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Temple University2, Renmin University of China3

Abstract: Sufficient dimension reduction (SDR) methods characterise the rela-

tionship between the response Y and the covariates x, through a few linear com-

binations of the covariates. Extensive techniques are developed, among which

the inverse regression based methods are perhaps the most appealing in practice

because they do not involve multi-dimensional smoothing and are easy to imple-

ment. However, these inverse regression based methods require two distributional

assumptions on the covariates. In particular, the first-order methods, such as the

sliced inverse regression, require the linear conditional mean (LCM) assumption,

while the second-order methods, such as the sliced average variance estimation,

require additionally the constant conditional variance (CCV) assumption. We

propose to check the validity of the LCM and the CCV conditions through mean

independence tests, which are facilitated by the martingale difference divergence.

We suggest a consistent bootstrap procedure to decide critical values of the test.

Monte Carlo simulations as well as an application to the horse mussels dataset

are conducted to demonstrate the finite sample performance of our proposal.
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1. Introduction

Sufficient dimension reduction (SDR) (Li, 1991; Cook, 1998) has re-

ceived considerable attention in the past two decades. As a useful tool to

reduce dimensionality, SDR can be combined with many other multivariate

analysis methods for building regression models. SDR methods have also

been widely used for exploratory data analysis and data visualization. Let

Y be the response variable and x be the p dimensional predictor. When

the goal is to make inference about the conditional distribution of Y given

x, SDR aims to find β ∈ Rp×d with d < p, such that

Y⊥⊥x | βTx, (1.1)

where “⊥⊥” means statistical independence. Under (1.1), the conditional

distribution of Y given x is the same as that of Y given βTx. The column

space of β is referred to as the dimension reduction space. If the intersection

of all dimension reduction spaces exists and satisfies (1.1), this minimum

subspace of Rp is named the central space (Cook, 1998; Chiaromonte and

Cook, 2002). When the goal is to make inference about the conditional
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mean E(Y | x), SDR considers

Y⊥⊥E(Y | x) | αTx. (1.2)

The column space of α is referred to as the mean dimension reduction space.

The smallest mean dimension reduction space that satisfies (1.2) is called

the central mean space (Cook and Li, 2002).

There are many inverse regression based methods in the literature to

estimate the central space or the central mean space. Estimators of the cen-

tral space include, among others, sliced inverse regression (SIR) (Li, 1991),

sliced average variance estimation (SAVE) (Cook and Weisberg, 1991), di-

rectional regression (Li and Wang, 2007), and cumulative slicing estimation

(Zhu et al., 2010). On the other hand, ordinary least squares (OLS), prin-

cipal Hessian directions (PHD) (Li, 1992) and contour regression (Li et al.,

2005) are perhaps the most popular methods to estimate the central mean

space. The aforementioned methods fall into two categories. In the first

category, SIR and OLS involve linear functions of x, such as E(xY ) and

E(x | Y ), and will be called the first-order methods. In the second category,

SAVE, PHD, directional and contour regression involve quadratic functions

of x, such as E(Y xxT) and E(xxT|Y ), and will be called the second-order

methods. Unlike other nonparametric and semiparametric methods, the

inverse regression based SDR methods do not involve multi-dimensional
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smoothing regardless of p. This feature, together with the fact that they

are easy to implement, makes the inverse regression based SDR methods

very appealing in practice.

Two assumptions about the distribution of x are required for the inverse

regression based SDR methods to properly recover the central space or the

central mean space. To ease subsequent presentation, we use B ∈ Rp×d

to denote either the basis of the central space or that of the central mean

space. The first-order methods require that

E(x | BTx) is a linear function of BTx, (1.3)

which is referred to as the linear conditional mean (LCM) condition. In

addition to LCM, the second-order methods require that

var(x | BTx) is a constant matrix, (1.4)

which is known as the constant conditional variance (CCV) condition.

When (1.3) holds for all possible B ∈ Rp×d, x must have an elliptically-

contoured distribution. When both (1.3) and (1.4) hold for all possible

B ∈ Rp×d, x has to be multivariate normal.

The LCM and the CCV conditions have motivated many important

developments in the SDR literature. To achieve these conditions, Cook and

Nachtsheim (1994) proposed elliptically-contoured reweighting, and Cook
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(1998) suggested marginal predictor transformations. To relax these condi-

tions, Xia et al. (2002) proposed the minimum average variance estimation

based on semiparametric models, Fukumizu et al. (2009) developed a con-

trast function by using operators on reproducing kernel Hilbert spaces to

estimate the subspaces, Li and Dong (2009) and Dong and Li (2010) in-

troduced the concept of central solution space and modeled E(x | BTx)

parametrically. More recently, Ma and Zhu (2012) proposed the semipara-

metric approach, where E(x | BTx) and var(x | BTx) are estimated through

nonparametric smoothing. These methods avoid the common assumptions

of linear mean and constant variance on the covariates, but they are com-

putationally intensive compared with the classical SIR and SAVE.

We provide a novel treatment of the LCM and the CCV conditions in

this paper. Based on a root-n-consistent estimator of B, we formally test the

validity of the LCM and the CCV conditions through hypotheses testing. It

turns out that (1.3) and (1.4) are equivalent to statements about mean in-

dependence. Thus testing the validity of the LCM and the CCV conditions

becomes equivalent to testing mean independence. There exists extensive

literature on testing consistently the correct specification of a particular

regression model, which involves testing mean independence. Most of these

approaches can be divided into two classes: the local smoothing approach
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(Zheng (1996),Li (1999),Koul and Ni (2004) and Guo et al. (2016)) and

the global smoothing approach ( Stute (1997),Li et al. (2003),Escanciano

(2006)). The local approach requires nonparametric smoothing and thus its

finite-sample performance depends heavily on the choice of the bandwidth,

while the global approach generally turns the mean independence into an

infinite number of unconditional constraints.

To formally measure the departure of mean independence between two

random variables U and V , Shao and Zhang (2014) extended the dis-

tance correlation proposed by Székely et al. (2007) and Székely and Rizzo

(2009) and introduced a novel metric called martingale difference divergence

(MDD). They found that the MDD of V given U is always nonnegative and

equal to 0 if and only if the conditional mean of V given U is indepen-

dent of U . We observe that, testing the LCM and the CCV conditions is

equivalent to testing mean independence. Therefore, our test procedure is

thus facilitated by the martingale difference divergence (MDD) originally

proposed in Shao and Zhang (2014).

The rest of this paper is organised as follows. In Section 2 we explain

the rationale of our test for the LCM and the CCV conditions. Then we

investigate the sample level properties of our proposal in Section 3. An

extension to high dimensional case is discussed in Section 4. Numerical
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studies are conducted in Section 5 with Monte Carlo simulations and an

application to the horse mussels dataset. All technical proofs are collected

in the Supplement.

2. The principle of testing LCM and CCV

To simplify the discussions in this section, we assume without loss of gen-

erality that E(x) = 0 and var(x) = Ip, where Ip is the identity matrix.

This is a valid assumption due to the invariance property (Cook, 1998) of

the central space and the central mean space. Let “⊗” be the kronecker

product and denote PB = B (BTB)−1 BT as the projection matrix onto the

column space of B ∈ Rp×d. We have the following key observation.

Proposition 1. Suppose E(x) = 0 and var(x) = Ip. Then

1. The LCM condition (1.3) holds if and only if E(ε | BTx) = E(ε)

almost surely, where ε
def
= x−PBx.

2. Suppose the LCM condition is true. Then the CCV condition (1.4)

holds if and only if E(ε⊗ ε | BTx) = E(ε⊗ ε) almost surely.

3. The LCM condition (1.3) and the CCV condition (1.4) hold simul-

taneously if and only if E(ζ | BTx) = E(ζ) almost surely, where

ζ
def
= {εT, (ε⊗ ε)T}T.
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Consider two random vectors u ∈ Rq and v ∈ Rt, Proposition 1 suggests

that the LCM condition and the CCV condition have the same form as

E(v | u) = E(v) almost surely. This motivates us to consider testing

E(v | u) = E(v) almost surely for any u ∈ Rq and v ∈ Rt, which can then

be used to facilitate the tests for the LCM and the CCV conditions.

We note E(v | u) = E(v) means that the conditional mean of v given

u is independent of u. We refer to this property as the mean independence,

which measures the relationship between two random vectors v and u, and

lies between independence and uncorrelatedness. Specifically, v⊥⊥u implies

E(v | u) = E(v) almost surely, which implies cov(v,u) = 0. Therefore,

to measure the mean independence, the concept of martingale difference

divergence (Shao and Zhang, 2014, MDD) can be readily used. Although

they only considered the case of scalar response v ∈ R, the definition of

MDD can be generalized to the case with vector response v ∈ Rt.

Let |c|q
def
= (cTc)1/2 be the Euclidean norm of c ∈ Rq. For u ∈ Rq and

v ∈ Rt, denote (ṽ, ũ) as an independent copy of (v,u). From part (1) of

Theorem 1 in Shao and Zhang (2014), the square of MDD is equivalent to

m(v | u), which is defined as

m(v | u)
def
= −E [{v − E(v)}T{ṽ − E(ṽ)}|u− ũ|q] . (2.1)

The next result is similar to Theorem 1 of Shao and Zhang (2014).
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Proposition 2. If E(|u|2q + |v|2t ) <∞, then m(v | u) ≥ 0, and the equality

holds if and only if E(v | u) = E(v) almost surely.

Proposition 1 and Proposition 2 together provide the basic principle

of testing the LCM and the CCV conditions in this paper. For the first-

order methods such as OLS and SIR, only the LCM condition is required.

Motivated by part 1 of Proposition 1, we consider the following hypotheses,

H0 : E(ε | BTx) = E(ε) a.s. for some B ∈ Rp×d v.s.

H1 : E(ε | BTx) 6= E(ε) a.s. for all B ∈ Rp×d. (2.2)

where “a.s.” means almost surely. Hypotheses (2.2) is to test the mean

independence between ε and BTx. We will refer to it as the LCM hypothe-

ses. To test hypotheses (2.2), Proposition 2 suggests that we consider the

following pivotal quantity

m(ε | BTx)
def
= −E [{ε− E(ε)}T{ε̃− E(ε̃)}|BT(x− x̃)|d] , (2.3)

where x̃ is an independent copy of x, ε = x−PBx, and ε̃
def
= x̃−PBx̃.

For second-order methods such as SAVE, PHD and directional regres-

sion, both the LCM and the CCV conditions are required. Motivated by

part 3 of Proposition 1, we consider the following hypotheses,

H0 : E(ζ | BTx) = E(ζ) a.s. for some B ∈ Rp×d v.s.

H1 : E(ζ | BTx) 6= E(ζ) a.s. for all B ∈ Rp×d. (2.4)
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Hypotheses (2.4) is to test the conditional mean independence between the

response ζ and the predictor BTx, and we will refer to it as the joint hy-

potheses. To test hypotheses (2.4), Proposition 2 suggests that we consider

m(ζ | BTx)
def
= −E

[
{ζ − E(ζ)}T{ζ̃ − E(ζ̃)}|BT(x− x̃)|d

]
, (2.5)

where ζ̃
def
= {ε̃T, (ε̃⊗ ε̃)T}T is an independent copy of ζ = {εT, (ε⊗ ε)T}T.

3. The sample level properties

We focus on testing the LCM hypotheses (2.2) in this section. The proper-

ties of sample level test for the joint hypotheses (2.4) are similar, and are

thus omitted for ease of presentation. Let {(xj, Yj) : j = 1, . . . , n} be an

i.i.d. sample of (x, Y ). Our main idea is to test (2.2) through the sample

estimator of m(ε | BTx). Let B̂ be a sample estimator of B, which depends

on xj and Yj, j = 1, . . . , n. Let PB̂

def
= B̂

(
B̂TB̂

)−1
B̂T, QB̂

def
= Ip − PB̂,

ε̂j
def
= QB̂xj, and

ε
def
= n−1

n∑
j=1

ε̂j.

The sample estimator of m(ε | BTx) becomes

ω̂n
def
= −n−2

n∑
j=1

n∑
k=1

{
(ε̂j − ε)T(ε̂k − ε)|B̂T(xj − xk)|d

}
. (3.1)

We follow Ma and Zhu (2013) to ensure the identifiability of B. To be

specific, for an arbitrary basis matrix Bt ∈ Rp×d of the central (mean) space,
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we write Bt
def
= (BT

u,B
T
l )T, where Bu is a d×d upper submatrix, Bl is a (p−

d)× d lower submatrix and the subscript “ t” stands for total. We assume,

without loss of generality, Bu is invertible. In case Bu is not invertible we

can always rotate the order of x to ensure that Bu is invertible because the

rank of Bt is d. As long as Bu is invertible, the column spaces of Bt and

BtB
−1
u are identical. We define B

def
= BtB

−1
u , the upper d× d submatrix of

B is an identity matrix. This uniquely defines the true parameter. e At the

sample level, we apply a certain SDR method to estimate B. The resultant

estimate is denoted as B̂t, which is of form B̂t
def
= (B̂T

u, B̂
T
l )T, where B̂u is a

d × d upper submatrix, and B̂l is a (p − d) × d lower submatrix. We then

define B̂
def
= B̂tB̂

−1
u as the sample estimator of B.

Some notations are needed before we state the main theorem. Let

i = (−1)1/2 be the imaginary unit. Let cp
def
= π(1+p)/2/Γ{(1 + p)/2}, where

Γ(·) is the Gamma function. For a complex-valued function γ: Rq → Cp,

we define its norm as

||γ(s)||2 def
=

∫
Rq

|γ(s)|2p(cq|s|1+q
q )−1ds, where |γ(s)|2p

def
=

p∑
j=1

νj(s)νj(s),

with νj(s) ∈ C being the jth element of γ(s) ∈ Cp and νj(s) being the con-

jugate of νj(s), j = 1, . . . , p. Similar notations have been introduced in Shao

and Zhang (2014). Let “
d→” stand for “convergence in distribution”, and

“
p→” stand for “converge in probability”. The following technical condition
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about B̂ is needed for the main result.

(C1). Suppose

B̂−B = n−1
n∑

j=1

`1(xj, Yj) + op(n
−1/2), and

PB̂ −PB = n−1
n∑

j=1

`2(xj, Yj) + op(n
−1/2).

Assume E{`k(x, Y )} = 0 and the elements of var{vec(`k(x, Y ))} are

bounded, for k = 1, 2, where vec(M) is the vector formed by concate-

nating the columns of matrix M.

Theorem 1. Suppose E(x) = 0, var(x) = Ip, and condition (C1) holds.

Let φ : Rd → Cp be a complex-valued zero-mean Gaussian process with

covariance function

covφ(s, s0)
def
= E

[{
ε exp(isTBTx)− `2(x, Y )g(s) + h(s)`1(x, Y )s

}
{
ε exp(−isT

0B
Tx)− `2(x, Y )g(−s0)− h(−s0)`1(x, Y )s0

}T
]
,

(3.2)

where g(s)
def
= E {x exp(isTBTx)} and h(s)

def
= E [ε{i cos(sTBTx)− sin(sTBTx)}xT].

1. Under H0 : E(ε | BTx) = E(ε) a.s., we have nω̂n
d→ ||φ(s)||2 as n

goes to infinity.

2. Under H1 : E(ε | BTx) 6= E(ε) a.s., we have nω̂n
p→ ∞ as n goes to

infinity.
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Theorem 1 is similar to Theorem 5 of Székely et al. (2007) and Theorem

4 of Shao and Zhang (2014). We reject H0 in (2.2) when ω̂n is sufficiently

large. The exact form of ||φ(s)||2 is very complicated and difficult to use

in practice. To approximate the asymptotic distribution of ω̂n, we propose

the following bootstrap procedure.

S0. Based on i.i.d. sample {(xj, Yj) : j = 1, . . . , n}, use a chosen SDR

method to estimate B ∈ Rp×d as B̂. Compute PB̂ = B̂
(
B̂TB̂

)−1
B̂T,

QB̂ = Ip − PB̂ and ε̂j = QB̂xj, j = 1, . . . , n. Calculate the test

statistic ω̂n in (3.1).

S1. In the (t)th iteration, let {W (t)
j : j = 1, . . . , n} be i.i.d. Bernoulli

random variables such that Pr(W
(t)
j = 1) = Pr(W

(t)
j = −1) = 0.5.

Set x
(t)
j

def
= PB̂xj +W

(t)
j ε̂j, j = 1, . . . , n.

S2. Based on {(x(t)
j , Yj) : j = 1, . . . , n}, use the same SDR method as in

step S0 to estimate B. Denote the corresponding estimator as B̂(t).

S3. Compute PB̂(t)

def
= B̂(t)

{
(B̂(t))TB̂(t)

}−1
(B̂(t))T and ε̂

(t)
j

def
= x

(t)
j −PB̂(t)x

(t)
j ,

j = 1, . . . , n. Let

ε(t)
def
= n−1

n∑
j=1

ε̂
(t)
j
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and calculate

ω̂(t)
n

def
= −n−2

n∑
j=1

n∑
k=1

{
(ε̂

(t)
j − ε(t))T(ε̂

(t)
k − ε

(t)) | (B̂(t))T(x
(t)
j − x

(t)
k ) |d

}
.

S4. Repeat S1-S3 for T times. Calculate the p-value defined as

T−1
T∑
t=1

1(ω̂n<ω̂
(t)
n ),

where 1(·) stands for the indicator function. For a given significance

level α, reject H0 : E(ε | BTx) = E(ε) if the p-value is less than α.

The validity of the bootstrap procedure is guaranteed by the next the-

orem. Define x∗
def
= PB̂x + W ∗QB̂x, where W ∗ is a Bernoulli random

variable such that Pr(W ∗ = 1) = Pr(W ∗ = −1) = 0.5. It follows that

{(x(t)
j , Yj) : j = 1, . . . , n} is an i.i.d. sample of (x∗, Y ). The following

technical conditions are needed before we state the main result.

(C2). Suppose

B̂(t) − B̂ = n−1
n∑

j=1

`1(x
(t)
j , Yj) + op(n

−1/2) and

PB̂(t) −PB̂ = n−1
n∑

j=1

`2(x
(t)
j , Yj) + op(n

−1/2),

Assume E{`k(x∗, Y )} = 0 and the elements of var{vec(`k(x∗, Y ))}

are bounded, for k = 1, 2.
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(C3). Let φ∗ : Rd → Cp be a complex-valued zero-mean Gaussian process

with covariance function

covφ∗(s, s0)
def
= E

[{
ε exp(isTBTx∗)− `2(x∗, Y )g∗(s) + h∗(s)`1(x

∗, Y )s
}

{
ε exp(−isT

0BTx∗)− `2(x∗, Y )g∗(−s0)− h∗(−s0)`1(x
∗, Y )s0

}T
]
,

where g∗(s)
def
= E {x∗ exp(isTBTx∗)} and h∗(s)

def
= E[ε{i cos(sTBTx∗)−

sin(sTBTx∗)}(x∗)T]. Suppose covφ∗(s, s0) is equal to covφ(s, s0) de-

fined in (3.2) as long as E(x∗) = E(x) and var(x∗) = var(x).

(C4) Assume that ψ(B)
def
= E(QBε

∗ | PBx∗) is Lipschitz continuous.

Theorem 2. Suppose E(x) = 0, var(x) = Ip, conditions (C1)-(C4) hold.

Then ω̂
(t)
n has the same asymptotic null distribution as ω̂n. Specifically,

nω̂
(t)
n

d→ ||φ(s)||2 as n goes to infinity.

4. An Extension

If the predictor dimension p is very large, we assume, under the principle

of sparsity that, Y⊥⊥x | βT

A1
xA1 when the central space is considered and

Y⊥⊥E(Y | x) | αT
A2

xA2 when the central mean space is considered, where

A1
def
= {k | F (y | x) relies functionally on Xk for y ∈ R, k = 1, . . . , p},

A2
def
= {k | E(y | x) relies functionally on Xk for y ∈ R, k = 1, . . . , p},
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F (y | x) and E(y | x) are the respective conditional distribution and condi-

tional mean functions of Y given x. To ease subsequent presentations, we

use A to denote either A1 or A2, and BA to denote either βA1
or αA2 .

When p is moderately large, we can first apply some sparse SDR meth-

ods, such as Li (2007), Bondell and Li (2009), Chen et al. (2010), to simul-

taneously select variables (i.e. estimate the active index set A) and reduce

the dimension (i.e. estimate the basis matrix BA).

When p is extremely large, we recommend to use a model free screening

approach, such as SIRS in Zhu et al. (2011), DC-SIS in Li et al. (2012), or

MDC-SIS in Shao and Zhang (2014), to exclude as many inactive predic-

tors as possible, before we use SDR methods to further reduce the predictor

dimension. Once the number of active predictors is reduced to a moderate

scale, we implement the sparse SDR methods to obtain a consistent esti-

mator of A and BA. Subsequent test procedure is based on xÂ and B̂A.

Our proposal remains valid as long as the estimate of BA is consistent.

We advocate a two-stage test procedure in the high dimensional case.

In particular, we randomly split the whole sample data D into two equal

halves, D1 and D2. First we implement DC-SIS (Li et al., 2012) on data

set D1 and retain the top ranked covariates as the active ones. Next we

implement the sparse SDR method of Li (2007) on data set D2 to estimate
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A and BA. We conduct our test procedure based on xÂ and B̂A. We

adopt a data splitting strategy to avoid inflating type I error rates in our

test procedure. When some inactive covariates are retained in the screening

stage, directly implementing our testing procedure without random splitting

will lead to inflated type I error rates (Fan et al., 2012).

5. Numerical studies

Example 1. We conduct simulations to demonstrate the performance of

our proposed test. We fix the sample size n = 200. We evaluate the

predictor dimension p = 8 for low dimensional case and p = 1000 for high

dimensional case, respectively. We consider two models.

(I): In the first model, the central space is spanned by (1, 0, 0, . . . , 0)T and

Y = X1 + δ. Thus, d = 1. The predictors x = (X1, . . . , Xp) are

generated as follows: X1, X3, . . . , Xp are drawn independently from

standard normal distribution, and X2 = X1+c1(X
2
1−1)+ |c2X1+1|ε.

(II): In the second model, the central space is spanned by (1, 0, 0, . . . , 0)T

and (0, 1, 0, . . . , 0)T, and Y = 5X1/{0.5 + (X2 + 1.5)2} + δ. Thus,

d = 2. The predictors x = (X1, . . . , Xp) are generated as follows:

X1, X2, X4, . . . , Xp are independently drawn from standard normal

distribution, and X3 = X1 +X2 + c1(X
2
1 − 1) + |c2X2 + 1|ε.
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In both models, we generate ε and δ independently from standard normal.

We first evaluate the performance of testing the LCM condition. We

fix c2 = 0 and evaluate c1 = 0, 0.1, . . . , 0.5. To illustrate the performance

of our proposal, we evaluate two test statistics: (a) based on the observed

dataset (xi, Yi)
n
i=1, we estimate B via SIR method and obtain B̂sir, we then

construct test statistics by replacing B̂ with B̂sir in (3.1); (b) suppose the

true B matrix is known as a prior, we then construct test statistics by

replacing B̂ with B in (3.1), which acts as a benchmark.

When evaluating the performance of the joint test (i.e., simultane-

ously test the LCM and the CCV conditions), we consider c1 = c2 =

0, 0.1, . . . , 0.5. We also evaluate two test statistics: (a) test statistics based

on B̂save, where B̂save is obtained through the SAVE method; (b) test statis-

tics based on the true B matrix by assuming that it is known as a prior.

To put our test procedure into practice, we may choose estimates of

B which do not rely on the linear mean or constant variance conditions,

such as Xia et al. (2002), Xia (2007), Fukumizu et al. (2009), Li and Dong

(2009), Dong and Li (2010), Ma and Zhu (2012), etc.. However, these

estimates are usually computationally intensive, when compared with the

classical SIR and SAVE. Therefore, we simply suggest to estimate B via

a computationally intensive method. To be precise, we implement SIR
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or SAVE to obtain B̂, then we use our proposed test based on this B̂ to

check whether the LCM condition or the joint conditions hold. If the null

hypothesis is not rejected, then we are confident that B̂ is valid. If the

null hypothesis is rejected, we can choose some other methods which avoid

the LCM condition or the joint conditions to re-estimate B. In this way,

however, we may lose power because E(ε | B̂Tx) may be very close to E(ε)

for a lousy estimate B̂ obtained under the alternative hypothesis.

We decide whether to reject the null hypothesis through the bootstrap

procedures with T = 500. We repeat each experiment for 500 times and

study the size and the power of the our tests separately.

We first evaluate the size of the test. Note that the LCM condition

holds if and only if c1 = 0, and the joint condition holds if and only if

c1 = c2 = 0. We thus fix c1 = c2 = 0 to study the size of all tests.

We investigate different significance levels with α = 0.01, 0.02, 0.05. The

empirical sizes based on 500 repetitions are summarised in Table 1, which

indicates that tests based on B̂s behave similarly as those based on the true

B matrix, and the empirical sizes are close to the nominal level α.

We then study the power performance of the test procedures. We fix

c2 = 0 and evaluate c1 = 0.1, 0.2, . . . , 0.5 when test the LCM condition and

c1 = c2 = 0.1, 0.2, . . . , 0.5 when test the joint condition LCM+CCV. We fix
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Table 1: The empirical sizes of the test procedures when c1 = c2 = 0.

p Test Method

d = 1 d = 2
α α

0.01 0.02 0.05 0.01 0.02 0.05

p = 8

LCM
B̂sir 0.02 0.03 0.04 0.01 0.02 0.05
B 0.01 0.03 0.05 0.01 0.01 0.04

LCM+CCV
B̂save 0.01 0.03 0.05 0.01 0.02 0.04
B 0.01 0.02 0.05 0.01 0.02 0.04

p = 1000

LCM
B̂sir 0.01 0.02 0.05 0.01 0.02 0.05
B 0.01 0.02 0.05 0.01 0.02 0.06

LCM+CCV
B̂save 0.01 0.01 0.04 0.01 0.02 0.04
B 0.01 0.02 0.05 0.01 0.02 0.04

the significant level α = 0.05 and the results are summarized in Table 2.

Table 2 indicates that our proposals perform quite satisfactory. Gener-

ally, the powers of all the tests gradually rises to one when c1 goes up form

0.1 to 0.5. In the low dimensional case p = 8, the powers of both the LCM

test and the joint test LCM+CCV exceed 0.85 when the signal intensity

parameter c1 increases to 0.3 in Model (I) where the structure dimension

d = 1, and finally reaches one when c1 = 0.5. The results for Model (II)

where d = 2 are quite similar, though a little inferior, to those for Model (I).

This is reasonable since it is a more complicated problem in SDR when the

structure dimension increases. The story is quite similar in the ultrahigh

dimensional case when p = 1000.

Example 2. We apply our proposal to the horse mussels dataset fur-
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Table 2: The empirical powers of the test procedures with α = 0.05.

p Test d = 1 d = 2

8

LCM

c1 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

B̂sir 0.13 0.54 0.87 0.99 1.00 0.10 0.49 0.87 0.98 1.00
B 0.17 0.65 0.95 1.00 1.00 0.14 0.49 0.88 0.99 1.00

LCM+CCV

c1 = c2 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

B̂save 0.12 0.49 0.85 0.98 1.00 0.07 0.28 0.59 0.78 0.88
B 0.15 0.51 0.87 0.99 1.00 0.10 0.40 0.80 0.98 1.00

1000

LCM

c1 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

B̂sir 0.09 0.46 0.85 0.97 1.00 0.12 0.45 0.86 0.97 1.00
B 0.16 0.59 0.94 1.00 1.00 0.14 0.49 0.87 0.98 1.00

LCM+CCV

c1 = c2 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

B̂save 0.09 0.43 0.80 0.97 1.00 0.06 0.25 0.48 0.69 0.80
B 0.12 0.45 0.89 0.99 1.00 0.09 0.36 0.78 0.97 1.00

nished by Mike Camden, Wellington Polytechnic, Wellington, New Zealand.

The response variable Y is mussels’ muscle mass M, the edible portion of

the mussel, which is measured in grams. The covariates x include shell

length L in millimeters, shell width W in millimeters and shell mass S in

grams. The sample size is 82.

We first visually evaluate whether the LCM condition holds. The scat-

ter plot matrix of the shell length L, shell width W and shell mass S is

presented in Figure 1 (A). From Figure 1, the curvature between L and S,

together with that between W and S raises doubts about the LCM condition

required in the sliced inverse regression method. Thus, Cook (1998) used

power transformations of the covariates to make the LCM condition holds
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approximately. With the application of the maximum likelihood estimates,

shell width W was transformed to W 0.36, shell mass S was transformed to

S0.11, while shell length L was not transformed. The scatter plot matrix

after transformations is shown in Figure 1 (B). It seems that the LCM

condition holds true after transformation.
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3.
5

4.
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5

W^{0.36}

150 250 1.3 1.5 1.7 1.9
1.

3
1.

5
1.

7
1.

9

S^{0.11}

(A) x = (L,W, S)T (B) x∗ = (L,W 0.36, S0.11)T

Figure 1: Scatter plot matrices for covariate vectors x and x∗.

Now we apply our proposal to test whether the LCM condition hold.

Recall that x = (L,W, S)T is the covariate vector before transformation,

we further set x∗ = (L,W 0.36, S0.11)T to be the covariate vector after trans-

formation. Then we need to test the LCM condition for datasets (xi, Yi)
82
i=1
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and (x∗i , Yi)
82
i=1, respectively. Given the structure dimension d = 1, our pro-

posal can be directly applied. To be specific, we first apply the SIR method

to the original dataset (xi, Yi)
82
i=1 to estimate B and B̂ denotes the corre-

sponding estimator. We then carry out the test procedure based on xi and

B̂ and obtain the p-value 0.000. Then we test the LCM condition on the

transformed dataset (x∗i , Yi)
82
i=1 similarly. We estimate B via SIR method

and get B̂∗, and then we conduct the test based on x∗i and B̂∗. The p-value

of the test is 0.908.

From the above tests, we can soundly reject the null hypothesis that

the LCM condition holds true for dataset (xi, Yi)
82
i=1, while we accept it for

dataset (x∗i , Yi)
82
i=1. That is to say, the LCM condition is violated on the

original dataset, but the power transformation proposed by Cook (1998)

acts as a remedy to this problem. Such results are in accordance with that

we see in Figure (1), and thus proves the validity of our proposal.

Besides, to see whether the power transformation helps getting more

accurate estimators, we conduct a simple bootstrap procedure as follows.

For the original data (xi, Yi)
82
i=1, we estimate B via the SIR method and

get B̂ and we treat B̂ as the true B. Then we bootstrap from the original

data 500 times and obtain B̂(t) through SIR, where t = 1, . . . , 500. To

assess the distance between B̂ and B̂(t), we adopt the trace correlation
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proposed in Ferré (1998) and obtain r(d)(t), t = 1, . . . , 500. Based on the

500 repetitions, the average of r(d)(t) is 0.74, and the standard deviation is

0.21. Similarly, for the transformed data (x∗i , Yi)
82
i=1, we can get r(d)∗(t), t =

1, . . . , 500 with the average 0.95 and the standard deviation 0.06. According

to Ferré (1998), the trace correlation r(d) ∈ [0, 1] and larger value indicates

that the two subspaces are closer. Thus the power transformation results

in more accurate estimators when the LCM fails.
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