimension p and y; is the study variable of interest.
We are interested in estimating the finite population mean Y = N~} ZZN:1 Yi
from a sample selected by a probability sampling design. Let A be the
index set of the sample and we observe {x;,y;}ica from the sample. The
HT estimator ?HT = N1 Zie AT 1yi, where 7; is the first-order inclusion
probability of unit ¢, is design unbiased but it is not necessarily efficient.
If the finite population mean X = N~! Zi\;l x; is known, then we can

improve the efficiency of f/HT by using the following regression estimator:

A ]_ N
- s
Y}eg - N ; szB
where B is an estimator of @ in (). Typically, we use B obtained by

minimizing the weighted quadratic loss

QB) = > s - i) (22

motivated from the model (D). If an intercept term is included in «; such

that x! = (1,2!,), we can express

Yieg = fo+ X8, = N7 27;1 (Z/z - wiz@l) + X, (2.3)
i€A



where N = S ieam " and B, is given by
-1
/61 = {Z w;l(wli — X1,7r>®2} ZW;I(ZUM — Xl,w)yi (24)
icA '
where ilm =N-1! Y ica 7 xy; and B®? = BB’ for some matrix B.
To discuss seme asymptotic properties of f/reg in (23), we consider a
sequence of finite populations and samples as discussed in Isaki and Fuller

(1982), where N increases with n. Note that

=V (X - X)) Bt Ra (2.5)

for any B,. If we choose B, = plim, Bl with respect to the sampling
mechanism and p = dim(x;) is fixed in the asymptotic setup, then we can
obtain R, = Op,(n~') and safely use the main terms of (Z3H) to describe
the asymptotic behavior of }Zeg. To emphasize its dependence on Bl in the
regression estimator, we can write }Q/reg = ffreg(ﬁl). Roughly speaking, we

can obtain

Vi {Vee(B1) ~ Yies(B1) } = Opln™2) (2.6



and, if p = o(n'/?) then we can safely ignore the effect of estimating 3, in
the regression estimator. See Supplementary Material for a sketched proof
of (21).

If, on the other hand, the dimension p is larger than O(n'/?), then we
cannot ignore the effect of estimating 3,. In this case, we can consider using
some variable selection idea to reduce the dimension of X. For variable
selection, we may employ techniques of regularized estimation of regression

coefficients. The regularization method can be described as finding

(B, B = argming, 5 {Q(B) + pA(BL)}, (2.7)

where Q(0) is defined in (E4) and py(8;) is a penalty function with pa-
rameter A\. Some popular penalty functions are presented in Table 1. Once
the solution to (P77) is obtained, then the regularized regression estimator

is given by
» Ry —t5®) 1 1 ~ (R)
Yieg(B1 ) = X181+ I Z - <Z/i —x,6 ) . (2.8)

Statistical inference with the regularized regression estimator in (Z8) is not
fully investigated in the literature. For example, Chenef all (2018) consider
the regularized regression estimator using adaptive LASSO of Zoul (2006),
but they assume that the sampling design is non-informative and the un-

certainty in model selection is not fully incorporated in their inference.



Table 1: Popular penalized regression methods

Method Reference Penalty function
Ridge Hoer[and Kennard (I'970) pa(B) =AY B3
LASSO Tibshirani (T996) INCIEPYY N
Adaptive LASSO Zou (2006) pa(B) = A28, <|ﬁj| / ‘BJD
Elastic Net Zon_and Hasfid (2005) oA(B) =\ ?:1 18] + A2 ?:1 B3

Roughly speaking, making inference after model selection under super-
population frequentist framework is difficult. The approximated Bayesian
method introduced in the next section will capture the full uncertainty in

the Bayesian framework.

3. Approximate Bayesian survey regression estimation

Developing Bayesian model-assisted inference under complex sampling is a
challenging problem in statistics. Wang et all (201R) recently propose the
so-called approximate Bayesian method for design-based inference using
asymptotic normality of a design-consistent estimator. Specifically, for a
given parameter 6 with a prior distribution 7(6), if one can find a design-
consistent estimator 6 of 0, then the approximate posterior distribution of
f is given by

p(0|0) = 0 , (3.9)
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where f (é | 0) is the sampling distribution of 0, which is often approximated
by a normal distribution.
Drawing on this idea, one can develop an approximate Bayesian ap-

proach to capture the full uncertainty in the regression estimator. Let

-1
2 -1 t —1
= (Z m) D

€A €A

be the design-consistent estimator of 3 and \% 3 be the corresponding asymp-
totic variance-covariance matrix of B given by
il
’ -1 t ’L] elwl 6]
Voo (Saat) (M3 S wtmat)
i€A i€A jeA Tij T i€cA
(3.10)
where é; = y;—x; ﬁ A;j = my;—m;m; and m;; is the joint inclusion probability
of unit ¢ and 7. Under some regularity conditions, as discussed in Chapter

2 of Fuller (2009), we can establish

—-1/2

Vo (Bi=8.) 185 N0,1) (3.11)

as n — 0o, where Vgll is the submatrix of Vﬁ with

. V,Boo Vﬁm
V= . (3.12)

Vo Vi
Thus, using (89) and (B), we can obtain the approximate posterior

distribution of B as

( :31"7,(311)77(6'1)

p(ﬁllﬁl) f¢p B ,61,‘7,811)7T(ﬁ1)d517

(3.13)
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where ¢, denotes a p-dimensional multivariate normal density and 7(8;) is
a prior distribution for 3,. We use a flat prior here but will use a shrinkage
prior in Section 4.

Now, we consider the conditional posterior distribution of Y for a given
B,. First, define

}Zeg(/gl) = X§ﬁ1 + iA Z L (Z/i — 333151) .
N ed T

Note that ffreg (B3,) is an approximately design-unbiased estimator of Y, re-
gardless of 3. Under some regularity conditions, we can show that ffmg (8y)

follows a normal distribution asymptotically. Thus, we obtain

ifreg(ﬁl) Y }7
Ve(By)

where

Ay 1 1
51 N2 ZZ yi — 21,8 (y; — 93t1j/31)7 (3.15)

i€A jEA Tij T ﬂ-]
is a design consistent variance estimator of ffreg(ﬁl) for given 3,. We then
use ¢( reg(61) Y, V.(8,)) as the density for the approximate sampling dis-
tribution of f/reg(ﬂl) in (B14), where ¢(-; u, 0?) is the normal density func-

2

tion with mean g and variance o°. Thus, the approximate conditional

posterior distribution of Y given B can be defined as

P(Y [Yeea(81), B1) < 0(Ves(81); Y, Ve(BD)) (Y | B), (3.16)
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where 7(Y | B) is a conditional prior distribution of Y given B;. With-
out extra assumptions or any prior information, we can use a flat prior
distribution, namely, 7(Y | B,) x 1
Therefore, combining (8313) and (BT8), the approximate posterior dis-
tribution of Y can be obtained as
p(Y [Yies(B1). B)
S P(B1IB)IYies(B1): Y Vel B (Y | BBy

T p(811B) 6 (Ve (B1): YV, (B)(Y | Bi)aB,aY
[ Oa(B): Y Ve(B))9p(Br: B Visr)w (B (Y | BBy
I Ve (BL):; Y, Va(81)6p(Bo: Br, Vi) m(B) (Y | B1)dB,dY

(3.17)

Generating posterior samples from (BT7) can be easily carried out via the

following two steps:

1. Generate posterior sample 37 of 3, from (BT3).

2. Generate posterior sample of Y from (BI8) for given 3}.

Based on the approximate posterior samples of Y, we can compute
the posterior mean as a point estimator as well as credible intervals for
uncertainty quantification for ¥ including the variability in estimating 3.

The following theorem presents an asymptotic property of the proposed

approximate Bayesian method.
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Theorem 1. Under the regularity conditions described in the Supplemen-

tary Material, conditional on the full sample data,

>

sup p(Y| reg(Bl)vBl) _Qﬁ(Y;f/regvVe) — 0, (3-18>

?E@y
in probability as n — oo while p is fired, and n/N — f € [0,1), where Oy

is some Borel set for Y and p(}_/DA/reg(Bl),Bl) is gwen in (B17).

Theorem [ is a special case of the Bernstein-von Mises theorem (van dex
Vaarfi, 2000, Section 10.2) in survey regression estimation, and its sketched
proof is given in the Supplementary Material. The proof is not quite rig-
orous but contains enough details to deliver the main ideas. According to
Theorem [, the credible interval for Y constructed from the approximated
posterior distribution (BT4) is asymptotically equivalent to the frequen-
tist confidence interval based on the asymptotic normality of the common
survey regression estimator. Therefore, the proposed Bayesian method im-
plements the frequentist inference of the survey regression estimator at least

asymptotically.

4. Approximate Bayesian method with shrinkage priors

We consider the case when there are many auxiliary variables in applying

regression estimation. When p is large, it is desirable to select a suitable
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subset of auxiliary variables that are associated with the response variable to
avoid inefficient regression estimation due to including irrelevant covariates.

To deal with the problem in a Bayesian way, we may define the ap-
proximate posterior distribution of Y given 3, as similar to (BI17) with
a different prior for 3; to implement variable selection. That is, we use
the same asymptotic distribution of the estimators Bl of B, and assign a
shrinkage prior for 3,. Let m\(8;) be the shrinkage prior for @3, with a
structural parameter A which might be multivariate.

Among the several choices of shrinkage priors, we specifically consider
two priors for By: Laplace (Park and Casella, 2008) and horseshoe (Car-
valhoefiall, 2009, 2010). The Laplace prior is given by my(3;) o< exp(—A > %_; [Bx]),
which is related to Lasso regression ([Iihshirani, [996), so that the pro-
posed approximated Bayesian method can be seen as the Bayesian version
of a survey regression estimator with Lasso (McConville et all, 2017). The

horseshoe prior is a more advanced shrinkage prior of the form:

2

7T>\(/81) = IE/O Cb(ﬁk, 0, AQU%)W(l——l—uz)duk’ (4.19)

where ¢(+; a,b) denotes the normal density function with mean a and vari-
ance b. It is known that the horseshoe prior enjoys more severe shrinkage
for the zero elements of 3, than the Laplace prior, thus allowing strong

signals to remain large (Carvalha ef all, 200Y).
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Similarly to (BL3), we can develop a posterior distribution of 3, using

the shrinkage prior

¢(B13 B, Vﬂll)ﬂA(ﬁl)

BilB) = — ’
PA(B11B1) J o(B1; By, Ver)ma(8,)dB,

(4.20)

where \7511 is the asymptotic variance-covariance matrix of ,@1, defined in
(82). Once 3, are sampled from (E20), we can use the same posterior
distribution of Y in (BI8) for a given 3;. Under the Laplace and horseshoe
priors, generating posterior samples of 3, can be easily carried out by simple
Gibbs sampling algorithms. The details are given in the Supplementary
Material.

Therefore, the approximate posterior distribution of Y is obtained as

p)\(Y’ﬁeg(Bl)> Bl)

_ f¢(?rcg<:61)§ya ‘76(/31))%(31;/31: Vﬁll)ﬂx\(ﬁﬁw(? | B,)dB, _
S 6(Yeeg(B1): Y, Ve(B1))85(B1: By, V 1) ma(By)w(Y | By)dB,dY
(4.21)

Generating posterior samples from (E=Z1) can be easily carried out via the

following two steps:
1. For a given A, generate posterior sample 37 of 8, from (E=20).

2. Generate posterior sample of Y from (BI8) for given 3;.
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Remark 1. Let BSR) and BﬁR) be the estimator of 5, and 3, defined as

5 (1)

(BSR)a Bi ) = argming, g {Z %(Z/z — Bo — 1,8:)* + P/\(/Bl)} , (4.22)

icA !
where P(8,) = —2logm\(8;) is the penalty (regularization) term for 3,
induced from prior 7,(3,). For example, the Laplace prior for my(3,) leads
to the penalty term P(8,) = 2XA>"7_,|5k|, in which BER) corresponds to
the regularized estimator of 3, used in McConville'ef all (2017). Since the
exponential of — ., 7, Y(y;— Bo—xtB,)? is close to the approximated like-
lihood qﬁp((Bo, Bi), (Bo, BY), Vg) used in the approximated Bayesian method
when n is large, the mode of the approximated posterior of (3, 3%) would

be close to the frequentist estimator (=22) as well.

Remark 2. In the frequentist approach, A is often called the tuning pa-
rameter and can be selected via a data-dependent procedure such as cross
validation as used in McConville ef"all (2017). On the other hand, in the
Bayesian approach, we assign a prior distribution on the hyperparameter
A and consider integration with respect to the posterior distribution of A,
which means that uncertainty of the hyperparameter estimation can be
taken into account. Specifically, we assign a gamma prior for A? in the

Laplace prior and a half-Cauchy prior for A in the horseshoe prior (A19).

They both lead to familiar forms of full conditional posterior distributions
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of X or A2. The details are given in the Supplementary Material.

As in Section B, we obtain the following asymptotic properties of the

proposed approximate Bayesian method.

Theorem 2. Under the reqularity conditions described in the Supplemen-

tary Material, conditional on the full sample data,

>
>

Sup | pa(V [Vieg (B1), B) — 6V Vae By ), Vi (B,

YE@Y

W S0, (423)

in probability as n — oo while p is fized, and n/N — f € [0,1), where Oy

is some Borel set forY, p,\(Y]}i/reg(Bl),Bl) is gwen in ({-21).

The sketched proof is given in the Supplementary Material. Theorem
2 ensures that the proposed approximate Bayesian method is asymptoti-
cally equivalent to the frequentist version in which 3, is estimated by the
regularized method with penalty corresponding to the shrinkage prior used
in the Bayesian method. Moreover, the proposed Bayesian method can be
extended to cases using general non-linear regression, as demonstrated in

the next section.

5. An Extension to non-linear models

The proposed Bayesian methods can be readily extended to work with non-

linear regression. Some extensions of the regression estimator to nonlinear
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models are also considered in Wu_and Sitferd (2001), Breidf_ef all (2005),
and Monfanari_and Ranalli (2005).

We consider a general working model for y; as E(y; | ;) = m(x;; 8) =
m; and Var(y; | ;) = o%a(m;) for some known functions m(-;-) and a(-).

The model-assisted regression estimator for Y with 3 known is then

Franld) = 3 { St + L (- mtaa) .
€A
and its design-consistent variance estimator is obtained by

ZZA ii{% m(wi; B)Hy; — m(x;; B)},

Tiq T
€A jJEA ij TiTj

which gives the approximate conditional posterior distribution of Y given

B. That is, similarly to (B18), we can obtain

PV [Viegmn(8), B)  ¢(Yeegmn(B): Y, Ve (B)7(Y | B). (5.24)

To generate the posterior values of 3, we first find a design-consistent
estimator B of 3. Note that a consistent estimator B can be obtained by

solving

UB) =Y m {yi — m(zi: B)h(zi; B) =0,

1€EA

where h(x;; 8) = (0m;/08)/a(m;). For example, for binary y;, we may use
a logistic regression model with m(x;; 3) = exp(xi3)/{1 + exp(x!3)} and

Var(y;) = m;(1 — m;), which leads to h(x;; 3) = x;.
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Under some regularity conditions, we can establish the asymptotic nor-

mality of B That is,

A —1/2 4

Vi, (B-8)|B -5 NO,I),

where

V= {Zﬂlhzm(iﬂuﬁ)t} (Zzﬁ%%> {

T
ieA * icA jeAd Y

1,
1 - 2
> —him<mi;6>t} ,
— T
i€A

with é; = y; — m(wi;B), h; = h(wi;B), and m(x; B) = Om(x; 3)/08. Note

that m(x; B) = m;(1 — m;)x; under a logistic regression model.

Thus, the posterior distribution of 3 given B can be obtained by

p(B | B) x d(B| B.Vg)m(B). (5.25)

We can use a shrinkage prior m(3) for 3 in (523) if necessary. Once 8" is
generated from (523), the posterior values of Y are generated from (5224)
for a given 3*.

This formula enables us to define the approximate posterior distribution
of B of the form (BL3), so that the approximate Bayesian inference for Y
can be carried out in the same way as in the linear regression case. Note
that Theorem [ still holds under the general setup as long as the regularity

conditions given in the Supplementary Material are satisfied.
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6. Simulation

We investigate the performance of the proposed approximate Bayesian meth-
ods against standard frequentist methods using two limited simulation stud-
ies. In the first simulation, we consider a linear regression model for a con-
tinuous y variable. In the second simulation, we consider a binary y and
apply the logistic regression model for the non-linear regression estimation.

In the first simulation, we generate z; = (z;1,...,2p)" ¢ = 1,..., N,
from a multivariate normal distribution with mean vector (1,...,1)" and
variance-covariance matrix 2R(0.2), where p* = 50 and the (i, j)-th element
of R(p) is p"~9I. The response variables Y; are generated from the following

linear regression model:

Yi=08+Bixa+ -+ B+, i=1,...,N,

where N = 10,000, ¢; ~ N(0,2), 51 = 1, By = —0.5, B = 1, Bip = —0.5
and the other f;’s are set to zero. For the dimension of the auxiliary in-
formation, we consider four scenarios for p of 20, 30,40 and 50. For each
p, we assume that we can access only (z;1,...,2;)" a subset of the full
information (x;1,...,2;+)". Note that for all scenarios the auxiliary vari-
ables significantly related with Y; are included, and so only the amount of

irrelevant information gets larger as p gets larger. We selected a sample
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size of n = 300 from the finite population, using two sampling mechanism:
(A) simple random sampling (SRS) and (B) probability-proportional-to-
size sampling (PPS) with size measure z; = max{log(1 + |Y; + ¢;|), 1} with
e; ~ Exp(2). The parameter of interest is Y = N~} Zfil Y;. We assume
that X, = N ! Zfil T, 1s known for all k =1,...,p.

For the simulated dataset, we apply the proposed approximate Bayesian
methods with the uniform prior 7(8,) o« 1, Laplace prior and horseshoe
prior (B219) for B,, which are denoted by AB, ABL and ABH, respectively.
For all the Bayesian methods, we use 7(Y|3;) oc 1. We generate 5,000
posterior samples of Y after discarding the first 500 samples and compute
the posterior mean of Y as the point estimate. As for the frequentist meth-
ods, we apply the original generalized regression estimator without variable
selection (GREG) as well as the GREG method with Lasso regularization
(GREG-L; McConville ef all, P017), ridge estimation of 3, (GREG-R; Rad
and Singh, 1997) and forward variable selection (GREG-V) using adjusted
coefficient of determination. We also adopted the mixed modeling approach
to the GREG estimation (GREG-M; Park_and Fuller, 200Y) which is simi-
lar to GREG-R. Moreover, the HT estimator is employed as a benchmark
for efficiency comparison. In GREG-L, the tuning parameter is selected

via 10-fold cross validation, and we use the gamma prior Ga(\?,1) for \?
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in ABL, where )\, is the selected value for A in GREG-L. In ABH, we as-
sign the half-Cauchy prior HC(0,1) for the tuning parameter \?. Based
on 1,000 replications, we calculate the square root of mean squared errors
(RMSE) and bias of point estimators which are reported in Table B. We
also evaluated the performance of 95% confidence (credible) intervals using
coverage probabilities (CP) and the average length (AL), which are shown
in Table B.

Table B shows that RMSE and bias of AB and GREG are almost iden-
tical, which is consistent with the fact that AB is a Bayesian version of
GREG. Moreover, the results show that the existing shrinkage methods
such as GREG-L and the proposed Bayesian methods ABL and ABH tend
to produce smaller RMSEs and smaller absolute biases than GREG or AB
as p increases, which indicates the importance of suitable selection of aux-
iliary variables when p is large. From Table B, it is observed that the CPs
of GREG decreases as p increases and are significantly smaller than the
nominal level since GREG ignores the variability in estimating 3 and the
variability increases as p increases. On the other hand, the Bayesian ver-
sion AB can take account of the variability in estimating 3 and the CPs are
around the nominal level and ALs of AB are larger than those of GREG.

Although the performance of GREG-L is much better than GREG due to
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the shrinkage techniques, the CPs are not necessarily close to the nominal
level. Note that GREG-M takes account of the variability in estimating 3,
but not in other parameters, thereby the coverage performance is limited.
It is also confirmed that the proposed ABH and ABL methods produce
narrower intervals than AB.

In the second simulation study, we consider the binary case for y; and
apply the non-linear regression method discussed in Section 5. The binary
response variables Y; are generated from the following logistic regression

model:

0; .
Y;NBGI‘((SI'), 10g<1_d):60+51'ri1+"-+ﬁpxip, ZZl,...,N,

where 8y = —1 and the other settings are the same as the linear regression
case. We selected a sample size of n = 300 from the finite population, using
two sampling mechanism: (A) simple random sampling and (B) probability-
proportional-to-size sampling with size measure z; = max{log(1 + 0.5Y; +
ei), 0.5} with e; ~ Exp(3). We again apply the three Bayesian methods
and three frequents methods, GREG, GREG-L and GREG-R, based on a
logistic regression model to obtain point estimates and confidence/credible
intervals of the population mean ¥ = N~} Zf\il Y;. The obtained RMSE
and bias of point estimates and CP and AL of intervals based on 1,000

replications are reported in Tables B and B, respectively, which also shows
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again the superiority of the proposed Bayesian approach to the frequentist
approach in terms of uncertainty quantification.
In the Supplementary Material, we report additional simulation results

under larger sample sizes or different data generation scenarios.

7. Example

We applied the proposed methods to the synthetic income data available
from the sae package (Molina_and Marhuenda, 2015) in R. In the dataset,
the normalized annual net income is observed for a certain number of indi-
viduals in each province of Spain. The dataset contains 9 covariates; four
indicators of the four groupings of ages (16 — 24, 25 — 49, 50 — 64 and
> 65 denoted by agl,...,ag4, respectively), the indicator of having Span-
ish nationality na, the indicators of education levels (primary education ed1
and post-secondary education ed2), and the indicators of two employment
categories (employed em1 and unemployed em2). We also adopted 13 in-
teraction variables: agl*na, ag2*na, ag3*na, agé4*na, ag2+*edl, ag3*edl,
agdxedl, agl*eml, ag2xeml, ag3*eml, agd*eml, edl*eml and ed2*eml, as
auxiliary variables, thereby p = 22 in this example. The dataset also con-
tains information of survey weights, so that we used its inverse value as the

sampling probability. Since there is no information regarding the details
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of sampling mechanism, we approximate the joint inclusion probability as
the product of two sampling probabilities. In this example, we focus on
estimating average income in three provinces, Palencia, Segovia and Soria,
where the number of sampled units are 72, 58 and 20, respectively. The
number of non-sampled units were around 10°. It should be noted that
the number of sample sizes are not so large compared with the number
of auxiliary variables, especially in Soria. Hence, the estimation error of
regression coefficients would not be negligible and the proposed Bayesian
methods would be appealing in this case.

In order to perform joint estimation and inference in the three provinces,
we employed the following working model:

yi=at . ayBY + 2B + e, (7.26)
he{1,2,3}

where o is an intercept term, mgf) = 1 if 7 belong to province h, where h = 1
for Palencia, h = 2 for Segovia, and h = 3 for Soria, and x; is the vector
of auxiliary variables with dimension p = 22 (9 auxiliary variables and 13
interaction variables). Here y; is the log-transformed net income and e; is

the error term.

Under the working model (Z28), the posterior distribution of Y}, is

p{?h ’ }i/h,reg<5(()h)7 /61)7 ﬂ(()h)a /61} X (ﬁ(f/vh,reg(ﬂ(()h)? /61) ‘ ?IH ‘A/e,h(ﬁ))ﬂ.(?h)?
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where

theg 60 "‘Xh/Bl N Zﬂ_ < —Béh)—waJa

i€AR

and

o 2 X (i) (5 ).

hic Ay, jeAy

Based on the above formulas, we performed the proposed approximate
Bayesian methods for Y}, for each h, and computed 95% credible intervals
for the log-transformed average income with 5000 posterior samples after
discarding the first 500 samples as burn-in period. We considered three
types of priors for 3, flat, Laplace and horseshoe priors as considered in
Section B, where we adopted the same priors for the hyperparameters in the
Laplace and horseshoe priors. In the Laplace priors, we applied two differ-
ent priors for the hyperparameter \?, given by Ga(1,1) and Ga(1/p, 1), but
the results were almost the same. We also calculated 95% confidence in-
tervals of the log-transformed average income based on the two frequentist
methods, GREG and GREG-L, using the working model (ZZ8). In apply-
ing GREG-L, the tuning parameter in the Lasso estimator was selected via
10 fold cross validation.

The 95% credible intervals of 3, based on the approximate posterior

distributions under Laplace and horseshoe priors are shown in Figure [, in
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which the design-consistent and Lasso estimates of 3, are also given. It
is observed that the approximate posterior mean of 3, shrinks the design-
consistent estimates of B, toward 0 although exactly zero estimates are
not produced as the frequentist Lasso estimator does. The Lasso estimate
selects only one variable among 22 candidates, and the variable is also
significant in terms of the credible interval in both two priors. Moreover,
the two Bayesian methods detect one or two more variables to be significant
judging from the credible intervals. Comparing the results from two priors,
the horseshoe prior provides narrower credible intervals than the Laplace
prior.

In Figure B, we show the resulting credible and confidence intervals of
the average income in the three provinces. It is observed that the proposed
Bayesian methods, AB and ABL, tend to produce wider credible intervals
than the confidence intervals of the corresponding frequencies methods,
GREG and GREG-L, respectively, which is consistent with the simulation
results in Section B. We can also confirm that the credible intervals of ABH
are slightly narrower than those of ABL, which would reflect the differences

of interval lengths of B, as shown in Figure [I.
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Figure 1:  95% credible intervals of regression coefficients under Laplace

(left) and horseshoe (right) priors.

8. Concluding Remarks

We proposed an approximate Bayesian method for model-assisted survey
estimation using parametric regression models as working models. The
proposed method is justified under the frequentist framework. A main

advantage of the proposed method is that it can naturally implement a
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Figure 2: 95% confidence and credible intervals for average income based

on five methods in three provinces in Spain.

shrinkage prior for regularized regression estimation, which not only pro-
vides an efficient point estimator, but also fully captures the uncertainty
associated with model selection and parameter estimation via a Bayesian
framework. Although we only consider two popular prior distributions,
the Laplace prior and the horseshoe prior, other priors, such as the spike-

and-slab prior ([shwaran and Rad, 2005), can be adopted in the same way.
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Further investigation will be an important research topic in the future.
Although our working model is parametric, the proposed Bayesian
method can be applied to other semiparametric models such as local polyno-
mial model (Breidt and Opsomer, 2000), P-spline regression model (Breidsf
ef_all, PO0O5), or a neural network model (Monfanari_and Ranalli, 2005).
By finding suitable prior distributions for the semiparametric models, the
model complexity parameters will be determined automatically and the
uncertainty will be captured in the approximate Bayesian framework.
Finally, under more complicated sampling design such as multi-stage
stratified cluster sampling, the main idea can be applied similarly since the
proposed Bayesian method relies on the sampling distribution of the GREG
estimator, which is asymptotically normal as shown by Krewski and Raad
(T98T). If the asymptotic normality is questionable, one can use a weighted
likelihood bootstrap to approximate Bayesian posterior, as in [Lyddon et al!
(2019). Such extensions are beyond the scope of this paper and will be

considered in the future.

Supplementary Materials

Supplementary Material includes technical details for posterior computa-

tion, proofs of theorems and additional results of simulation studies.
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Table 2: Square root of Mean squared errors (RMSE) and bias of point
estimators under p € {20,30,40,50} in scenarios (A) and (B) with linear

regression. All values are multiplied by 100.

(A) (B)

Method 20 30 40 50 20 30 40 50

GREG 11.7 11.8 12.0 12.3 114 118 121 123

GREG-L 11.7 11.7 11.7 11.8 111 111 111 111

GREG-R 11.8 119 121 124 114 116 11.8 12.0

GREG-V 11.6 11.7 11.8 12.0 11.3 115 11.8 12.0

MSE GREG-M 11.7 11.8 12.0 12.3 114 11.8 121 123

AB 11.7 119 121 124 11.6 119 122 125
ABL 11.7 11.8 119 122 114 11.7 11.8 120
ABH 116 11.6 11.6 11.8 112 11.3 113 114
HT 175 17.5 175 175 14.8 148 148 148
GREG 0.21 0.12 0.13 0.23 0.54 1.24 187 241

GREG-L 0.19 0.16 0.18 0.19 0.00 0.11 0.20 0.26

GREG-R 022 0.16 0.18 0.31 0.56 121 1.79 232

GREG-V 0.16 0.05 0.08 0.17 029 080 126 1.64

Bias GREG-M 0.21 0.12 0.13 0.23 0.54 124 187 241

AB 0.19 0.10 0.11 0.22 0.60 128 192 244
ABL 0.19 0.11 0.11 0.21 0.49 1.06 1.55 195
ABH 0.16 0.12 0.11 0.17 0.06 0.29 051 0.71

HT 0.78 0.78 0.78 0.78 -1.08 -1.08 -1.08 -1.08
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Table 3: Coverage probabilities (CP) and average lengths (AL) of 95%
confidence/credible intervals under p € {20, 30, 40,50} in scenarios (A) and

(B) with linear regression. All values are multiplied by 100.

(4) (8)
Method 20 30 40 50 20 30 40 50
GREG 92.8 92.8 92.7 &89.9 94.2 92.1 92.1 90.1
GREG-L 93.5 934 93.2 933 94.5 94.8 944 94.8
GREG-R 93.0 924 91.8 90.0 93.3 924 919 904
GREG-V 93.6 93.7 93.3 914 94.1 93.8 92,5 91.2

CP GREG-M 93.9 939 939 929 945 93.7 938 929

AB 95.3 948 949 94.2 95.1 948 949 952
ABL 95.2 946 948 945 95.3 953 95.1 949
ABH 94.8 95.0 95.0 94.7 954 959 95.1 955

HT 94.5 945 945 945 95.2 952 952 952

GREG 43.1 423 41.5 40.7 43.1 423 41.5 40.7
GREG-L 43.8 43.7 43.6 435 43.3 43.1 429 428
GREG-R 43.2 425 419 414 42.8 42.0 41.3 40.7
GREG-V 434 428 422 41.6 434 429 423 418

AL GRREG-M 442 442 443 444 44.3 444 446 448

AB 45.8 46.3 46.8 47.3 46.2 47.0 47.8 48.7
ABL 456 459 46.1 46.3 45.8 46.4 46.8 47.3
ABH 45.1 452 452 45.1 45.2 454 454 45.6

HT 66.4 664 664 664 59.1 59.1 59.1 59.1
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Table 4: Square root of Mean squared errors (RMSE) and bias of point
estimators under p € {20, 30,40, 50} in scenarios (A) and (B) with logistic

regression. All values are multiplied by 100.

(A) (B)
Method 20 30 40 50 20 30 40 50
GR 224 229 232 236 232 239 250 257
GRL 217 218 219 220 227 229 231 230
GRR 222 226 229 231 232 238 244 249
RMSE AB 223 226 228 230 231 237 245 250
ABL 221 223 224 225 227 228 226 223
ABH 218 220 223 2.26 226 2.27 228 232
HT 2.80 280 280 2.80 2.83 2.83 283 283
GR -0.10 -0.12 -0.12 -0.11 0.10 0.18 0.31 043
GRL -0.11  -0.11 -0.10 -0.11 0.03 0.05 0.07 0.08
GRR -0.11 -0.12 -0.12 -0.12 0.07 0.13 0.20 0.27
Bias AB -0.11 -0.13 -0.13 -0.13 0.09 0.17 0.27 0.38
ABL -0.10 -0.10 -0.07 -0.02 0.07 0.13 0.19 0.22
ABH -0.10 -0.11 -0.10 -0.11 0.01 0.03 0.04 0.03

HT -0.15 -0.15 -0.15 -0.15 0.07 0.07 0.07 0.07
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Table 5: Coverage probabilities (CP) and average lengths (AL) of 95%
credible/confidence intervals under p € {20, 30,40, 50} in scenarios (A) and

(B) with logistic regression. All values are multiplied by 100.

(A) (B)
Method 20 30 40 50 20 30 40 50
GR 92.3 90.8 88.8 86.4 91.9 90.3 87.3 84.6
GRL 94.1 94.1 93.9 93.2 93.2 93.0 92.6 92.9
GRR 92.8 92.1 91.0 90.6 92.0 90.8 89.6 89.0
CP AB 94.8 95.5 95.4 96.1 94.6 94.1 94.5 95.1
ABL 95.1 95.7 95.9 96.5 94.6 95.2 96.6 97.2
ABH 95.1 96.0 96.0 96.2 95.1 95.2 95.9 96.2
HT 95.3 95.3 95.3 95.3 94.5 94.5 94.5 94.5
GR 8.02 7.80 7.56 7.30 8.20 7.95 7.69 7.39
GRL 8.21 8.17 8.14 8.11 8.42 8.37 8.33 8.30
GRR 8.15 7.99 7.88 7.79 8.34 8.17 8.04 7.94
AL AB 8.74 8.90 9.10 9.42 9.05 9.27 9.59 10.10
ABL 8.79 8.99 9.24 9.55 9.07 9.31 9.61 9.99
ABH 8.76 8.96 9.18 9.45 9.02 9.22 9.46 9.75

HT 11.14 11.14 11.14 11.14 11.00 11.00 11.00 11.00
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