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Sparseness, consistency and model selection for

Markov regime-switching Gaussian autoregressive models

Abbas Khalili and David A. Stephens

Department of Mathematics and Statistics

McGill University, Montreal, Canada

Abstract: We study Markov regime-switching Gaussian autoregressive models which are aimed

at capturing temporal heterogeneity exhibited by time series data. In the construction of a

Markov regime-switching model, several specifications must be made relating to both the state

and observation models; in particular, the complexity of these models must be specified when

fitting to a dataset. We propose new regularization methods based on conditional likelihood for

simultaneous autoregressive-order and parameter estimation with the number of regimes fixed,

and use a regularized Bayesian information criterion for selection of the number of regimes.

Unlike the existing information-theoretic approaches, the new methods avoid an exhaustive

search of the model space for model selection and thereby are computationally more efficient.

We establish large sample properties of the proposed methods for estimation, model selection,

and forecasting. We also evaluate finite sample performance of the methods via simulations,

and illustrate their applications by analyzing two real datasets.

Key words: Autoregressive models, Markov regime-switching models, Information criteria, Reg-

ularization methods, em algorithm.
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1. Introduction

Markov regime-switching models (Hamilton, 1989) are commonly used to incorporate

latent structure in time series with the goal of capturing non-stationarity or time-

inhomogeneity of real data. There is an extensive literature that discusses the use

of these models in econometrics, and many applications relate to representation of

economic or business cycles (Hamilton, 2016). Other applications include speech recog-

nition and neurobiology (Krishnamurthy and Yin, 2002).

In a Markov regime-switching model, typically a discrete-state and often first-order

Markov ‘state’ model is used to capture unobserved stochastic variation corresponding

to regime changes, and conditional on the latent structure a conventional time series

‘observation’ model is used to represent the observed data. In practice, complexity

of the model – the number of regimes (states) and structure of each regime-specific

observation model – must be specified. In this paper, we develop new results based

on regularized conditional likelihood that demonstrate that sparse estimation for such

two-stage models consistently estimate the parameters of the presumed model under

mild conditions. We also establish certain model selection consistency results, including

forecasting consistency. Although our technical results apply under general modelling

assumptions, our development and exposition focus on Markov regime-switching au-

toregressive (msar) models with Gaussian errors.

A Gaussian msar model postulates the existence of a latent process {St : t =
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1, 2, . . .} on a finite set {1, . . . , K} that determines for each time t the Gaussian autore-

gressive regime that dictates the stochastic behaviour of an observable discrete-time

series {Yt : t = 1, 2, . . .}. Specifically, St is presumed a first-order Markov chain pa-

rameterized through a transition matrix P, and conditional on St = j, the distribution

of Yt depends on the lagged Y ’s, say, Yt−1, . . . , Yt−qj , for some qj. Such models, in

comparison to standard Gaussian autoregressive (ar) processes, are particularly useful

when the data exhibit heterogeneity in conditional mean or autocovariance structure.

Maximum likelihood estimation (mle) is typically used for inference implemented

via adaptations of filtering and smoothing using forward-backward algorithms in msar

models (Frühwirth-Schnatter, 2006; Baum et al., 1970). Krishnamurthy and Rydén

(1998), and Douc et al. (2004, 2011) establish consistency and asymptotic normality

of mle when the model complexity – a common ar-order (q) across the regimes and

the number of ar-regimes (K) – is fixed. In real applications, however, there may

be latent external factors (policy changes, macroeconomic conditions, etc) that dictate

that different ar-regimes are in operation, and that these regimes may have different

stochastic characteristics as manifested in their mean level, variance or autocovariance.

For example, an economy under one regime may be subject to more persistent effects

of shock than when under another regime. Hence, our inferential interest centers on

the choice of potentially different regime-specific ar-orders q1, . . . , qK , the number of

ar-regimes K, estimation of ar-coefficients and the transition matrix P, and prediction.
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Information criteria such aic, bic and their variations (Psaradakis and Spagnolo,

2006) are commonly used for simultaneous selection of the ar-orders and the num-

ber of regimes K. Smith et al. (2006) proposed a Markov switching criterion (msc)

as an estimate of a Kullback-Leibler divergence for model selection. However, these

methods typically require exhaustive evaluation of 2Kq different models with varying

complexity. As illustrated in our simulations, even for moderate values of (q,K), this

is computationally rarely feasible.

In addition, such methods can be numerically unstable (Breiman, 1996), and it is

difficult to study theoretical properties of the resulting parameter estimators. Regular-

ization techniques such as the lasso (Tibshirani, 1996), the smoothly clipped absolute

deviation (scad) of Fan and Li (2001), and the adaptive lasso (Zou, 2006) offer a

potential solution that we investigate here.

We also study prediction or forecasting, and we demonstrate that consistency in

optimal prediction in the sense of mean-squared prediction error can be achieved even

when the number of regimes is overestimated. In light of the challenges and limitations

of previous approaches, our main contributions are:

1. We develop a new regularized conditional likelihood method which, to the best

of our knowledge, is the first work in the field for simultaneous ar-order and parameter

estimation in msar models, and propose a regularized bic (rbic) for choosing the

number of regimes K. The advantage of our method compared to the existing methods
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is that, given (K, q), it simultaneously estimates ar-orders and parameters without

an exhaustive search of 2Kq possible models, and thereby is computationally efficient.

This has been also supported by our analysis of average computational time (in seconds)

taken by a method to complete per-sample results in simulations, see Section 7.1.

2. We study large sample properties of the methods, and assess their finite sample

performance via simulations. Our results show that, under standard regularity condi-

tions, when K is given or consistently estimated, the regularization method is consis-

tent in ar-order and parameter estimation, and achieves consistent prediction of future

values of the process. Furthermore, we discuss asymptotic properties of the rbic in

estimating K, and show that the conditional h-step ahead predictive density can be

estimated consistently when the number of regimes is estimated by the rbic.

The rest of the paper is organized as follows. In Section 2, Gaussian msar models

are introduced. In Section 3, we develop new regularization methods and present their

numerical implementation. Section 4 contains prediction in msar models. Estimation

of the number of ar-regimes is discussed in Section 5. Section 6 contains theoretical

study. Our simulation study is given in Section 7. We analyze two real datasets in

Section 8. Section 9 contains a summary and discussion. Details of the numerical

algorithm, regularity conditions, and the proofs are given in the Supplement.

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing) 



6

2. Gaussian msar models, and their conditional likelihood

Consider an observable discrete-time series {Yt : t = 1, 2, . . .} with realized values

{yt : t = 1, 2, . . .}, and a latent stochastic process {St : t = 1, 2, . . .} taking values in

{1, . . . , K} with K being the number of regimes underlying the process. In a msar

model, the process St follows a homogeneous discrete finite-regime (or finite-state) first-

order Markov chain with transition matrix P = [αij]. That is, for each t,

Pr[St = j|St−1 = i, St−2 = st−2, . . . , S1 = s1] = Pr[St = j|St−1 = i] = αij , 1 ≤ i, j ≤ K

with initial state distribution Pr[St = j] = πj ∈ (0, 1), which may, if required, be

assumed to be the unique solution of π = πP, where π = (π1, . . . , πK)>. Conditional

on St, the Yt follows an inhomogeneous Markov process such that for each t conditional

distribution of Yt only depends on the regime indicator St = j and lagged Y ’s, say,

yt−1, . . . , yt−qj , for some qj, and j = 1, . . . , K. We assume the conditional distribution

of Yt|(St = j, yt−1, . . . , yt−qj) is Gaussian with variance νj and mean

µt,j = θj0 + θj1yt−1 + . . .+ θjqjyt−qj ; j = 1, . . . , K. (2.1)

For our theoretical study, the Gaussianity assumption can be relaxed and the observa-

tion process can be merely assumed to be a linear process driven by a white noise error

with appropriate finite moment conditions. It is worth noting that the msar models

under consideration are rather general. They encompass important special cases in-

cluding mixture of autoregressive models studied by Wong and Li (2000), and msar
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models with common ar-orders and ar coefficients across the regimes, i.e. qj = q and

θjl = θl, for j = 1, . . . , K and l = 1, . . . , q, discussed in Frühwirth-Schnatter (2006).

Stationarity and ergodicity conditions of msar models are studied by Yao and Attali

(2000) and Francq and Zaköıan (2001). Timmermann (2000) illustrates calculations of

variance, higher order moments, and autocovariances of stationary msar models.

Let q∗ = max1≤j≤K qj denote the maximal ar-order of a stationary msar model.

Proposition 1 in the Supplement shows that the lag-l population pacf of Yt is zero

for any l > q∗, a property shared by a standard ar model of order q∗ (Brockwell and

Davis, 1991). In practice, the sample pacf of Yt can be used to provide an estimate

of q∗ in a msar model, but it gives little insight on the regime ar-orders qj which are

also the focus of our inference. We now introduce a conditional likelihood function as

the base of our new estimation method described in Section 3.

Conditional likelihood: Let {(S1, Y1), . . . , (Sn, Yn)} ≡ (S1:n, Y1:n) be a sample of

‘complete’ data from a msar model. The joint density or complete data likelihood, by

the assumptions and for some pre-specified densities g0 and g1, can be written as

g(s1:n, y1:n) =
{

Pr[S1 = s1]×
n−1∏
t=1

Pr[St+1 = st+1|s1:t]
}{

g0(y1|s1:n)
n∏
t=2

g1(yt|s1:n, y1:(t−1))
}

= Pr[S1 = s1]×
n−1∏
t=1

αst,st+1 ×
{
g0(y1|s1)

n∏
t=2

g1(yt|st, y1:(t−1))
}
,

where αst,st+1 = Pr[St+1 = st+1|s1:t] = Pr[St+1 = st+1|St = st], for 1 ≤ t ≤ n − 1. The

initial probability Pr[S1 = s1] can be incorporated in two ways; it can be either treated
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as a separate marginal law that is inferred or conditioned upon during inference; or

we may use the stationary distribution Pr[S1 = s1] = πs1 , s1 = 1, . . . , K, arising from

the Markov chain with transition matrix P – this renders the probability Pr[S1 = s1] a

function of the elements of P. In either case, Ocone and Pardoux (1996), Kleptsyna and

Veretennikov (2008), and Douc et al. (2009) demonstrated that, under mild conditions,

the influence of the assumptions on Pr[S1 = s1] diminishes at a geometric rate in n.

The incomplete data likelihood f(y1:n) is then available by marginalizing g(s1:n, y1:n)

over the values of s1:n. Given a pre-specified value q ≥ q∗, f may be further factorized

as f1(y1:q)f2(yq+1:n|y1:q). Using a standard conditional approach in time series, we work

with f2 that, by the model assumptions, can be written as

f2
(
yq+1:n

∣∣y1:q) =
K∑

s1=1

. . .
K∑

sn=1

f(yq+1:n|y1:q, s1:n) Pr(s1:n|y1:q)

=
K∑

sq=1

. . .
K∑

sn=1

{
Pr[Sq = sq|y1:q]×

n∏
t=q+1

αst−1,st

}{ n∏
t=q+1

g(yt|y(t−q):(t−1), st)
}

(2.2)

with Gaussian density g(yt|y(t−q):(t−1), st) = φ(yt;µt,st , νst), and µt,st = θst,0 + θst,1yt−1 +

. . .+ θst,qyt−q. Note that in this construction we have used a common ar-order q(≥ qj)

for all the regimes; the regularization method in Section 3 estimates the regime-specific

qj using the data. Treatment of the probability Pr[Sq = sq|y1:q] is similar to that of

Pr[S1 = s1] as discussed above. To avoid such specification, inspired by Douc et al.

(2004), we condition on the state Sq = sq and work with the conditional density

f3
(
yq+1:n

∣∣y1:q, sq,ΦK

)
=

K∑
sq+1=1

. . .

K∑
sn=1

{ n∏
t=q+1

αst−1,st

}{ n∏
t=q+1

φ(yt;µt,st , νst)
}
. (2.3)
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Finally, the conditional log-likelihood that we use for inference in msar models is

`n(ΦK |y1:q, sq) ≡ `n(ΦK ; sq) = log{f3
(
yq+1:n

∣∣y1:q, sq,ΦK

)
}, (2.4)

where ΦK = (ν1, . . . , νK ,θ1, . . . ,θK ,P = {αij}), and θj = (θj0, θj1, . . . , θjq)
>.

As discussed in the Introduction, due to the potential regime-specific ar-orders

qj(≤ q), different elements of the vectors θj may be zero, which then results in different

sparsity patterns in the θj across ar-regimes. This allows for regime-specific season-

ality effects. Alternatively, we may also allow for non-seasonality effects in θj and a

decreasing pattern in the |θjl| as the lag l increases; see Section 3 for more details.

The marginalization over states st in (2.3) is achieved efficiently using standard fil-

tering/prediction recursions utilized in the hidden Markov model literature. Numerical

maximization of (2.4) with respect to ΦK , and by treating st as the missing data, is

relatively straightforward via the em algorithm described in Section 3.

In principle, given (K, q), one could obtain the conditional mle of ΦK by maxi-

mizing `n(ΦK ; sq) in (2.4). However, since all of the estimated ar-coefficients will in

general be non-zero, such an approach does not provide a sparse msar as postulated.

This observation, and the limitations of the existing methods, motivate us to investigate

the regularized conditional likelihood methods in later sections.
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3. Simultaneous ar-order and parameter estimation

The conditional log-likelihood `n(ΦK ; sq) in (2.4), similar to that of a Gaussian mixture

model with unequal component variances νj’s, diverges to infinity when some νj goes to

0. This singularity can be avoided by imposing a positive lower bound on νj (Hathaway,

1985) or adding a penalty function to the conditional log-likelihood (Chen et al., 2008).

For the implementation convenience, we apply the latter approach and work with

˜̀
n(ΦK ; sq) = `n(ΦK ; sq)−

K∑
j=1

pn(νj), (3.1)

where pn(νj)→ +∞, as νj → 0 or ∞. An example of such penalty is

pn(νj) =
1√
n− q

[
V2
n

νj
+ log

(
νj
V2
n

)]
(3.2)

with V2
n = (n − q)−1

∑n
t=q+1(yt − ȳn)2 and ȳn = (n − q)−1

∑n
t=q+1 yt as the sample

variance and mean of yq+1:n. From a Bayesian point of view, (3.2) is a data-dependent

Gamma prior on ν−1j with its mode at V−2n . With this penalty, we avoid instability of

the em algorithm while obtaining closed-form updates for νj’s. We refer to (3.1) as the

adjusted conditional log-likelihood. We now introduce the new regularization method.

Given (K, q) and any sq ∈ {1, 2, . . . , K}, we achieve joint ar-order and parameter

estimation by maximizing the penalized (adjusted) conditional log-likelihood

Ln(ΦK ; sq, λ) = ˜̀
n(ΦK ; sq)−Rn(ΦK ;λ) (3.3)
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with the penalty (regularization) function

Rn(ΦK ;λ) =
K∑
j=1

q∑
l=1

rn(θjl;λ). (3.4)

Examples of rn are the lasso, adaptive lasso (adalasso) and scad which are given

in Section 1 of the Supplement. Unlike the penalties in information criteria, rn(θ;λ) is

a continuous function of θ and has a spike at θ = 0; λ ≥ 0 is a tuning parameter. Given

λ, let Φ̂n,K,sq(λ) ≡ Φ̂n,K,sq = arg maxΦK
{Ln(ΦK ; sq, λ)} be the maximum penalized

conditional likelihood estimator (mpcle) of ΦK . By the properties of rn and λ (Con-

ditions C1-C3 in Section 1 of the Supplement), Theorem 2 shows that irrespective of

the initial condition sq, one can encourage estimates of some θjl to be zero. Hence, the

method performs simultaneous ar-order and parameter estimation without evaluating

all candidate msar models and thereby is computationally feasible.

In general, the method allows for regime-specific seasonality effects, due to the zero

estimates of some θjl. Using adalasso, we also admit no seasonality effects and that

the |θjl| decline with increasing lag l, as discussed in Section 1 of the Supplement.

Computation: We use a modified em algorithm for maximization of Ln(ΦK ; sq, λ)

in (3.3). The core elements of the algorithm are given here; more details including a

data-adaptive choice of λ are given in Section 3.2 of the Supplement. In what follows,

we fix sq ∈ {1, . . . , K}, and denote x>t = (1, yt−1, . . . , yt−q).

For observation yt, let Vtij equal 1 if St−1 = i and St = j, and equal 0 otherwise;

Vtij records the presence of a transition between regime i at time t− 1 and regime j at
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time t. Also, let Utj equal 1 if St = j. The complete conditional log-likelihood is

`cn(ΦK ; sq) =
K∑
i=1

K∑
j=1

n∑
t=q+1

Vtij logαij +
K∑
j=1

n∑
t=q+1

Utj

{
log φ(yt;µt,j, νj)

}
,

where µt,j = x>θj. At (m+ 1)-th iteration, the em algorithm iterates as follows:

E-step: We compute the conditional expectation of `cn(ΦK ; sq) with respect to (Vtij, Utj),

given (Φ
(m)
K , sq, y1:n). This reduces to the computation of the ‘smoothing’ probabilities

$
(m)
tij = E(Vtij|y1:n, sq; Φ(m)

K ) ≡ Pr[St−1 = i, St = j|y1:n, sq; Φ(m)
K ] , 1 ≤ i, j ≤ K

ω
(m)
tj = E(Utj|y1:n, sq; Φ(m)

K ) ≡ Pr[St = j|y1:n, sq; Φ(m)
K ]

for q + 1 ≤ t ≤ n. The probabilities are computed by the forward-backward algorithm

of Baum et al. (1970) given in Section 3.1 of the Supplement.

M-step: We maximize a penalization of the conditional expectation of `cn(ΦK ; sq) com-

puted in E-step, with the penalties in (3.2) and (3.4). The maximization with respect

to θj is performed using a coordinate descent approach. The parameter estimates are

then updated as follows. First, for 1 ≤ l ≤ q and 1 ≤ j ≤ K, we compute

z1,jl =
1

n− q

n∑
t=q+1

ω
(m)
tj yt−l(yt − µ̃tj,−l) and z2,jl =

1

n− q

n∑
t=q+1

ω
(m)
tj y2t−l,

where µ̃tj,−l = θ
(m)
j0 +

∑l−1
v=1 θ

(m+1)
jv yt−v +

∑q
v>l θ

(m)
jv yt−v. We update the θjl by

θ
(m+1)
jl =

T (z1,jl;λjl)

z2,jl
, (3.5)

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing) 



13

where T (z;λ) = sign(z)(|z| − λ)+ is the soft-thresholding operator (Donoho and John-

stone, 1994), and λjl depends on the penalty rn; for the lasso, λjl = λ. The λjl for

the other two penalties are given in Section 3.1 of the Supplement.

The regime-specific intercepts and variances are updated by

θ
(m+1)
j0 =

∑n
t=q+1 ω

(m)
tj (yt − µ(m+1)

tj )∑n
t=q+1 ω

(m)
tj

(3.6)

ν
(m+1)
j =

∑n
t=q+1 ω

(m)
tj (yt − x>t θ

(m+1)
j )2 + 2V2

n/
√
n− q∑n

t=q+1 ω
(m)
tj + 2/

√
n− q

, (3.7)

where µ
(m+1)
tj =

∑q
l=1 θ

(m+1)
jl yt−l. The updated transition probabilities are

α
(m+1)
sq ,j

=

∑n
t=q+1$

(m)
t,sq ,j∑n

t=q+1

∑K
i=1$

(m)
t,sq ,i

, α
(m+1)
ij =

∑n
t=q+2$

(m)
tij∑n

t=q+2

∑K
h=1$

(m)
tih

, i 6= sq, 1 ≤ i, j ≤ K.

(3.8)

Starting from an initial value Φ
(0)
K , the em algorithm iterates until some convergence

criterion is met. We used the stopping rule ‖Φ(m+1)
K − Φ

(m)
K ‖ ≤ ε, for a pre-specified

small value ε, taken 10−5 in our simulations and data analysis. Due to the thresholding

structure of the estimates in (3.5), by tuning λ estimates of some θjl will be exactly

zero, which in turn results in simultaneous ar-order and parameter estimation.

4. Prediction

For weakly stationary processes, the conditional expectation of a future observation

based on the current data provides an optimal prediction in terms of minimum mean-

squared prediction error. In standard ar models, this leads to a straightforward pre-
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diction mechanism. In this section, we focus on the predictive density in msar models

that can also be used to compute the prediction values. Unlike many nonlinear models,

the conditional expectation can be easily computed analytically in the msar as follows.

Given the observations y1:n, we are interested in the joint distribution of the future

vector (Yn+1, . . . , Yn+h) ≡ Yn+1:h, or equivalently the h-step ahead predictive density

fK(yn+1:h|y1:n). By the model assumptions in Section 2, we have that, for h = 1, 2,

fK(yn+1|y1:n) =
K∑

sn+1=1

Pr(Sn+1 = sn+1|y1:n) φ(yn+1;x
>
n+1θsn+1 , νsn+1) (4.1)

fK(yn+1:h|y1:n) =
K∑

sn+1:h=1

P (Sn+1 = sn+1|y1:n)

[ h∏
j=2

αsn+j−1,sn+j

][ h∏
j=1

φ(yn+j;x
>
n+jθsn+j

, νsn+j
)

]
,

(4.2)

where x>n+j = (1, yn+j−1, . . . , yn+j−q). The conditional probabilities P (Sn+1 = j|y1:n), j =

1, . . . , K, are computed recursively using the prediction and filtering probabilities,

Pr(St+1 = j|y1:t) =
K∑
l=1

Pr(St+1 = j|St = l, y1:t)P (St = l|y1:t) =
K∑
l=1

αlj Pr(St = l|y1:t),

Pr(St = l|y1:t) =
f(yt|y1:t−1, St = l) Pr(St = l|y1:t−1)

fK(yt|y1:t−1)
=
φ(yt;x

>
t θl, νl) Pr(St = l|y1:t−1)
fK(yt|y1:t−1)

for all t = n, n− 1, . . . , q+ 1. Note that the conditional density fK(yt|y1:t−1) needed for

the filtering probabilities is computed similarly to (4.1). Specifically, for t = q + 1,

fK(yq+1|y1:q) =
K∑
l=1

Pr(Sq+1 = l|y1:q)φ(yq+1;x
>
q+1θl, νl)
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which requires Pr(Sq+1 = j|y1:q) =
∑K

l=1 αljP (Sq = l|y1:q) and the initial distribution

{Pr(Sq = l|y1:q), l = 1, 2, . . . , K} ≡ γq, to be specified.

Thus, given the data y1:n and upon the specification of (ΦK ,γq), the h-step ahead

predictive densities of a K-regime msar model are available. The effect of the initial

distribution γq on the predictive densities is negligible once n grows (Ocone and Par-

doux, 1996; Kleptsyna and Veretennikov, 2008; Douc et al., 2009). For example, one

may use a non-informative uniform discrete distribution γq = (1/K, . . . , 1/K). The pa-

rameter ΦK is estimated by its mpcle Φ̂n,sq ,K obtained using the data y1:n. We denote

the resulting estimated predictive densities (4.1) and (4.2) by f̂K(yn+1:h|y1:n).

The estimated densities can then be used to compute various quantities such as the

conditional expectations for prediction. For example, the optimal one-step prediction

value (in the sense of mean-squared prediction error) is given by

Ê∗{Yn+1|y1:n} =
K∑
j=1

P̂r(Sn+1 = j|y1:n){θ̂j0 + θ̂j1 yn + . . .+ θ̂jq yn+1−q}, (4.3)

where (θ̂j0, θ̂jl) are the mpcle, and E∗{·} is the expectation under the true model.

5. Choice of the number of ar-regimes, K

The methods in Sections 3 and 4 are used when the number of ar-regimes K is fixed.

Typically, K is also required to be chosen using the data. Information criteria such as

bic based on mle are commonly used for estimating K. We instead propose to use a
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regularized bic (rbic) based on the mpcle, which unlike bic, it does not search the

model space for also choosing the ar-orders as this task is performed by the mpcle.

Consider situations where placing a known upper bound K on K is feasible. For

each K = 1, . . . ,K, we fit a msar model with the resulting mpcle Φ̂n,K,sq , for any

fixed and arbitrary choice of sq ∈ {1, . . . , K}. Let NK =
∑K

j=1

∑q
l=1 I(θ̂jl 6= 0) be the

total number of non-zero estimated ar-coefficients, and denote

rbic(Φ̂n,K,sq) = −2`n(Φ̂n,K,sq ; sq) + log(n− q)× {NK +K(K − 1) + 2K}, (5.1)

where K(K − 1) + 2K counts the number of parameters (νj, θj0, αij), `n(·; sq) is the

conditional log-likelihood in (2.4). The number of ar-regimes is then estimated by

K̂n = argmin
1≤K≤K

rbic(Φ̂n,K,sq). (5.2)

We discuss large sample properties of K̂n in Section 6. If the penalty in (5.1) is replaced

by 2{NK +K(K − 1) + 2K}, we obtain the regularized aic (raic). In our simulations

in Section 7.2, we asses finite sample performance of the raic, rbic, and a regular-

ized version of the Markov-switching criterion (msc) of Smith et al. (2006), which is

computed based on the mpcle and we call it rmsc. It is worth noting that, due to

the factor log(n− q) in (5.1), the penalty in rbic is more severe than the ones in raic

and rmsc. Thus, it is expected that in finite sample situations the rbic may result in

models with lower selected orders (underestimation) compared to the models selected

by the other two criteria. More discussion is given in Section 7.2 of our simulations.
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6. Theoretical study

We first study asymptotic properties of the mpcle when the true number of ar-regimes

K is pre-determined (Theorems 1 and 2). We then study the K̂n in (5.2) and discuss

the behaviour of the mpcle when the number of regimes is estimated by K̂n (Theorem

3). Regularity conditions C1-C3 on the penalty rn and the tuning parameter λn, and

the proofs are respectively given in Sections 1 and 2 of the Supplement.

Notation: All the vectors are column vectors and we drop the transpose >, for conve-

nience. We assume the observed time series is a sample from a msar model with K ar-

regimes and a d-dimensional true parameter vector Φ∗ = (v∗1, . . . , v
∗
K ,θ

∗
1, . . . ,θ

∗
K ,P∗ =

{α∗ij}), where d = K(q + 2) + K(K − 1). The regime-specific ar-coefficient vector is

θ∗j , variance is v∗j and transition probability is α∗ij > 0, i, j = 1, . . . , K. We further

assume that Φ∗ is an interior point of the compact parameter space Θ ⊆ Rd. We par-

tition each regime-specific ar-coefficient vector as θ∗j = (θ∗j1,θ
∗
j2) so that θ∗j1 and θ∗j2

contain the non-zero and zero ar-coefficients, respectively. We partition the parameter

vector Φ∗ = (Φ∗1,Φ
∗
2) accordingly so that Φ∗2 = (θ∗12, . . . ,θ

∗
K2) = 0. The subvector Φ∗1

contains all the intercepts θ∗j0, the non-zero θ∗jl, the variances ν∗j , and the transition

probabilities α∗ij. Further, let dim(Φ∗1) = d1 < d. We partition any candidate param-

eter as Φ = (Φ1,Φ2) following that of Φ∗. We use Φ̂n,sq to represent the mpcle of

the vector of parameters of the true msar model with K regimes, and for any fixed
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sq ∈ {1, . . . , K}. Let R′n(·;λ) be the vector of first and R′′n(·;λ) be the matrix of second

derivatives of Rn(Φ;λ) with respect to Φ. Also, let I11(Φ
∗
1) be the Fisher information

of the true msar model with Φ∗2 = 0. The Euclidean norm is denoted by ‖ · ‖2.

Main results: By conditioning on y1:q, the effective sample size is n− q. Since q <∞,

asymptotically n ∼ n− q and thus in what follows we use n instead of n− q. Our first

result establishes estimation consistency of the mpcle, irrespective of the choice of sq.

Theorem 1. Let Y1:n be a sample from a stationary and ergodic msar model, and

E|Yt|(4+2δ) < ∆ <∞, for some δ > 0. Assume λn and the penalty rn satisfy Conditions

C1-C2 in the Supplement. Then, there exists a local maximizer Φ̂n,sq of Ln(Φ; sq, λn)

such that, as n→∞, ‖Φ̂n,sq −Φ∗‖2 = Op{n−1/2(1 + an)}, where an is given in C2.

By Theorem 1, if an = O(1), which requires appropriate choices of λn and rn, then

Φ̂n,sq is
√
n-consistent. This is the rate for the conditional mle studied in Douc et al.

(2004). For example, to achieve
√
n-consistency of the mpcle based on the scad, it is

sufficient that λn → 0 as n→∞, since then an = 0. For the lasso,
√
n-consistency is

achieved if λn = O(n−1/2) (or o(n−1/2)); and for adalasso we need
√
nλn = o(1).

In Theorem 2 we show that the
√
n-consistent estimator Φ̂n,sq has also an oracle

property, as defined in Fan and Li (2001). More specifically, consider the partition-

ing Φ̂n,sq = (Φ̂n,sq ,1, Φ̂n,sq ,2), where dim(Φ̂n,sq ,1) = dim(Φ∗1) = d1 and dim(Φ̂n,sq ,2) =

dim(Φ∗2) = d− d1. This partitioning is based on the oracle’s perspective.

Theorem 2. Assume the same conditions of Theorem 1, and that λn and the penalty rn
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in addition satisfy Condition C3, and an = O(1). We have that, for any
√
n-consistent

estimator Φ̂n,sq of Φ∗ with the above partitioning, as n→∞,

(i) Consistency in ar-order estimation: Pr(Φ̂n,sq ,2 = 0) −→ 1.

(ii) Asymptotic normality:

√
n

{[
I11(Φ

∗
1) +

R′′n(Φ∗1;λn)

n

]
(Φ̂n,sq ,1 −Φ∗1) +

R′n(Φ∗1;λn)

n

}
D−→ N (0, I11(Φ

∗
1)).

By Theorems 1 and 2, for the scad penalty with λn ∼ n−1/2 log n, the mpcle Φ̂n,sq

is consistent in both parameter and ar-order estimations. With the same choice of λn,

the mpcle based on the lasso is consistent in ar-order estimation but it also intro-

duces bias to the estimators of the true non-zero ar-coefficients, a well-known property

of the lasso in other settings. For adalasso, if λn ∼ n−1/2−ψ for a 0 < ψ < γ
2
, the

resulting mpcle is consistent in both parameter and ar-order estimations. It is worth

noting that, given K and under the conditions of Theorem 1 on Yt, the standard bic is

consistent in ar-order estimation (Konishi and Kitagawa, 2008). However, compared

to the new method, the bic has higher computational cost of evaluating 2Kq different

msar models in order to choose a final model.

By consistency of the mpcle in Theorem 1, from (4.3) we have that, as n→∞,

Ê∗{Yn+1|y1:n}
p−→ E∗{Yn+1|y1:n}, (6.1)

where E∗{Yn+1|y1:n} is the optimal one-step prediction. This holds for h-step prediction.

Next, we study properties of the rbic-based estimator K̂n in (5.2), and its effect on
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the mpcle and specifically on the estimated predictive densities f̂κ(yn+1:h|y1:n) when

κ = K̂n. We denote f ∗(yn+1:h|y1:n) as the h-step ahead predictive density based on the

true msar model with K regimes, and K is an upper bound for K.

Theorem 3. Under the conditions of Theorem 2, and in addition, by assuming a

compact Euclidean space for parameters θj and νj, we have that, as n→∞,

(i) P (K̂n ≥ K)→ 1, where K is the true number of ar-regimes.

(ii) For any finite K ≤ κ ≤ K, f̂κ(yn+1:h|y1:n) −→ f ∗(yn+1:h|y1:n), almost surely, for all

(y1:n+h). The result also holds when the number of regimes is estimated by the K̂n.

Part (i) indicates that the K̂n asymptotically does not underestimate the true num-

ber of regimes K. Part (ii) shows that even if the number of regimes is overestimated, we

can still obtain consistency of the estimated h-step ahead predictive densities. Hence,

for instance, (6.1) still holds. Consistency of the K̂n can be established under stronger

conditions. For example, for some small constants δ > 0 and ε ∈ (0, 1/2), consider

the restricted parameter space for the overestimated models with κ > K ar-regimes,

Θc =
{

Φ = (v1, . . . , vκ,θ1, . . . ,θκ,P = {αij}) : vj ≥ δ, αij ∈ [ε, 1 − ε]
}

and the θj

belong to a compact Euclidean subspace of Rq. Similar to the results of Keribin (2000)

and Lu (2009), the supremum of the log-likelihood ratio statistic of the overestimated

models over Θc versus the true model behaves as Op(log log n), as n → ∞. Thus,

using the same proof technique of Theorem 3-(i) (Section 2 of the Supplement), the

rbic also prevents overestimation of K, and hence yields consistency of the K̂n. In our
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simulations, in Section 7.2, we find the rbic performs well in estimating K without

any restriction on the parameter space.

7. Simulation study

We study finite sample performance of the proposed methods via simulations. We

generated times series data from Gaussian msar models with K = 2, 3 ar-regimes.

For the two-state models, specified parameters are given in Table 1.

(α11, α22) (ν
1/2
1 , ν

1/2
2 ) µt,1 µt,2

(.80, .70), (.25, .25) (5.0, 3.0) −.60yt−1 − .50yt−2 .50yt−1 − .70yt−2

.67yt−1 − .55yt−2 .45yt−1 + .35yt−3 − .65yt−6

Table 1: Simulation parameter settings

For each (ν
1/2
1 , ν

1/2
2 , µt,1, µt,2), we considered two transition matrices P. This results

in four models, M1-M4. The fifth model M5 is a three-state model, and together with

its simulation results are given in Section 4 of the Supplement. Our results are based

on 300 simulated time series of different sizes n from each model. The computations

are done in C++ and on a Mac OS X machine with 2.9 GHz Intel Core i5.

In Section 7.1, given the number of regimes K, we compare the regularization

method using the lasso, adalasso, and scad with the standard bic via the measures:

– estimated sensitivity (ES1): the proportion of correctly estimated zero ar-coefficients.

– estimated specificity (ES2): the proportion of correctly estimated non-zero ar-coefficients.

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing) 



22

– estimation error: L2 = ‖ψ̂ − ψ‖2 losses of estimates (ψ̂) of parameters (ψ) ar-

coefficients, variances, and transition probabilities, separately.

– average computational time (ACT, in seconds) taken to complete per-sample results.

For models M1-M2 and M3-M4, the maximal ar-orders are q∗ = 2, 6, respec-

tively. To demonstrate the performance of the new method, we set a larger ar-order

q = 10 in the penalized log-likelihood (3.3) for all models; the parameter λ is chosen

using an information criterion given in Section 3.2 of the Supplement. To reduce the

computational burden of the bic for ar-order estimation, we set the smaller common

ar-orders q = 5 and q = 6 respectively for M1-M2 and M3-M4; these orders pro-

duce about 961 and 3969 models to be examined by the bic. We also examine the

performance of the new method with the smaller values q = 5, 6, and the results are

summarized at the end of Section 7.1 below.

In Section 7.2, we evaluate the performance of the raic, rbic and rmsc in esti-

mating the true number of ar-regimes K. We also compare the estimated predictive

density f̂K(yn+1:h|y1:n) when K is correctly specified versus when overestimated.

7.1 Analysis of (ES1, ES2), (L1,L2), and ACT: K is pre-specified

Table 2 shows the average and standard deviation, over 300 replications, of the ES1

and ES2 values corresponding to models M1-M4. Since the results were similar when

conditioning on initial state sq = 1 or 2, we report the results for sq = 1.

From Table 2, we see that the average ES1 for the bic varies between 90.4% to
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100%, and for the new method varies between 88% to 100%, across the models M1-

M4, the sample sizes n = 150, 250, 500, and the three penalties. Regarding the average

ES2, when n = 150, the bic performs better by correctly identifying the true non-zero

θjl’s about 90% to 100% of the times for different models. These proportions for the

lasso, adalasso, and scad are respectively about 57% to 100%, 74% to 100%, and

72% to 100%. For n = 250, 500, the bic, adalasso, and scad perform similarly with

the average ES2 of more than 92%, and for the lasso the average is more than 83%.

We now assess computational efficiency of the methods by comparing the average

computational times (ACT, in seconds) reported in Table A1 of the Supplement. The

new method based on the lasso, adalasso, and scad respectively takes on average

.853 to 5.44, .375 to 2.35, and .830 to 3.77 seconds to complete per-sample results,

depending on the model and sample size. The bic takes much longer to complete the

same task, as for models M1-M2 its ACT is 17.4 to 96.6 seconds, and for models

M3-M4 is about 85 to 297 seconds.

Boxplots of the empirical L2 losses of the parameter estimates based on the bic,

lasso, adalasso, and scad, as well as the estimates from the model in which the

redundant zero ar-coefficients are removed (the oracle model) are given in Figures

A1-A4 of the Supplement. For the smaller sample sizes, the empirical median (and

variation) losses of the estimates, particularly those based on lasso, are higher than

those of the estimator under the oracle model. As n increases, performance of all the

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing) 



24

estimates improve and are comparable to the oracle estimator.

Similar to the bic, we also ran the new method with the smaller ar-order q = 5 and

6 for models M1-M2 and M4-M5, respectively. The average and standard deviation

of the ES1 and ES2 values and boxplots of the empirical L2 losses are respectively given

in Table A8 and Figures A9-A12 of the Supplement. For n = 150, the performance

of the method (in term of the ES1, ES2, and loss) improves as ar-order upper bound

q reduces from 10 to 5 or 6. This is expected as by reducing q the potential number

of parameters K(q + 2) + K(K − 1) to be estimated also decreases. As n increases to

250, 500, the effect of q is less apparent in each of the models under consideration.

7.2 Estimation of the number of ar-regimes K, and prediction

We first examine the performance of the estimator K̂n of K based on the raic,

rbic and rmsc described in Section 5. We fit msar models with K = 1, . . . , 5, to each

simulated sample, and obtain the mpcle which is then used to compute the raic, rbic

and rmsc. We choose K̂n as the one that minimizes a criterion. Here we report the

results when the mpcle is obtained using scad; the results based on the adalasso

and lasso are similar, and are given in Tables A2-A3 of the Supplement.

Table 3 contains the average proportions of times that a number of regimes K =

1, . . . , 5, is selected by a criterion for models M1-M4. We can see that, for n = 150, 250,

rbic has a higher percentage of underestimation of the true K while raic and rmsc

tend to overestimate K. As explained at the end of Section 5, this behaviour is expected
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since the penalty function in the rbic in (5.1) is heavier than the ones in the other

two criteria, which results in higher percentages of underestimation of the true K by

rbic. As the sample size increases to n = 500, the percentages of underestimation of

the true K by rbic tends to zero, supporting the result of Theorem 3-(i). We can see

that, when n = 500, the rbic estimates the true K almost 100% in all the four models.

For n = 500, rmsc estimates the true K about 82% to 92% of the times across the

four models, while raic estimates K approximately 58% to 81% of the times.

Finally, we examine the finite sample behaviour of the estimated predictive density

f̂K(yn+1:h|y1:n), when K is correctly specified and overestimated. We generated 300

time series of sizes n + h from model M2 with K = 2, where n = 250, 500, 800, 1000

and h = n/10. For each generated sample, we used the first n observations to fit

msar models (using the regularization method) with K = 2, 3, 4, 5, and the remaining

h observations were used to compute log[f̂K(yn+1:h|y1:n)]. Figure A6 of the Supplement

shows boxplots of the log-predictive densities. We see that: 1) overall, the empirical

median and interquartile range of the log-predictive density values of the overestimated

models (K ≥ 3) are approximately equal to those of the models with correct K = K∗;

2) for the smaller sample size n = 250, as expected the variation of the log-predictive

density values increases as the number of extra regimes increases; 3) as n increases, the

log-predictive density values of the overestimated models (K ≥ 3) are approximately

equal to those for the true model, supporting the result of Theorem 3-(ii).
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8. Real data analysis

We illustrate the application of our method via two real data examples. Figures A7

and A8 of the Supplement are used through our analysis below. We use sample pacf

to obtain an (approximate) upper bound q, required by our regularization method, for

the maximal ar-order q∗ = max1≤j≤K qj. From Figures A7-(b) and A8-(c), q = 15, 25,

are reasonable choices in Examples 1 and 2, respectively. We report the results based

on the scad and adalasso with the lag-dependent weights ωjl(α) = |θ̃jl α(1−α)l|−1,

and α = 0.8. The fitted models based on the lasso and adalasso with ωjl = |θ̃jl|−1

were either similar or outperformed, in terms of log-predictive density values, by the

fitted models discussed below and thus not reported. The θ̃jl are the (conditional) mle.

Example 1. Data are the quarterly real gross domestic product (gdp) growth rate,

computed as yt = 100(loggdpt − loggdpt−1) and adjusted for inflation, of the U.S.

over the period of the first quarter of 1947 to the third quarter of 2016 obtained from

https://fred.stlouisfed.org. Figure A7-(a) is the time series plot of 278 observa-

tions. The plot shows that the variation in the series changes over time, which motivated

us to consider fitting a msar model to yt. We used 267 observations from the period

1947-2013 for fitting, and 11 observations over the period 2013-2016 for prediction.

We applied the regularization method with q = 15 and fitted msar with K =

1, 2, 3, 4. The rbic values based on scad are: 691.9,658.7, 690.4, 720.2, and based on

adalasso with the lag-dependent weights are: 688.4,665.7, 693.4, 732.5. Thus, based
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on rbic we select K̂ = 2, and the fitted models are given below; standard errors are in

[·]. The log-predictive density values computed based on the 11 observations, for the

two fitted msar models are respectively −7.66 and −7.19.

(α̂11, α̂22) (ν̂
1/2
1 , ν̂

1/2
2 ) regime 1: µ̂t,1 regime 2: µ̂t,2

scad: (.983, .981) (.471, 1.10) .521
[.032]

+ .290
[.022]

yt−2 .546
[.044]

+ .365
[.036]

yt−1

adalasso: (.985, .981) (.483, 1.12) .513
[.033]

+ .133
[.028]

yt−1 + .158
[.023]

yt−2 .607
[.045]

+ .298
[.036]

yt−1

Below we provide an analysis of the fitted model based on scad; a similar analysis

can be performed for the second model. Figure A7-(c) shows classification of yt’s into

the two regimes of the model. Most of the observations from around 1950-1984 and

2008-2009 are classified into regime 2, and the remaining observations from around 1984-

2007 and 2010-2013 are classified into regime 1. We may interpret the two regimes as

follows: regime 1 describes the periods where the growth rate was mostly positive and

more stable with a relatively lower variation compared to regime 2 where the growth

rate was a combination of mostly large positives and also occasionally large negatives

(between 1950-1960, and noticeably around 2008-2009 which was the recent economical

crisis) with a much higher variation. From Figure A7-(c), once the economy falls into

one of the two regimes it stays in that regime for a long time period which is confirmed

by the large diagonal values (α̂11, α̂22) of the estimated transition probability matrix P̂.

Example 2. Data are the monthly U.S. unemployment rates (yt) over the period of
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1948 to 2010, obtained from https://www.bea.org. The time series plot in Figure

A8-(a) shows an increasing-decreasing trend and also high volatility in the series. To

remove the trend in the mean, we consider the differences xt = yt+1−yt, t = 1, . . . , 754.

We used 731 observations from the period 1948-2008 for fitting, and the remaining 24

observations from 2009-2010 were used for computing the log-predictive density.

We use the regularization method with q = 25 and fitted msar models with K =

1, 2, 3, 4, to the data. The rbic values based on scad are: 589.6,565.5, 609.2, 616.3.

Thus, based on rbic we select K̂ = 2 and the fitted model is

regime 1 : µ̂t,1 = .053
[.016]

xt−2 + .094
[.016]

xt−3 − .082
[.015]

xt−12 , ν̂
1/2
1 = .136 , α̂11 = .785

regime 2 : µ̂t,2 = .225
[.038]

xt−4 + .272
[.036]

xt−5 − .115
[.033]

xt−10 − .244
[.038]

xt−24 , ν̂
1/2
2 = .225 , α̂22 = .551.

with the log-predictive estimated density value −1.23. The rbic values based on

adalasso with the lag-dependent weights are: 645.7,579.6, 605.7, 618.4. Thus, we

select K̂ = 2 and the fitted model is

regime 1 : µ̂t,1 = −.112
[.023]

xt−1 , ν̂
1/2
1 = .135 , α̂11 = .975

regime 2 : µ̂t,2 = .129
[.028]

xt−1 + .109
[.029]

xt−2 , ν̂
1/2
2 = .238 , α̂11 = .970

with the log-predictive density value −3.47. In both models, the estimates of the

intercepts θj0’s were zero. Below, we focus on the scad model. Figure A8-(d) shows

classification of xt’s into the two regimes of the model. A possible interpretation is that

regime 1 captures time periods with relatively low changes in the unemployment rates

compared to regime 2 that captures periods with larger jumps or drops in the rates.
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9. Summary and discussion

We have developed new regularization methods for ar-order and parameter estimation,

as well as selection of the number of ar-regimes in msar models. The methods present

a substantial computational advantage over aic, bic and their variations by avoiding

an exhaustive search of the model space, and they also have desirable large sample

properties. In addition, we have demonstrated consistency of optimal prediction, in the

sense of mean-squared prediction error and predictive density, in cases of correctly and

over-specified number of regimes. Simulation results support our theoretical findings.

Our focus has been on the Gaussian case, but similar results hold under milder

conditions provided the equivalent moment conditions hold. Extensions to incorporate

conditional heteroscedasticity or to general state space models, are avenues of future

work. There remain, however, interesting research challenges – for example, under

what less restrictive conditions the rbic provides a consistent estimator of the number

of regimes is yet to be further studied.
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Table 2: Average (standard deviation), over 300 replications, of estimated Sensitivity

(ES1) and Specificity (ES2)1.

msar n = 150 n = 250 n = 500

Model Regimes ES1 ES2 ES1 ES2 ES1 ES2

bic M1 Reg1 .950(.137) .905(.217) .970(.096) .985(.085) .983(.073) 1.00(.000)

Reg2 .929(.173) .908(.210) .972(.092) .992(.076) .980(.079) 1.00(.000)

M2 Reg1 .961(.114) .989(.072) .980(.085) 1.00(.000) .989(.059) 1.00(.000)

Reg2 .977(.094) .998(.030) .987(.071) 1.00(.000) .991(.055) 1.00(.000)

M3 Reg1 .920(.129) .985(.085) .960(.096) 1.00(.000) .982(.071) 1.00(.000)

Reg2 .904(.167) .933(.142) .959(.110) .986(.068) .986(.068) 1.00(.000)

M4 Reg1 .929(.123) .940(.163) .963(.096) .998(.029) .988(.054) 1.00(.000)

Reg2 .940(.128) .962(.106) .970(.096) .994(.043) .979(.081) 1.00(.000)

lasso M1 Reg1 .933(.141) .565(.444) .965(.072) .858(.315) .988(.040) .995(.064)

Reg2 .932(.119) .668(.355) .958(.091) .878(.270) .988(.036) .998(.029)

M2 Reg1 .962(.074) .988(.076) .988(.041) .997(.059) .999(.013) 1.00(.000)

Reg2 .974(.067) .997(.058) .997(.018) .998(.029) 1.00(.000) 1.00(.000)

M3 Reg1 .920(.114) .800(.377) .946(.077) .945(.223) .986(.042) 1.00(.000)

Reg2 .880(.154) .779(.322) .936(.108) .916(.217) .989(.040) .999(.019)

M4 Reg1 .901(.147) .593(.464) .945(.091) .830(.363) .980(.050) .988(.104)

Reg2 .878(.154) .819(.274) .937(.117) .953(.159) .989(.038) 1.00(.000)

adalasso M1 Reg1 .930(.154) .738(.362) .973(.074) .928(.214) .997(.020) .997(.041)

Reg2 .948(.130) .685(.322) .972(.069) .885(.230) .997(.019) .995(.050)

M2 Reg1 .970(.074) .978(.111) .991(.033) .997(.041) 1.00(.007) 1.00(.000)

Reg2 .989(.047) .997(.058) 1.00(.007) 1.00(.000) 1.00(.000) 1.00(.000)

M3 Reg1 .943(.110) .907(.261) .973(.064) .983(.122) .998(.014) 1.00(.000)

Reg2 .914(.153) .794(.303) .962(.094) .938(.170) .997(.020) .999(.019)

M4 Reg1 .919(.133) .758(.387) .964(.081) .943(.213) .998(.018) .998(.029)

Reg2 .931(.132) .837(.262) .976(.070) .969(.130) .998(.016) 1.00(.000)

scad M1 Reg1 .883(.207) .795(.315) .978(.085) .948(.187) .994(.032) .997(.041)

Reg2 .935(.144) .718(.297) .980(.058) .918(.190) .996(.027) .993(.057)

M2 Reg1 .974(.074) .976(.107) .996(.025) .995(.051) 1.00(.007) 1.00(.000)

Reg2 .981(.061) 1.00(.000) .999(.010) 1.00(.000) 1.00(.000) 1.00(.000)

M3 Reg1 .945(.116) .938(.205) .979(.073) .993(.071) .998(.018) 1.00(.00)

Reg2 .877(.196) .810(.274) .968(.105) .949(.143) .997(.020) 1.00(.000)

M4 Reg1 .921(.136) .798(.364) .977(.071) .967(.155) .996(.025) 1.00(.000)

Reg2 .906(.159) .838(.258) .974(.079) .977(.105) .995(.029) 1.00(.000)

1 For bic, q = 5 and 6 were used for models M1-M2 and M3-M4, respectively. For the new

method based on the three penalties, q = 10 was used for all the four models.
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Table 3: Average proportion of times (in 300 replications) that a number of ar-regimes
1 ≤ K ≤ 5 is selected by a criterion1. Results for the true K = 2 are in bold.

n = 150 n = 250 n = 500

Model K raic rbic rmsc raic rbic rmsc raic rbic rmsc

M1 1 .022 .561 .068 .000 .144 .004 .000 .004 .004
2 .288 .432 .245 .496 .848 .644 .583 .996 .861
3 .194 .007 .094 .216 .008 .072 .166 .000 .045

4 or 5 .496 .000 .593 .288 .000 .028 .251 .000 .090

M2 1 .000 .014 .000 .000 .000 .000 .000 .000 .000
2 .578 .972 .550 .783 .993 .733 .814 1.00 .823
3 .202 .014 .032 .148 .007 .040 .122 .000 .034

4 or 5 .220 .000 .418 .069 .000 .227 .064 .000 .143

M3 1 .013 .430 .103 .000 .107 .020 .000 .003 .000
2 .350 .570 .283 .513 .887 .663 .673 .997 .860
3 .253 .000 .057 .213 .006 .027 .140 .000 .007

4 or 5 .384 .000 .557 .274 .000 .290 .187 .000 .133

M4 1 .010 .380 .100 .007 .103 .033 .000 .000 .000
2 .257 .620 .237 .507 .897 .650 .657 1.00 .917
3 .247 .000 .057 .173 .000 .010 .153 .000 .003

4 or 5 .486 .000 .606 .313 .000 .307 .190 .000 .080

1 Each criterion is computed based on the mpcle obtained using the scad penalty with q = 10.
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