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Simultaneous estimation of normal means

with side information
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Department of Statistics, University of Illinois at Urbana-Champaign

Abstract: The integrative analysis of multiple datasets is an important strategy

in data analysis. It is increasingly popular in genomics, which enjoys a wealth of

publicly available datasets that can be compared, contrasted, and combined in

order to extract novel scientific insights. This paper studies a stylized example

of data integration for a classical statistical problem: leveraging side information

to estimate a vector of normal means. This task is formulated as a compound

decision problem, an oracle integrative decision rule is derived, and a data-driven

estimate of this rule based on minimizing an unbiased estimate of its risk is

proposed. The data-driven rule is shown to asymptotically achieve the minimum

possible risk among all separable decision rules, and it can outperform existing

methods in numerical properties. The proposed procedure leads naturally to

an integrative high-dimensional classification procedure, which is illustrated by

combining data from two independent gene expression profiling studies.

Key words and phrases: Compound decision problem, Data integration, Gaussian

sequence problem, Integrative genomics, Nonparametric empirical Bayes.
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1. INTRODUCTION

1. Introduction

Methods for the integrative analysis of multiple datasets are becoming in-

creasingly important. This is especially true in genetics and genomics,

where petabytes of public data are readily available for integrative analysis

(Richardson et al., 2016; Ritchie et al., 2015). For example, Pickrell et al.

(2016) analyzed summary statistics from genome-wide association studies

of 42 human traits and found that multiple traits were influenced by sev-

eral hundred common genetic variants. In a cross-species example, Shpigler

et al. (2017) combined results from a honey bee gene expression study with

a database of autism-associated genetic variants and found evidence for

evolutionary conservation of genes associated with both honey bee sociality

and human autism spectrum disorder. Comparing and contrasting existing

data, or combining them with new data, can lead to novel insights that

would have been difficult or impossible to uncover with a single dataset

alone (Tseng et al., 2015).

Integrative analysis strategies can take many forms, and one partic-

ularly common implementation is to leverage side information from one

or several auxiliary studies for the purpose of improving the analysis of

some primary dataset of interest. Examples abound in the multiple test-

ing literature, where methods such as p-value weighting and false discovery
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1. INTRODUCTION

rate regression incorporate auxiliary information to improve the power to

detect true signals in a primary dataset (Genovese et al., 2006; Ramdas

et al., 2017). In the genomic risk prediction literature, Hu et al. (2017) and

Zhao (2017) showed that summary statistics from previously conducted

genome-wide association studies can be used to improve the performance

of polygenic risk scores.

Growing interest in these ideas gives rise to an important statistical

question: what is the best way to leverage side information? This paper

studies this question in a simple but nontrivial problem: the simultaneous

estimation of a vector of normal means. The classical version of this problem

considers a sequence of independent Xi1 ∼ N(θi1, σ
2
1) for i = 1, . . . , n with

known σ2
1, where the goal is to estimate the θi1 (Johnstone, 2017). The

integrative version, studied here, investigates how a auxiliary sequence of

Gaussian random variables can be used to improve estimation of the means

θi1 of the primary Gaussian sequence.

This classical Gaussian sequence model is simplistic, but studying data

integration in this setting is nevertheless instructive. First, the model is

still important for many applications (Cai, 2012; Johnstone, 2017). Second,

more accurate estimation of the mean vector has immediate implications for

high-dimensional classification in genomics (Greenshtein and Park, 2009),
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1. INTRODUCTION

which will be demonstrated in Section 6. Finally, this simple problem can

reveal general statistical phenomena that arise in integrative data analysis.

More complicated variations of the Gaussian sequence model have been

studied, for example involving unknown variances that differ across different

indices i; see Section 2.2. Extensions of the present work to these more

realistic settings are important directions for future work.

Section 2 formalizes this integrative estimation task as a compound

decision problem and summarizes previous related work. The optimal way

to leverage side information is derived in Section 3, which presents an oracle

integrative decision rule that achieves the best risk within a certain class

of estimators. This section also introduces a regularized version of the

oracle rule that has the same asymptotic risk. A data-driven estimate of

this regularized oracle rule is introduced in Section 4, and is shown to

asymptotically achieve the optimal risk. Its good performance is illustrated

in simulations in Section 5 and in two genomic risk prediction problems in

Section 6. A discussion is presented in Section 7 and additional simulations

and proofs can be found in the Supplementary Materials.
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2. NORMAL MEANS PROBLEM WITH SIDE INFORMATION

2. Normal means problem with side information

2.1 Problem statement

As in the classical Gaussian sequence problem, consider a sequence of in-

dependent Xi1 ∼ N(θi1, σ
2
1) for i = 1, . . . , n, with σ2

1 known. The side

information problem studied in this paper further supposes that a second

sequence of independent Xi2 ∼ N(θi2, σ
2
2), i = 1, . . . , n is available, with σ2

2

known. The goal is to estimate the θi1, just as in the classical problem, but

here both the Xi1 and the Xi2 can be used for estimation. In this sense, the

Xi1 play the role of a primary dataset, and the Xi2 act as side information

from an auxiliary dataset. This paper assumes that the Xi1 are indepen-

dent of the Xi2 for each i, though extensions to dependent Xi1 and Xi2 are

discussed in Section 7.

This formulation is motivated by applications in integrative genomics.

The indices i represent different genomic features, such as different genes,

and the Xi1 and Xi2 represent different measurements on feature i from

different studies. For example, in the genomics classification problem de-

scribed in Section 6, each Xi1 estimates a classifier parameter θi1 corre-

sponding to the ith gene from a primary study of interest, and each Xi2

is the Z-score for the ith gene reported by an auxiliary study of a related
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2. NORMAL MEANS PROBLEM WITH SIDE INFORMATION

phenotype. The goal is to improve classification accuracy in the primary

study by leveraging both Xi1 and Xi2 to better estimate the θi1.

In the above example, the Xi1 and Xi2 are paired for each i, as both cor-

respond to the same genomic feature. The informativeness of this pairing

is crucial for the good performance of data integration. For example, be-

cause the phenotypes considered by the two studies in Section 6 are related,

genes with significant Z-scores in the auxiliary study are also likely to be

important features for classification in the primary study, so combining the

studies is likely to be fruitful. In contrast, if the phenotypes were unrelated,

Xi2 would likely not be informative about θi1. The challenge is to develop

an estimation procedure that can make optimal use of Xi2, incorporating

them when appropriate and discarding them otherwise. This is addressed

by the method proposed in this paper.

To more formally state the problem, define X·d = (X1d, . . . , Xnd), θ·d =

(θ1d, . . . , θnd) for d = 1, 2, and θ = (θ·1,θ·2). Then the normal means

problem with side information is to find a decision rule δ(X·1,X·2) =

{δ1(X·1,X·2), . . . , δn(X·1,X·2)} : R2n → Rn that minimizes the risk function

Rn(θ, δ) =
1

n

n∑
i=1

E[{θi1 − δi(X·1,X·2)}2] (2.1)

over some class of decision rules. An important class, namely the class
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of separable estimators, will be considered in this paper and is discussed

in Section 3. This paper adopts the frequentist framework where the θ·d

are fixed nonrandom constants. The auxiliary data are thus statistically

independent of the primary data, and it is interesting that they can still

provide useful information for estimating θ·1.

To illustrate the complexities of this problem, first suppose that it were

known that θi2 = θi1 for all i = 1, . . . , n and that σ1 = σ2. The best way to

integrate the auxiliary dataset would clearly be to apply existing optimal

estimation methods for a single Gaussian sequence to the sequence of aver-

aged observations (Xi1 +Xi2)/2. Next consider a slightly more complicated

setting: θi2 = θi1 for all but one i, but the i for which θi2 6= θi1 is unknown.

The auxiliary sequence is clearly still informative for estimating the θ·1, but

how it should be used is no longer obvious. Finally, consider an even more

complicated scenario where θi2 = h(θi1) + ei for some unknown function

h(t), where the ei are unknown perturbations that exhibit no patterns with

respect to θi1. If the magnitudes of the ei are small relative to the θi1, X·2

should still be useful when estimating θ·1, but it is even less clear how to

optimally integrate it into the estimation procedure. This paper provides

one approach.
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2.2 Previous work

The classical normal means estimation problem without side information,

which aims to minimize the risk function (2.1) using decision rules that

can depend only on X·1 and not X·2, has inspired an enormous literature

(Johnstone, 2017). Stein (1956) found that the maximum likelihood esti-

mator δi(X·1) = Xi1 is inadmissible, and since then research has focused on

finding alternative estimators with better risk properties. Several different

but intimately related perspectives on this problem have been developed.

The shrinkage perspective is exemplified by the James-Stein estimator

(James and Stein, 1961; Stigler, 1990), which estimates θi1 by scaling Xi1

towards zero. The empirical Bayes perspective (Robbins, 1964) treats the

θi1 as random draws from a prior distribution, uses the Xi1 to estimate any

unknown parameters in the prior, then estimates each θi1 by its posterior

mean conditional on Xi1. Efron and Morris (1973) showed that the James-

Stein estimator is an empirical Bayes estimator assuming a normal prior for

the θi1. The compound decision perspective (Robbins, 1951; Zhang, 1997)

treats the θi1 as nonrandom constants and directly derives the decision rule

that minimizes the risk. Under certain conditions, the optimal solution

from this perspective is closely related to nonparametric empirical Bayes

estimators (Brown and Greenshtein, 2009; Jiang et al., 2009; Zhang, 2003).
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More complicated versions of the classical normal means problem have

also been intensely studied. For example, specialized methods have been

developed for estimating sparse normal means, where most of the θi1 are

assumed to equal zero (Castillo et al., 2012; Donoho and Johnstone, 1994,

1995; Martin et al., 2014). Heteroscedastic normal sequences, where the Xi1

can have different variances for different indices i, have also been considered,

both when the variances are known (Fu et al., 2019; Tan, 2016; Weinstein

et al., 2018; Xie et al., 2012; Zhang and Bhattacharya, 2017) and when they

are unknown but estimates are available (Feng and Dicker, 2018; Gu and

Koenker, 2017; Jing et al., 2016).

So far, however, most work on the normal means problem and its vari-

ants has considered only a single sequence of observations Xi1, and it ap-

pears that the side information problem (2.1) has not yet been widely stud-

ied. Jiang et al. (2010), Cohen et al. (2013), Tan (2016), and Kou and

Yang (2017) proposed methods that can integrate Xi2, but these essentially

require knowledge of the nature of the relationship between θi1 and Xi2,

and may not work well when this relationship is misspecified. Banerjee

et al. (2018) studied the side information problem, but only for sparse θ·1.

Very recently Saha and Guntuboyina (2017) and Koudstaal and Yao (2018)

considered two or more Gaussian sequences, but minimized the risk of es-
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timating the means of all of the sequences, rather than the means of just

one of them as in (2.1). In contrast to existing work, this paper studies the

optimal use of X·1 and X·2 for estimating possibly non-sparse θ·1.

3. Oracle integrative separable rules

Without any restrictions, the optimal decision rule is simply δi(X·1,X·2) =

θi1, which is not useful because the performance of this rule cannot realis-

tically be achieved using the observed data alone. Instead, this paper only

considers rules in the class

S = {δ(X·1,X·2) : δi(X·1,X·2) = f(Xi1, Xi2)}, (3.2)

where f is some fixed real-valued function that is applied to each pair

(Xi1, Xi2) in order to estimate θi1. In other words, the estimate of θi1 is cal-

culated by applying f(x1, x2) to only the ith pair of observations (Xi1, Xi2),

and f(x1, x2) cannot vary with i.

Rules in S, called “separable” rules, are appealing because of their sim-

plicity and have been extensively studied (Brown and Greenshtein, 2009;

Cai, 2012; Robbins, 1951; Zhang, 2003). The maximum likelihood estima-

tor δ(X·1,X·2) = Xi1 belongs to S, and the James-Stein estimator approx-

imates the optimal separable rule that is linear in Xi1 (Jiang et al., 2009).

The minimum risk among all separable estimators has been shown to be
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asymptotically equivalent, in a certain sense, to the minimum achievable

risk over the larger class of permutation invariant estimators (Greenshtein

and Ritov, 2009).

The following proposition describes the oracle optimal integrative rule

in S for estimating θ·1, which will perform no worse than any separable

rule that relies only on X·1. It is a direct consequence of the fundamental

theorem of compound decision problems (Robbins, 1951; Jiang et al., 2009).

Let φ(x) denote the standard normal density and define

p(x1, x2; t1, t2) =
1

σ1
φ

(
x1 − t1
σ1

)
1

σ2
φ

(
x2 − t2
σ2

)
,

p0i (x1, x2) = p(x1, x2; θi1, θi2),

(3.3)

so that the density of (Xi1, Xi2) can be abbreviated by p0i (x1, x2). As men-

tioned in the problem statement in Section 2.1, this paper assumes that the

Xi1 and Xi2 are independent, but the following result is easily extended to

settings where Xi1 and Xi2 are correlated; see Section 7.

Proposition 1. Define the decision rule δ? = (δ?1, . . . , δ
?
n) where δ?i (X·1,X·2) =

f ?(Xi1, Xi2) and

f ?(x1, x2) =

∑n
j=1 θj1p

0
j(x1, x2)∑n

j=1 p
0
j(x1, x2)

. (3.4)

Then Rn(θ, δ) ≥ Rn(θ, δ?) for any δ ∈ S (3.2) for Rn(θ, δ) in (2.1).
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The oracle rule δ? also has a useful interpretation as a Bayes rule. If

the θi1 are viewed as independent draws from the discrete prior distribution

Gn(t1, t2) =
1

n

n∑
i=1

I(θi1 ≤ t1, θi2 ≤ t2), (3.5)

then the posterior expectation E(θi1 | Xi1, Xi2) of θi1 is exactly equal to

(3.4). This is an example of the close connection between compound deci-

sion problems and nonparametric empirical Bayes procedures. The depen-

dence between θi1 and θi2 under Gn quantifies the amount of information

that can be borrowed from Xi2.

While appealing, this Bayesian interpretation is not necessary for Propo-

sition 1, which holds for fixed and constant θ·1 and θ·2. Interestingly, under

this frequentist setting Proposition 1 shows that X·2 can improve the es-

timation of θ·1 even though X·1 and X·2 are statistically independent, as

long the sequences θ·1 and θ·2 are related in some sense. There need not

be an obvious functional relationship between the two mean vectors.

The above view of side information is slightly different from that of

existing frameworks. Previous methods (Jiang et al., 2010; Kou and Yang,

2017; Tan, 2016) posit some functional relationship, typically linear, be-

tween θi1 and the observed Xi2, rather than between θi1 and the true mean

θi2. For example, Kou and Yang (2017) assume that θi1 = h(Xi2) + ei for
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some error term ei, where h(x) must be known up to a finite-dimensional

parameter. These methods treat the Xi2 as fixed, while the proposed frame-

work acknowledges that the Xi2 are random variables. The difference be-

tween existing work and the present setting is akin to the difference between

classical regression methods and those that take into account covariate mea-

surement error.
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θ i
1

Method Oracle without side information f*(x1,−3) f*(x1,0) f*(x1,3)

Figure 1: Oracle estimators with and without side information for n = 20

pairs (Xi1, Xi2). Each curve plots the estimate of θi1 as a function of Xi1.

Each dot corresponds to an observed Xi1 along with its true mean θi1.

Figure 1 illustrates the oracle rule δ? (3.4) and compares it to the best
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separable estimator that does not use X·2, which is the posterior expectation

of θi1 under the prior Gn conditional only on Xi1 (Zhang, 2003). In both

panels, θi1 was generated by drawing n = 20 values from a standard normal

distribution. In the left panel, θ·2 = θ·1, so X·2 was highly informative

for θ·1. Thus f ?(x1, 3) gave the best estimates of θi1 for large Xi1 and

f ?(x1,−3) was most accurate for small Xi1. In the right panel of Figure 1,

the θi2 were generated from an independent standard normal so that X·2

was completely uninformative. In this non-informative setting, δ? may not

have the same performance as the optimal non-integrative separable rule for

any given set of X·1 and X·2, but in expectation Proposition 1 guarantees

that it will have equal or lower risk.

The oracle separable integrative rule δ? described in (3.4) cannot be

implemented in practice because it requires knowing the true (θi1, θi2) up

to permutation of the indices. Section 4 will introduce a data-driven rule

that targets the performance of δ?, though for technical reasons it will be

more convenient to target a regularized version of the oracle rule. This will

be denoted by δ?ρ = (δ?ρ1, . . . , δ
?
ρn), with δ?ρi(X·1,X·2) = f ?ρ (Xi1, Xi2) for

f ?ρ (x1, x2) = x1 +

∑n
j=1(θj1 − x1)p0j(x1, x2)
ρ+

∑n
j=1 p

0
j(x1, x2)

(3.6)

and ρ a small positive constant that prevents the denominator from being

too close to zero. Under some assumptions, δ?ρ will have the same asymp-
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totic risk as the oracle δ?.

Assumption 1. There exist positive constants C and η such that |θid| ≤

Cn1/4−η for i = 1, . . . , n and d = 1, 2.

Theorem 1. Under Assumption 1, limn→∞{Rn(θ, δ?ρ)−Rn(θ, δ?)} = 0.

Assumption 1 determines how quickly the magnitudes of θid can grow.

To put this rate into perspective, if the θid were random draws from a normal

distribution, then maxi |θid| would be O(log1/2 n) almost surely. Related as-

sumptions, which essentially restrict how variable the θid can be, have been

made in previous work on normal means estimation without side informa-

tion. For example, Xie et al. (2012) require limn−1
∑

i θ
2
i1 <∞, and Jiang

et al. (2009) and Zhang (2009) control the rate of the p-th weak moment of

the distribution function n−1
∑

i I(θi1 ≤ t1).

4. Data-driven separable estimator

4.1 Existing nonparametric empirical Bayes approach

By Proposition 1 and Theorem 1, the regularized oracle δ?ρ (3.6) is asymp-

totically optimal within the class of separable estimators (3.2), but it cannot

be implemented in practice. It therefore remains to develop a fully data-

driven estimator for the θi1. Two classes of approaches already exist. They
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have been termed f - and g-modeling (Efron, 2014, 2019) and are based on

nonparametric empirical Bayes principles that pretend that the (θi1, θi2) are

random variables with prior distribution Gn(t1, t2) (3.5).

In f -modeling, the oracle estimator (3.4) would be re-expressed as

f ?(x1, x2) = x1 +
p̃′(x1, x2)

p̃(x1, x2)
,

where p̃′(x1, x2) = ∂p̃/∂x1 and

p̃(x1, x2) =

∫
p(x1, x2; t1, t2)dGn(t1, t2)

with p(x1, x2; t1, t2) from (3.3). If the (θi1, θi2) were truly random, p̃(x1, x2)

could be interpreted as the marginal density of (Xi1, Xi2), and p̃(x1, x2)

and p̃′(x1, x2) could be estimated nonparametrically using kernel density

estimators. In g-modeling, the oracle estimator would be re-expressed as

f ?(x1, x2) = x1 +

∫
(t1 − x1)p(x1, x2; t1, t2)dGn(t1, t2)∫

p(x1, x2; t1, t2)dGn(t1, t2)
,

and if the (θi1, θi2) were truly random, a nonparametric estimate ofGn(t1, t2)

could be obtained by maximizing the marginal log-likelihood (Kiefer and

Wolfowitz, 1956)

arg max
G

n∏
i=1

∫
p(Xi1, Xi2; t1, t2)dG(t1, t2).

Both f - and g-modeling have been used in normal means problems

without side information, where they are asymptotically optimal even in
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the frequentist framework where the θi1 and θi2 are nonrandom (Brown

and Greenshtein, 2009; Feng and Dicker, 2018; Fu et al., 2019; Jiang et al.,

2009; Koenker, 2014; Koenker and Mizera, 2014; Saha and Guntuboyina,

2017; Zhang, 2009). However, neither approach directly estimates the or-

acle decision rule, with f -modeling proceeding through the intermediate

quantity p̃(x1, x2) and g-modeling proceeding through Gn(t1, t2).

4.2 Proposed direct risk minimization approach

This paper explores a more direct approach to estimating the oracle integra-

tive separable classifier. Motivated by the regularized oracle (3.6), consider

separable rules of the form δtρ = (δtρ1, . . . , δ
t
ρn) with

δtρi(x1, x2) = x1 +

∑n
j=1(tj1 − x1)p(x1, x2; tj1, tj2)
ρ+

∑n
j=1 p(x1, x2; tj1, tj2)

, (4.7)

for a given t = (t11, . . . , tn1, t12, . . . , tn2). By Theorem 1, the optimal t

equals (θ11, . . . , θn1, θ12, . . . , θn2), but the θid are not known. The challenge

is to choose a t in a data-driven fashion that can still asymptotically achieve

the optimal risk.

Choosing t to minimize the risk (2.1) of δt
ρ (4.7) should give an estimator

with good performance. However, calculating the risk requires knowing the

true θid. On the other hand, Stein’s Lemma (Stein, 1981) can be used to

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)
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give an unbiased estimate of the true risk as a function only of t:

sure(t)

=
2

n

n∑
i=1

∑
j(tj1 −Xi1)

2p(Xi1, Xi2; tj1, tj2)

ρ+
∑

j p(Xi1, Xi2; tj1, tj2)
− 2

n
σ2
1

n∑
i=1

∑
j p(Xi1, Xi2; tj1, tj2)

ρ+
∑

j p(Xi1, Xi2; tj1, tj2)
−

1

n

n∑
i=1

{∑
j(t1j −Xi1)p(Xi1, Xi2; tj1, tj2)

ρ+
∑

j p(Xi1, Xi2; tj1, tj2)

}2

+ σ2
1.

(4.8)

The following theorem shows that sure(t) is also a good approximation to

the actual loss

`n(t) =
1

n

n∑
i=1

{θi1 − δtρi(Xi1, Xi2)}2 (4.9)

uniformly over the set

T = {t : |tjd| ≤ Cn1/4−η, j = 1, . . . , n, d = 1, 2}. (4.10)

Theorem 2. Under Assumption 1, if 0 < ρ ≤ 1, then

lim
n→∞

E sup
t∈T
|sure(t)− `n(t)| = 0.

The tuning parameter t can now be chosen by minimizing this esti-

mated risk, as a proxy for minimizing the unknown true risk. The proposed

estimator is therefore defined to be

δt̂
ρ as in (4.7) with t̂ = arg min

t∈T
sure(t). (4.11)

This strategy of direct risk minimization is common in the compound deci-

sion literature (Jing et al., 2016; Kou and Yang, 2017; Tan, 2016; Weinstein
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et al., 2018; Xie et al., 2012, 2016; Zhang and Bhattacharya, 2017), but has

not yet been used to approximate an optimal separable rule like (3.6). The

following theorem shows that (4.11) can asymptotically achieve the same

the performance as the optimal separable decision rule.

Theorem 3. Under the same conditions as Theorem 2, limn→∞{E`n(t̂)−

Rn(θ, δ?)} ≤ 0, where E`n(t̂) is the risk of the proposed estimator δt̂
ρ (4.11).

4.3 Implementation

The proposed estimator has been implemented in the R package cole, avail-

able at github.com/sdzhao/cole. In practice, the exact value of ρ appears

to make little difference, and ρ = 0 works well in most cases. When the

range of the Xid is very large or the variances σ2
d are very small, problem

may arise when calculating sure(t) due to numerical precision, in which

case setting ρ = 10−12 seems to be sufficient. Throughout this paper, the

proposed method was implemented with ρ = 0.

Because the value of Cn1/4−η that defines the feasible set T (4.10) is

not known, in practice the minimization in (4.11) can be performed over

T̂ =
n∏
i=1

[Xi1 −Mσ1, Xi1 +Mσ1]× [Xi2 −Mσ2, Xi2 +Mσ2]

for some sufficiently large positive constant M , so that T̂ contains (θ·1,θ·2)

with probability Φ(−M)n, where Φ is the cumulative distribution function
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of a standard normal. By default, cole uses M = 5, so that T̂ contains

(θ·1,θ·2) with probability 0.99 when n = 10, 000. Optimizing sure(t) over

T̂ is sensible because it is known from Theorem 1 that E{sure(t)} achieves

a global minimum at tjd = θjd. This method works well, but bridging the

gap between the theoretical procedure and its practical implementation is

an important direction for future work.

Minimizing sure(t) is difficult because it is a nonconvex function. The

implementation in cole performs a simple coordinate descent. At initial-

ization, tid is set to Xid, and at each iteration one tid is updated by opti-

mizing over K equally spaced candidates in [Xid −Mσd, Xid + Mσd]. By

default, cole uses K = 10, and all analyses in this paper use K = 10

unless otherwise stated. The coordinates of t are updated in the order

t11, t21, . . . , tn1, t12, . . . , tn2, and convergence is reached when all of the co-

ordinates have been cycled through once without changing the value of

sure(t) by more than a small ε, which cole sets to 10−5 by default.

5. Simulations

5.1 Normal means problem without side information

The direct risk minimization approach proposed in this paper for estimat-

ing optimal separable decision rules appears to be novel in the compound
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decision literature. This section thus first illustrates how this idea performs

in the classical normal means problem without side information. The opti-

mal separable estimator and its corresponding unbiased risk estimate will

look like (3.4) and (4.8), respectively, but with the density p(x1, x2; t1, t2)

replaced by φ{(x1− t1)/σ1}/σ1, where φ(x) is the standard normal density.

Similar to (4.11), a data-driven estimator of the oracle rule can be ob-

tained by minimizing the risk estimate over t1 using the coordinate descent

algorithm described in Section 4.3; this is available in the cole package.

Analogs of Theorems 1–3 can also be proved.

The direct estimator was compared to the g-modeling procedure of

Jiang et al. (2009), which is also asymptotically risk-optimal. One inde-

pendent sequence Xi1, i = 1, . . . , 1, 000 was generated from N(θi1, 1), with

the goal of estimating θ·1 using only X·1. The θi1 equaled either 0 or µ and

the number of nonzero θi1 equaled either 5, 50, or 500. Table 1 displays the

average total squared errors over 100 replications. Results for the estima-

tor of Jiang et al. (2009) were taken directly from their Table 1, while the

proposed estimator was implemented using a coordinate descent algorithm

that optimized over K = 50 candidates for each t1j. The results show that

both estimators had almost identical performance.
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# nonzero 5 50 500

µ 3 4 5 7 3 4 5 7 3 4 5 7

GMLEB 39 34 23 11 157 105 58 14 459 285 139 18

Proposed 37 32 21 11 158 110 56 14 460 289 133 21

Table 1: Average total squared errors for the classical normal means prob-

lem without side information. GMLEB: the g-modeling method of Jiang

et al. (2009).

5.2 Settings for normal means problem with side information

The primary data X·1 = (X11, . . . , Xn1) were generated in four different

ways, for three dense and one sparse configuration of their means θ·1. To

generate dense θ·1, values of θi1 were independently drawn from either a

N(0, 1), a Unif(−2, 2), or an Exp(1) distribution. To generate the sparse

configuration, 10% of the coordinates of θ·1 were set to 1.5 and the rest were

set to 0. The observed primary data were generated as Xi1 = θi1+εi1, where

the εi1 were independently drawn from standard normal random variables.

The θi1 were fixed across all replications.

For each of these four settings, the auxiliary data X·2 = (X12, . . . , Xn2)

were generated in three different ways, to model different degrees of informa-

tiveness of θ·2. First define ei to be independent draws from a Unif(−4, 4).
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To generate strongly, weakly, and non-informative side information, θi2 was

set to be either 2θ2i1, θ
2
i1+ei, or ei, respectively. The observed auxiliary data

were generated as Xi2 = θi2 + εi2, where the εi were again independently

drawn from standard normal random variables. The θi2 were fixed across

all replications.

The proposed integrative normal means estimator (4.11) was compared

to two existing approaches that can incorporate side information. One was

the procedure of Banerjee et al. (2018). The other was estimator (1) of Kou

and Yang (2017), defined as

λ

λ+ σ2
1

Xi1 +
σ2
1

λ+ σ2
1

h(Xi2)

for some function h(x) known up to a finite number of parameters. These

unknown parameters, as well as λ, are chosen by minimizing an unbiased

estimate of the risk of this estimator. This estimator is motivated by the

regression model θi1 = h(Xi2) + ei for some error terms ei. However, it can

be difficult to choose the correct regression function h(x). For example, in

some of the present simulation settings, the true relationship between the

primary and auxiliary data is θi2 = 2θ2i1 + ei, which is difficult to translate

into a regression model of θi1 on Xi2. When implementing the method of

Kou and Yang (2017), these simulations used both the nonlinear model

θi1 = β0 + β1|Xi2|1/2 + ei and the linear model θi1 = β0 + β1Xi2 + ei.
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Finally, two additional estimators for θ·1 were also implemented to pro-

vide performance baselines. The first was the oracle (3.4), which attains

the lowest possible risk of any separable decision rule that incorporates side

information. The second was the g-modeling method of Jiang et al. (2009),

which can asymptotically achieve the optimal risk of any separable rule that

does not use side information.

5.3 Results for normal means problem with side information

Figure 2 illustrates the average losses, over 200 simulations, achieved by

the competing methods for N(0, 1), Unif(−2, 2), Exp(1), or sparse θ·1 and

non-informative, weakly informative, or strongly informative θ·2. Compar-

ing the performances of the oracle rule (3.4) and the method of Jiang et al.

(2009) shows that including auxiliary data does not degrade estimation ac-

curacy asymptotically when θ·2 is non-informative, and can greatly improve

it when θ·2 is informative.

The performance of the proposed data-driven estimator δt̂
ρ (4.11) in-

deed appeared to converge to the oracle performance as the number of

observations n increased, consistent with Theorem 3. Unlike the oracle,

however, incorporating non-informative X·2 in δt̂
ρ resulted in worse perfor-

mance compared to the other methods when n was small. This is expected,
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as non-informative Xi2 add extra noise without decreasing bias, and the

data-driven method requires enough samples to learn that the Xi2 are not

useful. In contrast, δt̂
ρ regained its competitiveness for larger n, and when

the auxiliary X·2 were at least weakly informative, it frequently achieved

the lowest risk among all methods. These results suggest that incorporating

X·2 using the proposed method is highly effective when X·2 is informative,

and does not do too much harm when it is not.

The proposed δt̂
ρ was sometimes outperformed by the two different im-

plementations of the procedure of Kou and Yang (2017), for example when

the θi1 were generated from Exp(1). This may be because this setting was

particularly difficult for the proposed method. Out of the four configu-

rations of θ·1, the maximum value of |θi1| was largest under the Exp(1)

configuration, and Assumption 1 makes it clear that restricting this max-

imum value is important for the good performance of δt̂
ρ. On the other

hand, when n = 1, 000 δt̂
ρ had essentially the same risk as the methods of

Kou and Yang (2017), and for other configurations of θi1, δ
t̂
ρ could perform

significantly better.

Finally, the proposed rule performed extremely well with sparse θ·1,

even though it was not designed for this scenario. When the auxiliary

data were strongly informative, it achieved the lowest risks among all im-
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plemented methods when n ≥ 200. It would be interesting to explore

extensions of the proposed procedure to estimate sparse normal means.

6. Data analysis

High-dimensional classification is an important problem in genomics. Shi

et al. (2010) studied the effectiveness of using gene expression microarray

data to develop classification rules for various phenotypes. This section fo-

cuses on classification of two of these phenotypes: estrogen receptor status

and treatment response status in breast cancer patients. The training and

validation datasets they used are publicly available from the Gene Expres-

sion Omnibus (Edgar et al., 2002) under accession number GSE20194.

Integrating auxiliary data may help improve classification accuracy.

Wang et al. (2005) developed a gene expression signature for distant metastasis-

free survival in estrogen receptor-positive and -negative breast cancer pa-

tients. It may be possible to leverage data from Wang et al. (2005), publicly

available under accession number GSE2034, to more accurately classify the

two outcomes from Shi et al. (2010). However, it is not clear how to best

integrate these auxiliary data.

The normal means estimation problem using side information, studied

in this paper, provides one approach. Greenshtein and Park (2009) showed
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that minimizing the squared error risk in the normal means problem is

closely connected to minimizing the misclassification rate in high dimen-

sional classification. Let ḠY
i denote the average expression level of gene i

in across all training subjects in class Y = 0, 1 and ŝYi denote its estimated

standard deviation. Greenshtein and Park (2009) considered classifying an

observed gene expression vector (G1, . . . , Gn) using

I

(
n∑
i=1

θ̂iGi/ŝi ≥ c

)
(6.12)

for some cutoff c, where ŝi = {(ŝ1i )2/n1 + (ŝ0i )
2/n0}1/2 and θ̂i is an estimate

of the expected value of Zi = (Ḡ1
i − Ḡ0

i )/ŝi. They showed that using the

f -modeling procedure of Brown and Greenshtein (2009) to obtain θ̂i can

lead to more accurate classification compared to simply using θ̂i = Zi.

Combined with ideas in this paper, this framework leads to a natural

integrative classifier. Let Xi1 equal Zi calculated for either estrogen receptor

status or treatment response status from the Shi et al. (2010) study, and

let Xi2 be the differential expression Z-score of the ith gene with respect to

either estrogen receptor status or distant metastasis-free survival from the

Wang et al. (2005) study. Integrating Xi2 into the estimate θ̂i1 should lead

to more accurate classification.

This integrative classification was implemented using the proposed rule

δt̂
ρ (4.11), the method of Kou and Yang (2017) using a model linear in Xi2,
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and the procedure of Banerjee et al. (2018) for sparse normal means. These

were compared to five classifiers that do not make use of auxiliary infor-

mation: 1) the method of Greenshtein and Park (2009) but implemented

using the g-modeling procedure of Jiang et al. (2009), 2) the naive Bayes

classifier, 3) logistic lasso using the R package glmnet (Friedman et al.,

2010), 4) random forest using the R package ranger (Wright and Ziegler,

2017), and 5) the regularized optimal affine discriminant analysis of Fan

et al. (2012) using the R package TULIP (Pan et al., 2019). Tuning parame-

ters for lasso and the method of Fan et al. (2012) were chosen using 10-fold

cross-validation while random forest was run using default parameters.

The integrative, naive Bayes, and Greenshtein and Park (2009) classi-

fiers all assume that the Xid are independent across i. For these procedures,

screening was thus first performed to ensure that the magnitude of the cor-

relation between every pair of genes in the training data was small, similar

to what was done in Dicker and Zhao (2016). Specifically, genes were sorted

from most to least significantly associated with the outcome in the training

data, with p-values calculated using the R package limma (Smyth, 2005).

Starting from the most significant gene, any other gene with correlation

greater than 0.2 in magnitude was removed from the dataset. No screening

was performed for lasso, random forest, or the method of Fan et al. (2012).
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Misclassification rates for estrogen receptor and treatment response sta-

tus were assessed using the same training and testing datasets used in Shi

et al. (2010), and classification was also repeated after swapping the roles

of the training and testing data. The averages of the two resulting misclas-

sification rates for the different methods are displayed in Figure 3.

The results suggest that integrative classification can be a useful strat-

egy. Intuitively, the survival results from Wang et al. (2005) should be

most informative for predicting treatment response, while the ER status

data from Wang et al. (2005) should be most useful for predicting ER sta-

tus. Indeed, the proposed integrative classifier using survival Z-scores to

predict treatment response gave the lowest misclassification rate among all

methods. The proposed method integrating ER status Z-scores to predict

ER status performed better than every method except random forest and

lasso.

7. Discussion

This paper assumes that the primary data X·1 and the auxiliary data X·2

are statistically independent. However, in some practical settings Xi1 and

Xi2 may be correlated for each i, for example if X·1 and X·2 arise from case-

control studies with shared controls (Zaykin and Kozbur, 2010). The ideas
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proposed in this paper can be naturally extended to this correlated setting.

Assuming (Xi1, Xi2) were bivariate normal with a known correlation, the

oracle integrative rule would be similar to (3.4) and is given in (S1.1) in the

Supplementary Materials. An asymptotically risk-optimal data-driven esti-

mator could then be constructed by minimizing an unbiased risk estimate

derived using Stein’s lemma.

As pointed out by one referee, this setting is especially interesting be-

cause when Xi1 and Xi2 are correlated, the X·2 provides useful information

for estimating θ·1 even when θ·2 and θ·1 are completely unrelated. This is

not true when Xi1 and Xi2 are independent. This is verified by Figure 1 in

the Supplementary Materials, where the oracle integrative rule performed

better than the oracle non-integrative rule when |cor(Xi1, Xi2)| = 0.9 even

though θ·2 was generated to be non-informative for θ·1. Thus rules such as

(3.4) can therefore take full advantage of information about θ·1 contained

the auxiliary X·2, whether that information comes in the form of informa-

tive θi2, correlated Xi2, or both.

This paper considered only a single sequence of auxiliary data, but it

is straightforward to extend the proposed procedure to multiple auxiliary

sequences. However, this would result in theoretical and computational

difficulties, for given D − 1 auxiliary datasets, Assumption 1 would re-
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quire |θid| ≤ n1/(2D)−η for d = 1, . . . , D, and the proposed procedure would

require optimizing over Dn parameters. It would be of great interest to

study whether there exists a convex surrogate of the unbiased risk estimate

(4.8). An alternative approach might be to use parametric or semipara-

metric methods, such as those proposed by Kou and Yang (2017), but to

endow them with data-driven model selection capabilities.

It would be interesting to extend data integration ideas to other variants

of the classical normal means problem, such as heteroscedastic sequences,

sparse sequences, and non-normal observed data. It would also be interest-

ing to consider broader applications of the compound decision framework

beyond the simultaneous estimation of a mean vector, such as the integra-

tive high-dimensional classification problem in Section 6.

Though this paper studied the highly stylized problem of normal means

estimation with side information, its results reveal several general principles

of integrative analysis. First, auxiliary data can be useful even if they

are statistically independent of, and have no clearly expressible functional

relationship with, primary data. The two datasets need only be related in

the sense discussed in Section 3. Second, in principle, integrating auxiliary

data can only help and not harm the primary analysis. This is because it is

possible to learn from the data themselves the degree to which the auxiliary
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data are informative, and thus the degree to which they should influence

inference in the primary data. Third, nonparametric methods, such as the

proposed (4.11), can asymptotically achieve ideal performance.

Supplementary Materials

The supplementary materials contain simulation results when the pri-

mary and auxiliary data are correlated, as well as proofs of the theoretical

results.
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Figure 2: Average losses for four different configurations of θ·1 and three

degrees of informativeness of θ·2. GMLEB: method of Jiang et al. (2009);

KY, linear: method of Kou and Yang (2017) with model θi1 = β0+β1Xi2+ei;

KY, nonlinear: method of Kou and Yang (2017) with model θi1 = β0 +

β1|Xi2|1/2 + ei; ASUS: method of Banerjee et al. (2018).
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Figure 3: Average misclassification errors for treatment response status

or estrogen receptor (ER) status from Shi et al. (2010). GP: method of

Greenshtein and Park (2009); KY: method of Kou and Yang (2017); ASUS:

method of Banerjee et al. (2018); ROAD: method of Fan et al. (2012). “+

ER status/survival”: using differential expression with respect to either

ER status or distant metastasis-free survival from Wang et al. (2005) as

auxiliary data.
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