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1 Introduction

We congratulate Jiang, Song, Li, and Zeng, hereafter JSLZ, on their thought-provoking

contribution to the growing literature on classification-based estimation of optimal

treatment regimes. We also wish to thank the Editor for organizing this discussion;

we are honored to be a part of it. We begin with a discussion of why one might

choose to apply a classification-based estimator of an optimal treatment regime and

what advantages a surrogate-based approach might offer. Motivated by this discussion,

as well as comments made by JSLZ, we then evaluate some of the criticisms leveled

against Q-learning and direct search methods which do not use a convex surrogate.

For simplicity, we focus on a single decision; however, the points and methodologies

extend readily to the multi-decision setting.

1.1 Classification-based estimators

Classification-based estimators recast estimation of an optimal treatment regime as

a weighted classification problem (Zhang et al., 2012a; Zhao et al., 2012; Rubin and

van der Laan, 2012; Zhang et al., 2012b, 2013). This has the obvious advantage expos-
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ing the cache of methodologies and theories developed for classification to the problem

of estimating an optimal treatment regime. The leveraging so-called machine learning

methods to improve the quality of estimated optimal regimes has become a major fo-

cus of methodological research among both regression-based methods (e.g., Zhao et al.,

2011; Moodie et al., 2013; Taylor et al., 2015; Murray et al., 2018; Ertefaie and Straw-

derman, 2018; Zhang et al., 2018) as well as classification-based methods (e.g., Zhao

et al., 2015; Zhou et al., 2017; Zhang and Zhang, 2018; Liu et al., 2018; Qi et al., 2018).

As JSLZ note in their abstract, entropy learning is an example of such research.

At the time the seminal papers on classification-based estimation were published in

the statistics literature, the potential benefits of leveraging modern classification meth-

ods (as well as modern regression methods) to improve performance in reinforcement

learning problems had been known for more than a decade in the computer science

literature (see Lagoudakis and Parr, 2003; Barto and Dietterich, 2004; Ernst et al.,

2005, and references therein). In many canonical engineering and computer science ap-

plications, the goal is to construct treatment regimes that will be deployed in the field,

e.g., to guide the motion of a robot (Singh et al., 1994; Yang and Meng, 2000; Finn

and Levine, 2017) or to select actions in a strategy game (Silver et al., 2016, 2018). In

such settings, the performance of a learned regime in its target environment is often

of paramount importance, whereas factors like intepretability and knowledge genera-

tion are secondary. However, in the context of precision medicine, optimal treatment

regimes are typically estimated as part of a secondary, i.e., hypothesis generating, anal-

ysis, and in such cases, interpretability is key (even in, or perhaps especially in, cases
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where data actually are informing real-time decision support, interpretability is critical

(Nahum-Shani et al., 2017; Tewari and Murphy, 2017; Luckett et al., 2018)). Clinicians

(rightly) are unwilling to cede their clinical decisions to an unintelligible black-box es-

timated from a single clinical trial or observational study; indeed, interpretability is

now mandated for algorithm-based clinical decision support in the European Union

(see Goodman and Flaxman, 2017).

If the goal is to generate new clinical knowledge by means of an interpretable es-

timated optimal treatment regime, then a reasonable approach is to posit a class of

acceptable regimes, e.g., those that can be represented as linear thresholds (as in JSLZ

and many others), trees (Zhang et al., 2012a; Laber and Zhao, 2015; Zhu et al., 2017;

Sies and Van Mechelen, 2017; Tao et al., 2018), or lists (Zhang et al., 2015; Wang and

Rudin, 2015; Lakkaraju and Rudin, 2017; Zhang et al., 2018). In constructing and eval-

uating such estimators, we believe that the following factors are key: (F1) consistency

for the optimal regime within the class under consideration, (F2) formal inference pro-

cedures for the performance of the learned regime, and (F3) diagnostic procedures to

identify any loss in performance induced by restricting the class of regimes, e.g., a con-

fidence interval for the difference in value between the optimal regime in the restricted

class relative to a larger superclass of regimes.

To the best of our knowledge, (F3) has received little attention in the literature,

though it seems critical especially for highly structured regimes like those representable

as lists. With surrogate-based approaches like entropy learning, one potentially promis-

ing approach to (F3) would be to consider a confidence interval for the difference be-
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tween the value of a regime estimated using a nonlinear kernel and a linear regime.

JSLZ use smoothness of the entropy loss to provide confidence sets for the value of

the learned rule and thereby address (F2). However, entropy-based learning, like Q-

learning, need not satisfy (F1). We note that this does not contradict Proposition

1 of JSLZ, as the proposition applies when optimizing over the space of all possible

decision rules—not the restricted class of linear decision rules. The lack of (F1) in

surrogate-based methods is not a new observation, see Qian and Murphy (2011) and

Kosorok and Laber (2019) for examples with squared error loss. In Section 3, we pro-

vide an example with entropy loss in which (F1) does not hold yet the optimal rule

is representable as a linear rule. Furthermore, while Q-learning is often criticized by

proponents of classification-based methods because of its risk of misspecification and

subsequent failure to satisfy (F1), it has the distinct advantage of allowing the use of

regression diagnostics to examine model fit and thereby mitigate the risk of misspecifi-

cation (Laber et al., 2014a; Ertefaie et al., 2016). We also note that one can separate

the class of Q-functions from the class of regimes, i.e., it is not necessary to restrict the

class of Q-functions so that the argmax operator induces the desired class of regimes

(Taylor et al., 2015; Zhang et al., 2018). This gives one more freedom in modeling the

Q-function than presentations of Q-learning sometimes imply.

Methods that directly optimize the IPWE, AIPWE, or other consistent estimators

of the value function, ensure (F1) under standard conditions (e.g., uniform conver-

gence over the class of regimes, an isolated maximizer, etc.). There appear to be two

primary objections to such an approach. The first is that direct optimization of the
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IPWE/AIPWE is non-convex and thereby potentially computationally burdensome

(Section 2.1 JSLZ). However, the application of stochastic optimization algorithms

(Zhang et al., 2012b, 2013), mixed integer programming (Laber et al., 2014b; Angelino

et al., 2017), or smoothing with gradient-based procedures with multiple starts (Jiang

et al., 2017) have proved to be successful in a wide variety of precision medicine prob-

lems similar to those considered by JSLZ. Such optimization methods may not be

feasible in settings with massive data, e.g., electronic health records or billing data,

where the convexity in entropy learning and other methods based on convex surrogates

may play a critical role (Wang et al., 2016).

The second criticism leveled against direct optimization of the IPWE/AIPWE, is

the lack of methodology for inference. In Section 2, we provide one simple approach that

uses an undersmoothed and non-convex surrogate to retain (F1) while allowing methods

for cube-root asymptotics to be used to conduct inference and thereby, we conjecture,

satisfy (F2). This method provides consistently higher value than entropy learning on

JSLZ’s one-stage simulation examples while being significantly less variable. Of course,

a more thorough examination of this method is needed if any general conclusions are

to be made.
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2 A simple direct search estimator

2.1 Framework

For simplicity, we consider data from a single stage randomized trial; the extension

to an observational study is straightforward. We assume that the observed data are

{(Xi, Ai, Ri)}ni=1 which comprise n i.i.d. copies of (X, A,R), where X ∈ Rp+1 denotes

baseline patient covariates, A ∈ {−1, 1} is the assigned treatment, and R ∈ R is the

outcome coded so that higher values are better. We assume that X has an intercept

and that P (A = 1|X) = P (A = 1) = π with probability one.

We consider linear decision rules of the form d(x) = sign(x>β), where β ∈ Rp+1

and sign(u) = 1 if u > 0 and sign(u) = −1 otherwise. Define V0(β) to be the value of

the linear decision rule indexed by β ∈ Rp+1 so that

V0(β) = E
[

R

Aπ + (1− A)/2
I
{
A = sign(X>β)

}]
,

where I {ν} is the indicator that the event ν is true. For any function m : Rp+1 → R

it can be shown (e.g., Laber and Zhao, 2015; Zhou et al., 2017) that

V0(β) = E
[

R−m(X)

Aπ + (1− A)/2
I
{
A = sign(X>β)

}]
+ E {m(X)} .

Define

Z =
A {R−m(X)}
Aπ + (1− A)/2

so that V0(β) = F0(β)+D0, where F0(β) = E
{
ZI
(
X>β > 0

)}
, andD0 = −E {I(A = −1)Z}+

E {m(X)}. The optimal rule is thus indexed by β0 = arg maxβ V0(β) = arg maxβ F0(β).
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Because F0(β) = F0(kβ) for any positive scalar k, we require that β>0 β0 = 1. (Note

that a rule indexed by β0 ≡ 0 is equivalent to a rule indexed by β0 = (−1, 0, . . . , 0)

and thus there is no loss in generality by assuming a unit norm.)

2.2 Estimation

We begin by describing a plug-in estimator of V0 and then consider a smoothed variant

that is more amenable to gradient-based optimization and inference. To estimate π

we use the sample proportion π̂n = n−1
∑n

i=1 I(Ai = 1). We posit a linear working

model of the form E(R|X = x, A = a) = x>0 γ0 + ax>1 γ1, where x0,x1 are (possibly

nonlinear) features of x and γ0,γ1 are unknown coefficients. Let γ̂0,n and γ̂1,n denote

the corresponding least squares estimators of γ0 and γ1 and define m̂n(x) = x>1 γ̂0,n.

Subsequently, define

Ẑn(x, a, r) =
a {r − m̂n(x)}
aπ̂n + (1− a)/2

.

and let Ẑn,i = Ẑn(Xi, Ai, Ri). The plug-in estimator of F0(β) is thus

F̂n,ns(β) =
1

n

n∑
i=1

Ẑn,iI
(
X>i β > 0

)
,

where the subscript ‘ns’ is to indicate that this estimator is non-smooth. As noted in

the introduction and by JSLZ, maximization of this objective directly can be difficult

and can complicate statistical inference. In the remainder of this discussion, we focus

on a smooth alternative to F̂n,ns.

For each β let pβ(w, z) denote the density of (X>β, Z), then it can be seen that

F0(β) =

∫
zI(w > 0)dwdz.
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We consider a kernel density estimator of pβ(w, z) of the form

p̂hβ,n(w, z) =
1

n

n∑
i=1

1

h2
φ

(
w −X>i β

h

)
φ

(
z − Ẑn,i

h

)
,

where φ(t) is a Gaussian kernel and h > 0 is a bandwidth. The smoothed estimator is

obtained by replacing pβ(w, z) with p̂hβ,n(w, z) to obtain

F̂ h
n,s(β) =

∫
zI(w > 0)p̂hβ,n(w, z)dwdz =

1

n

n∑
i=1

Ẑn,iΦ

(
X>i β

h

)
,

where Φ is the CDF of a standard normal random variable. The subscript ‘s’ in F̂ h
n,s(β)

is to indicate that it is smooth. One may also view F̂ h
n,s(β) as replacing the non-smooth

indicator I(t > 0) with the non-convex surrogate Φ(t/h) (see Jiang et al., 2017). In

the simulation experiments we set h = n−1/2 to ensure that any asymptotic effects

of the smoothing are negligible. To obtain an estimator of V0(β), one can use D̂n =

n−1
∑n

i=1

{
I(Ai = −1)Ẑn,i + m̂n(Xi)

}
and subsequently define V̂ h

n,s(β) = F̂ h
n,s(β)+D̂n.

The estimated optimal regime is indexed by the coefficients

β̂h
n,s = arg maxβ :β>β=1 V̂

h
n,s(β) = arg maxβ:β>β=1 F̂

h
n,s(β).

To facilitate inference, we transform this constrained optimization problem into an

unconstrained one by expressing β in spherical coordinates. For each β, write β =
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β(θ), where θ is a p-dimensional vector, and

β1 = cos(θ1),

β2 = sin(θ1) cos(θ2),

β3 = sin(θ1) sin(θ2) cos(θ3),

...
...

...

βp = sin(θ1) . . . sin(θp−1) cos(θp),

βp+1 = sin(θ1) . . . sin(θp−1) sin(θp).

Then it follows that

β̂h
n,s = β(θ̂hn,s), where θ̂hn,s = arg maxθ F̂

h
n,s {β(θ)} . (*)

Because F̂ h
n,s {β(θ)} is not convex in θ, it may have multiple local maximizers. One

may employ any of the methods discussed in the introduction to approximate a global

maximizer. In the simulations presented in Section 3, we used a gradient descent

algorithm with multiple starts.

2.3 Inference

To conduct inference, we work on the θ scale to avoid the constraint β>β = 1. We

note that JSLZ appear to avoid this scaling issue by defining the target of inference to

be the population minimizer of the convex surrogate which is not scale-invariant but

also need not maximize the value over the space of linear decision rules. If the goal

is estimation and inference for the linear rule which maximizes the value, then the
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issue of scale invariance may be unavoidable. The proposed estimator resembles the

maximum score estimator and thus the expected rate of convergence is n−1/3 rather

than n−1/2 (Kim and Pollard, 1990; Shi et al., 2018). It well-known that the standard

nonparamteric bootstrap fails for estimators with cube-root convergence (Abrevaya

and Huang, 2005); instead, we consider a modified bootstrap procedure as in Cattaneo

et al. (2017). Denote the negative Hessian matrix of F̂ h̃
n,s {β(θ)} at θ = θ̂hn,s as

Ĥh̃
n,s = −

∂2F̂ h̃
n,s {β(θ)}
∂θ∂θ>

∣∣∣∣∣
θ=θ̂h

n,s

.

The bandwidth h̃ used in the construction of the Hessian need not equal the band-

width used to estimate the value. In our experiments, we used the local bandwidth

h̃(x) = cσ
(
x>β̂h

n,s

)
n−1/9, where c is a tuning parameter chosen so that F̂ h

n,s {β(θ)} ≈

F̂ h
n,s

{
β
(
θ̂hn,s

)}
− (θ − θ̂hn,s)>Ĥh̃

n,s(θ − θ̂hn,s)/2 in a neighborhood of θ̂hn,s. In addition,

we adjust the diagonal elements of Ĥh̃
n,s to ensure positive definiteness as needed.

The bootstrap procedures is as follows. Sample with replacement from the observed

data to obtain a bootstrap sample {(X∗i , A∗i , R∗i )}
n
i=1. Let π̂∗n, m̂

∗
n, Ẑ∗n,i i = 1, . . . , n,

and D̂∗n denote the bootstrap analogs of π, m̂n, Ẑn,i, ı = 1, . . . , n, and D̂n. Define the

modified bootstrap counterpart to F̂ h
n,s {β(θ)} as

F̂ h∗
n,s {β(θ)} = F̂ h

n,s

{
β(θ̂)

}
− 1

2
(θ − θ̂hn,s)>Ĥh̃

n,s(θ − θ̂hn,s) +

1

n

n∑
i=1

Ẑ∗n,iΦ
{
X∗>i β(θ)/h

}
− 1

n

n∑
i=1

Ẑn,iΦ
{
X>i β(θ)/h

}
.

Roughly speaking, the first two terms mimic the quadratic behavior of F0 {β(θ)}

near the true value θ0, while the other two terms mimic the random fluctuations of
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F̂ h
n,s {β(θ)} − F0 {β(θ)}. Let

θ̂h∗n,s = arg maxθ F̂
h∗
n,s {β(θ)} , β̂h∗

n,s = β(θ̂h∗n,s), and V̂ h∗
n,s (θ̂

h∗
n,s) = F̂ h∗

n,s(β̂
h∗
n,s) + D̂∗n.

The empirical percentiles of the forgoing quantities are used to construct confidence

sets for the the components of β0 and V0(β̂
h
n,s).

3 Experiments

3.1 A toy example adopted from Qian and Murphy (2011)

To illustrate the potential impacts of using a surrogate on consistency we consider the

application of entropy learning on the following generative model which is adapted

from (Qian and Murphy, 2011). Let X ∼ Uniform[−1, 1], A ∼ Uniform{−1, 1}, and

R = 12+5A(X−1/3)2+0.5ε, where ε is standard normally distributed and independent

of X and A. The additive constant of 12 is to ensure that the probability of obtaining a

negative reward is vanishingly small. It can be seen that the optimal decision rule in this

case is dopt(x) ≡ 1 which corresponds to the linear estimator dopt(x) = sign (β0 + β1x)

with β0 = 1 and β1 = 0. With this generative model, the entropy loss reduces to

R(β0, β1) = 12T (β0, β1)−
1

9
(128β0 − 10β1),

where

T (β0, β1) =


2 log(1 + exp(β0)), if β1 = 0,

{
Li2(− exp(β0 − β1))− Li2(− exp(β0 + β1))

}
/β1, if β1 6= 0,
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and Li2(x) is the dilogarithm function, defined as

Li2(x) =

∫ 0

x

log(1− t)
t

dt.

Minimizing the entropy loss yields a rule of the form dent(x) = sign
(
β̃0 + β̃1x

)
, where

β̃0 ≈ 0.553 and β̃1 ≈ −0.833. Direct computation shows V (dopt) = 14.22, whereas

V (dent) ≈ 13.76 (estimated with 10 million points so that standard errors are on the

order of 1× 10−4). For comparison, the smoothed estimator proposed in Section 2 has

an average value of 14.22 which matches the optimal value up to two significant digits.

3.2 Performance of the estimated regime

We consider models 1, 2, 5, and 6 from JSLZ as these are the one-stage settings.

The sample size is fixed at n = 200. We compare the regime obtained by (*) with

the regime estimated via entropy learning and Q-learning with a linear model. These

three methods are denoted by SIPW , Ent and QLearn respectively. To facilitate a fair

comparison, we rescale the estimated coefficients β̂ in each method so that β̂>β̂ = 1

and report the Monte Carlo standard deviation of this rescaled version. The value of

the estimated regime, V0(β̂), is approximated by generating 105 patients following the

estimated regime, and its expected value, E{V0(β̂)}, is obtained by averaging over 1000

replications.

The results are given in Table 1. We see that the smoothed method, SIPW, achieves

slightly higher value compared to entropy learning on all examples and is considerably

less variable. Q-learning is competitive with entropy learning on these examples while
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also being considerably less variable. In models 1 and 2, where the true values of β0

are available analytically, it can be seen that both SIPW and Q-learning exhibit less

bias then entropy learning.

3.3 Inference about the coefficients in the estimated regime

We consider models 1 and 2 in JSLZ as these comprise the one-stage settings in which

the optimal regime is linear. To illustrate any large sample effects, we consider sample

sizes of n = 200 and n = 2000. We examine the coverage of a 95% confidence inter-

val for the coefficients indexing the optimal decision rule as well as the value of the

estimated optimal regime. Confidence intervals for Q-learning were based on the (un-

adjusted) nonparametric bootstrap. The results are given in Table 2. We see that all

three methods achieve nominal coverage. The smoothed method, SIPW, gives slightly

conservative confidence intervals. As the sample size increases from 200 to 2000, the

coverage rates are closer to the nominal level.

4 Discussion

Entropy learning advances a growing literature on classification-based estimation of

optimal treatment regimes. JSLZ are to be commended on an elegant derivation of a

class of estimators to which entropy loss is a member. It is interesting to note that

entropy loss has been identified as a top performer among convex surrogates in the

estimation of optimal treatment regimes using the AIPWE rather than the IPWE as
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Model Method β1 β2 β3 β4 E(V0(β̂))

1 SIPW 0.275 -0.679 -0.680 0.000 10.303

(0.010) (0.011) (0.011) (0.018) (0.006)

Ent 0.299 -0.724 -0.610 -0.017 10.200

(0.067) (0.256) (0.241) (0.210) (0.099)

QLearn 0.272 -0.680 -0.680 0.000 10.304

(0.001) (0.002) (0.002) (0.002) (0.006)

2 SIPW 0.265 -0.677 -0.669 -0.012 9.400

(0.077) (0.073) (0.075) (0.084) (0.018)

Ent 0.334 -0.648 -0.648 0.054 9.350

(0.064) (0.206) (0.224) (0.183) (0.063)

QLearn 0.271 -0.680 -0.679 -0.000 9.412

(0.038) (0.063) (0.065) (0.052) (0.012)

5 SIPW 0.255 0.676 -0.675 -0.001 1.846

(0.061) (0.054) (0.055) (0.109) (0.014)

Ent 0.043 0.708 -0.705 0.001 1.787

(0.041) (0.187) (0.186) (0.142) (0.023)

QLearn -0.123 0.727 -0.727 0.000 1.715

(0.074) (0.235) (0.233) (0.117) (0.029)

6 SIPW 0.443 0.613 -0.609 -0.000 4.817

(0.105) (0.102) (0.109) (0.154) (0.075)

Ent 0.194 0.697 -0.698 0.000 4.788

(0.080) (0.139) (0.140) (0.095) (0.144)

QLearn -0.307 0.692 -0.689 -0.000 4.087

(0.116) (0.197) (0.197) (0.119) (0.070)

Table 1: The coefficients in the estimated regime (rescaled to have unit norm) and the

value of the estimated regime. Monte Carlo standard deviations are in parentheses.

For models 1 and 2, the true value for β is (0.272,−0.680,−0.680, 0). For models 5

and 6, the value for β is not available in closed form because the optimal regime is

nonlinear. 14
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n Model Method β1 β2 β3 β4 E(V0(β̂))

200 1 SIPW 1.000 0.999 0.998 0.990 0.949

Ent 0.998 0.963 0.968 0.970 0.904

QLearn 0.951 0.938 0.948 0.952 0.952

2 SIPW 1.000 0.984 0.977 0.982 0.946

Ent 0.990 0.978 0.981 0.969 0.948

Qlearn 0.949 0.914 0.929 0.925 0.945

2000 1 SIPW 0.991 0.988 0.987 0.960 0.945

Ent 0.968 0.941 0.936 0.949 0.952

QLearn 0.960 0.942 0.947 0.948 0.949

2 SIPW 0.996 0.931 0.919 0.972 0.958

Ent 0.957 0.966 0.961 0.957 0.954

QLearn 0.946 0.946 0.942 0.965 0.961

Table 2: The coverage rate of 95% confidence intervals for the regime coefficients and

its value.
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was considered here (Zhao et al., 2019). We expect such estimators to continue to grow

in popularity especially as the computational demands of big data make non-convex

alternatives more difficult to implement.
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