| **Statistica Sinica Preprint No:** SS-2019-0089 |
|---|---|
| **Title** | Discussion of "Entropy Learning for Dynamic Treatment Regimes" |
| **Manuscript ID** | SS-2019-0089 |
| **URL** | http://www.stat.sinica.edu.tw/statistica/ |
| **DOI** | 10.5705/ss.202019.0089 |
| **Complete List of Authors** | Yichi Zhang and Eric B. Laber |
| **Corresponding Author** | Eric B. Laber |
| **E-mail** | laber@stat.ncsu.edu |

Notice: Accepted version subject to English editing.
Discussion of “Entropy Learning for Dynamic Treatment Regimes”

Yichi Zhang\(^1\) and Eric B. Laber\(^2\)

\textit{University of Rhode Island\(^1\) and North Carolina State University\(^2\)}

\textit{Key words and phrases:} Precision medicine, convex surrogates, outcome weighted learning

1 Introduction

We congratulate Jiang, Song, Li, and Zeng, hereafter JSLZ, on their thought-provoking contribution to the growing literature on classification-based estimation of optimal treatment regimes. We also wish to thank the Editor for organizing this discussion; we are honored to be a part of it. We begin with a discussion of why one might choose to apply a classification-based estimator of an optimal treatment regime and what advantages a surrogate-based approach might offer. Motivated by this discussion, as well as comments made by JSLZ, we then evaluate some of the criticisms leveled against Q-learning and direct search methods which do not use a convex surrogate. For simplicity, we focus on a single decision; however, the points and methodologies extend readily to the multi-decision setting.

1.1 Classification-based estimators

Classification-based estimators recast estimation of an optimal treatment regime as a weighted classification problem (Zhang et al., 2012a; Zhao et al., 2012; Rubin and van der Laan, 2012; Zhang et al., 2012b, 2013). This has the obvious advantage expos-
ing the cache of methodologies and theories developed for classification to the problem of estimating an optimal treatment regime. The leveraging so-called machine learning methods to improve the quality of estimated optimal regimes has become a major focus of methodological research among both regression-based methods (e.g., Zhao et al., 2011; Moodie et al., 2013; Taylor et al., 2015; Murray et al., 2018; Ertefaie and Strawderman, 2018; Zhang et al., 2018) as well as classification-based methods (e.g., Zhao et al., 2015; Zhou et al., 2017; Zhang and Zhang, 2018; Liu et al., 2018; Qi et al., 2018). As JSLZ note in their abstract, entropy learning is an example of such research.

At the time the seminal papers on classification-based estimation were published in the statistics literature, the potential benefits of leveraging modern classification methods (as well as modern regression methods) to improve performance in reinforcement learning problems had been known for more than a decade in the computer science literature (see Lagoudakis and Parr, 2003; Barto and Dietterich, 2004; Ernst et al., 2005, and references therein). In many canonical engineering and computer science applications, the goal is to construct treatment regimes that will be deployed in the field, e.g., to guide the motion of a robot (Singh et al., 1994; Yang and Meng, 2000; Finn and Levine, 2017) or to select actions in a strategy game (Silver et al., 2016, 2018). In such settings, the performance of a learned regime in its target environment is often of paramount importance, whereas factors like interpretability and knowledge generation are secondary. However, in the context of precision medicine, optimal treatment regimes are typically estimated as part of a secondary, i.e., hypothesis generating, analysis, and in such cases, interpretability is key (even in, or perhaps especially in, cases
where data actually are informing real-time decision support, interpretability is critical (Nahum-Shani et al., 2017; Tewari and Murphy, 2017; Luckett et al., 2018). Clinicians (rightly) are unwilling to cede their clinical decisions to an unintelligible black-box estimated from a single clinical trial or observational study; indeed, interpretability is now mandated for algorithm-based clinical decision support in the European Union (see Goodman and Flaxman, 2017).

If the goal is to generate new clinical knowledge by means of an interpretable estimated optimal treatment regime, then a reasonable approach is to posit a class of acceptable regimes, e.g., those that can be represented as linear thresholds (as in JSLZ and many others), trees (Zhang et al., 2012a; Laber and Zhao, 2015; Zhu et al., 2017; Sies and Van Mechelen, 2017; Tao et al., 2018), or lists (Zhang et al., 2015; Wang and Rudin, 2015; Lakkaraju and Rudin, 2017; Zhang et al., 2018). In constructing and evaluating such estimators, we believe that the following factors are key: (F1) consistency for the optimal regime within the class under consideration, (F2) formal inference procedures for the performance of the learned regime, and (F3) diagnostic procedures to identify any loss in performance induced by restricting the class of regimes, e.g., a confidence interval for the difference in value between the optimal regime in the restricted class relative to a larger superclass of regimes.

To the best of our knowledge, (F3) has received little attention in the literature, though it seems critical especially for highly structured regimes like those representable as lists. With surrogate-based approaches like entropy learning, one potentially promising approach to (F3) would be to consider a confidence interval for the difference be-
tween the value of a regime estimated using a nonlinear kernel and a linear regime. JSLZ use smoothness of the entropy loss to provide confidence sets for the value of the learned rule and thereby address (F2). However, entropy-based learning, like Q-learning, need not satisfy (F1). We note that this does not contradict Proposition 1 of JSLZ, as the proposition applies when optimizing over the space of all possible decision rules—not the restricted class of linear decision rules. The lack of (F1) in surrogate-based methods is not a new observation, see Qian and Murphy (2011) and Kosorok and Laber (2019) for examples with squared error loss. In Section 3, we provide an example with entropy loss in which (F1) does not hold yet the optimal rule is representable as a linear rule. Furthermore, while Q-learning is often criticized by proponents of classification-based methods because of its risk of misspecification and subsequent failure to satisfy (F1), it has the distinct advantage of allowing the use of regression diagnostics to examine model fit and thereby mitigate the risk of misspecification (Laber et al., 2014a; Ertefaie et al., 2016). We also note that one can separate the class of Q-functions from the class of regimes, i.e., it is not necessary to restrict the class of Q-functions so that the argmax operator induces the desired class of regimes (Taylor et al., 2015; Zhang et al., 2018). This gives one more freedom in modeling the Q-function than presentations of Q-learning sometimes imply.

Methods that directly optimize the IPWE, AIPWE, or other consistent estimators of the value function, ensure (F1) under standard conditions (e.g., uniform convergence over the class of regimes, an isolated maximizer, etc.). There appear to be two primary objections to such an approach. The first is that direct optimization of the
IPWE/AIPWE is non-convex and thereby potentially computationally burdensome (Section 2.1 JSLZ). However, the application of stochastic optimization algorithms (Zhang et al., 2012b, 2013), mixed integer programming (Laber et al., 2014b; Angelino et al., 2017), or smoothing with gradient-based procedures with multiple starts (Jiang et al., 2017) have proved to be successful in a wide variety of precision medicine problems similar to those considered by JSLZ. Such optimization methods may not be feasible in settings with massive data, e.g., electronic health records or billing data, where the convexity in entropy learning and other methods based on convex surrogates may play a critical role (Wang et al., 2016).

The second criticism leveled against direct optimization of the IPWE/AIPWE, is the lack of methodology for inference. In Section 2, we provide one simple approach that uses an undersmoothed and non-convex surrogate to retain (F1) while allowing methods for cube-root asymptotics to be used to conduct inference and thereby, we conjecture, satisfy (F2). This method provides consistently higher value than entropy learning on JSLZ’s one-stage simulation examples while being significantly less variable. Of course, a more thorough examination of this method is needed if any general conclusions are to be made.
2 A simple direct search estimator

2.1 Framework

For simplicity, we consider data from a single stage randomized trial; the extension to an observational study is straightforward. We assume that the observed data are \(\{(X_i, A_i, R_i)\}_{i=1}^{n} \) which comprise \(n \) i.i.d. copies of \((X, A, R)\), where \(X \in \mathbb{R}^{p+1} \) denotes baseline patient covariates, \(A \in \{-1, 1\} \) is the assigned treatment, and \(R \in \mathbb{R} \) is the outcome coded so that higher values are better. We assume that \(X \) has an intercept and that \(P(A = 1|X) = P(A = 1) = \pi \) with probability one.

We consider linear decision rules of the form \(d(x) = \text{sign}(x^\top \beta) \), where \(\beta \in \mathbb{R}^{p+1} \) and \(\text{sign}(u) = 1 \) if \(u > 0 \) and \(\text{sign}(u) = -1 \) otherwise. Define \(V_0(\beta) \) to be the value of the linear decision rule indexed by \(\beta \in \mathbb{R}^{p+1} \) so that

\[
V_0(\beta) = \mathbb{E} \left[\frac{R}{A\pi + (1 - A)/2} I \{ A = \text{sign}(X^\top \beta) \} \right],
\]

where \(I \{ \nu \} \) is the indicator that the event \(\nu \) is true. For any function \(m : \mathbb{R}^{p+1} \rightarrow \mathbb{R} \) it can be shown (e.g., Laber and Zhao, 2015; Zhou et al., 2017) that

\[
V_0(\beta) = \mathbb{E} \left[\frac{R - m(X)}{A\pi + (1 - A)/2} I \{ A = \text{sign}(X^\top \beta) \} \right] + \mathbb{E} \{ m(X) \}.
\]

Define

\[
Z = \frac{A \{ R - m(X) \}}{A\pi + (1 - A)/2}
\]

so that \(V_0(\beta) = F_0(\beta) + D_0 \), where \(F_0(\beta) = \mathbb{E} \{ Z I \{ X^\top \beta > 0 \} \} \), and \(D_0 = -\mathbb{E} \{ I(A = -1)Z \} + \mathbb{E} \{ m(X) \} \). The optimal rule is thus indexed by \(\beta_0 = \arg \max_{\beta} V_0(\beta) = \arg \max_{\beta} F_0(\beta) \).
Because $F_0(\beta) = F_0(k\beta)$ for any positive scalar k, we require that $\beta_0^\top \beta_0 = 1$. (Note that a rule indexed by $\beta_0 \equiv 0$ is equivalent to a rule indexed by $\beta_0 = (-1, 0, \ldots, 0)$ and thus there is no loss in generality by assuming a unit norm.)

2.2 Estimation

We begin by describing a plug-in estimator of V_0 and then consider a smoothed variant that is more amenable to gradient-based optimization and inference. To estimate π we use the sample proportion $\hat{\pi}_n = n^{-1} \sum_{i=1}^n I(A_i = 1)$. We posit a linear working model of the form $\mathbb{E}(R|X = x, A = a) = x_0^\top \gamma_0 + a x_1^\top \gamma_1$, where x_0, x_1 are (possibly nonlinear) features of x and γ_0, γ_1 are unknown coefficients. Let $\hat{\gamma}_{0,n}$ and $\hat{\gamma}_{1,n}$ denote the corresponding least squares estimators of γ_0 and γ_1 and define $\hat{m}_n(x) = x_1^\top \hat{\gamma}_{0,n}$.

Subsequently, define

$$\hat{Z}_n(x, a, r) = a \{r - \hat{m}_n(x)\} / (a\hat{\pi}_n + (1 - a)/2),$$

and let $\hat{Z}_{n,i} = \hat{Z}_n(X_i, A_i, R_i)$. The plug-in estimator of $F_0(\beta)$ is thus

$$\hat{F}_{n,ns}(\beta) = \frac{1}{n} \sum_{i=1}^n \hat{Z}_{n,i} I (X_i^\top \beta > 0),$$

where the subscript ‘ns’ is to indicate that this estimator is non-smooth. As noted in the introduction and by JSLZ, maximization of this objective directly can be difficult and can complicate statistical inference. In the remainder of this discussion, we focus on a smooth alternative to $\hat{F}_{n,ns}$.

For each β let $p_\beta(w, z)$ denote the density of $(X^\top \beta, Z)$, then it can be seen that

$$F_0(\beta) = \int z I(w > 0) dwdz.$$
We consider a kernel density estimator of $p_\beta(w, z)$ of the form

$$
\hat{p}_{\beta,n}^h(w, z) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h^2} \phi \left(\frac{w - X_i^\top \beta}{h} \right) \phi \left(\frac{z - \hat{Z}_{n,i}}{h} \right),
$$

where $\phi(t)$ is a Gaussian kernel and $h > 0$ is a bandwidth. The smoothed estimator is obtained by replacing $p_\beta(w, z)$ with $\hat{p}_{\beta,n}^h(w, z)$ to obtain

$$
\hat{F}_{n,s}^h(\beta) = \int z I(w > 0) \hat{p}_{\beta,n}^h(w, z) dw dz = \frac{1}{n} \sum_{i=1}^{n} \hat{Z}_{n,i} \Phi \left(\frac{X_i^\top \beta}{h} \right),
$$

where Φ is the CDF of a standard normal random variable. The subscript ‘s’ in $\hat{F}_{n,s}^h(\beta)$ is to indicate that it is smooth. One may also view $\hat{F}_{n,s}^h(\beta)$ as replacing the non-smooth indicator $I(t > 0)$ with the non-convex surrogate $\Phi(t/h)$ (see Jiang et al., 2017). In the simulation experiments we set $h = \frac{n^{-1}}{2}$ to ensure that any asymptotic effects of the smoothing are negligible. To obtain an estimator of $V_0(\beta)$, one can use $\hat{D}_n = n^{-1} \sum_{i=1}^{n} \left\{ I(A_i = -1) \hat{Z}_{n,i} + m_n(X_i) \right\}$ and subsequently define $\hat{V}_{n,s}^h(\beta) = \hat{F}_{n,s}^h(\beta) + \hat{D}_n$.

The estimated optimal regime is indexed by the coefficients

$$
\hat{\beta}_{n,s}^h = \arg \max_{\beta; \beta^\top \beta = 1} \hat{V}_{n,s}^h(\beta) = \arg \max_{\beta; \beta^\top \beta = 1} \hat{F}_{n,s}^h(\beta).
$$

To facilitate inference, we transform this constrained optimization problem into an unconstrained one by expressing β in spherical coordinates. For each β, write $\beta = \ldots$.
\(\beta(\theta) \), where \(\theta \) is a \(p \)-dimensional vector, and

\[
\begin{align*}
\beta_1 &= \cos(\theta_1), \\
\beta_2 &= \sin(\theta_1) \cos(\theta_2), \\
\beta_3 &= \sin(\theta_1) \sin(\theta_2) \cos(\theta_3), \\
&\vdots \\
\beta_p &= \sin(\theta_1) \ldots \sin(\theta_{p-1}) \cos(\theta_p), \\
\beta_{p+1} &= \sin(\theta_1) \ldots \sin(\theta_{p-1}) \sin(\theta_p).
\end{align*}
\]

Then it follows that

\[
\hat{\beta}_{n,s}^h = \beta(\hat{\theta}_{n,s}^h), \quad \text{where} \quad \hat{\theta}_{n,s}^h = \arg \max_{\theta} \hat{F}_{n,s}^h \{ \beta(\theta) \}.
\]

Because \(\hat{F}_{n,s}^h \{ \beta(\theta) \} \) is not convex in \(\theta \), it may have multiple local maximizers. One may employ any of the methods discussed in the introduction to approximate a global maximizer. In the simulations presented in Section 3, we used a gradient descent algorithm with multiple starts.

2.3 Inference

To conduct inference, we work on the \(\theta \) scale to avoid the constraint \(\beta^\top \beta = 1 \). We note that JSLZ appear to avoid this scaling issue by defining the target of inference to be the population minimizer of the convex surrogate which is not scale-invariant but also need not maximize the value over the space of linear decision rules. If the goal is estimation and inference for the linear rule which maximizes the value, then the
issue of scale invariance may be unavoidable. The proposed estimator resembles the maximum score estimator and thus the expected rate of convergence is \(n^{-1/3} \) rather than \(n^{-1/2} \) (Kim and Pollard, 1990; Shi et al., 2018). It well-known that the standard nonparamteric bootstrap fails for estimators with cube-root convergence (Abrevaya and Huang, 2005); instead, we consider a modified bootstrap procedure as in Cattaneo et al. (2017). Denote the negative Hessian matrix of \(\hat{F}_{n,s}^h \{ \beta(\theta) \} \) at \(\theta = \hat{\theta}_{n,s}^h \) as

\[
\hat{H}_{n,s}^h = -\frac{\partial^2 \hat{F}_{n,s}^h \{ \beta(\theta) \}}{\partial \theta \partial \theta^\top} \bigg|_{\theta = \hat{\theta}_{n,s}^h}.
\]

The bandwidth \(\tilde{h} \) used in the construction of the Hessian need not equal the bandwidth used to estimate the value. In our experiments, we used the local bandwidth \(\tilde{h}(x) = c \sigma (x^\top \hat{\beta}_{n,s}^h) n^{-1/9} \), where \(c \) is a tuning parameter chosen so that \(\hat{F}_{n,s}^h \{ \beta(\theta) \} \approx \hat{F}_{n,s}^h \{ \beta(\hat{\theta}_{n,s}^h) \} - (\theta - \hat{\theta}_{n,s}^h)^\top \hat{H}_{n,s}^h (\theta - \hat{\theta}_{n,s}^h)/2 \) in a neighborhood of \(\hat{\theta}_{n,s}^h \). In addition, we adjust the diagonal elements of \(\hat{H}_{n,s}^h \) to ensure positive definiteness as needed.

The bootstrap procedures is as follows. Sample with replacement from the observed data to obtain a bootstrap sample \(\{(X_i^*, A_i^*, R_i^*)\}_{i=1}^n \). Let \(\hat{\pi}_n^*, \hat{m}_n^*, \hat{Z}_{n,i}^* i = 1, \ldots, n, \) and \(\hat{D}_n^* \) denote the bootstrap analogs of \(\pi, m_n, \hat{Z}_{n,i}, i = 1, \ldots, n, \) and \(D_n \). Define the modified bootstrap counterpart to \(\hat{F}_{n,s}^h \{ \beta(\theta) \} \) as

\[
\hat{F}_{n,s}^{h*} \{ \beta(\theta) \} = \hat{F}_{n,s}^h \{ \beta(\hat{\theta}) \} - \frac{1}{2}(\theta - \hat{\theta}_{n,s}^h)^\top \hat{H}_{n,s}^h (\theta - \hat{\theta}_{n,s}^h) + \frac{1}{n} \sum_{i=1}^n \hat{Z}_{n,i}^* \Phi \{ X_i^* \beta(\theta)/h \} - \frac{1}{n} \sum_{i=1}^n \hat{Z}_{n,i} \Phi \{ X_i^\top \beta(\theta)/h \}.
\]

Roughly speaking, the first two terms mimic the quadratic behavior of \(F_0 \{ \beta(\theta) \} \) near the true value \(\theta_0 \), while the other two terms mimic the random fluctuations of
\[\hat{F}_{n,s}^h \{ \beta(\theta) \} - F_0 \{ \beta(\theta) \}. \] Let

\[\hat{\theta}_{n,s}^* = \arg \max_{\theta} \hat{F}_{n,s}^h \{ \beta(\theta) \}, \quad \hat{\beta}_{n,s}^* = \beta(\hat{\theta}_{n,s}^*), \quad \text{and} \quad \hat{V}_{n,s}^h(\hat{\theta}_{n,s}^*) = \hat{F}_{n,s}^h(\hat{\beta}_{n,s}^*) + \hat{D}_n^*. \]

The empirical percentiles of the foregoing quantities are used to construct confidence sets for the the components of \(\beta_0 \) and \(V_0(\hat{\beta}_{n,s}^*) \).

3 Experiments

3.1 A toy example adopted from Qian and Murphy (2011)

To illustrate the potential impacts of using a surrogate on consistency we consider the application of entropy learning on the following generative model which is adapted from (Qian and Murphy, 2011). Let \(X \sim \text{Uniform}[-1, 1] \), \(A \sim \text{Uniform}\{-1, 1\} \), and \(R = 12 + 5A(X - 1/3)^2 + 0.5\epsilon \), where \(\epsilon \) is standard normally distributed and independent of \(X \) and \(A \). The additive constant of 12 is to ensure that the probability of obtaining a negative reward is vanishingly small. It can be seen that the optimal decision rule in this case is \(d_{\text{opt}}(x) \equiv 1 \) which corresponds to the linear estimator \(d_{\text{opt}}(x) = \text{sign} (\beta_0 + \beta_1 x) \) with \(\beta_0 = 1 \) and \(\beta_1 = 0 \). With this generative model, the entropy loss reduces to

\[R(\beta_0, \beta_1) = 12T(\beta_0, \beta_1) - \frac{1}{9} (12\beta_0 - 10\beta_1), \]

where

\[T(\beta_0, \beta_1) = \begin{cases}
2 \log(1 + \exp(\beta_0)), & \text{if } \beta_1 = 0, \\
\{ \text{Li}_2(-\exp(\beta_0 - \beta_1)) - \text{Li}_2(-\exp(\beta_0 + \beta_1)) \} / \beta_1, & \text{if } \beta_1 \neq 0,
\end{cases} \]
and $\text{Li}_2(x)$ is the dilogarithm function, defined as

$$\text{Li}_2(x) = \int_0^x \frac{\log(1-t)}{t} dt.$$

Minimizing the entropy loss yields a rule of the form $d^{\text{ent}}(x) = \text{sign}\left(\tilde{\beta}_0 + \tilde{\beta}_1 x\right)$, where $\tilde{\beta}_0 \approx 0.553$ and $\tilde{\beta}_1 \approx -0.833$. Direct computation shows $V(d^{\text{opt}}) = 14.22$, whereas $V(d^{\text{ent}}) \approx 13.76$ (estimated with 10 million points so that standard errors are on the order of 1×10^{-4}). For comparison, the smoothed estimator proposed in Section 2 has an average value of 14.22 which matches the optimal value up to two significant digits.

3.2 Performance of the estimated regime

We consider models 1, 2, 5, and 6 from JSLZ as these are the one-stage settings. The sample size is fixed at $n = 200$. We compare the regime obtained by (*) with the regime estimated via entropy learning and Q-learning with a linear model. These three methods are denoted by SIPW, Ent and QLearn respectively. To facilitate a fair comparison, we rescale the estimated coefficients $\hat{\beta}$ in each method so that $\hat{\beta}^\top \hat{\beta} = 1$ and report the Monte Carlo standard deviation of this rescaled version. The value of the estimated regime, $V_0(\hat{\beta})$, is approximated by generating 10^5 patients following the estimated regime, and its expected value, $\mathbb{E}\{V_0(\hat{\beta})\}$, is obtained by averaging over 1000 replications.

The results are given in Table 1. We see that the smoothed method, SIPW, achieves slightly higher value compared to entropy learning on all examples and is considerably less variable. Q-learning is competitive with entropy learning on these examples while
also being considerably less variable. In models 1 and 2, where the true values of β_0 are available analytically, it can be seen that both SIPW and Q-learning exhibit less bias than entropy learning.

3.3 Inference about the coefficients in the estimated regime

We consider models 1 and 2 in JSLZ as these comprise the one-stage settings in which the optimal regime is linear. To illustrate any large sample effects, we consider sample sizes of $n = 200$ and $n = 2000$. We examine the coverage of a 95% confidence interval for the coefficients indexing the optimal decision rule as well as the value of the estimated optimal regime. Confidence intervals for Q-learning were based on the (unadjusted) nonparametric bootstrap. The results are given in Table 2. We see that all three methods achieve nominal coverage. The smoothed method, SIPW, gives slightly conservative confidence intervals. As the sample size increases from 200 to 2000, the coverage rates are closer to the nominal level.

4 Discussion

Entropy learning advances a growing literature on classification-based estimation of optimal treatment regimes. JSLZ are to be commended on an elegant derivation of a class of estimators to which entropy loss is a member. It is interesting to note that entropy loss has been identified as a top performer among convex surrogates in the estimation of optimal treatment regimes using the AIPWE rather than the IPWE as
<table>
<thead>
<tr>
<th>Model</th>
<th>Method</th>
<th>β_1</th>
<th>β_2</th>
<th>β_3</th>
<th>β_4</th>
<th>$\mathbb{E}(V_0(\hat{\beta}))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SIPW</td>
<td>0.275</td>
<td>-0.679</td>
<td>-0.680</td>
<td>0.000</td>
<td>10.303</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.010)</td>
<td>(0.011)</td>
<td>(0.011)</td>
<td>(0.018)</td>
<td>(0.006)</td>
</tr>
<tr>
<td></td>
<td>Ent</td>
<td>0.299</td>
<td>-0.724</td>
<td>-0.610</td>
<td>-0.017</td>
<td>10.200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.067)</td>
<td>(0.256)</td>
<td>(0.241)</td>
<td>(0.210)</td>
<td>(0.099)</td>
</tr>
<tr>
<td></td>
<td>QLearn</td>
<td>0.272</td>
<td>-0.680</td>
<td>-0.680</td>
<td>0.000</td>
<td>10.304</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.001)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>2</td>
<td>SIPW</td>
<td>0.265</td>
<td>-0.677</td>
<td>-0.669</td>
<td>-0.012</td>
<td>9.400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.077)</td>
<td>(0.073)</td>
<td>(0.075)</td>
<td>(0.084)</td>
<td>(0.018)</td>
</tr>
<tr>
<td></td>
<td>Ent</td>
<td>0.334</td>
<td>-0.648</td>
<td>-0.648</td>
<td>0.054</td>
<td>9.350</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.064)</td>
<td>(0.206)</td>
<td>(0.224)</td>
<td>(0.183)</td>
<td>(0.063)</td>
</tr>
<tr>
<td></td>
<td>QLearn</td>
<td>0.271</td>
<td>-0.680</td>
<td>-0.679</td>
<td>-0.000</td>
<td>9.412</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.038)</td>
<td>(0.063)</td>
<td>(0.065)</td>
<td>(0.052)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>5</td>
<td>SIPW</td>
<td>0.255</td>
<td>0.676</td>
<td>-0.675</td>
<td>-0.001</td>
<td>1.846</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.061)</td>
<td>(0.054)</td>
<td>(0.055)</td>
<td>(0.109)</td>
<td>(0.014)</td>
</tr>
<tr>
<td></td>
<td>Ent</td>
<td>0.043</td>
<td>0.708</td>
<td>-0.705</td>
<td>0.001</td>
<td>1.787</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.041)</td>
<td>(0.187)</td>
<td>(0.186)</td>
<td>(0.142)</td>
<td>(0.023)</td>
</tr>
<tr>
<td></td>
<td>QLearn</td>
<td>-0.123</td>
<td>0.727</td>
<td>-0.727</td>
<td>0.000</td>
<td>1.715</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.074)</td>
<td>(0.235)</td>
<td>(0.233)</td>
<td>(0.117)</td>
<td>(0.029)</td>
</tr>
<tr>
<td>6</td>
<td>SIPW</td>
<td>0.443</td>
<td>0.613</td>
<td>-0.609</td>
<td>-0.000</td>
<td>4.817</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.105)</td>
<td>(0.102)</td>
<td>(0.109)</td>
<td>(0.154)</td>
<td>(0.075)</td>
</tr>
<tr>
<td></td>
<td>Ent</td>
<td>0.194</td>
<td>0.697</td>
<td>-0.698</td>
<td>0.000</td>
<td>4.788</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.080)</td>
<td>(0.139)</td>
<td>(0.140)</td>
<td>(0.095)</td>
<td>(0.144)</td>
</tr>
<tr>
<td></td>
<td>QLearn</td>
<td>-0.307</td>
<td>0.692</td>
<td>-0.689</td>
<td>-0.000</td>
<td>4.087</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.116)</td>
<td>(0.197)</td>
<td>(0.197)</td>
<td>(0.119)</td>
<td>(0.070)</td>
</tr>
</tbody>
</table>

Table 1: The coefficients in the estimated regime (rescaled to have unit norm) and the value of the estimated regime. Monte Carlo standard deviations are in parentheses.

For models 1 and 2, the true value for β is $(0.272, -0.680, -0.680, 0)$. For models 5 and 6, the value for β is not available in closed form because the optimal regime is nonlinear.
<table>
<thead>
<tr>
<th>n</th>
<th>Model</th>
<th>Method</th>
<th>β_1</th>
<th>β_2</th>
<th>β_3</th>
<th>β_4</th>
<th>$\mathbb{E}(V_0(\hat{\beta}))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>1</td>
<td>SIPW</td>
<td>1.000</td>
<td>0.999</td>
<td>0.998</td>
<td>0.990</td>
<td>0.949</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ent</td>
<td>0.998</td>
<td>0.963</td>
<td>0.968</td>
<td>0.970</td>
<td>0.904</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QLearn</td>
<td>0.951</td>
<td>0.938</td>
<td>0.948</td>
<td>0.952</td>
<td>0.952</td>
</tr>
<tr>
<td>2</td>
<td>SIPW</td>
<td>1.000</td>
<td>0.984</td>
<td>0.977</td>
<td>0.982</td>
<td>0.946</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ent</td>
<td>0.990</td>
<td>0.978</td>
<td>0.981</td>
<td>0.969</td>
<td>0.948</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QLearn</td>
<td>0.949</td>
<td>0.914</td>
<td>0.929</td>
<td>0.925</td>
<td>0.945</td>
</tr>
<tr>
<td>2000</td>
<td>1</td>
<td>SIPW</td>
<td>0.991</td>
<td>0.988</td>
<td>0.987</td>
<td>0.960</td>
<td>0.945</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ent</td>
<td>0.968</td>
<td>0.941</td>
<td>0.936</td>
<td>0.949</td>
<td>0.952</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QLearn</td>
<td>0.960</td>
<td>0.942</td>
<td>0.947</td>
<td>0.948</td>
<td>0.949</td>
</tr>
<tr>
<td>2</td>
<td>SIPW</td>
<td>0.996</td>
<td>0.931</td>
<td>0.919</td>
<td>0.972</td>
<td>0.958</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ent</td>
<td>0.957</td>
<td>0.966</td>
<td>0.961</td>
<td>0.957</td>
<td>0.954</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QLearn</td>
<td>0.946</td>
<td>0.946</td>
<td>0.942</td>
<td>0.965</td>
<td>0.961</td>
</tr>
</tbody>
</table>

Table 2: The coverage rate of 95% confidence intervals for the regime coefficients and its value.
was considered here (Zhao et al., 2019). We expect such estimators to continue to grow in popularity especially as the computational demands of big data make non-convex alternatives more difficult to implement.

References

health: key components and design principles for ongoing health behavior support.

