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Abstract:

Developing accurate risk prediction model is a key step towards precision medicine.

Individualized disease prevention and treatment strategies can be formed opti-

mally according to the predicted risks. In many clinical settings, it is of great

interest to predict the τ -year risk of developing a clinical event using baseline

covariates. Such τ -year risk models can be estimated by fitting standard sur-

vival models including the Cox proportional hazards model and the more flexible

τ -year specific generalized linear model (τ -GLM). However, efficient and robust

estimation of the risk model is challenging under heavy censoring and potential

model mis-specification. Intermediate outcomes observed prior to loss to follow

up can be highly predictive of the outcome and thus may be used to improve

the efficiency of the model estimation. However, existing augmentation methods

either do not allow intermediate outcomes to be subject to censoring or have lim-

ited efficiency gain. In this paper, we propose a two-step augmentation method to

improve the estimation of τ -year risk model by leveraging longitudinally collected
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Efficient τ -year Risk Prediction Model 2

intermediate outcome information that is subject to censoring. Our method al-

lows for easy incorporation of regularization to accommodate moderate covariate

size and rare events. We also propose resampling methods to assess the variability

of our proposed estimators. Numerical studies show that the proposed point and

interval estimation procedures perform well in finite sample. We also demon-

strate that our proposed estimators are substantially more efficient compared

to existing methods. We also illustrate the proposed methods using data from

Diabetes Prevention Program, a randomized clinical trial on high-risk subjects.

Key words and phrases: Efficiency augmentation, Intermediate outcomes, Model

mis-specification, Risk prediction, Robustness, Survival.

1. Introduction

Developing accurate risk prediction models is an important task in

translational medicine research. Disease prevention and treatment strate-

gies can be tailored towards individual patients according to risks predicted

from such models. For disease prognosis and prevention, it is often of in-

terest to predict the τ -year risk of experiencing a clinical event using base-

line clinical and biomarker information. Such τ -year risk models can be

estimated by fitting a wide range of survival models including the Cox pro-

portional hazards model (Cox, 1972) and the more flexible τ -year specific

generalized linear model (τ -GLM) (Uno et al., 2007). However, efficient

and robust estimation of the risk model is challenging under heavy censor-
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ing and possible model mis-specification. Under model mis-specification,

the partial likelihood estimator for the Cox model converges to a quantity

that depends on the censoring distribution (Van Houwelingen, 2007; Cai

and Cheng, 2008), leading to reproducibility issues since censoring distri-

bution is almost always study dependent. To derive a robust risk model,

Uno et al. (2007) proposed an inverse probability weighted (IPW) estima-

tor for τ -GLM such that the model parameters are always convergent to

meaningful quantities that are free of censoring distribution. However, the

IPW estimator suffers from low efficiency in heavy censoring settings since

it discards information from subjects who are censored before τ .

To improve estimation efficiency under general survival settings, vari-

ous augmentation procedures have been proposed in the literature to lever-

age auxiliary baseline covariates or intermediate outcomes. For example,

Robins, Rotnitzky, and Zhao (1994) employed alternative estimators for the

censoring weights to improve the efficiency of IPW estimators. The doubly

robust augmented IPW (AIPW) methods provides protection against mis-

specification of weights and could potentially improve the estimation effi-

ciency by further employing outcome imputations (Scharfstein, Rotnitzky,

and Robins, 1999; Bang, 2005; Tsiatis, 2006). DiRienzo (2009) incorpo-

rated AIPW method to estimate the τ -GLM where an estimating function
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involving outcome imputation is augmented to achieve doubly robustness.

However, the AIPW estimators may attain little or even negative efficiency

gain when the outcome model is mis-specified. In addition, these existing

methods tend to perform poorly when the number of baseline covariates

and intermediate outcomes is not small. Zhang and Cai (2017) proposed

a two-step imputation based procedure that incorporates auxiliary infor-

mation including post-baseline outcomes to improve the efficiency. The

method requires the auxiliary predictors to be fully observed. However, in

cohort studies or clinical trials, post baseline intermediate outcomes are of-

ten not observable after subjects either experience the primary outcome or

censoring. It is not straightforward to adapt the method to the present set-

ting of τ -GLM estimation with the additional complication of intermediate

outcome being missing for those who are no longer at risk.

In this paper, we propose robust imputation based methods to im-

prove the estimation of the τ -GLM model parameters that can effectively

incorporate intermediate outcomes that are subject to censoring while al-

lowing both the τ -GLM and the imputation models to be mis-specified.

Our method can also easily employ regularization to control for overfitting

when the number of augmentation variables is not small. When the post-

baseline covariates are measured at multiple time points, we further develop
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a systematic approach to optimally combine several estimators to maximize

efficiency. The rest of the manuscript is organized as follows. Section 2 de-

tails the estimation and inference procedure. Section 3 presents simulation

results demonstrating the consistency and the efficiency gain of the pro-

posed estimator. Section 4 illustrates the proposed method using data from

the Diabetes Prevention Program, a placebo-controlled randomized clinical

trial investigating whether the change of lifestyle or taking metformin will

prevent type 2 diabetes among high-risk adults. Concluding remarks are

given in section 5.

2 Methods

Let T † be a continuous failure time, and X = (X1 = 1, X2, ..., Xp)
T be a p×1

vector of bounded baseline predictors. Our goal is to develop an accurate

and robust risk prediction model for Yτ = I(T † ≤ τ) at some pre-specified

time τ based on X. We propose to construct the prediction model for Yτ

by fitting the following τ -GLM working model:

Pr(T † ≤ τ |X) = Pr(Yτ = 1|X) = g(βTX), (2.1)

where g(·) is a known smooth probability distribution function and β is a

p-dimensional vector of unknown parameters. For simplicity, we focus on

the logistic link with g(x) = ex/(1+ex) throughout although the procedure
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2.1 Estimation procedure6

can be easily modified to accommodate other link functions. We allow β

to depend on τ but suppress τ from notational ease.

In addition to the event time and baseline covariates, a q-dimensional

intermediate outcomes, denoted by S, are collected over time. Without loss

of generality, we assume that S is measured at K visit times, 0 < t1 < · · · <

tK < τ , and let ~S = (ST
t1
, ...,ST

tK
)T, where St denotes S measured at time t.

Due to censoring, for T †, we only observe T = min(T †, C) and δ = I(T † ≤

C), where C is the censoring time assumed independent of (T †, ~ST,XT) with

a common survival function G(·). We allow St to be missing for those who

have censored or experienced the event by t but assume that St is observable

when T > t. The underlying data consists of n independent and identically

distributed random vectors, F = {(T †i , Ci,XT
i ,
~ST
i ), i = 1, ...,n}, while the

observed data consists of D = {(Ti, δi,XT
i ,
~ST
Ti−), i = 1, ...,n}, where ~STi−

consists of the subvector of ~Si that are measured prior to Ti.

2.1 Estimation procedure

To estimate β under τ -GLM given in (2.1), we let β̄ denote the unique

solution to

U0(β) = E[X{Yτ − g(βTX)}] = 0.
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2.1 Estimation procedure7

When (2.1) is correctly specified, β̄ is the true model parameter. Un-

der mild model mis-specification, the resulting risk score β̄
T
X was shown

to approximately maximize a weighted area under the receiver operating

characteristic curve among all functions of X for classifying Yτ (Eguchi and

Copas, 2002). Thus, β̄ is a sensible target parameters regardless the ade-

quacy of τ -GLM. We aim to derive a τ -year risk model by constructing a

consistent estimator of β̄.

To account for censoring, Uno et al. (2007) proposed an IPW estimator,

β̃, as the solution to

Ũn(β) = n−1
n∑
i=1

ŵτiXi{Yτi − g(βTXi)}, (2.2)

where ŵτi = I(Ti ≤ τ)δi + I(Ti > τ)/Ĝ(Ti ∧ τ), and Ĝ(·) is the Kaplan-

Meier estimator of G(·). For the logistic link g(·), β̃ is also the minimizer

of the weighted negative logistic log-likelihood

n∑
i=1

ŵτi`(Yτi,β
TXi), where `(y, x) = −y log{g(x)}−(1−y) log{1−g(x)}.

Although β̃ → β̄ in probability regardless the adequacy of (2.1), it suf-

fers from low efficiency in settings with heavy censoring since it discards

information from subjects censored before τ . We propose to derive a more

efficient estimator of β̄ by leveraging the observed information on ~S.
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2.1 Estimation procedure8

S measured at a single visit We first consider S measured at a single

time point ts < τ , Sts , and write

Yτ = I(T † ≤ ts) + I(ts < T † ≤ τ) = Yts + I(T † > ts)Yτ .

We propose to estimate β̄ by separately imputing the missing Yts and

I(T † > ts)Yτ . To this end, let Z = (XT,ST
ts)

T where we suppress ts from Z

for notational ease. For both X and Z, we consider their possibly non-linear

basis functions, Φ(X) and Ψ(Z), to account for potential non-linear effects,

where we let the first p elements of Φ(X) and Ψ(Z) to be X.

To impute Yts , we fit a working model P (Yts = 1 | X) = g{θT

tsΦ(X)}

and estimate θts as θ̂ts , the minimizer of the penalized IPW likelihood,

Q̂n(θ) = n−1
n∑
i=1

ŵtsi` {Ytsi,θTΦi}+ λ1Q(|θ[−1]|), (2.3)

where Φi = Φ(Xi), Q(·) is a penalty function such as the ridge or LASSO

(Friedman, Hatie, and Tibshirani, 2001) to allow the dimension of Φ(X) not

small relative to n, λ1 = o(n−
1
2 ) is a non-negative penalty parameter that

controls the degree of regularization, and for any vector a, a[−1] represents

the subvector of a with its first element removed. We choose the small

penalty parameter to reduce the potential bias in the estimated θ̂ts .

For I(T † > ts)Yτ , we impose a working model

P (Yτ = 1 | Z, T † > ts) = g{γT

τ |tsΨ(Z)}.
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2.1 Estimation procedure9

and use those with T > ts to estimate γτ |ts since P (Yτ = 1 | Z, T † > ts) =

P (Yτ = 1 | Z, T > ts) under independent censoring. For subjects with

T > ts, their intermediate outcome information Sts and hence Z are fully

observed. We estimate γτ |ts as γ̂τ |ts , the minimizer of an IPW penalized

log-likelihood associated with Yτ among Ti > ts:

D̂n(γ) = n−1
n∑
i=1

I(Ti > ts)ŵτi` (Ytsi,γ
TΨi) + λ2Q(|γ [−1]|) (2.4)

where Ψi = Ψ(Zi) and λ2 = o(n−
1
2 ) is a non-negative penalty parameter.

Combining estimates from these two working models and noting that

the expectation of $tsi = I(Ti > ts)/G(ts) given Zi and T †i is I(T †i > ts),

we impute Yτ as

Ŷ ts
τi = g(θ̂

T

tsΦi) + $̂tsi g(γ̂T

τ |tsΨi). where $̂tsi =
I(Ti > ts)

Ĝ(ts)
.

With the imputed outcome, we now use all subjects in the dataset to esti-

mate β̄ as β̂, the solution to the estimating equation

Ûn(β) ≡ n−1
n∑
i=1

Xi

{
Ŷ ts
τi − g(βTXi)

}
= 0. (2.5)

We show in Supplemental material Appendix A that β̂ is a consis-

tent estimator of β̄, regardless the adequacy of the τ -GLM or the imputa-

tion models. This demonstrates the robustness of the proposed imputation

based procedure in that β̂ is valid even if both imputation model and the
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τ -GLM are mis-specified. On the contrary, under mis-specification of τ -

GLM, separately fitting the GLM to Yτ and Yts will likely yield different

estimates of the covariate effects. In Supplemental material Appendix B,

we show that n
1
2 (β̂− β̄) converges in distribution to a multivariate normal

with mean zero and covariance matrix

Σts = var(F1i) +

∫ ts

0

var(F2i + Li|T †i > s)
S(s)2dΛc(s)

π(s)

+

∫ τ

ts

var(F3i|T †i > s)
S(s)2dΛc(s)

π(s)
,

where F1i = J−1Xi{Yτi − g(β̄
T
Xi)}, F2i = J−1Xi{Ytsi − g(θ̄

T

tsΦi)}, F3i =

J−1Xi{Yτi − g(γ̄T

τ |tsΨi)}, Li = J−1XT
i g(γ̄T

τ |tsΨi)I(T †i > ts), π(t) = P (Ti ≥

t), J = E{X⊗2i ġ(β̄
T
Xi)}, θ̄ts and γ̄τ |ts are the respective limits of θ̂ts and

γ̂τ |ts , S(t) = P (T †i ≥ t), and Λc(·) = − log{G(s)}.

To evaluate the potential efficiency gain of β̂ over β̃, we note that the

asymptotic variance of n
1
2 (β̃ − β̄) is

ΣIPW = var(F1i) +

∫ τ

0

var(F1i|T †i > s)
S(s)2dΛc(s)

π(s)

It follows that the variance reduction is

ΣIPW −Σts =

∫ ts

0

{var(F1i|T †i > s)− var(F2i + Li|T †i > s)}S(s)2dΛc(s)

π(s)

+

∫ τ

ts

{var(F1i|T †i > s)− var(F3i|T †i > s)}S(s)2dΛc(s)

π(s)
.
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2.1 Estimation procedure11

Although it is difficult if not impossible to provide conditions under which

ΣIPW − Σts is positive definite, we expect the variance of β̂ to be smaller

than that of β̃ since the {Ytsi − g(θ̄
T

tsΦi)} + I(T †i > ts){Yτi − g(γ̄T

τ |tsΨi)}

is expected to have smaller variance than that of Yτi − g(β̄
T
Xi) when the

τ -GLM is mis-specified and/or Sts is highly predictive of Yτ . To further

improve the robustness and efficiency of the proposed procedure, we next

detail our final combined estimator that combines information across all ~S

as well as β̃.

S measured at multiple visits When S is collected over multiple time

points, leveraging all measurements to maximally improve estimation effi-

ciency is challenging due to the unknown trade-off between the missing rates

and the predictiveness of S at different time points. While the measure-

ments of S may be more complete at earlier time points, the latter measure-

ments might be more predictive of Yτ . We propose to combine all available

~S by first constructing K estimators, B̂ = [β̂t1 , ..., β̂tK ]p×K , with the kth

estimator obtained as β̂ using Stk . Using similar arguments as given in Ap-

pendix A and B, we may show that n
1
2{(β̃−β̄)T, (β̂t1−β̄)T, . . . , (β̂tK−β̄)T}T

converge jointly to a zero mean multivariate normal. This enables us to con-

struct a combined estimator of β̄ by deriving an optimal linear combination
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2.1 Estimation procedure12

of β̃, β̂t1 , ..., β̂tK . For simplicity, we focus on element-wise combination.

For j = 1, . . . , p, we identify the combined estimator

β̂CMB,j = β̃j − ŴT

j∆̂j

with Ŵj being a consistent estimator of

Wj = argmin
Wj

{
var(β̃j − αj −WT

j∆̂j)
}
,

where ∆̂j = β̃j− B̂j, and for any matrix B, Bj, represents its jth row vector.

To obtain Ŵj in practice, we approximate the joint distribution of β̃ and B̂

via a perturbation resampling procedure to be detailed in section 2.2. For

b = 1, . . . , B, let β̃
(b)

and B̂(b) denote the bth realization of the resampled

estimate of β̃ and B̂, respectively, and let ∆̂
(b)

j = β̃
(b)
j −B̂

(b)
j, . Then we obtain

Ŵj = argmin
Wj

{
B∑
b=1

(
β̃
(b)
j − αj −WT

j∆̂
(b)

j

)2
+ υ‖Wj‖1

}

where αj = E(β̃j) is a nuisance parameter, υ is the tuning parameter and

‖ · ‖1 denote the L1 norm.

Regularization can be easily adopted to estimate β when p is not

small relative to the number of events by first noting that β̃ and the pro-

posed augmented estimator β̂ts are the respective minimizers of L̃n(β) =

−
∑n

i=1 ŵi`(Yτi,β
TXi) and L̂n(β) = −

∑n
i=1 `(Ŷ

ts
τi ,β

TXi). To adopt regu-

larization method, such as the adaptive LASSO (Zhang and Lu, 2007), we
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2.2 Inference via Resampling13

estimate β as B̃, the minimizer of the penalized objective function,

L̃n(β) + ν̃n

p∑
j=2

∣∣∣βj/β̃j∣∣∣ (2.6)

where 0 ≤ ν̃n →∞ as and ν̃nn
− 1

2 → 0 as n→∞. The regularized counter-

part of β̂, B̂, can be obtained as the minimizer of L̂n(β) + ν̂n
∑p

j=2 |βj/β̂j|

with similarly chosen ν̂n. The resampling procedure as outlined in Section

2.2 can be similarly used to estimate the variability of B̃ and B̂ as well as

to construct the final combined estimator that synthesize information on S

across multiple visits.

2.2 Inference via Resampling

To construct β̂CMB = (β̂CMB,1, . . . , β̂CMB,p)
T and estimate its variance, we pro-

pose a perturbation resampling procedure. Specifically, let V = (V1, ..., Vn)T

be a vector of independent and identically distributed non-negative random

variables with mean 1 and variance 1, generated independent of D . Then

for ts = t1, . . . , tK , we obtain a perturbed version of β̂ with Z = (XT,ST
ts)

T,

β̂
∗
ts , as the solution to Û∗n(β) ≡ n−1

∑n
i=1 ViXi{Ŷ ∗τ − g(βTXi)} = 0, where

Ŷ ∗τ = g(ΦT

i θ̂
∗
ts) + I(Ti > ts)Ĝ

∗(ts)
−1g(ΨT

i γ̂
∗
τ |ts),
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θ̂
∗
ts and γ̂∗τ |ts are the respective minimizers of

Q̂∗n(θ) = n−1
i=1∑
n

ŵ∗tsi`(Ytsi,θ
TΦi) + λ1Q(|θ[−1]|),

D̂∗n(γ) = n−1
n∑
i=1

I(Ti > ts)ŵ
∗
τi`(Ytsi,γ

TΨi) + λ2Q(|γ [−1]|)

ŵ∗ti = {I(Ti ≤ t)δi + I(Ti > t)}Ĝ∗(Ti ∧ t)−1 and Ĝ∗(·) is the weighted

Kaplan-Meier estimator of G(t) with V being the weights. Similarly, we

may perturb the IPW estimator β̃ as β̃
∗
, the solution to the weighted

estimating equation

Ũ∗n(β) = n−1
n∑
i=1

ŵ∗τiViXi{Ŷτ − g(βTXi)}.

In practice, one can generate B random samples of V to obtain B

realizations of the perturbed estimators β̃
∗
, β̂
∗
t1
, . . . , β̂

∗
tK

. These perturbed

estimators can then be used to construct the combined estimator β̂CMB as

described in section 2.1. In addition, it is straightforward to see that the

variability in Ŵj does not contribute to the variability of β̂CMB at the first

order. Thus, these perturbed samples can also be used to estimate the final

variance of β̂CMB and construct associated confidence intervals.

3 Simulation

We conducted extensive simulation studies to evaluate the finite sample

performance of the proposed estimation and inference procedures as well as
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to compare to existing methods. Throughout, we generated 500 datasets

under each configuration at sample size n = 500, and B = 500 replications

were used for the perturbation resampling procedure. For each setting,

we obtain the ’true value’ β̄ via monte carlo by averaging over logistic

regression estimates obtained from fitting Yτ against X using 500 sets of

simulated uncensored data at sample size of N = 10000. For the proposed

estimator, natural spline bases with pre-specified 3 knots for each covariate

are used as Φ(·) and Ψ(·) in the imputation models. In section 3.1, we

consider the scenario with p = 4 and letQ(·) = ‖·‖2; while in section 3.2, we

consider the case with p = 11 covariates out of which 7 noise predictors that

are unrelated to the risk and letQ(·) = ‖·‖1. For both setting, we let τ = 0.8

and generated a single intermediate outcome S measured at K = 4 different

time points with t1 = 0.05, t2 = 0.1, t3 = 0.15, t4 = 0.2. The surrogate

marker S has an increasing correlation with the outcome over time, but

also has increasing proportion of missing values due to censoring or failure.

Additional simulation with S has constant correlation with the outcome

over time was also considered. To evaluate the value of S in improving

efficiency, we obtained our combination estimator β̂CMB with Z = (XT,ST)T

and with Z = X, denoted respectively by β̂
KM,Z

CMB and β̂
KM,X

CMB . The percent

efficiency gain of β̂ over β̃ is calculated as {MSE(β̃)/MSE(β̂)− 1} × 100.
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3.1 Low dimension setting with p = 416

In addition to comparing to β̃ (IPWKM, Uno et al., 2007), we also ob-

tained (i) the IPW estimator with censoring weights estimated from fitting

a cox model to data {(Ti, 1− δi,Xi), i = 1, ..., n} (IPWCox,X); (ii) the AIPW

estimator (AIPWKM, DiRienzo, 2009) with censoring weights estimated

from the Kaplan-Meier and the outcome imputed from the model based on

Φ(X).

3.1 Low dimension setting with p = 4

In this setting, we generated X−1, C and T † from

X−1 = (X2, X3, X4)
T ∼ N(0, 0.3 + 0.7I3), C ∼ exponential(λ)

log(T †) = 0.5(X2 +X3 +X4) + 0.5X2
2 +X2

3 + 0.5X2
4 − 3 + logit(U) + log(α),

where Id is the d×d diagonal matrix and U ∼ Uniform(0,1). We considered

two settings (i) low event rate (12−18% by τ) and heavy censoring rate

(65−74% before τ) with {α = 12, λ = 0.5}, where ”true” β is estimated

to be (-1.05,-0.25,-0.13,-0.24); and (ii) moderate event rate (25−34% by

τ) and moderate censoring rate (37−50% by τ) with {α = 6, λ = 1},

where ”true” β is estimated to be (-0.50,-0.27,-0.16,-0.27). We generated

~S = (St1 , St2 , St3 , St4)
T from

St = logit(U) + 0.1(X1 +X2) + (10t1.5)−1εt with εt ∼ N(0, 1).
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3.1 Low dimension setting with p = 417

where εt are generated independently across different time points. Under

this setting, the Pearson correlation coefficient between log(T †) and ~S is

about (13%, 34%, 55%, 65%)T, while approximately 87%, 76%, 67%, and

60% of patients are at risk at t1, t2, t3 and t4, respectively. Additional sim-

ulation considering the correlation between St and outcome is constant over

time (about 65%) is used to evaluate how proportion of partially observed

subjects impact the efficiency gain.

As shown in Table 1, the proposed estimator has negligible bias and

gains substantial efficiency relative to IPWKM. Compared to IPWKM,

IPWCox and AIPWKM attained limited efficiency gain, especially in the low

event and high censoring setting. Even in the absence of ~S, β̂
KM,X

CMB is much

more efficient than IPWKM since the imputation model via basis expan-

sion captures the non-linear effects. The proposed estimator β̂
KM,Z

CMB further

gains efficiency by additionally incorporating ~S. Figure 1 shows that the

efficiency of the proposed estimator β̂
KM,Z

ts relative to β̃ varies substantially

across different ts, and the final estimator β̂
KM,Z

CMB , the optimal combination

of them, has the highest efficiency gain as expected. The results from Table

1 and Figure 1 also suggest that the proposed interval estimation procedure

based on the resampling works well with empirical coverage levels close to

the nominal level of 95%. Note that in the setting where St has similar
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3.1 Low dimension setting with p = 418

correlation with the outcome across different ts, the efficiency gain of β̂
KM,Z

ts

tends to decrease over time (especially in the heavy censoring setting) due

to the decreasing proportion of partially observed subjects (i.e., censored

between ts and τ), as shown in Figure 2.

Table 1: Empirical bias, SE (ESE) and average of the estimated SE (ASE)

for the low-dimensional setting. Shown also are the percent of efficiency

gain (%EffG) relative to the IPWKM estimator.

Bias × 100 ESE × 100 %EffG

β0 β1 β2 β3 β0 β1 β2 β3 β0 β1 β2 β3

Low Event Rate

IPWKM 0.58 -2.48 -2.01 -2.39 15.23 20.35 20.50 20.44 0.00 0.00 0.00

IPWCox,X -1.01 -2.17 -2.26 -2.34 15.17 18.86 18.42 18.62 0.53 16.56 23.17 20.16

AIPWKM 2.01 -2.58 -1.16 -2.32 16.68 22.77 20.00 22.22 -17.75 -20.01 5.69 -15.17

AUGKM,X
CMB -0.17 -0.59 -3.41 -0.97 14.76 16.20 14.68 15.29 6.52 59.78 86.67 80.32

AUGKM,Z
CMB 1.79 0.07 -3.47 -0.22 14.31 14.51 12.95 13.68 11.59 99.51 135.88 126.06

Moderate Event Rate

IPWKM 0.28 -1.21 -1.06 -0.59 10.87 14.26 13.98 14.19 - - - -

IPWCox,X -0.37 -0.91 -1.07 -0.46 10.78 13.52 12.96 13.41 1.54 11.60 16.25 12.13

AIPWKM 0.73 -1.37 -0.60 -0.63 11.03 13.54 12.11 13.27 -3.21 10.55 33.88 14.28

AUGKM,X
CMB -0.50 -0.50 -1.76 0.03 10.61 12.20 11.04 12.09 4.77 37.38 57.34 38.04

AUGKM,Z
CMB -0.26 0.44 -1.02 0.33 10.19 11.35 10.34 11.51 13.80 58.77 82.33 52.35
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3.1 Low dimension setting with p = 419

Figure 1: The percent of efficiency gain (%EffG) from the IPW estimator

β̃ and the coverage percentage for 95% confidence interval for the proposed

estimators {β̂
KM,Z

tk
, k = 1, 2, 3, 4} as well as the combined estimator β̂

KM,Z

CMB

under the low dimension baseline model.
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3.1 Low dimension setting with p = 420

Figure 2: The percent of efficiency gain (%EffG) for the proposed estima-

tors {β̂
KM,Z

tk
, k = 1, 2, 3, 4} assuming constant correlation between S and

outcome over time under the low dimension baseline model.
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3.2 Moderate p with regularization21

3.2 Moderate p with regularization

For the setting with p = 11, we generated X−1 from independent standard

normal and T † from

log(T †) = X2 +X3 +X4 + 0.5X2
2 +X2

3 + 0.5X2
4 − 3 + logit(U) + log(6).

The surrogate markers ~S was generated the same way as the low dimensional

setting and C ∼ exponential(1). Under this setting, the observed event rate

by τ is about 26 − 38%, leading to the effective sample size around 100-

200, not large relative to p = 11. We use adaptive LASSO as in (2.6)

to regularize baseline prediction model in all methods. The ”true” β for

the working model estimated from the complete data is (-0.49, -0.66, -0.52,

-0.66, 0.00,0.00, 0.00, 0.00, 0.00, 0.00, 0.00).

Figure 3 summarizes the results for {β̂
KM,Z

tk
, k = 1, 2, 3, 4}, the final

combined linear optimal estimator β̂
KM,Z

CMB as well as IPWKM and IPWCox

as benchmarks for efficiency assessment. The AIPW methods were not

included as no associated regularization procedures were available. In gen-

eral, β̂
KM,Z

tk
is more efficient than IPWCox, and the combined estimator β̂

KM,Z

CMB

outperforms all other estimators with substantial efficiency gain over exist-

ing methods. The resampling procedures also perform well with empirical

coverage percentage ranging from 92-95% for informative signals. The cov-
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3.2 Moderate p with regularization22

Figure 3: The percent of efficiency gain (%EffG) and the coverage percent-

age for 95% confidence interval for the proposed estimator for regularized

baseline model
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erage percentage for the zero signals range from 96%-98%, which is expected

owing to the oracle properties.

4 Example

We illustrate the proposed procedures using a dataset from the Dia-

betes Prevention Program (DPP) (DPPG, 2002). The DPP is a placebo-

controlled randomized clinical trial to investigate whether the change of

lifestyle or taking metformin will prevent type 2 diabetes among high-risk

adults. The primary outcome, type 2 diabetes, is defined as fasting glucose

≥ 140mg/dL for visits through 6/23/1997, or ≥ 126 mg/dL for visits on

or after 6/24/1997, or 2-h post challenge glucose ≥ 200 mg/dL. The study

found that the lifestyle intervention, as well as metformin, significantly pre-

vented or delayed the development of type 2 diabetes.

Suppose we are interested in constructing a time-specific risk prediction

model for τ = 4 years for the lifestyle intervention group (N=1024) and

the placebo group (N=1030), respectively. The event rate was 13.5% for

lifestyle intervention group and 27.5% for placebo group by year 4, with

74% and 62% censored before year 4, respectively. The working baseline

prediction model includes three predictors: age in ordinal scale, body mass

index (BMI) in ordinal scale, and hemoglobin A1c (HBA1C). There are
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two intermediate outcomes, fasting plasma glucose and HBA1C, which were

measured at year 1, 2, and 3.

All covariates are standardized to have mean 0 and standard deviation

1. For the imputation modeling in AIPWKM and our approach, we use

spline bases with 3 knots for all variables. Resampling with 500 replications

is used to generate the variance of the IPWKM method and our proposed

methods, and bootstrap was used for other methods. As shown in Table 2,

the point estimates from IPWKM and IPWCox are quite similar, supporting

that censoring may be independent of the baseline predictors. The proposed

method also provides point estimates similar to IPWKM and IPWCox, but

have substantially smaller standard errors. For example, in the lifestyle

intervention group, coefficient estimation for age is -0.21 with standard

error 0.15 from IPWKM method, while our estimation is -0.25 with standard

error 0.095, making the age a significant predictor. Similarly, in the placebo

group, coefficient estimation for BMI is 0.13 with standard error 0.138 from

IPWKM method, while our estimation is 0.15 with standard error 0.062,

making the BMI a significant predictor.
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Table 2: Estimated prediction models for diabetes by year 3.5 in DPP study

CoefficientSE Efficiency gain

Int age BMI HA1C Int age BMI HA1C

Lifestyle group

IPWKM −1.41.123 −0.21.146 0.15.120 0.41.146 - - - -

IPWCox,X −1.41.123 −0.26.127 0.21.105 0.42.148 -2.03 32.67 29.61 -2.20

AIPWKM −1.28.145 −0.17.221 0.00.202 0.41.229 -28.25 -56.23 -64.87 -59.08

AUG1
KM,X −1.36.128 −0.23.123 0.14.096 0.39.133 -7.66 41.18 55.38 21.46

AUG1
KM,Z −1.42.127 −0.28.116 0.10.088 0.38.122 -7.13 58.31 85.66 44.48

AUG2
KM,X −1.36.125 −0.24.114 0.17.090 0.35.128 -3.46 64.12 76.26 29.85

AUG2
KM,Z −1.29.133 −0.22.116 0.13.086 0.34.113 -15.14 59.29 92.36 69.85

AUG3
KM,X −1.37.123 −0.23.101 0.16.083 0.31.116 -1.45 110.49 106.11 59.16

AUG3
KM,Z −1.43.119 −0.22.103 0.16.083 0.35.108 5.22 101.59 107.57 85.03

AUGKM,X
CMB −1.39.121 −0.24.099 0.15.073 0.29.109 2.12 119.86 169.57 81.18

AUGKM,Z
CMB −1.41.119 −0.25.095 0.10.067 0.31.094 6.39 137.98 217.79 144.82

Placebo group

IPWKM −0.58.097 0.01.134 0.13.138 0.34.128 - - - -

IPWCox,X −0.58.098 −0.04.120 0.19.130 0.37.135 -1.79 24.24 11.37 -8.98

AIPWKM −0.54.099 0.09.203 0.02.210 0.32.205 -4.25 -56.60 -56.90 -60.74

AUG1
KM,X −0.58.095 −0.02.102 0.13.113 0.34.101 4.35 72.02 49.51 60.44

AUG1
KM,Z −0.54.091 0.01.091 0.15.097 0.39.097 13.28 117.05 99.78 74.44

AUG2
KM,X −0.59.095 −0.03.089 0.15.096 0.38.093 4.34 127.23 105.28 89.12

AUG2
KM,Z −0.58.095 −0.03.086 0.15.087 0.45.093 4.72 142.87 147.97 90.12

AUG3
KM,X −0.59.097 −0.04.080 0.14.081 0.47.087 0.54 183.43 192.25 118.48

AUG3
KM,Z −0.63.093 −0.03.077 0.13.076 0.50.088 9.27 202.67 224.08 137.77

AUGKM,X
CMB −0.58.095 −0.06.070 0.15.067 0.45.069 5.11 267.02 325.85 242.39

AUGKM,Z
CMB −0.59.088 −0.03.065 0.15.062 0.45.067 21.11 327.89 395.28 263.68
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5 Remarks

Deriving a robust and efficient estimator for a τ−year risk prediction model

is challenging in the presence of heavy censoring prior to τ and poten-

tial model mis-specification. Compared to existing literature, there a few

key innovations of the proposed approach. First, unlike most existing im-

putation based estimators, the proposed method is robust to model mis-

specifications in both the underlying risk model and the imputation model.

Second, our method is able to incorporate information from longitudinal

intermediate outcomes that are subject to missingness due to censoring or

failure. Third, the proposed efficient data-adaptive combination strategy

allows us to effectively combine information from S measured at different

visits along with other consistent estimators (e.g., β̃) to achieve maximal

efficiency. Analogous to overfitting in regression, our regularization based

combination strategy can effectively overcome both the correlation among

the estimators and the potentially large number of candidate estimators.

The degree of efficiency gain from incorporating S in our proposed

estimator depends on the censoring distribution prior to τ , how well the

τ -GLM approximates the true conditional risk, censoring rate for S, and

the predictiveness of S for Yτ above and beyond X. The proposed method

could be particularly useful in the settings where the prediction model with
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a long-term outcome involves heavy censoring due to administrative reasons

(e.g., study closure, etc.), but intermediate covariates that are predictive of

the outcome are collected for the large proportion of patients.

We make the assumption that C is independent of the baseline covari-

ates covariates X for simplicity. However, similar to existing IPW estima-

tors, we may allow C to depend on X by calculating the censoring weights

ŵi by fitting a Cox or other semi-parametric model for C | X. When C

depends on X but cannot be correctly modeled, Zhang and Cai (2017)

demonstrated via simulation studies that the imputation-based approach

tends to be more robust than the simple IPW approach. When p is not

small, our approach also has advantages over the augmentation method

that uses the Cox model to estimate the censoring weights since employing

regularization in the estimation of censoring model would diminish its po-

tential efficiency gain while our imputation based method naturally allows

for variable selection.

Throughout, we assume that the intermediate outcomes are potentially

measured at the same time points across subjects. This is a reasonable as-

sumption for clinical trials since study visit times are typically prescheduled

according to the study protocol. For setting where ascertainment times vary

across patients, we can choose a set of {ts, s = 1..., K} as landmark time
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points and summarize S information up to ts as the intermediate outcome

associated with ts for each patient.

Supplementary Materials

The online supplementary materials include the appendix for technical

details of the proof.
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