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Graph-based Two-Sample Tests for Data

with Repeated Observations

Jingru Zhang and Hao Chen

Peking University

and University of California, Davis

Abstract: In the regime of two-sample comparison, tests based on a graph con-

structed on observations by utilizing similarity information among them is gaining

attention due to their flexibility and good performances for high-dimensional/non-

Euclidean data. However, when there are repeated observations, these graph-

based tests could be problematic as they are versatile to the choice of the sim-

ilarity graph. We propose extended graph-based test statistics to resolve this

problem. We also study asymptotic properties of these extended statistics and

provide analytic formulas to approximate the p-values of the tests under finite

samples, facilitating the application of the new tests in practice. The new tests

are illustrated in the analysis of a phone-call network dataset. All tests are im-

plemented in an R package gTests.

Key words and phrases: High-dimensional data; Network data; Non-Euclidean

data; Nonparametric test; Similarity graph; Ties in distance.
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1. Introduction

Two-sample comparison is a fundamental problem in statistics and has

been extensively studied for univariate data and low-dimensional data. The

testing problem for high-dimensional data and non-Euclidean data, such as

network data, is gaining more and more attention in this big-data era. In the

parametric domain, for multivariate data, many endeavors have been made

in testing whether the means are the same (for example Srivastava and Du

(2008)) and whether the covariance matrices are the same (see for examples

Schott (2007); Srivastava and Yanagihara (2010); Xia et al. (2015)). To

make applicability more extensive, many semi-parametric methods were

proposed to test the means or covariance matrices (see for examples Bai and

Saranadasa (1996); Chen et al. (2010); Cai et al. (2014); Xu et al. (2016); Li

and Chen (2012); Cai et al. (2013)) by adding some conditions on moment

and/or covariance instead of the assumption of underlying distributions.

These parametric or semi-parametric methods provide useful tools when

the data follow their assumptions, but they are often restrictive and not

robust enough if model assumptions are violated.

In the nonparametric domain, efforts had been made in extending the

Kolmogorov-Smirnov test, the Wilcoxon rank test, and the Wald-Wolfowitz

runs test to high-dimensional data (see Chen and Friedman (2017) for a re-
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view). Among these efforts, the first practical test was proposed by Fried-

man and Rafsky (1979) as an extension of the Wald-Wolfowitz runs test

to multivariate data. They pooled the observations from the two samples

together and constructed a minimum spanning tree (MST), which is a span-

ning tree that connects all observations with the sum of the distances of the

edges in the tree minimized. They then counted the number of edges in the

MST that connect observations from different samples, and reject the null

hypothesis of equal distribution if this count is significantly smaller than its

expectation under the null hypothesis. This test later has been extended to

other similarity graphs where observations closer in distance are more likely

to be connected than those farther in distance, such as the minimum dis-

tance pairing (MDP) in Rosenbaum (2005) and the nearest neighbor graph

(NNG) in Schilling (1986) and Henze (1988). We call this type of tests

the edge-count test for easy reference. Recently, a generalized edge-count

test and a weighted edge-count test were proposed to address the problems

of the edge-count test under scale alternatives and under unequal sample

sizes (Chen and Friedman, 2017; Chen et al., 2018). Since these tests and

the edge-count test are all based on a similarity graph, we call them the

graph-based tests. These tests have many advantages: They can be applied

to data with arbitrary dimension and to non-Euclidean data, and exhibit
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high power in detecting a variety of differences in distribution – they have

higher power than likelihood-based tests when the dimension of the data is

moderate to high for practical sample sizes, from hundreds to millions.

However, the graph-based tests could be problematic for data with re-

peated observations. All these tests rely on a similarity graph constructed

on the observations. When there are repeated observations, the similarity

graph is not uniquely defined based on common optimization criteria, such

as the MST or the MDP. Indeed, several graphs could be equally “optimal”

in terms of the criterion. The results of the graph-based tests can vary a

lot under the different similarity graphs, leading to conflicting conclusions

(see Table 1 for a snapshot of the results of the generalized and weighted

edge-count tests on a network data set; details in Supplement ??).

Table 1: Test statistics and their corresponding p-values (in parentheses,

bold if < 0.05) of the generalized edge-count test (S) and the weighted

edge-count test (Zw) under four 9-MSTs on the phone-call network data.

MST #1 #2 #3 #4
S 6.86 (0.032) 3.92 (0.141) 7.89 (0.019) 3.90 (0.142)
Zw 2.61 (0.004) 1.95 (0.025) -1.13 (0.871) 0.26 (0.396)

In this work, we seek ways to effectively summarize the tests over these

equally “optimal” similarity graphs. As we will show in Section 2.2, it is

easy to have more than a million equally optimal similarity graphs when
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there are repeated observations, so manually examining the results from

each of these graphs is usually not feasible. Chen and Zhang (2013) studied

the problem of extending the original edge-count test to deal with repeated

observations. However, due to the quadratic terms in the generalized edge-

count test statistic, directly extending the statistic to deal with repeated

observations following the approach in Chen and Zhang (2013) is not fea-

sible (details in Section 3). On the other hand, we could first extend the

basic quantities in these graph-based test statistics so that they can handle

repeated observations and then define extended generalized/weighted edge-

count test statistics in a way similar to how they were designed at the first

place for continuous data. Following this line, we show the following results

in the paper:

(1) The extended weighted edge-count test statistic constructed in this way

adopts the same weights as the weighted edge-count test to resolve the

variance boosting problem of the edge-count test when the sample sizes

of the two samples are different;

(2) The extended generalized edge-count test statistic can be well defined in

this way, and we further show that it can be decomposed into the sum-

mation of squares of two asymptotically independent normal random

variables, allowing for fast approximate p-value computation.
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Based on (2), we further study an extended max-type edge-count test that

builds upon the two asymptotically independent normal random variables.

The tests are all implemented in an R package gTests.

The rest of the paper is organized as follows. Section 2 provides no-

tations used in the paper and preliminary setups. Section 3 discusses in

details the extended weighted, generalized, and max-type edge-count tests.

The performance of these new tests is examined in Section 4 and their

asymptotic properties are studied in Section 5. Section 6 illustrates the

new tests in the analysis of the phone-call network dataset.

2. Notations and preliminary setups

2.1 Notations

Among the N observations, we assume there are K distinct values and

index them by 1, 2, · · · , K. Basic notations are summarized in Table 2.

Table 2: Data with repeated observations summarized by distinct values.

Distinct value index 1 2 · · · K Total
Sample 1 n11 n12 · · · n1K n1

Sample 2 n21 n22 · · · n2K n2

Total m1 m2 · · · mK N

Here, mi = n1i + n2i, i = 1, · · · , K; ni =
∑K

k=1 nik, i = 1, 2; N = n1 + n2.

Let d(i, j) be the distance between values indexed by i and j. For an
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undirected graph G, let |G| be the number of edges in G. For any node i

in the graph G, EGi denotes the set of edge(s) in G that contains node i.

We do not impose any distributional assumption on the data and work

under the permutation null distribution, which places n1!n2!/N ! probability

on each of the N !/(n1!n2!) ways of assigning the sample labels such that

sample 1 has n1 observations. Without further specification, we use E, Var,

Cov, Cor to denote the expectation, variance, covariance and correlation

under the permutation null distribution.

2.2 Similarity graphs on observations

Let C0 be a similarity graph constructed on the distinct values. It could

be the MST, the MDP, or the NNG on the distinct values if it can be

uniquely defined. If the common optimization rules do not result in an

unique solution, we adopt the same treatment as in Chen and Zhang (2013)

by using the union of all MSTs. Figure 1 is a simple example. It can be

shown that this union of all MSTs on the distinct values can be obtained

through Algorithm 1. For example, for the data in Figure 1, distinct values

a and b, a and c, b and c, d and e are connected in the first step, then

b and d, c and e are connected in the second step. We call this graph

the nearest neighbor link (NNL) for easy reference. If one wants denser
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Figure 1: There are five distinct values (a, b, c, d, e) denoted by the circles.

For some distinct values, there are more than one observations, denoted by

the more than one point in the circle. The distance between the distinct

values are denoted on the edges. It is clear that there are six MSTs on the

distinct values (three of them are presented on the left) and the last plot is

the union of the six MSTs on the distinct values.

graphs, k-NNL could be considered, which is the union of the 1st,· · · , kth

NNLs, where the jth (j > 1) NNL is a graph generated by Algorithm 1

subject to the constraint that this graph does not contain any edge in the

1st,· · · , (j − 1)th NNLs.

Then, a graph on observations initiated from C0 can be defined in the

following way: First, for each pair of edges (i, j) ∈ C0, randomly choose

an observation with value indexed by i and another observation with value

indexed by j, connect these two observations; then, for each i, if there are

more than one observation with value indexed by i, connect these observa-

tions by a spanning tree (any edge in such a spanning tree has distance 0).

Let GC0 be the set of all graphs initiated from C0.
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Algorithm 1 Generate a NNL

For each distinct value indexed by i (i = 1, · · · , K), let dmin(i) =

min{d(i, j) : j 6= i} and N(i) = {j : d(i, j) = dmin(i)}. Connect i to

each element in N(i).

while Not all distinct values are in one component do

Let U be one component, let dmin(U) = min{d(i, j) : i ∈ U , j /∈ U} and

N(U) = {(i, j) : d(i, j) = dmin(U), i ∈ U , j /∈ U}. Connect each pair of

distinct values indexed by i and j if (i, j) ∈ N(U).

end while

For the example in Figure 1, since the MST on the distinct values is not

uniquely defined, let C0 be the NNL. There are 15, 552(= 12 · 33 · 43 · 32 · 12)

different ways in assigning the 6 edges in C0 to corresponding observations

in each circle. In addition, by Cayley’s lemma, for the observations equal

to the same value, there are 1, 3, 16, 3 and 1 spanning trees, respectively.

Therefore, we have 2, 239, 488(= 15, 552×3×16×3) graphs in GC0 . Figure

2 plots four of these graphs for illustration.

2.3 A brief review of generalized and weighted edge-count tests

For any graph G, let R0,G be the number of edges in G that connect ob-

servations from different samples, R1,G be the number of edges in G that
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Figure 2: Four graphs, out of 2,239,488, on observations initiated from the

NNL on distinct values.

connect observations from sample 1, and R2,G be that for sample 2. Here,

R0,G is the test statistic for the original edge-count test. In Chen and Fried-

man (2017), the authors noticed that, the edge-count test (R0,G) has low or

even no power for scale alternatives when the dimension is moderate to high

unless the sample size is extremely large due to the curse-of-dimensionality.

To solve this problem, they considered the numbers of within-sample edges

of the two samples separately and proposed the following generalized edge-

count statistic

SG =

(
R1,G − E(R1,G)

R2,G − E(R2,G)

)T

Σ−1
G

(
R1,G − E(R1,G)

R2,G − E(R2,G)

)
, (2.1)

where ΣG = Var(
(
R1,G

R2,G

)
).

Both the edge-count test and the generalized edge-count test are sug-

gested to perform on a similarity graph that is denser than the MST, such

as 5-MST, to boost their power (Friedman and Rafsky, 1979; Chen and
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Friedman, 2017). Here, a k-MST is the union of the 1st,· · · , kth MSTs,

where the 1st MST is the MST and the jth (j > 1) MST is a spanning tree

that connects all observations such that the sum of the edges in the tree

is minimized under the constraint that it does not contain any edge in the

1st,· · · , (j−1)th MSTs. However, Chen et al. (2018) found that, for k-MST

(k > 1), the edge-count test (R0,G) behaves weirdly when the two sample

sizes are different. For example, consider the testing problem that the two

underlying distributions are Nd(0, Id) vs Nd(µ, Id) (‖µ‖2 = 1.3, d = 50),

and two scenarios (i) n1 = n2 = 50 and (ii) n1 = 50, n2 = 100. The edge-

count test has lower power in (ii) compared to that in (i) even though there

are more observations in (ii). This is due to a variance boosting issue under

unbalanced sample sizes (details see in Chen et al. (2018)). To solve this

issue, Chen et al. (2018) proposed a weighted edge-count test by inversely

weighting the within-sample edges by the sample sizes

Rw,G =
n2 − 1

n1 + n2 − 2
R1,G +

n1 − 1

n1 + n2 − 2
R2,G (2.2)

with the reasoning that the sample with a larger number of observations

is more likely to be connected within the sample if all other conditions are

the same and thus shall be down-weighted. This weighted edge-count test

statistic addressed the variance boosting issue and works well for unequal

sample sizes. Indeed, Var(Rw,G) ≤ Var((1−p)R1,G+pR2,G) for any p ∈ [0, 1].
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2.4 Extended basic quantities in the graph-based framework

In Chen and Zhang (2013), the authors considered two ways to summarize

the test statistics for R0,G:

(1) averaging: R0,(a) = 1
|GC0

|
∑

G∈GC0
R0,G where |GC0 | is the number of

graphs in GC0 ;

(2) union: R0,(u) = R0,ḠC0
where ḠC0 = ∪{G ∈ GC0}, i.e., if observations

u and v are connected in at least one of the graphs in GC0 , then these

two observations are connected in ḠC0 . In the following, we sometimes

use Ḡ instead of ḠC0 when there is no confusion for simplicity.

Since it is easy to have a lot of graphs in GC0 , it is many times not feasible

to compute these two quantities directly. Chen and Zhang (2013) derived

analytic expressions for computing these two quantities in terms of the

summary quantities in Table 2 and C0:

R0,(a) =
K∑
k=1

2n1kn2k

mk

+
∑

(u,v)∈C0

n1un2v + n1vn2u

mumv

,

R0,(u) =
K∑
k=1

n1kn2k +
∑

(u,v)∈C0

(n1un2v + n1vn2u).

Similarly, we could defined R1,(a), R1,(u), R2,(a) and R2,(u), and their

analytic expressions in terms of the summary quantities in Table 2 and C0

are given in Lemma 1.
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Lemma 1. The analytic expressions for R1,(a), R1,(u), R2,(a) and R2,(u) are:

R1,(a) ≡
1

|GC0|
∑
G∈GC0

R1,G =
K∑
u=1

n1u(n1u − 1)

mu

+
∑

(u,v)∈C0

n1un1v

mumv

,

R1,(u) ≡ R1,ḠC0
=

K∑
u=1

n1u(n1u − 1)

2
+

∑
(u,v)∈C0

n1un1v,

R2,(a) ≡
1

|GC0|
∑
G∈GC0

R2,G =
K∑
u=1

n2u(n2u − 1)

mu

+
∑

(u,v)∈C0

n2un2v

mumv

,

R2,(u) ≡ R2,ḠC0
=

K∑
u=1

n2u(n2u − 1)

2
+

∑
(u,v)∈C0

n2un2v.

The notations {nik}i=1,2; k=1,...,K , {mk}k=1,...,K are declared in Table 2.

These analytic expressions can be obtained through similar arguments in

Chen and Zhang (2013) and the proof is omitted here.

3. Extended graph-based tests

Since the generalized edge-count test could cover a wider range of alterna-

tives than the original edge-count test (Chen and Friedman, 2017), we would

like to have the generalized edge-count test statistic well defined when there

are repeated observations. For the generalized edge-count test statistic,

SG =

(
R1,G − E(R1,G)

R2,G − E(R2,G)

)T

Σ−1
G

(
R1,G − E(R1,G)

R2,G − E(R2,G)

)
, one straightforward

way of defining the average statistic would be 1
|GC0

|
∑

G∈GC0
SG. However,

ΣG varies for different G’s in GC0 , making the averaging over SG’s diffi-

cult to move forward. Even consider the simplified version that ΣG is fixed
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over G’s in GC0 , the quadratic terms in SG also make the averaging ana-

lytically intractable. To view the problem more straightforwardly, notice

that SG can be written as SG =

(
Rw,G−E(Rw,G)√

Var(Rw,G)

)2

+

(
Rd,G−E(Rd,G)√

Var(Rd,G)

)2

, where

Rw,G = n2−1
N−2

R1,G+ n1−1
N−2

R2,G, Rd,G = R1,G−R2,G. Let EGC0
and VarGC0

be the

expectation and variance defined on the sample space GC0 that places prob-

ability 1/|GC0| on each G ∈ GC0 . Using the first component as an example:

the averaging over all G ∈ GC0 is essentially EGC0

((
Rw,G−E(Rw,G)√

Var(Rw,G)

)2
)

=(
EGC0

(
Rw,G−E(Rw,G)√

Var(Rw,G)

))2

+ VarGC0

(
Rw,G−E(Rw,G)√

Var(Rw,G)

)
. Here,

Var(Rw,G) = n1n2(n1−1)(n2−1)
N(N−1)(N−2)(N−3)

(
|G| −

∑N
i=1 |EGi |2
N−2

+ 2|G|2
(N−1)(N−2)

)
contains

∑N
i=1 |EGi |2, which varies across different G’s in GC0 . So it is already

difficult to derive analytic tractable expression even only for EGC0

(
Rw,G−E(Rw,G)√

Var(Rw,G)

)
.

To get around the issues, we extend the generalized and weighted edge-count

tests based on how they were introduced in Chen and Friedman (2017) and

Chen et al. (2018), respectively, through the extended quantities derived in

Section 2.4. In the following, we first discuss the extended weighted edge-

count test, and then the extended generalized edge-count test. The key

components in the extended generalized edge-count test further compose

the extended max-type edge-count test.
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3.1 Extended weighted edge-count tests

As mentioned in Section 2.3, for data without repeated observations, there

is a variance boosting problem for the edge-count test under unbalanced

sample sizes. To solve the issue, Chen et al. (2018) proposed a weighted

edge-count test Rw,G (see definition in (2.2)). When there are repeated

observations, the above problem also exists for the extended edge-count

test (see Supplement ??). Following the similar idea, we could weight R1,(a)

and R2,(a), and R1,(u) and R2,(u) to solve the problem. Under the union

approach, the statistics R1,(u) and R2,(u) are simplified versions of R1 and

R2 defined on Ḡ, so the weights should be the same, i.e.,

Rw,(u) = (1− p̂)R1,(u) + p̂R2,(u) with p̂ =
n1 − 1

N − 2
. (3.1)

However, for the average approach, the weights are not this straight-

forward. The following theorem shows that the weights for the average

approach should also be the same.

Theorem 1. For all test statistics of the form aR1,(a) + bR2,(a), a+ b = 1,

a, b > 0, we have Var(aR1,(a) + bR2,(a)) ≥ Var(Rw,(a)), where Rw,(a) = (1 −

p̂)R1,(a) + p̂R2,(a) with p̂ = n1−1
N−2

.

Proof. It is not hard to see that the minimum is achieved at

p̂ =
Var(R1,(a))− Cov(R1,(a), R2,(a))

Var(R1,(a)) + Var(R2,(a))− 2Cov(R1,(a), R2,(a))
. (3.2)
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Plugging Var(R1,(a)), Var(R2,(a)) and Cov(R1,(a), R2,(a)) provided in Sup-

plement ?? into (3.2), we have p̂ = n1−1
N−2

.

In the following lemma, we provide exact analytic formulas to the expec-

tation and variance of Rw,(u) and Rw,(a), respectively, so that both extended

weighted edge-count tests can be standardized easily. This lemma can be

proved straightforwardly by plugging the analytic expressions of E(R1,(a)),

E(R2,(a)), Var(R1,(a)), Var(R2,(a)), Cov(R1,(a), R2,(a)), E(R1,(u)), E(R2,(u)),

Var(R1,(u)), Var(R2,(u)) and Cov(R1,(u), R2,(u)) provided in Supplement ??.

Lemma 2. The expectation and variance of Rw,(u) and Rw,(a) under the

permutation null are:

E(Rw,(u)) = |Ḡ| (n1−1)(n2−1)
(N−1)(N−2)

,

Var(Rw,(u)) = n1(n1−1)n2(n2−1)
N(N−1)(N−2)(N−3)

{
|Ḡ| − 1

N−2

N∑
i=1

|E Ḡi |2 + 2
(N−1)(N−2)

|Ḡ|2
}
,

E(Rw,(a)) = (N −K + |C0|) (n1−1)(n2−1)
(N−1)(N−2)

,

Var(Rw,(a)) = n1(n1−1)n2(n2−1)
N(N−1)(N−2)(N−3)

{
− 4

N−2

(∑
u

(|EC0
u |−2)2

4mu
− (|C0|−K)2

N

)

+ 2(K −
∑
u

1
mu

) +
∑

(u,v)∈C0

1
mumv

− 2
N(N−1)

(|C0|+N −K)2

}
,

where |E Ḡi | = mu − 1 +
∑
VC0
u
mv if observation i is of value indexed by u,

and |Ḡ| =
∑K

u=1mu(mu − 1)/2 +
∑

(u,v)∈C0
mumv. Here, VC0

u is the set of

distinct values that connect to the distinct value indexed by u in C0.
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3.2 Extended generalized edge-count tests

As we discussed earlier, it is technically intractable to derive the analytic

expression for the average of SG’s for G ∈ GC0 . Here, we define extended

generalized edge-count test statistic based on how the statistic was intro-

duced in Chen and Friedman (2017) through the extended basic quantities:

S(a) =

(
R1,(a) − E(R1,(a))

R2,(a) − E(R2,(a))

)T

Σ−1
(a)

(
R1,(a) − E(R1,(a))

R2,(a) − E(R2,(a))

)
, (3.3)

S(u) =

(
R1,(u) − E(R1,(u))

R2,(u) − E(R2,(u))

)T

Σ−1
(u)

(
R1,(u) − E(R1,(u))

R2,(u) − E(R2,(u))

)
, (3.4)

where Σ(a) = Var(
(
R1,(a)

R2,(a)

)
), Σ(u) = Var(

(
R1,(u)

R2,(u)

)
). With similar arguments in

Chen and Friedman (2017), S(a) and S(u) defined in this way could deal

with location and scale alternatives. More studies on the performance of

the tests are in Section 4. Similar to SG, S(a) and S(u) defined above can also

be decomposed to components that are asymptotically independent under

mild conditions, respectively (details see Theorems 3 and 4).

Theorem 2. The extended generalized edge-count test statistics can be ex-

pressed as

S(a) =

(
Rw,(a) − E(Rw,(a))√

Var(Rw,(a))

)2

+

(
Rd,(a) − E(Rd,(a))√

Var(Rd,(a))

)2

, (3.5)

S(u) =

(
Rw,(u) − E(Rw,(u))√

Var(Rw,(u))

)2

+

(
Rd,(u) − E(Rd,(u))√

Var(Rd,(u))

)2

, (3.6)
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where Rw,(a), E(Rw,(a)), Var(Rw,(a)), Rw,(u), E(Rw,(u)) and Var(Rw,(u)) are

provided in Section 3.1, and Rd,(a) = R1,(a) − R2,(a), Rd,(u) = R1,(u) − R2,(u)

with their expectations and variances provided below:

E(Rd,(a)) = (N −K + |C0|)n1−n2

N
,

Var(Rd,(a)) = 4n1n2

N(N−1)

{∑
u

(|EC0
u |−2)2

4mu
− (|C0|−K)2

N

}
,

E(Rd,(u)) = |Ḡ|n1−n2

N
,

Var(Rd,(u)) = n1n2

N(N−1)

{
N∑
i=1

|E Ḡi |2 − 4
N
|Ḡ|2

}
.

Theorem 2 is proved in Supplement ??.

3.3 Extended max-type edge-count test statistics

Let Zw,(a) =
Rw,(a)−E(Rw,(a))√

Var(Rw,(a))
, Zd,(a) =

Rd,(a)−E(Rd,(a))√
Var(Rd,(a))

, Zw,(u) =
Rw,(u)−E(Rw,(u))√

Var(Rw,(u))
,

and Zd,(u) =
Rd,(u)−E(Rd,(u))√

Var(Rd,(u))
. Under some mild conditions, Zw,(a) and Zd,(a)

are asymptotically independent with their joint distribution bivariate nor-

mal, and same for Zw,(u) and Zd,(u) (details see Theorems 3 and 4). Here,

we define the extended max-type edge-count statistics:

M(a)(κ) = max(κZw,(a), |Zd,(a)|), and M(u)(κ) = max(κZw,(u), |Zd,(u)|).

As the following arguments hold the same for the averaging and the

union statistics, we omit subscripts (a) and (u) for simplicity. From the

definition of the extended max-type edge-count test statistic, we can see

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



Graph-based Two-Sample Tests 19

that it makes use of both Zw and Zd, and would be similar to SG and

effective to both location and scale alternatives. Also, the introduction of

κ in the definition makes it more flexible than SG.

We here briefly discuss the choice of κ. It is easy to see that the rejection

region {M(κ) ≥ β} is equivalent to {Zw ≥ β
κ

or |Zd| ≥ β}. Let P(Zw ≥

βw) = α1 and P(|Zd| ≥ βd) = α2, and define γ = α1

α2
. Based on the

asymptotic distribution of (Zw, Zd)
T derived in Section 5, the relationship

between γ and κ with the overall type I error rate controlled at 0.05 is

shown in Table 3.

Table 3: Relationship between γ and κ.

γ 8 4 2 1 1/2 1/4 1/8
κ 1.63 1.47 1.31 1.14 1 0.88 0.79

To check how the choice of κ affects the performance of the test, we ex-

amine the test on 100-dimensional multivariate normal distributionsNd(µ1,Σ1)

and Nd(µ2,Σ2) that are different in mean and/or variance. Three sce-

narios are considered and the detailed results are presented in Supple-

ment ??. Based on the simulation results, if there is no prior knowledge

about the type of difference between the two distributions, we recommend

κ = {1.31, 1.14, 1} for M(κ).
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3.4 Testing rule

We summarize the reject regions for the extended statistics in Table 4,

which are similar to their continuous counterparts. Since the testing rule

is same for the averaging and the union statistics, we omit subscripts (a)

and (u) for simplicity. In the table, rs, rw and β(κ) are the critical values,

which can be obtained by drawing random permutations or through the

asymptotic distributions of the extended statistics (see Section 5).

Table 4: Reject regions for the extended statistics.

Statistic Reject region
Extended generalized edge-count tests S ≥ r2

s

Extended weighted edge-count tests Rw−E(Rw)√
Rw

≥ rw
Extended max-type edge-count tests M(κ) ≥ β(κ)

The schematic plots on the reject regions in terms of Zw and Zd are in

Figure 3. We can see that these statistics are closely related. More detailed

comparisons on these statistics are presented in following sections.

Zw

Zd

rs rw

Zd

Zw
Zw

Zd

−βd

βd

βw

Zd = κZw

Figure 3: Rejection regions (in gray) of SG, Rw,G, M(κ). Left: {SG ≥ r2
s};

middle: {Zw ≥ rw}; right: {M(κ) ≥ β(κ)} (βd = κβw = β(κ)).
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4. Performance of the extended test statistics

In this section, we study the performance of various tests through simulation

studies. In Section 4.1, we study the preference ranking problem, where two

groups of people are asked to rank six objects, and we test whether the two

samples have the same preference. In Section 4.2, we compare the proposed

tests on data directly generated from the multinomial distribution. Three

existing tests are included in the comparison: the Pearson’s Chi-square

test (denoted as “Pearson”), the deviance test (denoted as “LR”), and the

kernel two-sample test in Gretton et al. (2012) (denoted as “Ker”).

4.1 Preference ranking problem

We consider the following two data generating mechanisms.

(i) Data are genearated from the probability model shown in Section 3.1

Pθ,η(ζ) =
1

ψ(θ)
exp{−θd(ζ, η)}, ζ, η ∈ Ξ, θ ∈ R, (4.1)

where Ξ be the set of all permutations of the set {1,2,3,4,5,6} and d(·, ·)

is a distance function such as Kendall’s or Spearman’s distance. The

two samples are generated from Pθ1,η1(·) and Pθ2,η2(·), respectively.

(ii) Let D1 and D2 be two different subsets of all possible rankings. The

two samples are generated from the uniform distribution on D1 and
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D2, respectively.

When Kendall’s or Spearman’s distance is used for d(·, ·), there are in

general ties in the distance matrix, which lead to non-unique MSTs. Hence,

we apply 3-NNL to construct the graph on distinct values. The results for

Kendall’s and Spearman’s distance are very similar, so we present the results

based on the Spearman’s distance in the following.

We compare the following statistics: R0,(a), R0,(u), S(a), S(u), Rw,(a),

Rw,(u), M(a)(κ) and M(u)(κ) (κ = 1.31, 1.14, 1) with Pearson’s Chi-square

test, the deviance test and the kernel test (Gretton et al., 2012) in six

scenarios (Scenarios 1–3 under (i) and Scenarios 4–6 under (ii)) with bal-

anced and unbalanced sample sizes. The settings with both different θ and

different η under (i) are also considered and the results can be found in Sup-

plement ??. In each scenario, the specific parameters under each scenario

are chosen such that the tests have moderate power to be comparable.

• Scenario 1 (Only η differs) : η1 = {1, 2, 3, 4, 5, 6}, η2 = {1, 2, 5, 4, 3, 6},

θ1 = θ2 = 5 with balanced (n1 = n2 = 100) and unbalance (n1 =

100, n2 = 400) sample sizes.

• Scenario 2 (Only θ differs with θ1 > θ2) : η1 = η2 = {1, 2, 3, 4, 5, 6},

θ1 = 5.5, θ2 = 4 with balanced (n1 = n2 = 300) and unbalance

(n1 = 300, n2 = 600) sample sizes.
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• Scenario 3 (Only θ differs with θ1 < θ2) : η1 = η2 = {1, 2, 3, 4, 5, 6},

θ1 = 4, θ2 = 5.5 with balanced (n1 = n2 = 300) and unbalance

(n1 = 300, n2 = 600) sample sizes.

• Scenario 4 (Different supports): D1 = {ζ ∈ Ξ : ζ does not begin with No.6},

D2 = {ζ ∈ Ξ : ζ does not end with No.1} with balanced (n1 = n2 =

150) and unbalance (n1 = 150, n2 = 250) sample sizes.

• Scenario 5 (Different supports): D1 = {ζ ∈ Ξ : ζ ranks No.1 before No.5},

D2 = {ζ ∈ Ξ : ζ ranks No.1 before No.6} with balanced (n1 = n2 =

180) and unbalance (n1 = 180, n2 = 220) sample sizes.

• Scenario 6 (Different supports): D1 = {ζ ∈ Ξ : ζ does not begin with No.6

and does not end with No.1}, D2 = {ζ ∈ Ξ : ζ ranks No.1 or No.2 in top 3}

with balanced (n1 = n2 = 150) and unbalance (n1 = 150, n2 = 250)

sample sizes.

The results are presented in Tables 5 where the power is estimated by the

fraction of trials (out of 1000) that the test rejects the null hypothesis at

0.05 significance level. Those above 95 percentage of the best power under

each setting are in bold.

We first check results for the data generated by mechanism (i). We see

that Pearson’s Chi-square test, the deviance test, and the kernel two-sample

test have low power under all three scenarios. For the extended statistics,

S(u) and M(u) work well for all scenarios, while the others show obvious
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Table 5: Estimated power of the tests under the six scenarios denoted by A1–A6
with (a) denoting the balanced setting and (b) unbalanced setting.

A1(a)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson
0.866 0.759 0.866 0.837 0.815 0.780 0.194 0.197
R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker
0.890 0.799 0.890 0.862 0.847 0.816 0.198

A1(b)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson
0.654 0.880 0.955 0.942 0.930 0.910 0.469 0.469
R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker
0.885 0.965 0.984 0.977 0.970 0.962 0.312

A2(a)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson
0.291 0.200 0.291 0.265 0.243 0.211 0.109 0.107
R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker
0.442 0.775 0.442 0.749 0.784 0.809 0.098

A2(b)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson
0.526 0.332 0.352 0.361 0.349 0.335 0.017 0.014
R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker

0 0.900 0.568 0.885 0.921 0.933 0.158

A3(a)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson
0.297 0.217 0.297 0.278 0.269 0.240 0.107 0.116
R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker
0.464 0.780 0.464 0.754 0.791 0.820 0.092

A3(b)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson
0.062 0.401 0.387 0.420 0.421 0.409 0.397 0.430
R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker
0.962 0.884 0.582 0.867 0.903 0.920 0.113

A4(a)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson
0.776 0.626 0.776 0.741 0.705 0.657 0.205 0.206
R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker
0.700 0.530 0.700 0.647 0.623 0.584 0.187

A4(b)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson
0.865 0.791 0.914 0.876 0.850 0.825 0.300 0.306
R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker
0.812 0.688 0.818 0.779 0.761 0.732 0.216

A5(a)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson
0.820 0.669 0.820 0.770 0.727 0.690 0.823 0.825
R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker
0.656 0.525 0.656 0.620 0.573 0.537 0.742

A5(b)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson
0.909 0.768 0.892 0.861 0.842 0.800 0.895 0.899
R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker
0.769 0.640 0.730 0.708 0.683 0.659 0.794

A6(a)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson
0.892 0.755 0.892 0.857 0.827 0.790 0.256 0.260
R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker
0.823 0.691 0.823 0.782 0.752 0.712 0.233

A6(b)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson
0.940 0.902 0.970 0.958 0.943 0.925 0.352 0.350
R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker
0.891 0.822 0.930 0.903 0.881 0.859 0.291
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strengthes and weaknesses for different settings. For example, under the

unbalanced setting (n1 = 300, n2 = 600), R0,(u) has no power under Scenario

2, R0,(a) has very low power under Scenario 3, and both Rw,(a) and Rw,(u) do

not perform well when only θ differs (Scenarios 2 and 3). Overall, M(u)(κ)

perform best among all the tests. When θ differs, S(a) and S(u) provide

similar results to M(a)(κ) and M(u)(κ), respectively, but they perform worse

than M(a)(κ) and M(u)(κ), respectively, when only η differs (Scenario 1). In

general, the tests based on “union” are slightly better than their “averaging”

counterparts (except for some cases for R0).

For the data generated by mechanism (ii), we see that all tests are doing

pretty well under Scenario 5. For the other two scenarios, 4 and 6, Pearson’s

Chi-square test, the deviance test, and the kernel two-sample test have low

power. The proposed tests perform similarly well under both scenarios with

those based on “averaging” slightly better than their “union” counterparts.

4.2 Multinomial distribution

Here, we generate data from d-dimensional multinomial distribution. We

consider d = 100, d = 1, 000 and d = 10, 000. Sample 1 consists of n1

observations randomly drawn from F1 = Mult(M1, p1), i = 1, · · · , n1 and

sample 2 consists of n2 observations from F2 = Mult(M2, p2), i = 1, · · · , n2.
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Here, M1 and M2 are the total counts of each observation in sample 1 and

sample 2, respectively, and p1 and p2 are compositions. We set M1 = M2 =

3, and consider the following choices of pi’s. Let p1 = (a1, a2 . . . , ad)
T , p2 =

(b1, b2, . . . , bd)
T . Different choices of pi’s are considered.

1) d = 100

Scenario 1 (B1): ai = 0.01, i = 1, . . . , d; bi =

{
0.1 i = 1

0.9/99 i ≥ 2
.

Scenario 2 (B2): ai =

{
0.002 i ≤ 70

0.86/30 i ≥ 71
; bi =

{
0.018 i ≤ 30

0.46/70 i ≥ 31
.

2) d = 1, 000

Scenario 1 (C1): ai = 0.001, i = 1, . . . , d; bi =

{
0.085 i = 1

0.915/999 i ≥ 2
.

Scenario 2 (C2): ai =

{
0.5/970 i ≤ 970

0.5/30 i ≥ 971
; bi =

{
0.6/30 i ≤ 30

0.4/970 i ≥ 31
.

3) d = 10, 000

Scenario 1 (D1): ai = 0.0001, i = 1, . . . , d; bi =

{
0.18 i = 1

0.82/9999 i ≥ 2
.

Scenario 2 (D2): ai =

{
0.4/9970 i ≤ 9970

0.6/30 i ≥ 9971
; bi =

{
0.4/30 i ≤ 30

0.6/9970 i ≥ 31
.

For each scenario, we examine both balanced setting n1 = n2 = 120 and

unbalanced setting n1 = 120, n2 = 200. Under each setting, we randomly

generated 1,000 data sets and estimated power under 0.05 significance level
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Table 6: Estimated power of the tests under scenarios B1, B2, C1, C2, D1,
D2 with (a) denoting the balanced setting and (b) unbalanced setting.

B1(a)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson
0.637 0.560 0.637 0.600 0.600 0.570 0 0
R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker
0.633 0.507 0.633 0.590 0.557 0.547 0.313

B1(b)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson
0.023 0.754 0.780 0.777 0.770 0.746 0.002 0.002
R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker
0.030 0.734 0.788 0.773 0.761 0.743 0.063

B2(a)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson
0.050 0.822 0.050 0.550 0.620 0.674 0.004 0.004
R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker
0.044 0.774 0.044 0.366 0.436 0.486 0.364

B2(b)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson
0.660 0.878 0.168 0.726 0.754 0.768 0.012 0.012
R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker
0.404 0.866 0.164 0.650 0.722 0.762 0.646

C1(a)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson
0.773 0.766 0.773 0.768 0.766 0.758 0 0
R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker
0.773 0.766 0.773 0.768 0.766 0.758 0.675

C1(b)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson
0.002 0.942 0.948 0.944 0.944 0.942 0 0
R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker
0.002 0.942 0.948 0.944 0.944 0.942 0.550

C2(a)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson
0.604 0.823 0.604 0.705 0.726 0.734 0.001 0.001
R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker
0.603 0.826 0.603 0.705 0.722 0.730 0.660

C2(b)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson
0.006 0.921 0.245 0.763 0.807 0.824 0 0
R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker
0.006 0.921 0.242 0.758 0.801 0.821 0.656

D1(a)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson
0.699 0.715 0.699 0.716 0.712 0.713 0 0
R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker
0.700 0.715 0.700 0.716 0.712 0.713 0.664

D1(b)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson
0.227 0.936 0.923 0.930 0.930 0.933 0 0
R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker
0.304 0.936 0.923 0.930 0.930 0.933 0.528

D2(a)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson
0.075 0.877 0.075 0.608 0.649 0.677 0 0
R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker
0.076 0.876 0.076 0.597 0.646 0.673 0.607

D2(b)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson
0.588 0.897 0.301 0.767 0.788 0.810 0 0
R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker
0.571 0.895 0.300 0.765 0.785 0.806 0.756
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are presented in Table 6. Those above 95 percentage of the best power

under each setting are in bold.

We see that the Pearson’s Chi-square test and the deviance test have

no power under these scenarios. In Scenario 1’s (B1, C1, D1), all the

graph-based statistics perform reasonably well except for R0,(a) and R0,(u)

under the unbalanced setting. In Scenario 2’s (B2, C2, D2), the extended

generalized edge-count tests and extended max-type edge-count tests work

much better than all other tests, indicating the alternative in this type of

scenario is more in the scale domain than in the location domain.

5. Asymptotics

In this section, we provide the asymptotic distributions of new test statis-

tics described in Section 3. This provides us theoretical bases for obtaining

approximate p-values in an analytic way. We examine how well these ap-

proximations work for finite samples by checking the empirical size of the

new test statistics at the end of this section and further by comparing the

p-value obtained through asymptotic results and that through random per-

mutations in Supplement ??. In the following, we use a = O(b) to denote

that a and b are of the same order and a = o(b) to denote that a is of a

smaller order than b. Let EGi,2 be the set of edges in G that contain at least
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one node in VGi .

5.1 Statistics based on averaging

To derive the asymptotic behavior of the statistics based on averaging

(Rw,(a), S(a),M(a)(κ)), we work under the following conditions:

Condition 1. |C0|,
∑

(u,v)∈C0

1
mumv

= O(N); K,
∑

u
1
mu

= O(Nα), α ≤ 1.

Condition 2.
∑

umu(mu + |EC0
u |)(mu +

∑
v∈VC0

u
mv + |EC0

u,2|) = o(N3/2),∑
(u,v)∈C0

(mu+mv+|EC0
u |+|EC0

v |)(mu+mv+
∑

w∈(VC0
u ∪V

C0
v )

mw+|EC0
u,2|+|EC0

v,2|) = o(N3/2).

Condition 3.
∑

u
(|EC0

u |−2)2

4mu
− (|C0|−K)2

N
= O(N).

Remark 1. One special case for Condition 1 is |C0|,
∑

(u,v)∈C0

1
mumv

, K,
∑

u
1
mu

=

O(N). This and Condition 2 are the same conditions stated in Chen and

Zhang (2013) in obtaining the asymptotic properties of R0,(a) and R0,(u).

Condition 1 is easy to be satisfied and Condition 2 sets constrains on the

number of repeated observations and the degrees of nodes in the graph

C0 such that they cannot be too large. When mu ≡ m for all u, Condi-

tion 2 can be simplified to
∑

u |EC0
u ||E

C0
u,2| = o(N3/2) and

∑
(u,v)∈C0

(|EC0
u | +

|EC0
v |)(|E

C0
u,2|+ |EC0

v,2|) = o(N3/2).

The additional condition (Condition 3) makes sure that (R1, R2)T does

not degenerate asymptotically. When mu ≡ m for all u, Condition 3 be-

comes 1
4m

∑
u |EC0

u |2 −
|C0|2
mK

= 1
4m

∑
u(|EC0

u | −
2|C0|
K

)2 = O(N), which is the
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variance of the degrees of nodes in C0. When there is not enough variety

in the degrees of nodes in C0, the correlation between R1 and R2 tends to

1. (A similar condition is needed for the continuous counterpart (Chen and

Friedman, 2017).)

Theorem 3. Under Conditions 1, 2 and 3, as N →∞,
(
Zw,(a), Zd,(a)

)T D−→

N2(0, I2) under the permutation null distribution.

The proof of this theorem is in Supplement ??. Based on Theorem 3,

it is easy to obtain the asymptotic distributions of S(a) and M(a)(κ).

Corollary 1. Under Conditions 1, 2 and 3, as N →∞, S(a)
D−→ X 2

2 under

the permutation null distribution.

Corollary 2. Under Conditions 1, 2 and 3, the asymptotic cumulative

distribution function of M(a)(κ) is Φ(x
κ
)(2Φ(x)− 1) under the permutation

null distribution, where Φ(x) denotes the cumulative distribution function

of the standard normal distribution.

5.2 Statistics based on taking union

To derive the asymptotic behavior of the statistics based on taking union

(Rw,(u), S(u),M(u)(κ)), we work under the following conditions:

Condition 4. |Ḡ| = O(N).
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Condition 5.
∑N

i=1 |E Ḡi |2 −
4
N
|Ḡ|2 = O(N).

Condition 6.

K∑
u=1

m3
u(mu +

∑
v∈VC0

u

mv)
∑

v∈{u}∪VC0
u

mv(mv +
∑
w∈VC0

v

mw) = o(N3/2),

∑
(u,v)∈C0

mumv

[
mu(mu +

∑
w∈VC0

u

mw) +mv(mv +
∑
w∈VC0

v

mw)

]

·

[ ∑
w∈{u}∪{v}∪VC0

u ∪V
C0
v

y∈VC0
w

mw(mw +my)

]
= o(N3/2).

Remark 2. Condition 4 is easy to satisfy. Condition 5 was mentioned in

Chen and Friedman (2017) in the continuous version. When mu ≡ m for all

u, Condition 5 could be rewritten as
∑K

u=1 |EC0
u |2 − 4

K
|C0|2 = O(K). If C0

is the k-MST, k = O(1), constructed under Euclidean distance, the above

condition always holds based on results in Chen and Friedman (2017).

When mu ≡ m for all u, Condition 6 becomes
∑

u |EC0
u ||E

C0
u,2| = o(N3/2)

and
∑

(u,v)∈C0
(|EC0

u | + |EC0
v |)(|E

C0
u,2| + |EC0

v,2|) = o(N3/2), which are the same

as the simplified form in Remark 1. These conditions restrict the degrees

of nodes in graph C0.

Theorem 4. Under Conditions 4, 5 and 6, as N →∞,
(
Zw,(u), Zd,(u)

)T D−→

N2(0, I2), under the permutation null distribution.

The proof of this theorem is in Supplement ??. Based on Theorem 4,

it is easy to obtain the asymptotic distributions of S(u) and M(u)(κ).
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Corollary 3. Under Conditions 4, 5 and 6, as N →∞, S(u)
D−→ X 2

2 under

the permutation null distribution.

Corollary 4. Under Conditions 4, 5 and 6, the asymptotic cumulative

distribution function of M(u)(κ) is Φ(x
κ
)(2Φ(x)− 1) under the permutation

null distribution, where Φ(x) denotes the cumulative distribution function

of the standard normal distribution.

Table 7: Empirical size at 0.05 nominal level.

Statistic
n1 = 50 n1 = 50 n1 = 50 n1 = 100 n1 = 100 n1 = 100
n2 = 50 n2 = 100 n2 = 150 n2 = 100 n2 = 200 n2 = 300

S(a) 0.032 0.043 0.043 0.038 0.030 0.033
S(u) 0.036 0.027 0.034 0.033 0.037 0.036
Rw,(a) 0.038 0.039 0.039 0.041 0.037 0.037
Rw,(u) 0.046 0.043 0.033 0.038 0.035 0.033
M(a)(1.31) 0.039 0.044 0.042 0.039 0.034 0.030
M(u)(1.31) 0.041 0.035 0.036 0.036 0.042 0.038
M(a)(1.14) 0.039 0.047 0.043 0.036 0.033 0.028
M(u)(1.14) 0.039 0.031 0.033 0.035 0.040 0.038
M(a)(1) 0.042 0.044 0.040 0.036 0.032 0.025
M(u)(1) 0.039 0.029 0.029 0.035 0.042 0.044

To see whether these theoretical results are useful in practice, we check

the empirical size of these tests with the p-value determined by the asymp-

totic results directly. We generate data through mechanism (i) in Section

4 with θ1 = θ2 = 5 and η1 = η2 = {1, 2, 3, 4, 5, 6}. Table 7 shows the

empirical sizes of the tests under difference choices of sample sizes. The

empirical size is computed as the fraction of trials (out of 1000) that the

asymptotic p-value (p-value computed based on the asymptotic distribution
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directly) less than 0.05. We see that the empirical sizes are well controlled

for all proposed tests even when the sample sizes are in 50s. We provide

more examinations on the asymptotic p-values by comparing them with

permutation p-values in Supplement ??.

6. Phone-call network data analysis

We analyze the phone-call network data mentioned in Section 1 in details.

The MIT Media Laboratory conducted a study following 106 subjects, in-

cluding students and staffs in an institute, who used mobile phones with

pre-installed software that can record call logs. The study lasted from July

2004 to June 2005 (Eagle et al. (2009)). Given the richness of this dataset,

many problems can be studied. One question of interest is whether phone

call patterns on weekdays are different from those on weekends. The phone

calls on weekdays and weekends can be viewed as representations of profes-

sional relationship and personal relationship, respectively.

We bin the phone calls by day and, for each day, construct a directed

phone-call network with the 106 subjects as nodes and a directed edge

pointing from person i to person j if person i made one call to person j

on that day. We encode the directed network of each day by an adjacency

matrix, with 1 for element [i, j] if there is a directed edge pointing from

subject i to subject j, and 0 otherwise.
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In the dataset, there are 236 weekdays and 94 weekends. Among the

330 (236+94) networks, there are 285 distinct values and 11 of them have

more than one observations. We denote the distinct values as matrices

B1, · · · , B285. We adopt the distance measure used in Chen and Friedman

(2017) and Chen et al. (2018), which is defined as the number of different

entries, i.e., d(Bi, Bj) = ‖Bi−Bj‖2
F , where ‖ ·‖F is the Frobenius norm of a

matrix. Besides the repeated observations, there are many equal distances

among distinct values. We set C0 to be the 3-NNL, which has similar

density as the 9-MST recommended in Chen et al. (2018).

Table 8 lists the results. In particular, we list the values, expectation

(Mean) and standard deviations (SD) of R1,(a), R1,(u), R2,(a), R2,(u), (R1,(a)+

R2,(a))/2, (R1,(u) + R2,(u))/2, Rw,(a), Rw,(u), Rd,(a) and Rd,(u), as well as the

values and p-values of Z0,(a), Z0,(u), S(a), S(u), Zw,(a), Zw,(u), |Zd,(a)|, |Zd,(u)|,

M(a)(κ), and M(u)(κ), where Z0,(a) and Z0,(u) are standardizations for R0,(a)

and R0,(u), respectively. The tests based on (R1,(a) +R2,(a))/2, and (R1,(u) +

R2,(u))/2 are equivalent to those based on R0,(a) and R0,(u), respectively.

We first check results based on “averaging”. We can see that R1,(a) is

much higher than its expectation, while R2,(a) is smaller than its expecta-

tion. The original edge-count test R0,(a) is equivalent to adding R1,(a) and

R2,(a) directly, so the signal in R1,(a) is diluted by R2,(a). In addition, due
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Table 8: Breakdown statistics of the phone-call network data.

Value Mean Value-Mean SD

R1,(a) 2800.26 2669.56 130.70 143.33

R2,(a) 409.18 420.80 -11.62 57.75

(R1,(a) +R2,(a))/2 1604.72 1545.18 59.54 44.74

Rw,(a) 1087.14 1058.40 28.73 11.79

Rd,(a) 2391.08 2248.76 142.32 199.37

Value Mean Value-Mean SD

R1,(u) 7163.00 6860.35 302.65 381.50

R2,(u) 1008.00 1081.38 -73.38 151.66

(R1,(u) +R2,(u))/2 4085.50 3970.86 114.64 116.22

Rw,(u) 2753.17 2719.93 33.24 15.65

Rd,(u) 6155.00 5778.97 376.03 532.03

Value p-Value Value p-Value

Z0,(a) -1.33 0.092 Z0,(u) -0.99 0.162

S(a) 6.45 0.040 S(u) 5.01 0.082

Zw,(a) 2.44 0.007 Zw,(u) 2.12 0.017

|Zd,(a)| 0.71 0.475 |Zd,(u)| 0.71 0.480

M(a)(κ)

κ = 1.31 3.19 0.009

M(u)(κ)

κ = 1.31 2.78 0.022
κ = 1.14 2.78 0.013 κ = 1.14 2.42 0.032
κ = 1 2.44 0.022 κ = 1 2.12 0.050

to the variance boosting issue, it fails to reject the null hypothesis at 0.05

significance level. On the other hand, the weighted edge-count test chooses

the proper weight to minimize the variance and performs well. Since S(a)

and M(a)(κ) consider the weighted edge-count statistic and the difference

of two with-in sample edge-counts simultaneously, these tests all reject the

null at 0.05 significance level. The larger the κ is, the more similar the

max-type test (M(a)(κ)) and the weighted test (Rw,(a)) are. So the p-values

of M(a)(κ) are very close to that of Rw,(a), when κ is large. The results on
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the “union” counterparts are similar, except that S(u) cannot reject the null

at 0.05 significance level. Based on the information in the table, it is clear

that there is mean difference between the two samples, while no significant

scale difference.

We also compare the asymptotic p-values with the permutation p-values

and the result shows they are quite close (details in Supplement ??).

7. Conclusion

The generalized edge-count test and the weighted edge-count test are useful

tools in two-sample testing regime. Both tests rely on a similarity graph

constructed on the pooled observations from the two samples and can be

applied to various data types as long as a reasonable similarity measure on

the sample space can be defined. However, they are problematic when the

similarity graph is not uniquely defined, which is common for data with

repeated observations. In this work, we extend them as well as a max-type

statistic, to accommodate scenarios when the similarity graph cannot be

uniquely defined. The extended test statistics are equipped with easy-to-

evaluate analytic expressions, making them easy to compute in real data

analysis. The asymptotic distributions of the extended test statistics are

also derived and simulation studies show that the p-values obtained based on

asymptotic distributions are quite accurate under sample sizes in hundreds
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and beyond, making these tests easy-off-the-shelf tools for large data sets.

Among the extended edge-count tests, the extended weighted edge-

count tests aim for location alternatives, and the extended generalized/max-

type edge-count tests aim for more general alternatives. When these tests

do not reach a consensus, a detailed analysis illustrated by the phone-call

network data in Section 6 is recommended.

Supplementary Materials

The supplementary material contains proofs of lemmas and theorems,

and some additional results.
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