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AN APPROXIMATE BAYESIAN APPROACH

TO MODEL-ASSISTED SURVEY ESTIMATION

WITH MANY AUXILIARY VARIABLES

Shonosuke Sugasawa1 and Jae Kwang Kim2

1The University of Tokyo and 2Iowa State University

Abstract: Model-assisted estimation with complex survey data is an important

practical problem in survey sampling. When there are many auxiliary variables,

selecting significant variables associated with the study variable would be nec-

essary to achieve efficient estimation of population parameters of interest. In

this paper, we formulate a regularized regression estimator in the framework of

Bayesian inference using the penalty function as the shrinkage prior for model se-

lection. The proposed Bayesian approach enables us to get not only efficient point

estimates but also valid credible intervals. Results from two limited simulation

studies are presented to compare with existing frequentist methods.

Key words and phrases: Generalized regression estimation; Regularization; Shrink-

age prior; Survey Sampling
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1. Introduction

Probability sampling is a scientific tool for obtaining a representative sam-

ple from the target population. In order to estimate a finite population total

from a target population, Horvitz-Thompson (HT) estimator obtained from

a probability sample satisfies design-consistency and the resulting inference

is justified from the randomization perspective (Horvitz and Thompson,

1952). However, the HT estimator uses the first-order inclusion probability

only and does not fully incorporate all available information in the finite

population. To improve its efficiency, regression estimation is often used

by incorporating auxiliary information in the finite population. Deville

and Särndal (1992), Fuller (2002), Kim and Park (2010), and Breidt and

Opsomer (2017) present comprehensive overviews of variants of regression

estimation in survey sampling. There are also other directions of improve-

ment on the HT estimator based on prediction using augmented models

(e.g. Zeng and Little, 2003, 2005; Zanganeh and Little, 2015).

The regression estimation approaches in survey sampling assume a

model for the finite population, i.e., the superpopulation model, such as

yi = xt
iβ + ei, (1.1)
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where yi is a response variable, xi and β are vectors of auxiliary variables

and regression coefficients, respectively, and ei is an error term satisfying

E(ei) = 0 and Var(ei) = σ2. The superpopulation model does not neces-

sarily hold in the sample as the sampling design can be informative (e.g.

Pfeffermann and Sverchkov, 1999; Little, 2004). Under the regression super-

population model in (1.1), Isaki and Fuller (1982) show that the asymptotic

variance of the regression estimator achieves the lower bound of Godambe

and Joshi (1965). Thus, the regression estimator is asymptotically efficient

in the sense of achieving the minimum anticipated variance under the joint

distribution of the sampling design and the superpopulation model in (1.1).

On the other hand, the dimension of the auxiliary variables xi could

be large in practice. Even when the number of observed covariates is not

necessarily large, the dimension of xi could be very large once we include

polynomial or interaction terms to achieve flexible modeling, as considered

in Section 7. However, in this case, the optimality of the regression estima-

tor is untenable. When there are many auxiliary variables, the asymptotic

bias of the regression estimator using all the auxiliary variables is no longer

negligible and the resulting inference can be problematic. Simply put, in-

cluding irrelevant auxiliary variables can introduce substantial variability in

point estimation, but its uncertainty is not fully accounted for by the stan-
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dard linearization variance estimation, resulting in misleading inference.

To overcome the problem, variable selection techniques for regression

estimation have been considered in literatures (e.g. Silva and Skinner, 1997;

Särndal and Lundström, 2005). The classical selection approach is based

on a step-wise method. However, the step-wise methods will not necessarily

produce the best model (e.g. Dempster et al., 1977) although the potential

effect on prediction could be limited. Another approach is to employ reg-

ularized estimation of regression coefficients. Recently, McConville et al.

(2017) propose a regularized regression estimation approach based on the

LASSO penalty of Tibshirani (1996). However, there are two main prob-

lems with the regularization approach in regression estimation. First, the

choice of the regularization parameter is not straightforward under survey

sampling. Second, the frequentist inference accounting for model selection

uncertainty is notoriously difficult to make.

In this paper, to overcome the above difficulties, we adopt a Bayesian

framework in the regularized regression estimation. We first introduce an

approximate Bayesian approach for regression estimation when p + 1 =

dim(x) is fixed, using the approximate Bayesian approach considered in

Wang et al. (2018). The proposed Bayesian method fully captures the un-

certainty in parameter estimation for the regression estimator and has good
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coverage properties. Second, the proposed Bayesian method is extended to

the problem of large p in regularized regression estimation. By incorpo-

rating the penalty function for regularization into the prior distribution,

the uncertainty associated with model selection and parameter estimation

is fully captured in the Bayesian machinery. Furthermore, the choice of

the penalty parameter can be handled by using its posterior distribution.

Hence, the proposed method provides a unified approach to Bayesian infer-

ence with sparse model-assisted survey estimation. The proposed method

is a calibrated Bayesian (Little, 2012) and it is asymptotically equivalent

to the frequentist model-assisted approach for a fixed p.

The paper is organized as follows. In Section 2, the basic setup is intro-

duced. In Section 3, the approximate Bayesian inference using regression

estimation is proposed under a fixed p setup. In Section 4, the proposed

method is extended to high dimensional setup by developing sparse re-

gression estimation using shrinkage prior distributions. In Section 5, the

proposed method is extended to non-linear regression models. In Section

6, results from two limited simulation studies are presented. The proposed

method is applied to the real data example in Section 7. Some concluding

remarks are made in Section 8. R code is available at GitHub repository

(https://github.com/sshonosuke/ABMASE).
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2. Basic setup

Consider a finite population of a known sizeN . Associated with unit i in the

finite population, we consider measurement {xi, yi} where xi is the vector of

auxiliary variables with dimension p and yi is the study variable of interest.

We are interested in estimating the finite population mean Ȳ = N−1
∑N

i=1 yi

from a sample selected by a probability sampling design. Let A be the

index set of the sample and we observe {xi, yi}i∈A from the sample. The

HT estimator ˆ̄YHT = N−1
∑

i∈A π−1
i yi, where πi is the first-order inclusion

probability of unit i, is design unbiased but it is not necessarily efficient.

If the finite population mean X̄ = N−1
∑N

i=1 xi is known, then we can

improve the efficiency of ˆ̄YHT by using the following regression estimator:

ˆ̄Yreg =
1

N

N∑
i=1

xt
iβ̂

where β̂ is an estimator of β in (1.1). Typically, we use β̂ obtained by

minimizing the weighted quadratic loss

Q(β) =
∑
i∈A

π−1
i (yi − xt

iβ)
2, (2.2)

motivated from the model (1.1). If an intercept term is included in xi such

that xt
i = (1,xt

1i), we can express

ˆ̄Yreg = β̂0 + X̄
t
1β̂1 = N̂−1

∑
i∈A

π−1
i

(
yi − xt

1iβ̂1

)
+ X̄

t
1β̂1 (2.3)
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where N̂ =
∑

i∈A π−1
i and β̂1 is given by

β̂1 =

{∑
i∈A

π−1
i (x1i − ˆ̄X1,π)

⊗2

}−1∑
i∈A

π−1
i (x1i − ˆ̄X1,π)yi (2.4)

where ˆ̄X1,π = N̂−1
∑

i∈A π−1
i x1i and B⊗2 = BB′ for some matrix B.

To discuss some asymptotic properties of ˆ̄Yreg in (2.3), we consider a

sequence of finite populations and samples as discussed in Isaki and Fuller

(1982), where N increases with n. Note that

ˆ̄Yreg − Ȳ = ˆ̄Yπ − Ȳ +
(
X̄1 − ˆ̄X1,π

)t
β̂1

= ˆ̄Yπ − Ȳ +
(
X̄1 − ˆ̄X1,π

)t
β1 +Rn (2.5)

where ˆ̄Yπ = N̂−1
∑

i∈A π−1
i yi and

Rn =
(
X̄1 − ˆ̄X1

)t (
β̂1 − β1

)
for any β1. If we choose β1 = p limn→∞ β̂1 with respect to the sampling

mechanism and p = dim(x1) is fixed in the asymptotic setup, then we can

obtain Rn = Op(n
−1) and safely use the main terms of (2.5) to describe

the asymptotic behavior of ˆ̄Yreg. To emphasize its dependence on β̂1 in the

regression estimator, we can write ˆ̄Yreg = ˆ̄Yreg(β̂1). Roughly speaking, we

can obtain

√
n
{
ˆ̄Yreg(β̂1)− ˆ̄Yreg(β1)

}
= Op(n

−1/2p). (2.6)
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and, if p = o(n1/2) then we can safely ignore the effect of estimating β1 in

the regression estimator. See Supplementary Material for a sketched proof

of (2.6).

If, on the other hand, the dimension p is larger than O(n1/2), then we

cannot ignore the effect of estimating β1. In this case, we can consider using

some variable selection idea to reduce the dimension of X. For variable

selection, we may employ techniques of regularized estimation of regression

coefficients. The regularization method can be described as finding

(β̂
(R)
0 , β̂

(R)

1 ) = argminβ0,β1
{Q(β) + pλ(β1)}, (2.7)

where Q(β) is defined in (2.2) and pλ(β1) is a penalty function with pa-

rameter λ. Some popular penalty functions are presented in Table 1. Once

the solution to (2.7) is obtained, then the regularized regression estimator

is given by

ˆ̄Yreg(β̂
(R)

1 ) = X̄
t
1β̂

(R)

1 +
1

N̂

∑
i∈A

1

πi

(
yi − xt

1iβ̂
(R)

1

)
. (2.8)

Statistical inference with the regularized regression estimator in (2.8) is not

fully investigated in the literature. For example, Chen et al. (2018) consider

the regularized regression estimator using adaptive LASSO of Zou (2006),

but they assume that the sampling design is non-informative and the un-

certainty in model selection is not fully incorporated in their inference.
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Table 1: Popular penalized regression methods

Method Reference Penalty function

Ridge Hoerl and Kennard (1970) pλ(β) = λ
∑p

j=1 β
2
j

LASSO Tibshirani (1996) pλ(β) = λ
∑p

j=1 |βj |

Adaptive LASSO Zou (2006) pλ(β) = λ
∑p

j=1

(
|βj | /

∣∣∣β̂j

∣∣∣)
Elastic Net Zou and Hastie (2005) pλ(β) = λ1

∑p
j=1 |βj |+ λ2

∑p
j=1 β

2
j

Roughly speaking, making inference after model selection under super-

population frequentist framework is difficult. The approximated Bayesian

method introduced in the next section will capture the full uncertainty in

the Bayesian framework.

3. Approximate Bayesian survey regression estimation

Developing Bayesian model-assisted inference under complex sampling is a

challenging problem in statistics. Wang et al. (2018) recently propose the

so-called approximate Bayesian method for design-based inference using

asymptotic normality of a design-consistent estimator. Specifically, for a

given parameter θ with a prior distribution π(θ), if one can find a design-

consistent estimator θ̂ of θ, then the approximate posterior distribution of

θ is given by

p(θ | θ̂) = f(θ̂ | θ)π(θ)∫
f(θ̂ | θ)π(θ)dθ

, (3.9)

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



10

where f(θ̂ | θ) is the sampling distribution of θ̂, which is often approximated

by a normal distribution.

Drawing on this idea, one can develop an approximate Bayesian ap-

proach to capture the full uncertainty in the regression estimator. Let

β̂ =

(∑
i∈A

π−1
i xix

t
i

)−1∑
i∈A

π−1
i xiyi

be the design-consistent estimator of β and V̂ β be the corresponding asymp-

totic variance-covariance matrix of β̂, given by

V̂ β =

(∑
i∈A

π−1
i xix

t
i

)−1(∑
i∈A

∑
j∈A

∆ij

πij

êixi

πi

êjx
t
j

πj

)(∑
i∈A

π−1
i xix

t
i

)−1

,

(3.10)

where êi = yi−xt
iβ̂, ∆ij = πij−πiπj and πij is the joint inclusion probability

of unit i and j. Under some regularity conditions, as discussed in Chapter

2 of Fuller (2009), we can establish

V̂
−1/2

β11

(
β̂1 − β1

)
| β L−→ N(0, I) (3.11)

as n → ∞, where V̂ β11 is the submatrix of V̂ β with

V̂ β =

V̂β00 V̂β01

V̂β10 V̂β11

 . (3.12)

Thus, using (3.9) and (3.11), we can obtain the approximate posterior

distribution of β as

p(β1|β̂1) =
ϕp(β̂1;β1, V̂ β11)π(β1)∫
ϕp(β̂1;β1, V̂ β11)π(β1)dβ1

, (3.13)
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where ϕp denotes a p-dimensional multivariate normal density and π(β1) is

a prior distribution for β1. We use a flat prior here but will use a shrinkage

prior in Section 4.

Now, we consider the conditional posterior distribution of Ȳ for a given

β1. First, define

ˆ̄Yreg(β1) = X̄
t
1β1 +

1

N̂

∑
i∈A

1

πi

(
yi − xt

1iβ1

)
.

Note that ˆ̄Yreg(β1) is an approximately design-unbiased estimator of Ȳ , re-

gardless of β1. Under some regularity conditions, we can show that ˆ̄Yreg(β1)

follows a normal distribution asymptotically. Thus, we obtain

ˆ̄Yreg(β1)− Ȳ√
V̂e(β1)

| Ȳ ,β1
L−→ N(0, 1), (3.14)

where

V̂e(β1) =
1

N2

∑
i∈A

∑
j∈A

∆ij

πij

1

πi

1

πj

(yi − xt
1iβ1)(yj − xt

1jβ1), (3.15)

is a design consistent variance estimator of ˆ̄Yreg(β1) for given β1. We then

use ϕ( ˆ̄Yreg(β1); Ȳ , V̂e(β1)) as the density for the approximate sampling dis-

tribution of ˆ̄Yreg(β1) in (3.14), where ϕ(·;µ, σ2) is the normal density func-

tion with mean µ and variance σ2. Thus, the approximate conditional

posterior distribution of Ȳ given β can be defined as

p(Ȳ | ˆ̄Yreg(β1),β1) ∝ ϕ( ˆ̄Yreg(β1); Ȳ , V̂e(β1))π(Ȳ | β1), (3.16)
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where π(Ȳ | β1) is a conditional prior distribution of Ȳ given β1. With-

out extra assumptions or any prior information, we can use a flat prior

distribution, namely, π(Ȳ | β1) ∝ 1.

Therefore, combining (3.13) and (3.16), the approximate posterior dis-

tribution of Ȳ can be obtained as

p(Ȳ | ˆ̄Yreg(β̂1), β̂1)

=

∫
p(β1|β̂1)ϕ(

ˆ̄Yreg(β1); Ȳ , V̂e(β1))π(Ȳ | β1)dβ1∫∫
p(β1|β̂1)ϕ(

ˆ̄Yreg(β1); Ȳ , V̂e(β1))π(Ȳ | β1)dβ1dȲ

=

∫
ϕ( ˆ̄Yreg(β1); Ȳ , V̂e(β1))ϕp(β̂1;β1, V̂ β11)π(β1)π(Ȳ | β1)dβ1∫∫
ϕ( ˆ̄Yreg(β1); Ȳ , V̂e(β1))ϕp(β̂1;β1, V̂ β11)π(β1)π(Ȳ | β1)dβ1dȲ

.

(3.17)

Generating posterior samples from (3.17) can be easily carried out via the

following two steps:

1. Generate posterior sample β∗
1 of β1 from (3.13).

2. Generate posterior sample of Ȳ from (3.16) for given β∗
1.

Based on the approximate posterior samples of Ȳ , we can compute

the posterior mean as a point estimator as well as credible intervals for

uncertainty quantification for Ȳ including the variability in estimating β1.

The following theorem presents an asymptotic property of the proposed

approximate Bayesian method.
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Theorem 1. Under the regularity conditions described in the Supplemen-

tary Material, conditional on the full sample data,

sup
Ȳ ∈ΘY

∣∣∣p(Ȳ | ˆ̄Yreg(β̂1), β̂1)− ϕ(Ȳ ; ˆ̄Yreg, V̂e)
∣∣∣→ 0, (3.18)

in probability as n → ∞ while p is fixed, and n/N → f ∈ [0, 1), where ΘY

is some Borel set for Ȳ and p(Ȳ | ˆ̄Yreg(β̂1), β̂1) is given in (3.17).

Theorem 1 is a special case of the Bernstein-von Mises theorem (van der

Vaart, 2000, Section 10.2) in survey regression estimation, and its sketched

proof is given in the Supplementary Material. The proof is not quite rig-

orous but contains enough details to deliver the main ideas. According to

Theorem 1, the credible interval for Ȳ constructed from the approximated

posterior distribution (3.17) is asymptotically equivalent to the frequen-

tist confidence interval based on the asymptotic normality of the common

survey regression estimator. Therefore, the proposed Bayesian method im-

plements the frequentist inference of the survey regression estimator at least

asymptotically.

4. Approximate Bayesian method with shrinkage priors

We consider the case when there are many auxiliary variables in applying

regression estimation. When p is large, it is desirable to select a suitable
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subset of auxiliary variables that are associated with the response variable to

avoid inefficient regression estimation due to including irrelevant covariates.

To deal with the problem in a Bayesian way, we may define the ap-

proximate posterior distribution of Ȳ given β1 as similar to (3.17) with

a different prior for β1 to implement variable selection. That is, we use

the same asymptotic distribution of the estimators β̂1 of β1 and assign a

shrinkage prior for β1. Let πλ(β1) be the shrinkage prior for β1 with a

structural parameter λ which might be multivariate.

Among the several choices of shrinkage priors, we specifically consider

two priors for β1: Laplace (Park and Casella, 2008) and horseshoe (Car-

valho et al., 2009, 2010). The Laplace prior is given by πλ(β1) ∝ exp(−λ
∑p

k=1 |βk|),

which is related to Lasso regression (Tibshirani, 1996), so that the pro-

posed approximated Bayesian method can be seen as the Bayesian version

of a survey regression estimator with Lasso (McConville et al., 2017). The

horseshoe prior is a more advanced shrinkage prior of the form:

πλ(β1) =

p∏
k=1

∫ ∞

0

ϕ(βk; 0, λ
2u2

k)
2

π(1 + u2
k)
duk, (4.19)

where ϕ(·; a, b) denotes the normal density function with mean a and vari-

ance b. It is known that the horseshoe prior enjoys more severe shrinkage

for the zero elements of β1 than the Laplace prior, thus allowing strong

signals to remain large (Carvalho et al., 2009).
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Similarly to (3.13), we can develop a posterior distribution of β1 using

the shrinkage prior

pλ(β1|β̂1) =
ϕ(β̂1;β1, V̂β11)πλ(β1)∫
ϕ(β̂1;β1, V̂β11)πλ(β1)dβ1

, (4.20)

where V̂β11 is the asymptotic variance-covariance matrix of β̂1, defined in

(3.12). Once β1 are sampled from (4.20), we can use the same posterior

distribution of Ȳ in (3.16) for a given β1. Under the Laplace and horseshoe

priors, generating posterior samples of β1 can be easily carried out by simple

Gibbs sampling algorithms. The details are given in the Supplementary

Material.

Therefore, the approximate posterior distribution of Ȳ is obtained as

pλ(Ȳ | ˆ̄Yreg(β̂1), β̂1)

=

∫
ϕ( ˆ̄Yreg(β1); Ȳ , V̂e(β1))ϕp(β̂1;β1, V̂ β11)πλ(β1)π(Ȳ | β1)dβ1∫∫
ϕ( ˆ̄Yreg(β1); Ȳ , V̂e(β1))ϕp(β̂1;β1, V̂ β11)πλ(β1)π(Ȳ | β1)dβ1dȲ

.

(4.21)

Generating posterior samples from (4.21) can be easily carried out via the

following two steps:

1. For a given λ, generate posterior sample β∗
1 of β1 from (4.20).

2. Generate posterior sample of Ȳ from (3.16) for given β∗
1.
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Remark 1. Let β̂
(R)
0 and β̂

(R)

1 be the estimator of β0 and β1 defined as

(β̂
(R)
0 , β̂

(R)

1 ) = argminβ0,β1

{∑
i∈A

1

πi

(yi − β0 − xt
1iβ1)

2 + Pλ(β1)

}
, (4.22)

where P(β1) = −2 log πλ(β1) is the penalty (regularization) term for β1

induced from prior πλ(β1). For example, the Laplace prior for πλ(β1) leads

to the penalty term P(β1) = 2λ
∑p

k=1 |βk|, in which β̂
(R)

1 corresponds to

the regularized estimator of β1 used in McConville et al. (2017). Since the

exponential of −
∑

i∈A π−1
i (yi−β0−xt

iβ1)
2 is close to the approximated like-

lihood ϕp((β̂0, β̂
t

1); (β0,β
t
1), V̂ β) used in the approximated Bayesian method

when n is large, the mode of the approximated posterior of (β0,β
t
1) would

be close to the frequentist estimator (4.22) as well.

Remark 2. In the frequentist approach, λ is often called the tuning pa-

rameter and can be selected via a data-dependent procedure such as cross

validation as used in McConville et al. (2017). On the other hand, in the

Bayesian approach, we assign a prior distribution on the hyperparameter

λ and consider integration with respect to the posterior distribution of λ,

which means that uncertainty of the hyperparameter estimation can be

taken into account. Specifically, we assign a gamma prior for λ2 in the

Laplace prior and a half-Cauchy prior for λ in the horseshoe prior (4.19).

They both lead to familiar forms of full conditional posterior distributions

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



17

of λ or λ2. The details are given in the Supplementary Material.

As in Section 3, we obtain the following asymptotic properties of the

proposed approximate Bayesian method.

Theorem 2. Under the regularity conditions described in the Supplemen-

tary Material, conditional on the full sample data,

sup
Ȳ ∈ΘY

∣∣∣pλ(Ȳ | ˆ̄Yreg(β̂1), β̂1)− ϕ(Ȳ ; ˆ̄Yreg(β̂
(R)

1 ), V̂e(β̂
(R)

1 ))
∣∣∣→ 0, (4.23)

in probability as n → ∞ while p is fixed, and n/N → f ∈ [0, 1), where ΘY

is some Borel set for Ȳ , pλ(Ȳ | ˆ̄Yreg(β̂1), β̂1) is given in (4.21).

The sketched proof is given in the Supplementary Material. Theorem

2 ensures that the proposed approximate Bayesian method is asymptoti-

cally equivalent to the frequentist version in which β1 is estimated by the

regularized method with penalty corresponding to the shrinkage prior used

in the Bayesian method. Moreover, the proposed Bayesian method can be

extended to cases using general non-linear regression, as demonstrated in

the next section.

5. An Extension to non-linear models

The proposed Bayesian methods can be readily extended to work with non-

linear regression. Some extensions of the regression estimator to nonlinear
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models are also considered in Wu and Sitter (2001), Breidt et al. (2005),

and Montanari and Ranalli (2005).

We consider a general working model for yi as E(yi | xi) = m(xi;β) =

mi and Var(yi | xi) = σ2a(mi) for some known functions m(·; ·) and a(·).

The model-assisted regression estimator for Ȳ with β known is then

ˆ̄Yreg,m(β) =
1

N

{
N∑
i=1

m(xi;β) +
∑
i∈A

1

πi

(
yi −m(xi;β)

)}
,

and its design-consistent variance estimator is obtained by

V̂e,m(β) =
1

N2

∑
i∈A

∑
j∈A

∆ij

πij

1

πi

1

πj

{yi −m(xi;β)}{yj −m(xj;β)},

which gives the approximate conditional posterior distribution of Ȳ given

β. That is, similarly to (3.16), we can obtain

p(Ȳ | ˆ̄Yreg,m(β),β) ∝ ϕ( ˆ̄Yreg,m(β); Ȳ , V̂e,m(β))π(Ȳ | β). (5.24)

To generate the posterior values of β, we first find a design-consistent

estimator β̂ of β. Note that a consistent estimator β̂ can be obtained by

solving

Û(β) ≡
∑
i∈A

π−1
i {yi −m(xi;β)}h(xi;β) = 0,

where h(xi;β) = (∂mi/∂β)/a(mi). For example, for binary yi, we may use

a logistic regression model with m(xi;β) = exp(xt
iβ)/{1 + exp(xt

iβ)} and

Var(yi) = mi(1−mi), which leads to h(xi;β) = xi.
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Under some regularity conditions, we can establish the asymptotic nor-

mality of β̂. That is,

V̂
−1/2

β (β̂ − β) | β L−→ N(0, I),

where

V̂ β =

{∑
i∈A

1

πi

ĥiṁ(xi; β̂)
t

}−1(∑
i∈A

∑
j∈A

∆ij

πij

êiĥi

πi

êjĥ
t

j

πj

){∑
i∈A

1

πi

ĥiṁ(xi; β̂)
t

}−1

,

with êi = yi −m(xi; β̂), ĥi = h(xi; β̂), and ṁ(x;β) = ∂m(x;β)/∂β. Note

that ṁ(x;β) = mi(1−mi)xi under a logistic regression model.

Thus, the posterior distribution of β given β̂ can be obtained by

p(β | β̂) ∝ ϕ(β̂ | β, V̂ β)π(β). (5.25)

We can use a shrinkage prior π(β) for β in (5.25) if necessary. Once β∗ is

generated from (5.25), the posterior values of Ȳ are generated from (5.24)

for a given β∗.

This formula enables us to define the approximate posterior distribution

of β of the form (3.13), so that the approximate Bayesian inference for Ȳ

can be carried out in the same way as in the linear regression case. Note

that Theorem 1 still holds under the general setup as long as the regularity

conditions given in the Supplementary Material are satisfied.
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6. Simulation

We investigate the performance of the proposed approximate Bayesian meth-

ods against standard frequentist methods using two limited simulation stud-

ies. In the first simulation, we consider a linear regression model for a con-

tinuous y variable. In the second simulation, we consider a binary y and

apply the logistic regression model for the non-linear regression estimation.

In the first simulation, we generate xi = (xi1, . . . , xip∗)
t, i = 1, . . . , N ,

from a multivariate normal distribution with mean vector (1, . . . , 1)t and

variance-covariance matrix 2R(0.2), where p∗ = 50 and the (i, j)-th element

of R(ρ) is ρ|i−j|. The response variables Yi are generated from the following

linear regression model:

Yi = β0 + β1xi1 + · · ·+ βp∗xip∗ + εi, i = 1, . . . , N,

where N = 10, 000, εi ∼ N(0, 2), β1 = 1, β4 = −0.5, β7 = 1, β10 = −0.5

and the other βk’s are set to zero. For the dimension of the auxiliary in-

formation, we consider four scenarios for p of 20, 30, 40 and 50. For each

p, we assume that we can access only (xi1, . . . , xip)
t a subset of the full

information (xi1, . . . , xip∗)
t. Note that for all scenarios the auxiliary vari-

ables significantly related with Yi are included, and so only the amount of

irrelevant information gets larger as p gets larger. We selected a sample
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size of n = 300 from the finite population, using two sampling mechanism:

(A) simple random sampling (SRS) and (B) probability-proportional-to-

size sampling (PPS) with size measure zi = max{log(1 + |Yi + ei|), 1} with

ei ∼ Exp(2). The parameter of interest is Ȳ = N−1
∑N

i=1 Yi. We assume

that X̄k = N−1
∑N

i=1 xik is known for all k = 1, . . . , p.

For the simulated dataset, we apply the proposed approximate Bayesian

methods with the uniform prior π(β1) ∝ 1, Laplace prior and horseshoe

prior (4.19) for β1, which are denoted by AB, ABL and ABH, respectively.

For all the Bayesian methods, we use π(Ȳ |β1) ∝ 1. We generate 5,000

posterior samples of Ȳ after discarding the first 500 samples and compute

the posterior mean of Ȳ as the point estimate. As for the frequentist meth-

ods, we apply the original generalized regression estimator without variable

selection (GREG) as well as the GREG method with Lasso regularization

(GREG-L; McConville et al., 2017), ridge estimation of β1 (GREG-R; Rao

and Singh, 1997) and forward variable selection (GREG-V) using adjusted

coefficient of determination. We also adopted the mixed modeling approach

to the GREG estimation (GREG-M; Park and Fuller, 2009) which is simi-

lar to GREG-R. Moreover, the HT estimator is employed as a benchmark

for efficiency comparison. In GREG-L, the tuning parameter is selected

via 10-fold cross validation, and we use the gamma prior Ga(λ2
∗, 1) for λ2
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in ABL, where λ∗ is the selected value for λ in GREG-L. In ABH, we as-

sign the half-Cauchy prior HC(0, 1) for the tuning parameter λ2. Based

on 1, 000 replications, we calculate the square root of mean squared errors

(RMSE) and bias of point estimators which are reported in Table 2. We

also evaluated the performance of 95% confidence (credible) intervals using

coverage probabilities (CP) and the average length (AL), which are shown

in Table 3.

Table 2 shows that RMSE and bias of AB and GREG are almost iden-

tical, which is consistent with the fact that AB is a Bayesian version of

GREG. Moreover, the results show that the existing shrinkage methods

such as GREG-L and the proposed Bayesian methods ABL and ABH tend

to produce smaller RMSEs and smaller absolute biases than GREG or AB

as p increases, which indicates the importance of suitable selection of aux-

iliary variables when p is large. From Table 3, it is observed that the CPs

of GREG decreases as p increases and are significantly smaller than the

nominal level since GREG ignores the variability in estimating β and the

variability increases as p increases. On the other hand, the Bayesian ver-

sion AB can take account of the variability in estimating β and the CPs are

around the nominal level and ALs of AB are larger than those of GREG.

Although the performance of GREG-L is much better than GREG due to
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the shrinkage techniques, the CPs are not necessarily close to the nominal

level. Note that GREG-M takes account of the variability in estimating β,

but not in other parameters, thereby the coverage performance is limited.

It is also confirmed that the proposed ABH and ABL methods produce

narrower intervals than AB.

In the second simulation study, we consider the binary case for yi and

apply the non-linear regression method discussed in Section 5. The binary

response variables Yi are generated from the following logistic regression

model:

Yi ∼ Ber(δi), log

(
δi

1− δi

)
= β0 + β1xi1 + · · ·+ βpxip, i = 1, . . . , N,

where β0 = −1 and the other settings are the same as the linear regression

case. We selected a sample size of n = 300 from the finite population, using

two sampling mechanism: (A) simple random sampling and (B) probability-

proportional-to-size sampling with size measure zi = max{log(1 + 0.5Yi +

ei), 0.5} with ei ∼ Exp(3). We again apply the three Bayesian methods

and three frequents methods, GREG, GREG-L and GREG-R, based on a

logistic regression model to obtain point estimates and confidence/credible

intervals of the population mean Ȳ = N−1
∑N

i=1 Yi. The obtained RMSE

and bias of point estimates and CP and AL of intervals based on 1,000

replications are reported in Tables 4 and 5, respectively, which also shows
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again the superiority of the proposed Bayesian approach to the frequentist

approach in terms of uncertainty quantification.

In the Supplementary Material, we report additional simulation results

under larger sample sizes or different data generation scenarios.

7. Example

We applied the proposed methods to the synthetic income data available

from the sae package (Molina and Marhuenda, 2015) in R. In the dataset,

the normalized annual net income is observed for a certain number of indi-

viduals in each province of Spain. The dataset contains 9 covariates; four

indicators of the four groupings of ages (16 − 24, 25 − 49, 50 − 64 and

≥ 65 denoted by ag1, . . . ,ag4, respectively), the indicator of having Span-

ish nationality na, the indicators of education levels (primary education ed1

and post-secondary education ed2), and the indicators of two employment

categories (employed em1 and unemployed em2). We also adopted 13 in-

teraction variables: ag1*na, ag2*na, ag3*na, ag4*na, ag2*ed1, ag3*ed1,

ag4*ed1, ag1*em1, ag2*em1, ag3*em1, ag4*em1, ed1*em1 and ed2*em1, as

auxiliary variables, thereby p = 22 in this example. The dataset also con-

tains information of survey weights, so that we used its inverse value as the

sampling probability. Since there is no information regarding the details
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of sampling mechanism, we approximate the joint inclusion probability as

the product of two sampling probabilities. In this example, we focus on

estimating average income in three provinces, Palencia, Segovia and Soria,

where the number of sampled units are 72, 58 and 20, respectively. The

number of non-sampled units were around 106. It should be noted that

the number of sample sizes are not so large compared with the number

of auxiliary variables, especially in Soria. Hence, the estimation error of

regression coefficients would not be negligible and the proposed Bayesian

methods would be appealing in this case.

In order to perform joint estimation and inference in the three provinces,

we employed the following working model:

yi = α +
∑

h∈{1,2,3}

x
(h)
0i β

(h)
0 + xt

iβ1 + ei, (7.26)

where α is an intercept term, x
(h)
0i = 1 if i belong to province h, where h = 1

for Palencia, h = 2 for Segovia, and h = 3 for Soria, and xi is the vector

of auxiliary variables with dimension p = 22 (9 auxiliary variables and 13

interaction variables). Here yi is the log-transformed net income and ei is

the error term.

Under the working model (7.26), the posterior distribution of Ȳh is

p{Ȳh | ˆ̄Yh,reg(β
(h)
0 ,β1), β

(h)
0 ,β1} ∝ ϕ( ˆ̄Yh,reg(β

(h)
0 ,β1) | Ȳh, V̂e,h(β))π(Ȳh),
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where

ˆ̄Yh,reg = β̂
(h)
0 + X̄

t
hβ̂1 +

1

Nh

∑
i∈Ah

1

πi

(
yi − β̂

(h)
0 − xt

iβ̂1

)
,

and

V̂e,h(β) =
1

N2
h

∑
i∈Ah

∑
j∈Ah

∆ij

πij

1

πi

1

πj

(
yi − β

(h)
0 − xt

iβ1

)(
yj − β

(h)
0 − xt

jβ1

)
.

Based on the above formulas, we performed the proposed approximate

Bayesian methods for Ȳh for each h, and computed 95% credible intervals

for the log-transformed average income with 5000 posterior samples after

discarding the first 500 samples as burn-in period. We considered three

types of priors for β1, flat, Laplace and horseshoe priors as considered in

Section 6, where we adopted the same priors for the hyperparameters in the

Laplace and horseshoe priors. In the Laplace priors, we applied two differ-

ent priors for the hyperparameter λ2, given by Ga(1, 1) and Ga(1/p, 1), but

the results were almost the same. We also calculated 95% confidence in-

tervals of the log-transformed average income based on the two frequentist

methods, GREG and GREG-L, using the working model (7.26). In apply-

ing GREG-L, the tuning parameter in the Lasso estimator was selected via

10 fold cross validation.

The 95% credible intervals of β1 based on the approximate posterior

distributions under Laplace and horseshoe priors are shown in Figure 1, in
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which the design-consistent and Lasso estimates of β1 are also given. It

is observed that the approximate posterior mean of β1 shrinks the design-

consistent estimates of β1 toward 0 although exactly zero estimates are

not produced as the frequentist Lasso estimator does. The Lasso estimate

selects only one variable among 22 candidates, and the variable is also

significant in terms of the credible interval in both two priors. Moreover,

the two Bayesian methods detect one or two more variables to be significant

judging from the credible intervals. Comparing the results from two priors,

the horseshoe prior provides narrower credible intervals than the Laplace

prior.

In Figure 2, we show the resulting credible and confidence intervals of

the average income in the three provinces. It is observed that the proposed

Bayesian methods, AB and ABL, tend to produce wider credible intervals

than the confidence intervals of the corresponding frequencies methods,

GREG and GREG-L, respectively, which is consistent with the simulation

results in Section 6. We can also confirm that the credible intervals of ABH

are slightly narrower than those of ABL, which would reflect the differences

of interval lengths of β1 as shown in Figure 1.
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Figure 1: 95% credible intervals of regression coefficients under Laplace

(left) and horseshoe (right) priors.

8. Concluding Remarks

We proposed an approximate Bayesian method for model-assisted survey

estimation using parametric regression models as working models. The

proposed method is justified under the frequentist framework. A main

advantage of the proposed method is that it can naturally implement a
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Figure 2: 95% confidence and credible intervals for average income based

on five methods in three provinces in Spain.

shrinkage prior for regularized regression estimation, which not only pro-

vides an efficient point estimator, but also fully captures the uncertainty

associated with model selection and parameter estimation via a Bayesian

framework. Although we only consider two popular prior distributions,

the Laplace prior and the horseshoe prior, other priors, such as the spike-

and-slab prior (Ishwaran and Rao, 2005), can be adopted in the same way.
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Further investigation will be an important research topic in the future.

Although our working model is parametric, the proposed Bayesian

method can be applied to other semiparametric models such as local polyno-

mial model (Breidt and Opsomer, 2000), P-spline regression model (Breidt

et al., 2005), or a neural network model (Montanari and Ranalli, 2005).

By finding suitable prior distributions for the semiparametric models, the

model complexity parameters will be determined automatically and the

uncertainty will be captured in the approximate Bayesian framework.

Finally, under more complicated sampling design such as multi-stage

stratified cluster sampling, the main idea can be applied similarly since the

proposed Bayesian method relies on the sampling distribution of the GREG

estimator, which is asymptotically normal as shown by Krewski and Rao

(1981). If the asymptotic normality is questionable, one can use a weighted

likelihood bootstrap to approximate Bayesian posterior, as in Lyddon et al.

(2019). Such extensions are beyond the scope of this paper and will be

considered in the future.

Supplementary Materials

Supplementary Material includes technical details for posterior computa-

tion, proofs of theorems and additional results of simulation studies.
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Table 2: Square root of Mean squared errors (RMSE) and bias of point

estimators under p ∈ {20, 30, 40, 50} in scenarios (A) and (B) with linear

regression. All values are multiplied by 100.

(A) (B)

Method 20 30 40 50 20 30 40 50

GREG 11.7 11.8 12.0 12.3 11.4 11.8 12.1 12.3

GREG-L 11.7 11.7 11.7 11.8 11.1 11.1 11.1 11.1

GREG-R 11.8 11.9 12.1 12.4 11.4 11.6 11.8 12.0

GREG-V 11.6 11.7 11.8 12.0 11.3 11.5 11.8 12.0

MSE GREG-M 11.7 11.8 12.0 12.3 11.4 11.8 12.1 12.3

AB 11.7 11.9 12.1 12.4 11.6 11.9 12.2 12.5

ABL 11.7 11.8 11.9 12.2 11.4 11.7 11.8 12.0

ABH 11.6 11.6 11.6 11.8 11.2 11.3 11.3 11.4

HT 17.5 17.5 17.5 17.5 14.8 14.8 14.8 14.8

GREG 0.21 0.12 0.13 0.23 0.54 1.24 1.87 2.41

GREG-L 0.19 0.16 0.18 0.19 0.00 0.11 0.20 0.26

GREG-R 0.22 0.16 0.18 0.31 0.56 1.21 1.79 2.32

GREG-V 0.16 0.05 0.08 0.17 0.29 0.80 1.26 1.64

Bias GREG-M 0.21 0.12 0.13 0.23 0.54 1.24 1.87 2.41

AB 0.19 0.10 0.11 0.22 0.60 1.28 1.92 2.44

ABL 0.19 0.11 0.11 0.21 0.49 1.06 1.55 1.95

ABH 0.16 0.12 0.11 0.17 0.06 0.29 0.51 0.71

HT 0.78 0.78 0.78 0.78 -1.08 -1.08 -1.08 -1.08
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Table 3: Coverage probabilities (CP) and average lengths (AL) of 95%

confidence/credible intervals under p ∈ {20, 30, 40, 50} in scenarios (A) and

(B) with linear regression. All values are multiplied by 100.

(A) (B)

Method 20 30 40 50 20 30 40 50

GREG 92.8 92.8 92.7 89.9 94.2 92.1 92.1 90.1

GREG-L 93.5 93.4 93.2 93.3 94.5 94.8 94.4 94.8

GREG-R 93.0 92.4 91.8 90.0 93.3 92.4 91.9 90.4

GREG-V 93.6 93.7 93.3 91.4 94.1 93.8 92.5 91.2

CP GREG-M 93.9 93.9 93.9 92.9 94.5 93.7 93.8 92.9

AB 95.3 94.8 94.9 94.2 95.1 94.8 94.9 95.2

ABL 95.2 94.6 94.8 94.5 95.3 95.3 95.1 94.9

ABH 94.8 95.0 95.0 94.7 95.4 95.9 95.1 95.5

HT 94.5 94.5 94.5 94.5 95.2 95.2 95.2 95.2

GREG 43.1 42.3 41.5 40.7 43.1 42.3 41.5 40.7

GREG-L 43.8 43.7 43.6 43.5 43.3 43.1 42.9 42.8

GREG-R 43.2 42.5 41.9 41.4 42.8 42.0 41.3 40.7

GREG-V 43.4 42.8 42.2 41.6 43.4 42.9 42.3 41.8

AL GRREG-M 44.2 44.2 44.3 44.4 44.3 44.4 44.6 44.8

AB 45.8 46.3 46.8 47.3 46.2 47.0 47.8 48.7

ABL 45.6 45.9 46.1 46.3 45.8 46.4 46.8 47.3

ABH 45.1 45.2 45.2 45.1 45.2 45.4 45.4 45.6

HT 66.4 66.4 66.4 66.4 59.1 59.1 59.1 59.1
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Table 4: Square root of Mean squared errors (RMSE) and bias of point

estimators under p ∈ {20, 30, 40, 50} in scenarios (A) and (B) with logistic

regression. All values are multiplied by 100.

(A) (B)

Method 20 30 40 50 20 30 40 50

GR 2.24 2.29 2.32 2.36 2.32 2.39 2.50 2.57

GRL 2.17 2.18 2.19 2.20 2.27 2.29 2.31 2.30

GRR 2.22 2.26 2.29 2.31 2.32 2.38 2.44 2.49

RMSE AB 2.23 2.26 2.28 2.30 2.31 2.37 2.45 2.50

ABL 2.21 2.23 2.24 2.25 2.27 2.28 2.26 2.23

ABH 2.18 2.20 2.23 2.26 2.26 2.27 2.28 2.32

HT 2.80 2.80 2.80 2.80 2.83 2.83 2.83 2.83

GR -0.10 -0.12 -0.12 -0.11 0.10 0.18 0.31 0.43

GRL -0.11 -0.11 -0.10 -0.11 0.03 0.05 0.07 0.08

GRR -0.11 -0.12 -0.12 -0.12 0.07 0.13 0.20 0.27

Bias AB -0.11 -0.13 -0.13 -0.13 0.09 0.17 0.27 0.38

ABL -0.10 -0.10 -0.07 -0.02 0.07 0.13 0.19 0.22

ABH -0.10 -0.11 -0.10 -0.11 0.01 0.03 0.04 0.03

HT -0.15 -0.15 -0.15 -0.15 0.07 0.07 0.07 0.07
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Table 5: Coverage probabilities (CP) and average lengths (AL) of 95%

credible/confidence intervals under p ∈ {20, 30, 40, 50} in scenarios (A) and

(B) with logistic regression. All values are multiplied by 100.

(A) (B)

Method 20 30 40 50 20 30 40 50

GR 92.3 90.8 88.8 86.4 91.9 90.3 87.3 84.6

GRL 94.1 94.1 93.9 93.2 93.2 93.0 92.6 92.9

GRR 92.8 92.1 91.0 90.6 92.0 90.8 89.6 89.0

CP AB 94.8 95.5 95.4 96.1 94.6 94.1 94.5 95.1

ABL 95.1 95.7 95.9 96.5 94.6 95.2 96.6 97.2

ABH 95.1 96.0 96.0 96.2 95.1 95.2 95.9 96.2

HT 95.3 95.3 95.3 95.3 94.5 94.5 94.5 94.5

GR 8.02 7.80 7.56 7.30 8.20 7.95 7.69 7.39

GRL 8.21 8.17 8.14 8.11 8.42 8.37 8.33 8.30

GRR 8.15 7.99 7.88 7.79 8.34 8.17 8.04 7.94

AL AB 8.74 8.90 9.10 9.42 9.05 9.27 9.59 10.10

ABL 8.79 8.99 9.24 9.55 9.07 9.31 9.61 9.99

ABH 8.76 8.96 9.18 9.45 9.02 9.22 9.46 9.75

HT 11.14 11.14 11.14 11.14 11.00 11.00 11.00 11.00

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)


	Introduction
	Basic setup
	Approximate Bayesian survey regression estimation
	Approximate Bayesian method with shrinkage priors
	An Extension to non-linear models
	Simulation
	Example
	Concluding Remarks



