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A Robust and Nonparametric Two-Sample Test

in High Dimensions

Tao Qiu, Wangli Xu and Liping Zhu

Renmin University of China

Abstract: Many tests are proposed in the literature to test homogeneity of two

random samples, that is, the exact equivalence of their statistical distributions.

When the two random samples are high-dimensional or not normally distributed,

the asymptotic null distributions of most existing two-sample tests are rarely

tractable, which limits their usefulness in high dimensions even when the sample

sizes are sufficiently large. In addition, existing tests require to select tuning

parameters delicately to enhance power performance. However, how to select

optimal tunings is very challenging, especially in high dimensions. In this paper,

we propose a robust and fully nonparametric two-sample test to detect hetero-

geneity of two random samples. Our proposed test is completely free of tuning

parameters. It is built upon the Cramér-von Mises distance and can be readily

used in high dimensions. In addition, our proposed test is robust to the pres-

ence of outliers or extreme values in that no moment condition is required. The

asymptotic null distribution of our proposed test is standard normal, when both

the sample sizes and the dimensions of the two random samples diverge to in-

finity. This facilitates the implementation of our proposed test dramatically, in
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1. INTRODUCTION2

that no bootstrap or re-sampling technique has to be used to decide an appropri-

ate critical value. We demonstrate the power performance of our proposed test

through extensive simulations and real-world applications.

Key words and phrases: Cramér-von Mises test, equality of distributions, high

dimension, homogeneity, U-statistics, two-sample test.

1. Introduction

Testing homogeneity of two independent random samples is one of the most

fundamental problems in statistics (Lehmann and Romano, 2005; Thas,

2010). Suppose {xi, i = 1, . . . ,m} and {yi, i = 1, . . . , n} are two random

samples drawn independently from F and G, respectively. Testing homo-

geneity amounts to testing exact equivalence of their respective distribution

functions. In symbols, the interest of the two-sample test is to check

H0 : F = G versus H1 : F ̸= G. (1.1)

Rejecting H0 indicates the presence of heterogeneity.

Many tests have been proposed in the literature to test (1.1). In the

univariate case of p = 1, Kolmogorov-Smirnov (Smirnov, 1939) and Cramér-

von Mises (Rosenblatt, 1952; Anderson, 1962) tests are perhaps two of the

most popular omnibus tests. Both are proposed to quantify the discrep-

ancies between the empirical distributions of the two random samples. In
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the multivariate case of p ≥ 2, Friedman and Rafsky (1979) and Biswas

et al. (2014) proposed homogeneity tests using the minimal spanning tree

and the shortest Hamiltonian path, respectively. The tests proposed by

Henze (1988), Schilling (1986), and Mondal et al. (2015) are all based on

the nearest neighbors. Hall and Tajvidi (2002) introduced a permutation

test based on ranking the pooled samples. Rosenbaum (2005) devised a

run test which matches the observations into disjoint pairs. Gretton et al.

(2012) introduce a class of distances between two probability distributions

in a reproducing kernel Hilbert space called the maximum mean discrepancy

(MMD). However, the above tests require careful selection of tuning param-

eters, such as weight functions, the number of neighbors, or the bandwidths

for Gaussian MMD. The power performance of these tests relies heavily on

the selection of tuning parameters; however, it is not straightforward to

select optimal tuning parameters to enhance power performance, especially

in high dimensions. In addition, Chen and Friedman (2017) pointed out

that none of these tests are sensitive to both location shifts and scale dif-

ferences. Baringhaus and Franz (2004) and Biswas and Ghosh (2014) used

energy distances between the empirical characteristic functions of the two

random samples. These two tests require that the second moments of both

random samples be finite, and thus are not powerful in the presence of
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outliers or extreme values. Pan et al. (2018) introduced ball divergence to

measure the differences between the empirical probability density functions

of the two random samples. It requires no moment condition and is free of

tuning parameters. However, the asymptotic null distribution of this ball

divergence test is not tractable, even when the dimensions of both random

samples are small. Our limited simulations indicate that the ball divergence

test is very insensitive to location shifts. The asymptotic properties of the

above tests are also unknown in extremely high dimensions.

In this paper we propose a robust and fully nonparametric two-sample

test. Suppose {xi = (Xi1, . . . , Xip)
T, i = 1, . . . ,m}, {yi = (Yi1, . . . , Yip)

T, i =

1, . . . , n}, and {zr = (Zr1, . . . , Zrp)
T, r = 1, . . . ,m + n} are three ran-

dom samples drawn independently from F , G, and H, respectively, where

H
def
= {m/(m+n)}F + {n/(m+n)}G. Denote the distribution functions of

Xik, Yjk, and Zrk, by Fk, Gk, and Hk
def
= {m/(m+ n)}Fk + {n/(m+ n)}Gk,

respectively, for k = 1, . . . , p. In the present context we consider testing

H0 : Fk = Gk for all 1 ≤ k ≤ p, versus

H1 : Fk ̸= Gk for at least one k ∈ {1, . . . , p}. (1.2)

The exact equivalence between F and G is not fully characterized by

the distances between Fk and Gk, for k = 1, . . . , p. However, we argue that,

in many real world problems the distances between Fk and Gk are usually

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



1. INTRODUCTION5

informative in testing the exact equivalence between F and G.

We propose to quantify the degree of deviation from H0 in (1.2) through

the U -statistic estimate of

Q
def
=

p∑
k=1

[∫ ∞

−∞
{Fk(z)−Gk(z)}2dHk(z)

]
.

The quantity Q is built upon the Cramér-von Mises distance and can be

readily used in arbitrarily high dimensions. We propose to estimate the dis-

tribution functions Fk, Gk, and Hk, through their corresponding empirical

distribution functions F̂k, Ĝk, and Ĥk
def
= {m/(m+n)}F̂k+{n/(m+n)}Ĝk,

respectively. Consequently, the U -statistic estimate of Q is completely free

of tuning parameters and is robust to the presence of outliers and extreme

values in either of the two random samples. We advocate using Q for at least

two additional reasons. First, this allows for arbitrarily large p. The compu-

tational complexity for estimating Q is linear in p. Second, the asymptotic

null distribution is standard normal, regardless of the relationship between

p and min(m,n). Therefore, no re-sampling or bootstrap procedure has

to be used to approximate the asymptotic null distribution. These two

properties facilitate the implementation of our proposed test in extremely

high dimensions and allow us to handle very large-scale data sets. Should

we compare the difference between F and G directly in high-dimensional

problems, the computation complexity would be very prohibitive.
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2. THE TEST PROCEDURE6

In Section 2, we give an explicit form for the U -statistic estimate of Q.

This allows us to make use of the Hoeffding decomposition and martingale

central limit theorem to derive the asymptotic properties of our proposed

test. Extensive numerical studies are conducted in Section 3 to demonstrate

the power performance of our proposed test and to compare it with many

existing tests. The empirical studies indicate that our proposed two-sample

test is sensitive to both location shifts and scale differences, even in high

dimensions. We conclude this paper with a brief discussion in Section 4.

All technical details are relegated to the Supplementary Material.

2. The Test Procedure

In this section, we introduce our proposed two-sample test.

2.1 The U-Statistic Estimate of Q

We assume throughout that Zrk is independent of Xik and Yjk and drawn

independently from Hk, for k = 1, . . . , p, i = 1, . . . ,m, j = 1, . . . , n, and

r = 1, . . . ,m+ n. Then an equivalent form of Q is given by

Q =

p∑
k=1

E

[{
I(X1k ≤ Z1k)− I(Y1k ≤ Z1k)

}{
I(X2k ≤ Z1k)− I(Y2k ≤ Z1k)

}]
,
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2. THE TEST PROCEDURE7

where the expectation E is taken with respect to Fk, Gk, and Hk. Define

Q1
def
=

p∑
k=1

E {I(X1k ≤ Z1k)I(X2k ≤ Z1k)} ,

Q2
def
=

p∑
k=1

E {I(Y1k ≤ Z1k)I(Y2k ≤ Z1k)} , and

Q3
def
= −2

p∑
k=1

E {I(X1k ≤ Z1k)I(Y2k ≤ Z1k)} .

It can be verified that Q = Q1 + Q2 + Q3. In the above definitions, the

summands are of similar forms. To simplify subsequent illustrations, define

ρ(xi,xj, zr)
def
=

p∑
k=1

I(Xik ≤ Zrk)I(Xjk ≤ Zrk).

The U -statistic estimates of Q1, Q2, and Q3 are defined, respectively, by

Q̂1
def
= {m(m− 1)(m+ n)}−1

m∑
i̸=j

m+n∑
r=1

ρ(xi,xj, zr),

Q̂2
def
= {n(n− 1)(m+ n)}−1

n∑
i̸=j

m+n∑
r=1

ρ(yi,yj, zr), and

Q̂3
def
= −2 {mn(m+ n)}−1

m∑
i=1

n∑
j=1

m+n∑
r=1

ρ(xi,yj, zr).

Both Q̂1 and Q̂2 are two-sample U -statistics of order (2; 1), and Q̂3 is a

three-sample U -statistic of order (1; 1; 1). Define

Q̂
def
= Q̂1 + Q̂2 + Q̂3, (2.3)

that is the U -statistic estimate of Q.
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2. THE TEST PROCEDURE8

2.2 Some Notations

The following notations will be used repetitively in subsequent expositions.

Define Uk(Xik, Zrk)
def
= I(Xik ≤ Zrk) − Fk(Zrk) and Vk(Yik, Zrk)

def
= I(Yik ≤

Zrk)−Gk(Zrk). We further define

ω11(xi,xj, zr)
def
=

p∑
k=1

Uk(Xik, Zrk)Uk(Xjk, Zrk),

ω12(yi,yj, zr)
def
=

p∑
k=1

Vk(Yik, Zrk)Vk(Yjk, Zrk),

and ω13(xi,yj, zr)
def
=

p∑
k=1

Uk(Xik, Zrk)Vk(Yjk, Zrk).

With the above notations, we define

T̂1
def
= {m(m− 1)(m+ n)}−1

m∑
i̸=j

m+n∑
r=1

ω11(xi,xj, zr) + {n(m+ n)}−1

{
(n− 1)−1

n∑
i̸=j

m+n∑
r=1

ω12(yi,yj, zr)− 2m−1

m∑
i=1

n∑
j=1

m+n∑
r=1

ω13(xi,yj, zr)

}
.

(2.4)

It can be seen that T̂1 has a complicated form in that it is a U -statistic

estimate of three random samples. We further define

T̂1,1
def
= {m(m− 1)}−1

m∑
i̸=j

φ11(xi,xj) + {n(n− 1)}−1

n∑
i̸=j

φ12(yi,yj)

− 2(mn)−1

m∑
i=1

n∑
j=1

φ13(xi,yj), (2.5)
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2. THE TEST PROCEDURE9

which is a two-sample U -statistic, where

φ11(xi,xj)
def
=

p∑
k=1

E {Uk(Xik, Zrk)Uk(Xjk, Zrk) | Xik, Xjk, Yik, Yjk} ,

φ12(yi,yj)
def
=

p∑
k=1

E {Vk(Yik, Zrk)Vk(Yjk, Zrk) | Xik, Xjk, Yik, Yjk} , and

φ13(xi,yj)
def
=

p∑
k=1

E {Uk(Xik, Zrk)Vk(Yjk, Zrk) | Xik, Xjk, Yik, Yjk} .

(2.6)

Let Dk(Zrk)
def
= Fk(Zrk)−Gk(Zrk). Define

ω21(xi, zr)
def
=

p∑
k=1

Dk(Zrk)Uk(Xik, Zrk),

ω22(yj, zr)
def
=

p∑
k=1

Dk(Zrk)Vk(Yjk, Zrk),

and ω23(zr)
def
=

p∑
k=1

D2
k(Zrk). (2.7)

With the above notations, we define

T̂2
def
= (m+ n)−1

[
2m−1

m∑
i=1

m+n∑
r=1

ω21(xi, zr) − 2n−1

n∑
j=1

m+n∑
r=1

ω22(yj, zr)

+
m+n∑
r=1

{ω23(zr)−D0}

]
,(2.8)

where

D0
def
=

p∑
k=1

E{D2
k(Zrk)} = E {ω23(zr)} . (2.9)

We remark here that both T̂2 and D0 quantify deviations from H0 in (1.2).

To be specific, under H0 in (1.2), Dk(Zrk) = 0 and accordingly, D0 = 0,
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which, together with (2.7) and (2.8), yields that T̂2 = 0.

2.3 An Outline of Analyzing Asymptotic Behaviors of Q̂

We outline the asymptotic behaviors of Q̂ in Section 2.3, and establish these

properties rigorously in Section 2.4.

We make use of Hoeffding decomposition and martingale central limit

theorem to analyze the asymptotic behaviors of Q̂. However, the expec-

tations of Q̂1, Q̂2, and Q̂3 are all nonzero under H0 in (1.2). To facilitate

subsequent asymptotic derivations, we rewrite Q̂ as Q̂ = T̂1 + T̂2 + D0,

where T̂1 and T̂2 are given in (2.4), and (2.8), respectively, and D0 is a

constant defined in (2.9). By Hoeffding decomposition, T̂1 can be approxi-

mated precisely with the two-sample U -statistic T̂1,1 in (2.5). In symbols,

T̂1 = T̂1,1 {1 + op(1)}. In addition, T̂2 = D0 = 0 holds exactly under H0 in

(1.2), indicating that T̂2 and D0 quantify the degree of heterogeneity of the

two random samples.

The three summands in the right hand side of T̂1,1 in (2.5) have zero

mean identically and are uncorrelated with each other. Therefore, the

asymptotic variance of T̂1,1 can be derived without much difficulty. To

be precise, let σ2
11

def
= E{φ2

11(x1,x2)}, σ2
12

def
= E{φ2

12(y1,y2)}, and σ2
13

def
=
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2. THE TEST PROCEDURE11

E{φ2
13(x,y)}. It follows that

var(T̂1,1) = 2{m(m− 1)}−1σ2
11 + 2{n(n− 1)}−1σ2

12 + 4(mn)−1σ2
13.

(2.10)

In Section 2.4 we shall establish the asymptotic normality of T̂1,1 using the

martingale central limit theorem. In addition, under H0 in (1.2) and mild

regularity conditions, Q̂/
{

var(T̂1,1)
}1/2 is asymptotically standard normal

as m, n and p diverge to ∞. Therefore, as long as var(T̂1,1) is estimated

consistently, the distribution of Q̂ is asymptotically tractable.

In the sequel we provide an estimate of var(T̂1,1). We define the leave-

one-observation-out estimates of Fk and Gk, respectively, by

F̂k(−i)(Zrk)
def
= (m− 1)−1

m∑
l ̸=i

I(Xlk ≤ Zrk),

and, Ĝk(−j)(Zrk)
def
= (n− 1)−1

n∑
l ̸=j

I(Ylk ≤ Zrk).

Similarly, we define the leave-two-observations-out estimates as

F̂k(−i,−j)(Zrk)
def
= (m− 2)−1

m∑
l ̸=i,l ̸=j

I(Xlk ≤ Zrk) and

Ĝk(−i,−j)(Zrk)
def
= (n− 2)−1

n∑
l ̸=i,l ̸=j

I(Ylk ≤ Zrk).

Instead of using the classic empirical distributions F̂k and Ĝk directly, we use

F̂k(−i), Ĝk(−i), F̂k(−i,−j) and Ĝk(−i,−j) to estimate the asymptotic variance.
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This yields an unbiased estimate of var(T̂1,1). The empirical studies in

Section 3 indicate that, the bias would be substantial if we had used F̂k

and Ĝk to estimate var(T̂1,1). This echoes the observations in many other

high dimensional studies. See, for example, Chen and Qin (2010), Zhong

and Chen (2011), and Zhang et al. (2018).

We further define

σ̂2
11

def
=

{
4

(
m

2

)(
m+ n

2

)}−1 m∑
i̸=j

m+n∑
r ̸=s

[
p∑

k=1

{I(Xik ≤ Zrk)− F̂k(−i,−j)(Zrk)}

I(Xjk ≤ Zrk)

p∑
k=1

I(Xik ≤ Zsk){I(Xjk ≤ Zsk)− F̂k(−i,−j)(Zsk)}

]
,

σ̂2
12

def
=

{
4

(
n

2

)(
m+ n

2

)}−1 n∑
i̸=j

m+n∑
r ̸=s

[
p∑

k=1

{I(Yik ≤ Zrk)− Ĝk(−i,−j)(Zrk)}

I(Yjk ≤ Zrk)

p∑
k=1

I(Yik ≤ Zsk){I(Yjk ≤ Zsk)− Ĝk(−i,−j)(Zsk)}

]
, and,

σ̂2
13

def
=

{
2mn

(
m+ n

2

)}−1 m∑
i=1

n∑
j=1

m+n∑
r ̸=s

[
p∑

k=1

{I(Xik ≤ Zrk)− F̂k(−i)(Zrk)}

I(Yjk ≤ Zrk)

p∑
k=1

{I(Yjk ≤ Zsk)− Ĝk(−j)(Zsk)}I(Xik ≤ Zsk)

]
.

The unbiased estimate of var(T̂1,1) is thus given by

v̂ar(T̂1,1)
def
= 2{m(m− 1)}−1σ̂2

11 + 2{n(n− 1)}−1σ̂2
12 + 4(mn)−1σ̂2

13.

(2.11)

To implement the test, we can reject H0 soundly at the significance

level α as long as the test statistic, Q̂2/v̂ar(T̂1,1), is greater than or equal to
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z21−α/2, where z1−α/2 stands for the (1−α/2)×100%-th quantile of standard

normal distribution.

2.4 The Asymptotic Behaviors of Q̂/
{

v̂ar(T̂1,1)
}1/2

We study rigorously the asymptotic behaviors of the test statistic Q̂/
{

v̂ar(T̂1,1)
}1/2

under H0 and H1, respectively. Throughout we assume

(C1) m/(m+ n) → c ∈ (0, 1) as both m and n diverge to infinity.

Condition (C1) is commonly assumed in the two-sample tests. Along with

(C1), we assume the following conditions. Define ν1
def
= σ−2

11 E{ω2
11(x1,x2, z)}+

σ−2
12 E{ω2

12(y1,y2, z)}+ σ−2
13 E{ω2

13(x,y, z)}. Assume that

(C2) ν1/m → 0, as p → ∞.

Condition (C2) ensures that T̂1 = T̂1,1 {1 + op(1)}, that is satisfied when

E{ω2
11(x1,x2, z)} = o(mσ2

11), (2.12)

because E{ω2
11(x1,x2, z)} = E{ω2

12(y1,y2, z)} = E{ω2
13(x,y, z)} and σ2

11 =

σ2
12 = σ2

13 under H0 in (1.2). Next we explore the conditions under which

(2.12) holds true. Define h(Z1k, Z2l)
def
= cov{I(X1k ≤ Z1k), I(X1l ≤ Z2l) |

Z1k, Z2l} and

Hk,l
def
=

[
var {h(Z1k, Z2l)}+ E2 {h(Z1k, Z2l)}

]1/2
. (2.13)
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We further write H
def
= (Hk,l)p×p. Simple algebraic calculations show that

σ2
11 = E{φ2

11(x1,x2)} = tr(H2), and E{ω2
11(x1,x2, z)} = O

{
tr(H2)

}
,

(2.14)

where tr(H2) stands for the trace of H2, that entails (2.12) directly. There-

fore, Condition (C2) is satisfied naturally under H0. Following similar ar-

guments, we can show that (C2) can also be easily met under H1. In other

words, Condition (C2) is very mild , though this is not very intuitive.

Define ν2
def
= σ−4

11 E[E2{φ2
11(x1,x2) | x1}] + σ−4

12 E[E2{φ2
12(y1,y2) | y1}] +

σ−4
13 E[E2{φ2

13(x,y) | x}], ν3
def
= σ−4

11 E[E2{φ11(x1,x2)φ11(x1,x3) | x2,x3}] +

σ−4
12 E[E2{φ12(y1,y2)φ12(y1,y3) | y2,y3}]+σ−4

13 E[E2{φ13(x1,y1)φ13(x1,y2) |

y1,y2}], and ν4
def
= σ−4

11 E{φ4
11(x1,x2)}+σ−4

12 E{φ4
12(y1,y2)}+σ−4

13 E{φ4
13(x,y)}.

We further make the following two assumptions.

(C3) ν3 → 0, as p → ∞.

(C4) (ν2 + ν4/m)/m → 0, as p → ∞.

Conditions (C3)-(C4) ensure that T̂1,1 is asymptotically normal. We remark

here that, under H0 in (1.2), Condition (C3) reduces to

E[E2{φ11(x1,x2)φ11(x1,x3) | x2,x3}] = o(σ4
11),
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2. THE TEST PROCEDURE15

and Condition (C4) boils down to

E[E2{φ2
11(x1,x2) | x1}] = o(mσ4

11), and E{φ4
11(x1,x2)} = o(m2σ4

11).

Similar equalities also apply to the y sample. The above conditions hold

true if the correlation matrices of x = (X1, . . . , Xp)
T and y = (Y1, . . . , Yp)

T

have correlated or banded dependence structure. The definitions of corre-

lated and banded dependence structure are defined in Appendix B.

Direct algebraic calculations show that,

E{φ4
11(x1,x2)} = O{tr2(H2)}, E[E2{φ2

11(x1,x2) | x1}] = O{tr2(H2)},

(2.15)

and

E[E2{φ11(x1,x2)φ11(x1,x3) | x2,x3}] = O
{

tr(H4)
}
. (2.16)

This immediately yields Condition (C4) under H0. In addition, Condition

(C3) is implied by tr(H4) = o {tr2(H2)}. Similar assumptions are also used

in the literature. See, for example, condition (3.8) in Chen and Qin (2010)

and also as a sufficient condition for Theorem 2.1 in Zhang et al. (2018).

Detailed derivations of (2.14)-(2.16) are relegated to the Supplement.

Theorem 1. Under (C1)−(C4), Q̂/
{

var(T̂1,1)
}1/2 is asymptotically stan-

dard normal under H0 in (1.2), as both p and min(m,n) diverge to ∞.
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The following theorem states the consistency of v̂ar(T̂1,1).

Theorem 2. Under (C1)−(C4), v̂ar(T̂1,1) converges in probability to var(T̂1,1),

as both p and min(m,n) diverge to ∞.

It follows immediately from Slutsky’s theorem that Q̂/
{

v̂ar(T̂1,1)
}1/2 is

asymptotically standard normal under H0.

Recall the definitions of ω21, ω22, and ω23 given in (2.7). We define

ν5
def
= n−2

(
E{ω2

21(x, z)} + E{ω2
22(y, z)}+ nE[E2{ω21(x, z) | x}]

+ nE[E2{ω21(y, z) | y}] + nvar{ω23(z)}
)
.

We study the power performance under the local alternative H ′
1 : ν5 =

o
{

var(T̂1,1)
}

. It can be verified that, under H ′
1,

max
1≤k≤p

E{Fk(Zrk)−Gk(Zrk)}2 = op(n
−1/2),

indicating that H ′
1 does not deviate from H0 substantially. Under H ′

1, the

asymptotic variance of Q̂ remains unchanged, which is formally stated in

Theorem 3. In general, the asymptotic variance of Q̂ would be inflated

under the fixed alternative H1, which would lead to unstable performance

of our proposed test. Therefore, we investigate the power performance of

our test under the local alternative H ′
1 only.
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2. THE TEST PROCEDURE17

Theorem 3. Under (C1)−(C4), (Q̂−D0)/
{

v̂ar(T̂1,1)
}1/2 is asymptotically

standard normal under H ′
1, as both p and min(m,n) diverge to ∞, where

D0 is defined in (2.9).

The power under the local alternative H ′
1 is given by

1− β
def
= pr

{
Q̂2/v̂ar(T̂1,1) ≥ z21−α/2

}
→

1− pr
{
χ2(1) ≤ z21−α/2 −D0(2Q̂−D0)/v̂ar(T̂1,1)

}
, (2.17)

where χ2(1) stands for χ2 random variable with one degree of freedom.

An important implication of (2.17) is that the power of our proposed

test is largely determined by D0(2Q̂−D0)/v̂ar(T̂1,1). Recall that Q̂ = T̂1 +

T̂2 +D0. Theorem 1 indicates that T̂1 is asymptotically normal with mean

zero, Theorem 2 ensures that T̂2 is asymptotically negligible. Therefore,

Q̂ converges in probability to D0, and accordingly, D0(2Q̂−D0) converges

in probability to D2
0. In addition, by the definition of v̂ar(T̂1,1) given in

(2.11), v̂ar(T̂1,1) = Op(p
2/n2) along with Condition (C1). Consequently,

D0(2Q̂−D0)/v̂ar(T̂1,1) is asymptotically of order Op(n
2D2

0/p
2). Recall that

D0 =

p∑
k=1

E{Fk(Zrk)−Gk(Zrk)}2.

If Fk ̸= Gk for most k, then it is reasonable to expect D0 to be a large

number of order p. In this case, the power of our proposed test approaches
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3. NUMERICAL STUDIES18

one asymptotically. However, if Fk = Gk for most k, it is natural to expect

D0 to be a very small number. In this case, our proposed test may suffer

from low power performance unless the sample size min(m,n) is sufficiently

large and the dimension p is relatively small.

3. Numerical Studies

We conduct numerical studies to demonstrate the finite-sample performance

of our proposed test and to compare it with the two-sample tests in the lit-

erature. Existing tests can be classified into three classes. In the first class,

tuning parameters need to be specified delicately. Typical examples in-

clude Henze (1988), Mondal et al. (2015), Biswas et al. (2014), and Hall

and Tajvidi (2002). To ease subsequent illustration, we refer to these tests

as H, MBG, BMG, and HT, respectively. In particular, all the first three

tests require to specify the number of nearest neighbors. Following Hall and

Tajvidi (2002), we choose γ = 2 and w1(j) = w2(j) = 1 in the HT test. In

the second class, moment conditions are required to ensure the existence of

energy distances. Examples include Baringhaus and Franz (2004), Rosen-

baum (2005), and Biswas and Ghosh (2014), which are referred to as BF,

R, and BG, respectively. We also include Pan et al. (2018) in our numerical

comparison, which belongs to the third class in which no moment condition

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



3. NUMERICAL STUDIES19

or tuning parameter is required. We refer to this test as PTWZ, and our

test as QXZ. All these abbreviations are the initials of last names of the

authors. Throughout we set the sample sizes to be m = n = 30, and set

the dimension p = 30, 90, 150, 200, 500, 1000, 1500, 2000. We repeat our

simulations 1000 times and report the empirical sizes and powers at the

significance level α = 0.05.

3.1 Simulation Studies

Let td(u,Σ) stand for the multivariate t distribution with d degrees of

freedom, location vector u and shape matrix Σ. We draw the p-vectors

xi, i = 1, . . . ,m, from td(u1,Σ1), and the p-vectors yj, j = 1, . . . , n, from

td(u2,Σ2), where u1 = 0p×1, Σ1 = (0.5|k−l|)p×p, u2 = δ1p×1 and Σ2 =

σ2Σ1. We consider four scenarios for (δ, σ2): (0, 1), (0.25, 1), (0.15, 2.0) and

(0, 2.5), which corresponds to the null hypothesis H0 in (1.2), location shift,

both location shift and scale difference and scale difference only. For space

consideration, we report the simulation results for p = 30, 500 and 2000, in

the main context. The simulation results for p = 90, 150, 200, 1000, and

1500 are charted in Tables 1-3, Appendix G of the Supplement.

Table 1 -Table 3 summarize the empirical sizes and powers, for d = 2,

3, and 30, respectively, which correspond to heavy, moderate, and light
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tails. When δ = 0 and σ2 = 1, the sizes of all tests are very close to

the significance level α = 0.05. The empirical powers of all tests improve

quickly as p increases. This is perhaps because the deviations from H0 in

(1.2) are accumulating as p diverges. It can also be seen that, the R test

performs the best, and the BMG, H and QXZ tests follow when δ = 0.25

and σ2 = 1, that is, when only the location shift is present. However, if there

exists scale difference, i.e., σ2 = 2 or 2.5, the R test deteriorates quickly,

and our proposed QXZ test has the best power performance. In effect, the

PTWZ, BG, HT and MBG tests are very insensitive to the location shift

throughout our empirical studies, and the H and R tests are very insensitive

to the scale difference. The BG test, which requires the existence of the

second moment, performs much better when d = 30 than when d = 2. In

general, our proposed QXZ test has very satisfactory power performances

in the presence of location shift and/or scale difference.

3.2 Applications

We compare the power performance of the aforementioned tests through

analyses of three data sets: a sonar data set, an ECG data set and a Hand

Outlines data set. The sonar data set is available at http://www.ics.

uci.edu/~mlearn/MLRepository.html, and the other two data sets are
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Table 1: The empirical sizes and powers when d = 2.
QXZ PTWZ R BMG BG BF HT H MBG

p (δ, σ2) = (0, 1.0)
30 0.045 0.052 0.051 0.050 0.052 0.044 0.052 0.051 0.042
500 0.047 0.044 0.058 0.042 0.064 0.067 0.062 0.056 0.052
2000 0.037 0.048 0.061 0.053 0.052 0.054 0.044 0.035 0.055
p (δ, σ2) = (0.25, 1.0)
30 0.193 0.053 0.147 0.102 0.052 0.141 0.005 0.236 0.077
500 0.658 0.045 0.759 0.500 0.051 0.189 0.058 0.773 0.067
2000 0.801 0.049 0.995 0.885 0.049 0.191 0.058 0.825 0.043
p (δ, σ2) = (0.15, 2.0)
30 0.354 0.537 0.099 0.129 0.289 0.424 0.365 0.315 0.604
500 0.760 0.586 0.216 0.358 0.302 0.539 0.374 0.316 0.561
2000 0.785 0.614 0.427 0.621 0.320 0.551 0.374 0.341 0.489
p (δ, σ2) = (0.0, 2.5)
30 0.437 0.797 0.102 0.155 0.398 0.533 0.599 0.296 0.803
500 0.777 0.826 0.103 0.214 0.420 0.626 0.564 0.082 0.778
2000 0.799 0.847 0.109 0.237 0.448 0.659 0.551 0.050 0.725

Table 2: The empirical sizes and powers when d = 3.
QXZ PTWZ R BMG BG BF HT H MBG

p (δ, σ2) = (0, 1.0)
30 0.042 0.063 0.055 0.052 0.049 0.050 0.056 0.032 0.052
500 0.031 0.0390 0.070 0.051 0.051 0.044 0.048 0.054 0.056
2000 0.045 0.054 0.052 0.059 0.046 0.049 0.044 0.040 0.048
p (δ, σ2) = (0.25, 1.0)
30 0.228 0.063 0.133 0.101 0.051 0.277 0.060 0.298 0.083
500 0.935 0.043 0.826 0.579 0.053 0.559 0.056 0.820 0.046
2000 0.992 0.057 0.999 0.958 0.062 0.590 0.053 0.825 0.045
p (δ, σ2) = (0.15, 2.0)
30 0.422 0.756 0.105 0.201 0.534 0.652 0.590 0.371 0.781
500 0.943 0.818 0.243 0.453 0.561 0.831 0.544 0.221 0.683
2000 0.967 0.816 0.483 0.734 0.533 0.863 0.521 0.234 0.632
p (δ, σ2) = (0.0, 2.5)
30 0.508 0.921 0.098 0.247 0.750 0.753 0.820 0.368 0.939
500 0.934 0.964 0.113 0.377 0.737 0.907 0.809 0.044 0.886
2000 0.950 0.967 0.106 0.384 0.747 0.910 0.772 0.022 0.827
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Table 3: The empirical sizes and powers when d = 30.
QXZ PTWZ R BMG BG BF HT H MBG

p (δ, σ2) = (0, 1.0)
30 0.041 0.059 0.065 0.052 0.062 0.053 0.045 0.042 0.048
500 0.057 0.051 0.040 0.045 0.061 0.039 0.049 0.040 0.055
2000 0.047 0.050 0.057 0.049 0.050 0.060 0.056 0.037 0.060
p (δ, σ2) = (0.25, 1.0)
30 0.356 0.071 0.141 0.125 0.054 0.487 0.065 0.311 0.078
500 1.000 0.079 0.840 0.788 0.055 1.000 0.066 0.928 0.067
2000 1.000 0.071 1.000 0.999 0.073 1.000 0.069 0.965 0.060
p (δ, σ2) = (0.15, 2.0)
30 0.628 1.000 0.125 0.444 1.000 0.933 1.000 0.355 1.000
500 1.000 1.000 0.271 0.998 1.000 1.000 1.000 0.000 1.000
2000 1.000 1.000 0.527 1.000 1.000 1.000 1.000 0.001 0.992
p (δ, σ2) = (0.0, 2.5)
30 0.755 1.000 0.121 0.663 1.000 0.991 1.000 0.292 1.000
500 1.000 1.000 0.126 1.000 1.000 1.000 1.000 0.000 1.000
2000 1.000 1.000 0.153 1.000 1.000 1.000 1.000 0.000 0.994

available at http://www.cs.ucr.edu/~eamonn/time_series_data/. The

sonar data contains 111 patterns obtained by bouncing sonar signals off a

metal cylinder, together with 97 patterns obtained from rocks. Each num-

ber in a 60-dimensional pattern represents the energy within a particular

frequency band integrated over a certain period of time. The ECG dataset

is a time series recorded at 96 different time points. There are 200 observa-

tions, among which 133 are labeled as normal and all the rest are labeled

as abnormal. The Hand Outlines dataset contains 1370 observations, each

of which is 2709-dimensional. In this dataset, 875 observations are labeled

as normal and 495 are labeled as abnormal.
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To compare power performances, we randomly select N observations

for each class. In other words, we choose n = m = N . We consider

N = {9, 12, 15, 18, 21} as the subsample size for the sonar dataset, N =

{6, 8, 10, 12, 14} for the ECG dataset and N = {7, 9, 11, 13, 15} for the

Hand Outlines dataset. We repeat this random selection procedure 500

times and report the empirical power of all tests at the significance level

α = 0.05 in Table 4. Our proposed QXZ test performs much better than

its competitors in the sonar data set for N ≥ 9 and in the ECG data

set for N ≥ 6. In the Hand Outlines data set, the BF test has the best

performance, closely followed by the PTWZ, H and our proposed QXZ tests.

In all these applications, the HT and BG tests are the least powerful.

4. Concluding Remarks

In this paper we propose a robust and fully nonparametric two-sample test.

Our proposed test is a generalization of the classic Cramér-von Mises test

and can be readily used in high dimensions. It also inherits the advantages

of the Cramér-von Mises test in that our proposed test requires no moment

condition on the random samples and is robust to the presence of outliers

and extreme values. More importantly, the null distribution of our proposed

test statistic is asymptotically standard normal, regardless of the relation
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Table 4: The powers of all tests for a given size of random samples in the

analysis of the sonar dataset, ECG dataset and Hand Outlines dataset.
QXZ PTWZ R BMG BG BF HT H MBG

N sonar dataset
9 0.572 0.140 0.232 0.070 0.114 0.230 0.130 0.194 0.162
12 0.720 0.146 0.382 0.194 0.116 0.296 0.130 0.252 0.234
15 0.886 0.216 0.500 0.288 0.156 0.456 0.156 0.452 0.374
18 0.952 0.236 0.658 0.468 0.200 0.548 0.164 0.582 0.494
21 0.980 0.280 0.792 0.526 0.204 0.646 0.216 0.706 0.640

ECG dataset
6 0.658 0.612 0.192 0.326 0.624 0.628 0.358 0.558 0.626
8 0.784 0.722 0.154 0.606 0.738 0.740 0.478 0.736 0.768
10 0.892 0.852 0.736 0.538 0.830 0.876 0.592 0.886 0.892
12 0.970 0.938 0.642 0.798 0.930 0.944 0.710 0.936 0.944
14 0.976 0.950 0.930 0.904 0.948 0.960 0.778 0.968 0.966

Hand Outlines dataset
7 0.648 0.662 0.420 0.308 0.598 0.702 0.362 0.550 0.594
9 0.808 0.806 0.330 0.466 0.690 0.834 0.584 0.698 0.730
11 0.888 0.930 0.194 0.682 0.834 0.944 0.656 0.834 0.856
13 0.926 0.938 0.590 0.780 0.880 0.954 0.762 0.902 0.912
15 0.960 0.966 0.458 0.686 0.916 0.978 0.836 0.948 0.946

between the sample sizes and the dimension of the two random samples.

Therefore, our proposed two-sample test is computationally feasible in that

no bootstrap or re-sampling technique is required to decide critical values

in very large-scale two-sample test problems.

We use the Cramér-von Mises distances instead of using the Kolmogorov-

Smirnov distances. This accommodates the U -statistic theory and allows us

to study the asymptotic behaviors of the test statistic systematically. How-

ever, how to generalize our idea of handling high-dimensional two-sample
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test problems by using the Kolmogorov-Smirnov distances is also important

and is warranted in future studies.
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