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Sufficient cause interactions for categorical and ordinal outcomes

Jaffer M. Zaidi and Tyler J. VanderWeele

Harvard University

Abstract: The sufficient cause model is extended from binary to categorical and

ordinal outcomes to formalize the concept of sufficient cause interaction and syn-

ergism in this setting. This extension allows for the derivation of counterfactual

and empirical conditions for detecting the presence of sufficient cause interac-

tions for ordinal and categorical outcomes. Some of these conditions are entirely

novel in that they cannot be derived from the sufficient cause model for binary

outcomes. These empirical conditions enable researchers to discover whether two

exposures display synergism for an ordinal or categorical outcome. Likelihood

ratio tests that use these derived empirical conditions are developed to infer suf-

ficient cause interaction for ordinal and categorical outcomes. These likelihood

ratio tests are used to detect sufficient cause interaction between two major re-

sistance mutations in the development of HIV drug resistance to Etravirine.

Key words and phrases: interaction, sufficient cause, ordinal outcome.

1. Introduction

In this paper, we extend the sufficient cause model defined originally

for binary outcomes to categorical and ordinal outcomes, and we derive
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the associated empirical and counterfactual conditions associated with suf-

ficient cause interaction. The sufficient cause framework provides a repre-

sentation of causation in terms of a collection of causal mechanisms, called

sufficient causes. A single sufficient cause is constituted of one or more

component causes such that when all components of the sufficient cause

are present they will together inevitably bring about the outcome. The

first crude sufficient cause model appeared in (Cayley, 1853). Rothman

popularized the sufficient cause model in epidemiology, and introduced a

graphical schematic which is often presented in introductory epidemiology

texts (Rothman, 1976). The sufficient cause model has evolved dramatically

over the past decade to enable the detection of different forms of interaction

(VanderWeele and Robins, 2008; Berzuini and Dawid, 2016; VanderWeele,

2015; VanderWeele and Richardson, 2012; Vanderweele, 2010; Ramsahai,

2013).

Rothman (1976) presented a model for causation as a series of different

causal mechanisms each of which that are sufficient to bring about the out-

come. In this model, the causal mechanisms are called “sufficient causes,”

that are defined as the minimal set of actions, events or states of being that

jointly initiate a process that will eventually result in the outcome. Many

different “sufficient causes” can produce a particular outcome. For instance,
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in the course of treatment for HIV-1 viral mutations can arise. Some muta-

tions might on their own make an a particular treatment ineffective, while

others might require one or more additional mutations to operate.

Within a deterministic framework, for a binary outcome, suppose we

were considering three known potential causes, X1, X2, X3. Suppose hy-

pothetically that it is the case that mutation X1, and unknown factors A1

make an individual drug resistant, denoted by binary outcome R. In con-

trast, mutations X2 and X3 will together be sufficient if jointly present with

additional unknown factors A2. A last mechanism might be mutations X1

and X2 with additional unknown factors A3. This provides us with three

sufficient causes, denoted A1X1, A2X2X3, A3X1X2, each of which when

present will make the individual drug resistant.

In a deterministic sufficient cause model, whenever all of the component

causes of a particular sufficient cause are present the outcome will definitely

occur, and each component cause is necessary for that particular sufficient

cause to bring about the outcome. Sufficient cause A2X2X3 has two com-

ponent causes X2 and X3. This particular sufficient cause will not operate if

either X2 or X3 is not present. This phenomenon whereby two component

causes are both needed to cause the outcome to occur is termed synergism.

In general it may be logically possible to represent the counterfactual out-
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comes across the different causes by different representations of sufficient

causes. When it is the case that every such possible sufficient cause repre-

sentation has a particular conjunction, say X2X3, then a “sufficient cause

interaction” betweenX2 andX3 is said to be present. In such cases we would

then know that synergism must be present between X2 and X3. Scientists

will want to discover synergism from data, and statisticians have derived

empirical conditions to enable the discovery of sufficient cause interactions

(VanderWeele and Robins, 2008; Berzuini and Dawid, 2016; VanderWeele,

2015; VanderWeele and Richardson, 2012; Vanderweele, 2010; Ramsahai,

2013).

In this paper, we extend the sufficient cause model to categorical and

ordinal outcomes, and we also develop the associated likelihood ratio tests

and provide one data application of this theory. This enables researchers to

understand which mutations mechanistically interact in the development of

HIV-1 drug resistance to Etravirine. For this applied problem the ordinal

outcome has three levels: no drug resistance, partial drug resistance, and

full drug resistance.
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2. Sufficient cause interactions for a specified outcome

Suppose, we have an outcome Y with associated levels Y ∈ {0, 1, 2}. We

denote binary variables X1, . . . , Xk that each take values in Xi ∈ {0, 1}.

Jointly, Xk = (X1, . . . , Xk) take values within Xk ∈ {0, 1}k. The individ-

uals, denoted by symbol ω, compose a population, denoted Ω. We write

the potential outcome Yx1,...,xk
(ω) of Y for individual ω if for j = 1, . . . , k,

each putative cause Xj ∈ {X1, . . . , Xk} were set xj ∈ {0, 1}. The data

application considers the situation when k = 2. For this circumstance, the

potential outcome or counterfactual value of an individual ω had X1 been

set to x1 and X2 been set to x2 is denoted Yx1,x2(ω). There are 34 poten-

tial response types, Y x1x2
(ω) = (Y11(ω), Y10(ω), Y01(ω), Y00(ω)), that form

all the different of types individuals, which we denote Yx1x2(Ω). This table

Yx1x2(Ω) is simply all the different permutations of a vector of length four

sampling with replacement from the set {0, 1, 2}.

An indicator function denoted I(Y ∈ S) is used to denote a new random

variable constructed from Y, which takes value 1 if Y ∈ S and 0 otherwise.

To construct these new binary outcomes, let A = {1}, B = {1, 2}, C = {2},

D = {0}, E = {0, 2}, F = {0, 1}. Specifically, we denote: Y L = I(Y ∈ L),

where L ∈ {A,B,C,D,E, F}. Potential outcome versions of Y L are defined

as Y L
x1,...,xk

(ω) = I(Yx1,...,xk
(ω) ∈ L), where L ∈ {A,B,C,D,E, F}. The
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superscript L in the symbol Y L does not indicate exponentiation, but rather

specifies the condition that is used to construct this new random variable

that is constructed from Y . Appendix 1 provides the full list of the different

Y L and Y L
x1,...,xk

(ω) without set notation for the reader’s convenience. We

require the consistency assumption, namely that YX1(ω),...,Xk(ω)(ω) = Y (ω),

which states that the value of Y that would have been observed ifX1, . . . , Xk

had been set to what in fact they were is equal to the value of Y that was

observed. The consistency assumption for Y L is implied by the consistency

assumption on Y . The disjunctive operator on binary variables X1, . . . , Xk

is denoted ∨i∈{1,...k}Xi = X1 ∨ . . . ∨ Xk = max{X1, . . . , Xk}. For ease

of notation, we shall drop the commas between the intervened variables

{X1, . . . , Xk} in a potential outcome, for example Yx1,x2(ω) = Yx1x2(ω).

The definitions and theorems in this section closely mimic the associ-

ated definitions and theorems from VanderWeele and Robins (2008). While

this paper is self-contained, a reader that is familiar with VanderWeele

and Robins (2008) would recognize that Definitions (2.1)-(2.7) and Theo-

rems (2.1)-(2.5) are the logical extensions to corresponding definitions and

theorems presented in VanderWeele and Robins (2008), and we thus keep

the exposition very concise. Theorem 2.6 and Corollary 2.1 cannot be de-

rived through the previous framework on sufficient causes (VanderWeele
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and Robins, 2008, 2012; Ramsahai, 2013) based upon binary outcomes.

Definition 2.1 (Sufficient cause for a specified outcome). We say that

putative binary causes X1, . . . , Xn are called sufficient causes for Y L where

L ∈ {A,B,C,D,E, F}, if for all values of x1, . . . , xn ∈ Xn such that x1 ×

· · · × xn = 1 we have that Y L
x1···xn

(ω) = 1 for all ω ∈ Ω′ ⊆ Ω where Ω′ 6= ∅.

Definition 2.2 (Minimal sufficient cause for a specified outcome). We say

that putative binary causes X1, . . . , Xn form a minimal sufficient cause for

Y L where L ∈ {A,B,C,D,E, F}, if X1, . . . , Xn are sufficient causes for Y L

and no proper subset of {X1, . . . , Xn} is also a sufficient cause for Y L.

Definition 2.3. Determinative sufficient causes for a specified outcome A

set of sufficient causes ML
1 , . . . ,M

L
n each of which are composed of a product

of binary causes for a specified outcome Y L, where L ∈ {A,B,C,D,E, F},

is defined to be determinative for Y L if for all ω ∈ Ω, Y L
x1···xs

(ω) = 1 if and

only if ML
1 ∨ML

2 ∨ . . . ∨ML
n = 1.

Definition 2.4. Non-redundant sufficient causes for a specified outcome

A set of determinative sufficient causes ML
1 , . . . ,M

L
n for Y L, where L ∈

{A,B,C,D,E, F}, is called a non-redundant determinative set of minimal

sufficient causes if there is no proper subset of ML
1 , . . . ,M

L
n that is also a

determinative set of minimal sufficient causes for Y L.
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VanderWeele and Robins (2008) note that minimality and non-redundancy

should be distinguished. Minimality concerns components of a given con-

junction in that each component is necessary for the conjunction to be

sufficient for the outcome to occur. Non-redundancy concerns the disjunc-

tion of conjunctions in that each individual conjunction should be present

in order for the disjunction to be determinative.

Example 2.1. Suppose an individual is taking treatment for HIV. Viral

mutations can occur while the individual takes treatment. Suppose muta-

tion X1 enables the virus to replicate in particular cells in the human body,

and mutation X2 enables the virus to penetrate these particular cells body,

and assume for now that these are the only two mutations that occur. The

scientist could ask whether mutations X1 and X2 required for this individ-

ual for the current treatment to become ineffective in treating HIV, which

is known as drug resistance. Alternatively, would mutation X1 on its own

suffice for the individual to develop drug resistance. Scientists also grade

drug resistance on an ordinal scale, partial and full. A scientist might be-

lieve that mutation X2 alone sufficient in the development of partial drug

resistance for a particular individual, but conjunction X1 and X2 are both

necessary for full drug resistance for the same drug.

These definitions for sufficient cause for an ordinal or nominal outcome
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with three levels generalize the analogous definitions of sufficient cause for a

binary outcome. The definitions provided herein are easily adaptable to the

case where a researcher is interested in an ordinal outcome Y, where Y ∈

{0, 1, . . . , j}, and such definitions for outcome Y with j levels are presented

in the online supplement. A very brief exposition of this generalization is

provided in section 4. More general notions of interdependence (Ramsahai,

2013) extended to categorical and ordinal outcomes are also provided in the

online supplement. Denote X̄i as the complement of Xi.

Theorem 2.1. For putative binary causes X1 and X2 of specified outcome

Y L, where L ∈ {A,B,C,D,E, F}, there exist binary variables

AL
0 (ω), AL

1 (ω), AL
2 (ω), AL

3 (ω), AL
4 (ω), AL

5 (ω), AL
6 (ω), AL

7 (ω), AL
8 (ω),

which are functions of the counterfactuals {Y L
11(ω), Y L

10(ω), Y L
01(ω), Y L

00(ω)}

such that

Y L = AL
0 ∨ AL

1X1 ∨ AL
2 X̄1 ∨ AL

3X2 ∨ AL
4 X̄2 ∨ AL

5X1X2 (2.1)

∨AL
6 X̄1X2 ∨ AL

7X1X̄2 ∨ AL
8 X̄1X̄2,

and such that

Y L
x1x2

= AL
0 ∨ AL

1 x1 ∨ AL
2 (1− x1) ∨ AL

3 x2 ∨ AL
4 (1− x2) ∨ AL

5 x1x2

∨AL
6 (1− x1)x2 ∨ AL

7 x1(1− x2) ∨ AL
8 (1− x1)(1− x2).
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The proof of Theorem 2.1 mimics the proof of sufficient cause represen-

tation for binary outcomes provided in (VanderWeele and Robins, 2008).

For completeness, we provide the proof in the online supplement. We call

equation (2.1) a sufficient cause representation of Y L.

We are able to generalize our definitions provided above and Theo-

rem 2.1 to the situation where the analyst is concerned about defining and

analyzing minimum sufficient cause interaction on an ordinal variable with

multiple levels, i.e. more than three. This generalization is provided in

the supplementary materials. This theorem extends the results provided

in VanderWeele and Robins (2008); Theorem 1 also provides a method to

construct variables AL
i as a function of the potential outcomes that to-

gether with disjunctions built on the set {X1, X2, X̄1, X̄2} make a determi-

native set of sufficient causes for Y L, where L ∈ {A,B,C,D,E}. Each of

the conjunctions AL
0 , A

L
1X1, . . . , A

L
8 X̄1X̄2 are sufficient to cause Y L, where

L ∈ {A,B,C,D,E, F}. The disjunction of all of these conjunctions makes a

determinative set of sufficient causes for Y L, where L ∈ {A,B,C,D,E, F}.

Similar to the binary outcome context, AL
i variables could be considered as

unknown factors that together with the associated conjunction of ∅, X1, X2,

X̄1, X̄2, X1X̄2, X̄1X2, X̄1X̄2 complete the sufficient cause for specified out-

come Y L, where L ∈ {A,B,C,D,E, F}.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



11

Now that we have defined sufficient cause for a specified outcome, we

define sufficient cause interactions for a specified outcome. Based upon

these definitions, counterfactual and empirical conditions are derived to

detect the presence of sufficient cause interactions for a specified outcome.

Example 2.2. Consider the drug resistance example presented earlier.

Suppose we have two only types of individuals in our population. Indi-

vidual 1 would develop full drug resistance if she has either of the two

mutations, while individual two develops full drug resistance only if she

has both mutations. The construction of the variables Ai from Theorem 1

would give us

Y C(ω) = AC
1 (ω)X1(ω) ∨ AC

2 (ω)X2(ω) ∨ AC
8 (ω)X1(ω)X2(ω),

where Y C denotes full drug resistance. Suppose for these same two individ-

uals, they would develop partial drug resistance if they have either of the

two mutations, then an application of Theorem 1 would give us

Y A(ω) = X1(ω) ∨X2(ω),

where Y A(ω) denotes partial drug resistance.

Definition 2.5 (Minimal sufficient cause interaction for a specified out-

come). Suppose F1 ∈ {X1, X̄1} and F2 ∈ {X2, X̄2}. If in every non-

redundant minimal sufficient cause representation for a specified outcome
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Y L,where L ∈ {A,B,C,D,E, F} we are able to find a sufficient cause that

contains F1F2, then we say that the conjunction F1F2 exhibits or displays

minimal sufficient cause interaction for outcome Y L.

Definition 2.6 (Irreducible sufficient cause interactions for a specified out-

come). Suppose F1 ∈ {X1, X̄1} and F2 ∈ {X2, X̄2}. If in every sufficient

cause representation for Y L, where L ∈ {A,B,C,D,E, F}, we are able to

find a sufficient cause which contains F1F2, then F1F2 is said to be irre-

ducible for Y L.

These two definitions are shown to be equivalent in our case: that

is, an irreducible sufficient cause interaction for a specified outcome Y L

is a minimal sufficient cause interactions for a specified outcome Y L, and

vice versa. The theorem and proof demonstrating that the definitions are

equivalent replicates the arguments of VanderWeele and Robins (2008), and

as such are omitted. Here, we say that the effects of F1 ∈ {X1, X̄1} and

F2 ∈ {X2, X̄2} on a specified outcome Y L, where L ∈ {A,B,C,D,E, F},

are synergistic or represent synergism if there is a sufficient cause for Y L

such that F1F2 is contained within its conjunction. The rest of the proofs

of the theorems and corollaries are collected in the online supplement.

Theorem 2.2. Suppose L ∈ {A,B,C,D,E, F}. There exists an individual

ω ∈ Ω for whom Y L
11(ω) = 1 and Y L

10(ω) = Y L
01(ω) = 0, if and only if
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the conjunction X1X2 exhibits sufficient cause interaction for a specified

outcome Y L.

We now consider empirical conditions to detect such sufficient cause

interactions. The symbol q is used to denote independence. For example,

Y qX1 denotes that Y is marginally independent of X1, and Y qX1 | X2

denotes that Y is conditionally independent of X1 given X2.

Theorem 2.3. Suppose V is a set of variables that are sufficient to con-

trol for the confounding of the variables of X1 and X2 on Y L, where L ∈

{A,B,C,D,E, F}, i.e. Y L
x1x2
q {X1, X2} | V. We can conclude that X1X2

exhibit sufficient cause interaction for a specified outcome Y L if for some

value v of V, the following inequality holds:

0 < E(Y L | X1 = 1, X2 = 1, V = v) (2.2)

−E(Y L | X1 = 1, X2 = 0, V = v)

−E(Y L | X1 = 0, X2 = 1, V = v)

From here on, we use the shorthand notation pLx1x2
to denote P (Y ∈ L |

X1 = x1, X2 = x2) and pLx1x2v
to denote P (Y ∈ L | X1 = x1, X2 = x2, V =

v). We could replace X1 or X2 by either or both of their complements, and

derive similar results for antagonism. The results in Theorem 2.3 generalize

the results for identifying synergism for a binary outcome as established
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in VanderWeele and Richardson (2012) to categorical or ordinal outcomes

under a specified condition. Theorems 2.2 and 2.3 have generalizations for

categorical or ordinal outcomes with an arbitrary number of levels that will

be presented in Section 5. Our approach allows the researcher to detect

sufficient cause interaction between two variables for an ordinal outcome

under specified conditions at different levels or an amalgam of different

levels of the categorical or ordinal outcome. We provide an example to

illustrate Theorem 2.3.

Example 2.3. Consider specified Y C = I(Y = 2). Now consider the left

hand side of the inequality (2.2),

E(Y C | X1 = 1, X2 = 1, V = v)− E(Y C | X1 = 1, X2 = 0, V = v)

−E(Y C | X1 = 0, X2 = 1, V = v)

= E(I(Y = 2) | X1 = 1, X2 = 1, V = v)

−E(I(Y = 2) | X1 = 1, X2 = 0, V = v)

−E(I(Y = 2) | X1 = 0, X2 = 1, V = v)

= P (Y = 2 | X1 = 1, X2 = 1, V = v)− P (Y = 2 | X1 = 1, X2 = 0, V = v)

−P (Y = 2 | X1 = 0, X2 = 1, V = v)

= pC11v − pC10v − pC01v

Therefore if pC11v − pC10v − pC01v > 0, we can say that X1X2 exhibit sufficient
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cause interaction for the outcome I(Y = 2), or equivalently that X1X2

exhibit sufficient cause interaction for the ordinal outcome Y at the level 2.

Following exactly the same steps in Example 1, we can show that if

pC11v + pA11 − pC10v − pA10v − pC01v − pA01v > 0, we can say that X1X2 exhibit

sufficient cause interaction for the outcome I(Y ≥ 1), or equivalently that

X1X2 exhibit sufficient cause interaction for the ordinal outcome Y at the

level 1 or 2. Similarly, if pD11v +pC11−pD10v−pC10v−pD01v−pC01v > 0, we can say

thatX1X2 exhibit sufficient cause interaction for the outcome I(Y ∈ {0, 2}).

VanderWeele and Robins (2008) demonstrate that if it can be assumed

that variables have positive monotonic effects on a binary outcome (i.e. the

variables never prevent the outcome), then one can use less stringent tests

to detect sufficient cause interaction than if one were unable to make this

assumption. We will now examine the analogous results in the case of an

ordinal outcome with three levels. Instead, if Y were categorical, exactly the

same definitions and results, namely Definitions (2.1)-(2.6) and Theorems

(2.1)-(2.3), would hold true. Results that require monotonicity will only

work with ordinal outcomes as the next definition requires the outcome to

be ordinal. Therefore, Theorems (2.4)-(2.6) and Corollary (2.1) are only

valid for ordinal outcomes and cannot be applied to categorical outcomes.

Definition 2.7. Monotonic Effect for a ordinal outcome with three levels
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For any two binary variables X1 and X2, if for all ω ∈ Ω, Yx1x2(ω) is non-

decreasing in x1 for any given x2 ∈ X, then we say that X1 has a positive

monotonic effect on Y. Similarly, if for all ω ∈ Ω, Yx1x2(ω) is non-decreasing

in x2 for any given x1 ∈ X, then we say that X2 has a positive monotonic

effect on Y.

Theorem 2.4. Suppose X1 and X2 both have positive monotonic effects on

ordinal variable Y, and that Y B
x1x2
q {X1, X2} | V. If for some value v ∈ V,

we have

pB11v − pB10v − pB01v + pB00v > 0,

then X1 and X2 display synergism for outcome Y B = I(Y ≥ 1).

Theorem 2.5. Suppose X1 and X2 both have positive monotonic effects on

ordinal variable Y, and that Y C
x1x2
q {X1, X2} | V. If for some value v ∈ V,

we have

pC11v − pC10v − pC01v + pC00v > 0,

then X1 and X2 display synergism for outcome Y C = I(Y = 2).

These results are exactly the same as the ones that would have been

established had one dichotomized the outcome at the outset and applied the

empirical conditions established from VanderWeele and Robins (2008). The

next theorem provides a result that one is not able to derive on the bases
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of previous literature on sufficient cause interaction or mechanistic interac-

tion (VanderWeele and Robins, 2008; Berzuini and Dawid, 2016; Ramsahai,

2013; VanderWeele and Richardson, 2012). This is a novel result that will

enable researchers to discover sufficient cause interaction for specified out-

come Y A = I(Y = 1). The proofs of these results are collected in the online

supplement.

Theorem 2.6. Suppose X1 and X2 both have positive monotonic effects on

ordinal variable Y, and that Y A
x1x2
q {X1, X2} | V. If for some value v ∈ V,

we have at least one of the following inequalities

pA11v − pA10v − pA01v + pA00v + pC00v − pC01v > 0, (2.3.1)

pA11v − pA10v − pA01v + pA00v + pC00v − pC10v > 0, (2.3.2)

pA11v − pA10v − pA01v > 0, (2.3.3)

then X1 and X2 display synergism for outcome Y A = I(Y = 1).

Corollary 2.1. Suppose X1 and X2 both have positive monotonic effects on

ordinal variable Y, and that Y A
x1x2
q {X1, X2} | V. If for some value v ∈ V,
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we have at least one of the following inequalities

2 · pA11v − pA10v − pA01v + pA00v > 1, (2.4.1)

pA11v − pD11v − pC11v − pA10v − pA01v + pA00v > 0 (2.4.2)

2pA11v − pA10v − pA01v − pD00v − pC00v > 0 (2.4.3)

pA11v − pA10v − pA01v > 0, (2.4.4)

then X1 and X2 display synergism for outcome Y A = I(Y = 1).

We demonstrate in the online supplement that if 2 · pA11v − pA10v − pA01v +

pA00v > 1, then pA11v − pA10v − pA01v + pA00v + pC00v − pC01v > 0 and pA11v − pA10v −

pA01v + pA00v + pC00v − pC01v > 0. The converse is not true. This implies that

the empirical conditions (2.3.1) and (2.3.2) are weaker than the empirical

condition (2.4.1). Conditions (2.4.1)-(2.4.3) are shown to be equivalent to

one another in the online supplement. The only circumstance in which

we would use condition (2.4.1) instead of conditions (2.3.1) and (2.3.2) is

when we do not have data on the outcome I(Y = 2). We would like to note

here that Theorems (2.4)-(2.6) are derived in the online supplement through

arguments made from the sufficient cause framework and monotonicity. We

also derived the same inequality constraints using a different approach that

modifies the theory provided in Ramsahai (2013) using convex polytopes

from binary outcomes to categorical and ordinal outcomes, and we find that

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



2.1 Inference for Sufficient Cause Interaction for Ordinal Outcomes19

the empirical conditions presented in this paper are the only inequalities

that were observed. A more detailed explanation of how the Ramsahai

approach is adapted to the ordinal outcome setting is provided in the online

supplement.

2.1 Inference for Sufficient Cause Interaction for Ordinal Out-

comes

Previous authors have used likelihood ratio tests to conduct hypothesis tests

on moment conditions that stem from problems in causal inference (Ramsa-

hai, 2013; Ramsahai et al., 2011), including sufficient cause interaction for

binary outcomes (Ramsahai, 2013). The saturated Bernoulli model is also

proposed to detect sufficient cause interactions in the setting of binary out-

comes in the presence of covariates (VanderWeele and Richardson, 2012;

VanderWeele and Robins, 2008; Vansteelandt et al., 2012). Researchers

have also used Bonferonni corrections for testing multiple moment condi-

tions in causal inference literature (Wang et al., 2017). The approach taken

here follows likelihood ratio tests (Ramsahai et al., 2011; Ramsahai, 2013).

In the setting of a composite null, the likelihood ratio test statistics’ asymp-

totic distribution is obtained assuming the true parameter is on the bound-

ary of the null hypothesis (Van der Vaart, 2000; Ramsahai, 2013; Ramsahai
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et al., 2011; Drton, 2009). For the tests considered in the data analysis, the

likelihood ratio test follows a weighted mixture of χ2-distributions (Ramsa-

hai, 2013). A description of the asymptotics of likelihood ratio tests under

multiple inequality constraints is available in Silvapulle and Sen (2011).

Likelihood ratio tests that use Theorems (2.3)-(2.5) are closely related to

previously proposed likelihood ratio tests under inequality constraints for

sufficient cause interaction (Ramsahai, 2013). Theorems (2.3)-(2.6) provide

the alternative space to each of the specified forms of sufficient cause in-

teraction. As usual, the complement of the alternative space is the null

space.

Theorems (2.3)-(2.5) only involve a statistical test with a single inequal-

ity constraint. For example, the hypothesis test H0 : pA11 − pA10 − pA01 ≤ 0

versus H1 : pA11− pA10− pA01 > 0 is a test to establish whether X1 and X2 dis-

play synergism for outcome Y A = I(Y = 1). For such hypothesis tests that

involve a single inequality constraint, the null space is a half-space (Ramsa-

hai et al., 2011; Ramsahai, 2013; Self and Liang, 1987). Throughout, we let

t denote the observed value of the likelihood ratio statistic. For these tests

with a single inequality constraint, following Self and Liang, the p-value of

the likelihood ratio test is P (χ2
1 > t)/2 for positive t and 1 otherwise (Self

and Liang, 1987; Ramsahai, 2013). On the other hand, for Theorem 2.6,
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the null space is defined by the intersection of three half-spaces, each of

which is defined through an inequality constraint. To use Theorem 2.6, the

associated null space is the intersection of the following three inequalities:

pA11v − pA10v − pA01v + pA00v + pC00v − pC01v ≤ 0,

pA11v − pA10v − pA01v + pA00v + pC00v − pC10v ≤ 0,

pA11v − pA10v − pA01v ≤ 0.

A similar situation arises in falsification of the binary instrumental variable

model (Ramsahai et al., 2011). The correct p-value depends upon where

the true parameter lies on the boundary of the null space (Ramsahai et al.,

2011). If the true parameter lies only on the boundary of one of the in-

equality constraints, then the correct p-value is P (χ2
1 > t)/2 (Ramsahai

et al., 2011). While it is clear what is the correct asymptotic sampling dis-

tribution if the true parameter lies on the boundary of multiple inequality

constraints in the context of the falsification of binary instrumental variable

model (Ramsahai et al., 2011), it is not always the case that the statistician

will be able to easily derive the associated asymptotic sampling distribu-

tion when there is more than one inequality constraint that defines the

null space. This is particularly true in the setting where there are a large

number of inequality constraints.
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For our data analysis, the only instance where we examine a null space

that is defined through multiple inequality constraints stems from Theorem

2.6. For these types hypothesis test, the asymptotic sampling distribution

changes upon where one assumes the true parameter lies on the null space.

To construct a p-value based upon Theorem 2.6, we use Theorem 3 of

Self and Liang (1987) to find that the asymptotic sampling distribution is

w0,3χ
2
0 +w1,3χ

2
1 +w2,3χ

2
2 +w3,3χ

2
3 if the true parameter lies on the boundary

of all three half-spaces. The weights can be calculated using equations (4.8)

and (4.9) in Shapiro (1985). If the true parameter lies only the boundary

of only two of the three half spaces, then the asymptotic sampling distri-

bution is given by w0,2χ
2
0 + w1,2χ

2
1 + w2,2χ

2
2. Finally, if the true parameter

lies only the boundary of only one of the three half spaces, then we can use

the the earlier p-value of P (χ2
1 > t)/2. To get one p-value, one can use the

least favorable configuration p-value = supp∈p0
P (T > t), where T is the

likelihood-ratio test statistic as defined in the online supplement, t is the

observed test statistic, p is the parameter space defined in the online supple-

ment, and p0 is the null parameter space defined by the relevant inequality

constraints. The statistics and econometrics literature for calculating the

asymptotic sampling distribution of test statistics in the analysis of moment

structures under inequality constraints is vast (Drton, 2009; Geyer et al.,
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1994; Shapiro, 1985; Wolak, 1991; Dardanoni and Forcina, 1998; Silvapulle

and Sen, 2011). In the situation where analytic formulas to calculate the

weights of the χ2 distributions are not available, Monte-Carlo methods can

used to determine the weights to a pre-specified degree of precision (Dar-

danoni and Forcina, 1998; Silvapulle and Sen, 2011). The likelihood and

likelihood ratio test statistic are provided in the online supplement.

3. Application to HIV Drug Resistance

HIV drug resistance arises when viral mutations make particular drugs less

effective in controlling HIV (Tang and Shafer, 2012). For our data anal-

ysis, consider the data from the Stanford HIV drug resistance database

on 484 viral isolates in Table 1, which presents information on viral re-

sistance to the NRTI Etravirine (Tang and Shafer, 2012). The two viral

mutations under consideration are X1, which denotes presence of mutation

103 R and X2 which denotes presence of mutation 179 D. The scientific

question under consideration is whether mutations 103 R and 179 D inter-

act synergystically to confer drug resistance to Etravirine. Our outcome

Y is an ordinal outcome with three levels: no drug resistance, partial drug

resistance, and full drug resistance. Here, no drug resistance is labeled 0,

partial drug resistance is labeled 1, and full drug resistance is labeled 2. We
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Table 1: Drug Resistance to Etravirine by mutation category

X1 = 0, X2 = 0 X1 = 0, X2 = 1 X1 = 1, X2 = 0 X1 = 1, X2 = 1

n0,0 P F n0,1 P F n1,0 P F n1,1 P F

445 74 57 17 2 1 10 2 1 12 7 4

Here, nx1,x2 =
∑n

i=1 I(X1i = x1, X2i = x2). P denotes individuals with

partial drug resistance, and F denotes full drug resistance.

Table 2: Likelihood ratio test of drug resistance

Outcome Null Hypothesis LRT p-value

I(Y = 1) pA11 − pA10 − pA01 ≤ 0 1.477 0.112

I(Y ≥ 1) pB11 − pB10 − pB01 ≤ 0 4.218 0.020

I(Y = 2) pC11 − pC10 − pC01 ≤ 0 0.925 0.168

assume that there is no confounding between Y and X1, X2. This means

that Yx1x2 q (X1, X2). A laboratory experiment provides a contingency ta-

ble, summarized in Table 1, on HIV drug resistance by mutation category

(Tang and Shafer, 2012).

Table 2 provides the likelihood ratio test statistics and associated p-

values for assessing sufficient cause interaction for each of the specified

outcome levels I(Y = 1), I(Y ≥ 1), and I(Y = 2). Table 3 provides the

same information, but assumes that the effects of X1 and X2 are positive
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Table 3: Likelihood ratio test of drug resistance under monotonicity

Outcome Null Hypothesis LRT p-value

I(Y = 1)

pA11 − pA10 − pA01 ≤ 0

pA11 − pA10 − pA01 + pA00 + pC00 − pC01 ≤ 0

pA11 − pA10 − pA01 + pA00 + pC00 − pC10 ≤ 0

4.704 0.057?

I(Y ≥ 1) pB11 − pB10 − pB01 + pB00 ≤ 0 10.624 < 0.005

I(Y = 2) pC11 − pC10 − pC01 + pC00 ≤ 0 2.585 0.054

The p-value annotated with a ? is obtained under the least favorable con-

figuration.

monotonic for Y . If one is unwilling to make any monotonicity assumptions,

there is no statistical evidence that X1 and X2 have a synergistic effect on

Y C = I(Y = 2) or Y A = I(Y = 1), but there is some evidence for as

synergistic effect on Y B = I(Y ≥ 1). If one were willing to assume that

X1 and X2 have positive monotonic effects on the outcome, the evidence

for a synergistic effect of X1 and X2 on specified outcome I(Y = 1) and

I(Y = 2) is stronger, although the p-values are slightly above the nominal

0.05 rejection threshold. In this situation, since we have evidence that X1

and X2 have a synergistic effect on I(Y ≥ 1), and thus also that X1 and

X2 have a synergistic effect on either or both of the outcomes I(Y = 1)

and I(Y = 2), since for pB11 − pB10 − pB01 > 0, either or both of these two
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inequalities pC11−pC10−pC01 > 0 or pA11−pA10−pA01 > 0 needs to hold. Yet, given

the current sample size, we are unable to detect whether that synergistic

effect occurs either for I(Y = 1) or I(Y = 2).

Discussions on whether the proposed exposures have monotonic effects

on the outcome should occur with the scientific investigators. Such assump-

tions could have scientific justification, and would enable researchers to use

less stringent conditions to draw the same inferences. Primary mutations,

such as the two investigated in this paper, “directly decrease the suscepti-

bility of the virus to an antiretroviral treatment”(Tang and Shafer, 2012).

To the best of our knowledge, it is not known if mutation 103 R and 179

D are never preventative for partial or full drug resistance for every indi-

vidual taking Etravirine as part of their treatment for HIV. Monotonicity

assumptions can be falsified from the data, but they are never completely

verifiable.

4. Generalizations and Extensions

In this section, we allow our ordinal outcome Y to take values Y ∈ {0, 1, . . . , j}.

If we want to investigate whether putative binary causes X1 and X2 have

synergistic effects on outcome Y y = I(Y ≥ y), where 0 < y ≤ j, then

assuming no confounding between putative causes X1 and X2 on Y y, we
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need to check that P (Y ≥ y | X1 = 1, X2 = 1) − P (Y ≥ y | X1 = 1, X2 =

0) − P (Y ≥ y | X1 = 0, X2 = 1) > 0. The proof of this result is similar to

the proof of Theorem 2.3 and is provided in the online supplement.

Theorem 4.1. If we can assume that X1 and X2 have positive monotonic

effects on Y, then P (Y ≥ y | X1 = 1, X2 = 1) − P (Y ≥ y | X1 = 1, X2 =

0)− P (Y ≥ y | X1 = 0, X2 = 1) + P (Y ≥ y | X1 = 0, X2 = 0) > 0 implies

X1 and X2 display synergism for I(Y ≥ 1).

Let S ⊆ {1, 2, . . . , n − 1}, Y S = I(Y ∈ S), S+ = max(S) and Y S+
=

I(Y > S+). If we wish to check X1 and X2 have synergistic effects on Y S =

I(Y ∈ S), where S is an arithmetic progression with common difference

one, and both X1 and X2 have positive monotonic effects on Y, then we

need to check whether if at least one of the following three inequalities hold:

P (Y ∈ S | X1 = 1, X2 = 1)

−P (Y ∈ S | X1 = 1, X2 = 0)

−P (Y ∈ S | X1 = 0, X2 = 1) > 0,

P (Y ∈ S | X1 = 1, X2 = 1) − P (Y ∈ S | X1 = 1, X2 = 0)

−P (Y ∈ S | X1 = 0, X2 = 1) + P (Y ∈ S | X1 = 0, X2 = 0)

+P (Y > S+ | X1 = 0, X2 = 0) − P (Y > S+ | X1 = 1, X2 = 0) > 0,

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



28

P (Y ∈ S | X1 = 1, X2 = 1) − P (Y ∈ S | X1 = 1, X2 = 0)

−P (Y ∈ S | X1 = 0, X2 = 1) + P (Y ∈ S | X1 = 0, X2 = 0)

+P (Y > S+ | X1 = 0, X2 = 0) − P (Y > S+ | X1 = 0, X2 = 1) > 0,

Here, the second and third inequalities are implied by P (Y ∈ S | X1 =

1, X2 = 1) − P (Y /∈ S | X1 = 1, X2 = 1) − P (Y ∈ S | X1 = 1, X2 =

0) − P (Y ∈ S | X1 = 0, X2 = 1) + P (Y ∈ S | X1 = 0, X2 = 0) > 0.

This last inequality can be shown to be equivalent to 2 · P (Y ∈ S | X1 =

1, X2 = 1) − P (Y ∈ S | X1 = 1, X2 = 0) − P (Y ∈ S | X1 = 0, X2 =

1) + P (Y ∈ S | X1 = 0, X2 = 0) > 1. If X1 or X2 do not have positive

monotonic effects on Y, or S is not an arithmetic progression with common

difference one, then only the first inequality out of the three listed above

remains valid for determining if X1 and X2 have synergistic effects on Y S =

I(Y ∈ S). The full set of definitions, theorems, and proofs associated with

this generalization are provided in the online supplement.

For this section, we allow (Y11, Y10, Y01, Y00) to have a distribution func-

tion P (Y11 ∈ y11, Y10 ∈ y10, Y01 ∈ y01, Y00 ∈ y00), where y11, y10, y01, y00

are all subsets of R. Proofs of next two results are provided in the online

supplement.
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Definition 4.1 (Generalized Positive Monotonicity). We say that X1 has

a positive monotonic effect on Y ∈ yc for any fixed yc ⊂ R if there is no

individual ω ∈ Ω such that Yx1x2(ω) /∈ yc and Yx3x2(ω) ∈ yc for all x1 > x3

for any fixed x2. Similarly, we say that X2 has a positive monotonic effect

on Y ∈ yc for some yc ⊂ R if there is no individual ω ∈ Ω such that

Yx1x2(ω) /∈ yc and Yx1x3(ω) ∈ yc for all x2 > x3 for any fixed x1. If X1 and

X2 each individually have a positive monotonic effect on Y ∈ yc for any

fixed yc ⊂ R then we say that X1 and X2 have positive monotonic effects

on Y ∈ yc.

Theorem 4.2. Suppose Yx1x2 q X1X2. Here, ya is any subset of R. The

contrast

P (Y ∈ ya | X1 = 1, X2 = 1)− P (Y ∈ ya | X1 = 1, X2 = 0)

− P (Y ∈ ya | X1 = 0, X2 = 1)

is equal to

P (Y11 ∈ ya, Y10 /∈ ya, Y01 /∈ ya)− P (Y11 /∈ ya, Y10 ∈ ya, Y01 /∈ ya)

− P (Y11 ∈ ya, Y10 ∈ ya, Y01 ∈ ya)− P (Y11 /∈ ya, Y10 /∈ ya, Y01 ∈ ya) .

Theorem 4.3. Suppose Yx1x2qX1X2 and suppose X1 and X2 have positive
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monotonic effects on Y ∈ yc. For any yc that is a subset of R, the contrast

P (Y ∈ yc | X1 = 1, X2 = 1)− P (Y ∈ yc | X1 = 1, X2 = 0)

− P (Y ∈ yc | X1 = 0, X2 = 1) + P (Y ∈ yc | X1 = 0, X2 = 0)

is equal to P (Y11 ∈ yc, Y10 /∈ yc, Y01 /∈ yc, Y00 /∈ yc) .

5. Discussion

Our extension of the sufficient cause model to ordinal and categorical out-

comes enables researchers to investigate more complex scientific questions.

In addition, we derive novel empirical conditions that in some situations

would be more powerful in testing sufficient cause interaction for ordinal

outcomes than applying the previously formulated empirical conditions for

a binary outcome to a dichotomized ordinal outcome. The interpretations

of sufficient cause interaction are far stronger than the corresponding inter-

pretations of tests for statistical interaction. We applied these novel tests

for sufficient cause interaction to detect whether viral mutation 103R and

179D interacted synergystically to confer partial, full or any drug resistance

to Etravirine.
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6. Appendix

6.1 Appendix 1: Notation

We denote Y A = I(Y ∈ {1}), Y B = I(Y ∈ {1, 2}), Y C = I(Y ∈ {2}),

Y D = I(Y ∈ {0}), Y E = I(Y ∈ {0, 2}), Y F = I(Y ∈ {0, 2}). Po-

tential outcome versions of Y A, Y B, Y C , Y D, Y E, and Y F are defined

as Y A
x1,...,xk

(ω) = I(Yx1,...,xk
(ω) ∈ {1}), Y B

x1,...,xk
= I(Yx1,...,xk

(ω) ∈ {1, 2}),

Y C
x1,...,xk

= I(Yx1,...,xs(ω) ∈ {2}), Y D
x1,...,xs

= I(Yx1,...,xk
(ω) ∈ {0}), Y E

x1,...,xs
=

I(Yx1,...,xk
(ω) ∈ {0, 2}), and Y F

x1,...,xs
= I(Yx1,...,xk

(ω) ∈ {0, 1}).

Supplementary Materials

Definitions and theorems of the more general theorems are provided in

the online supplement. Proofs of all Theorems and Corollaries are collected

in the online supplement.
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