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Abstract: The sample empirical likelihood approach provides a powerful tool for

analysis of complex survey data. We present results of sample empirical likelihood

for point estimation and linear or nonlinear hypothesis tests on finite population

parameters defined through just-identified or over-identified estimating equation

systems with smooth or non-differentiable estimating functions under general

unequal probability sampling designs. We propose a penalized sample empirical

likelihood for variable selection and establish its oracle property under the design-

based framework. Practical implementations of the methods are also discussed.

Finite sample performances of the proposed methods for quantile regression and

variable selection are examined through simulation studies. An application using

the survey dataset from the International Tobacco Control (ITC) Policy Evalua-

tion Project is presented to demonstrate the effectiveness of the variable selection

method for linear and quantile regression models.

Key words and phrases: Design-based variable selection theory, General hypothe-

sis test, Non-differentiable estimating functions, Over-identified estimating equa-

tion system, Quantile regression analysis, Unequal probability sampling.
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1. Introduction

Complex surveys are an important tool of data collection for many areas of

scientific investigation. Survey data are widely used for official statistics, social

science researches and population health studies. Design-based inferences are the

predominant approach in official statistics for descriptive population parameters

such as the population mean or quantiles. There has also been increased use

of survey data for analytical purposes, such as exploring the relations among

variables or building statistical models for estimation and prediction. The use of

survey weights for analytical studies, however, is a subject of debate over the past

three decades. One of the central concepts for valid model-based inferences using

survey data is the ignorability of survey design features. Pfeffermann (1993) and

Gelman (2007) contain stimulating discussions on the topic.

Design-based estimating equations approach has gained increased popularity

among survey researchers and survey data users. The estimating functions are

motivated by the inferential problems for the superpopulation model parameters

θ, and the finite population parameters θN are defined as the solution to the

so-called census estimating equations. Inferences are carried out through the

survey weighted estimating equations. The survey weighted estimators θ̂ are

typically design-consistent for the finite population parameters θN regardless of

the model, and are also valid estimators for the model parameters θ if the model

holds for the finite population (Godambe and Thompson, 1986). Design-based
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variance estimators are also valid for the estimation of model parameters under

the joint randomization of the superpopulation model and the survey sampling

design (Binder and Roberts, 2009).

Empirical likelihood was first studied by Owen (1988) for independent data

and has since become one of the fastest growing topics in statistics. Due to

its nonparametric features, the method has been discussed extensively in the

survey sampling literature for design-based inferences. The very first use of

empirical likelihood method in surveys, however, is credited to Hartley and Rao

(1968) under the “scale-load” approach. Chen and Qin (1993) presented the first

formal use of the empirical likelihood for estimating the population mean under

simple random sampling. For general unequal probability sampling designs, Chen

and Sitter (1999) considered the pseudo empirical likelihood for complex survey

designs with the main focus on point estimation for the population mean. Wu

and Rao (2006) proposed pseudo empirical likelihood ratio confidence intervals

which are applicable to a single parameter under arbitrary sampling designs, and

Rao and Wu (2010) extended the method to multiple frame surveys.

Chen and Kim (2014) proposed the population empirical likelihood approach

for parameters defined through estimating equations. They focused on Poisson

sampling and conditional Poisson sampling and established an optimal prop-

erty of the point estimator as well as the asymptotic chi-square distribution of

the empirical likelihood ratio statistic with smooth estimating functions. Chen
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and Kim (2014) also briefly introduced the sample empirical likelihood approach,

which is a variation to the population empirical likelihood. The sample empirical

likelihood estimator is algebraically equivalent to the nonparametric likelihood

estimator introduced by Kim (2009). Berger and Torres (2016) and Oguz-Alper

and Berger (2016) studied an empirical likelihood approach by incorporating a

design-specific constraint such that the empirical likelihood ratio statistic for a

scalar parameter or a subset of the vector parameters follows asymptotically a

standard chisquare distribution. They considered settings where the parameters

are defined through estimating equations system over-identified with calibration

constraints. They illustrate their results for four commonly used unequal prob-

ability sampling designs. Non-smooth estimating equations are considered in

Berger and Torres (2016). This approach is generalized for the multidimensional

case by Oguz-Alper and Berger (2016). However, in Oguz-Alper and Berger

(2016), the empirical likelihood test is based on profiling and differentiability.

Berger (2016) discussed the method for the Rao-Hartley-Cochran sampling de-

sign and Berger (2018) addressed issues with nonresponse under cluster sam-

pling. A key feature of the specific survey designs considered by Berger and

his co-authors is that the design-based variance can be approximated without

involving the second order inclusion probabilities. Standard chisquare limiting

distribution does not hold for arbitrary sampling designs.

This paper provides a unified treatment on sample empirical likelihood ap-
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proach to design-based survey data analysis. We consider the most general

setting where the vector of finite population parameters is defined through a

just-identified or over-identified census estimating equations system with smooth

or non-differential estimating functions, with or without additional calibration

constraints. The main theoretical results are established under the general set-

ting with an arbitrary unequal probability sampling design. However, unknown

joint-inclusion probabilities may be needed for testing, for the estimation of eigen-

values. Approximating these probabilities is often inevitable (e.g., Haziza et al.,

2008) and requires assumptions about the design such as high entropy or neg-

ligible sampling fractions, as in Berger and Torres (2016) and Oguz-Alper and

Berger (2016) (see Section 4 in the supplement for more details). Our paper

contains four major methodological contributions to design-based survey data

analyses: (i) The establishment of design-consistency and asymptotic normality

of the maximum sample empirical likelihood estimator; (ii) The development of

sample empirical likelihood ratio tests for a general linear or nonlinear hypothesis

on finite population parameters; (iii) A rigorous treatment on parameters defined

through non-differentiable estimating functions, with the general design-based

results from (i) and (ii) covering advanced inference problems such as quantile

regression analysis; and (iv) The penalized sample empirical likelihood method

for design-based variable selection using complex survey data and the establish-

ment of its oracle properties for parameters defined through general estimating
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equations. The sample empirical likelihood formulation also brings a compu-

tational unification of design-based inferences for surveys and the mainstream

applications of empirical likelihood (Owen, 1988; Qin and Lawless, 1994, 1995).

Our asymptotic development uses the theory of empirical processes and extends

existing methods for non-smooth estimation problems (Pakes and Pollard, 1989;

Parente and Smith, 2011) from independent samples to complex survey data.

The rest of the paper is organized as follows. The general results of sample

empirical likelihood on point estimation and linear or nonlinear hypothesis tests

are presented in Section 2. Our proposed penalized sample empirical likelihood

method for design-based variable selection and its oracle properties are given in

Section 3. Issues with practical implementations of the methods are discussed

in Section 4. Finite sample performances of the methods for quantile regression

are examined through simulation studies reported in Section 5. An application

using the survey dataset from the International Tobacco Control (ITC) Policy

Evaluation Project is presented in Section 6 to demonstrate the effectiveness of

the variable selection method. Some additional remarks are given in Section

7. Proofs of major results and further technical details, along with regularity

conditions, computational details and additional simulation results, are reported

in the Supplementary Materials.

2. Sample Empirical Likelihood Inference for Complex Surveys

We follow the conventional asymptotic framework for design-based infer-

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



Sample EL and Design-based Variable Selection

ences. Suppose that we have a sequence of finite populations Uν = {1, 2, · · · , Nν}

indexed by ν. The population size Nν → ∞ as ν → ∞. We drop the index ν

for notational convenience and use N → ∞ to represent the limiting process.

Associated with each unit i ∈ U = {1, 2, · · · , N} are values of survey variables

(Xi, Yi), where the Yi represents the vector of study variables, the Xi denotes the

vector of auxiliary variables. Let FN = {(X1, Y1), · · · , (XN , YN)} be the set of

values of all variables for the finite population. The finite population parameters

of interest, denoted as θN ∈ Θ where Θ is a compact subset of Rp and p is the

dimension of θN , are defined as the solution to the census estimating equations

UN(θ) =
1

N

N∑
i=1

g(Xi, Yi, θ) = 0, (2.1)

where g(X,Y, θ) is an estimating function of dimension r(≥ p). Most descriptive

finite population parameters, such as means, proportions, distribution functions,

quantiles and domain means, can be defined through (2.1). Moreover, statisti-

cal inferences for commonly encountered model parameters can be carried out

through the finite population parameters defined through (2.1). Examples in-

clude linear regression models and generalized linear models.

We consider the general setting where the estimating equations system (2.1)

is either just-identified (i.e., r = p) or over-identified (i.e., r > p), and the esti-

mating function g(Xi, Yi, θ) is either smooth or non-differentiable in θ. There are

three scenarios for over-identified estimating equations systems. The first sce-

nario is that all equations involve the parameters but there are more equations
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than the parameters. A simple example is the Poisson distribution where the

mean parameter also satisfies the equation for the variance. Another practically

important example is the instrumental variable regression, where the number

of equations r is the same as the number of instrumental variables and is of-

ten larger than the number of parameters p. See, for instance, Bowden and

Turkington (1984). The second scenario often appears in survey sampling as

the additional calibration constraints, which do not involve the parameters θ.

The third scenario is a combination of the first two scenarios. The inclusion of

calibration constraints to create an artificial “over-identified” system has been

discussed by several authors, including Chen and Kim (2014), Berger and Torres

(2016), and Oguz-Alper and Berger (2016), among others. The scenario can be

handled by using the survey weighted estimating equations for the constrained

maximization problem. Our theoretical results do not distinguish among specific

scenarios and are developed under the general setting.

There are limited work on finite population parameters defined through

non-differentiable estimating functions in the existing literature on survey data

analysis. The work of Berger and Torres (2016) is based on non-differentiable

estimations defining a scalar parameter. Oguz-Alper and Berger (2016) multi-

dimensional test is based on profiling which can be easily implemented under

differentiability, as in Qin and Lawless (1994). In Berger and Torres (2016) and

Oguz-Alper and Berger (2016), differentiability is not needed for point estimation
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or for testing the whole parameter θN . For non-differentiable g(X,Y, θ), exact

solutions to UN(θ) = 0 may not exist. Under such scenarios we may replace (2.1)

by UN(θ) = aN for some sequence aN = O(N−1). The introduction of aN is for

convenience in asymptotic developments involving non-differentiable estimating

functions and has no practical implications. An important application involving

non-differentiable estimating functions is quantile regression analysis using sur-

vey data with g(X,Y, θ) = X{I(Y < XTθ)− τ}, where τ ∈ (0, 1) and I(·) is the

indicator function. We aim to develop a unified theory to cover both smooth and

non-differentiable estimating functions.

2.1. Point estimation and asymptotic properties

Let S be the set of sampled units selected by a probability sampling design,

with first and second order inclusion probabilities πi = P(i ∈ S) and πij =

P(i, j ∈ S). Let n be the realized sample size which could be random under

certain sampling designs such as Poisson sampling. Let nB = E(n | FN) be the

expected sample size. Issues with unit or item nonresponses are not considered

in the current paper. The survey sample dataset is denote by {(Xi, Yi), i ∈ S}.

Let (p1, · · · , pn) be the discrete probability measure assigned to the n sam-

pled units. Let gi(θ) = g(Xi, Yi, θ). The sample empirical likelihood (SEL)

function for the given θ is defined as

Ln(θ) = sup

{∏
i∈S

pi

∣∣∣ pi ≥ 0,
∑
i∈S

pi = 1,
∑
i∈S

pi
[
π−1
i gi(θ)

]
= 0

}
.

It should be noted that the definition of Ln(θ) follows the standard formulation of
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Qin and Lawless (1994) on empirical likelihood and estimating equations with one

simple modification: the basic design weight π−1
i is treated as an intrinsic part of

the estimating function gi(θ). This is sufficient to obtain design-consistent point

estimators but hypothesis tests will require design-based variance estimation for

a general sampling design. The formulation brings a computational unification

between the sample empirical likelihood in survey sampling and empirical like-

lihood methods in other areas, and permits advanced asymptotic development

presented in this paper. It should be noted that our sample empirical likelihood

formulation follows Chen and Kim (2014) but equivalent formulations are also

used in Berger and Torres (2012, 2014, 2016) and Oguz-Alper and Berger (2016).

Chen and Kim (2014) relies on Poisson sampling. The use of π−1
i as part of the

constraints also appeared in Kim’s (2009) formulation which is however different.

By the standard derivation of empirical likelihood (Qin and Lawless, 1994),

the sample empirical likelihood function for any given θ, is given by Ln(θ) =∏
i∈S p̂i(θ), where p̂i(θ) = {n[1 + λTπ−1

i gi(θ)]}−1 and the Lagrange multiplier

λ = λ(θ) is the solution to

∑
i∈S

π−1
i gi(θ)

1 + λTπ−1
i gi(θ)

= 0 . (2.2)

We have log{Ln(θ)} = −ln(θ, λ)− n log(n), where

ln(θ, λ) =
∑
i∈S

log{1 + λTπ−1
i gi(θ)}. (2.3)

Finding the solution λ = λ(θ) to (2.2) is a dual problem of maximizing ln(θ, λ)
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with respect to λ for the given θ. The maximum sample empirical likelihood

estimator θ̂SEL for θN is given by

θ̂SEL = arg min
θ∈Θ

sup
λ∈Λ̂n(θ)

ln(θ, λ) ,

where Λ̂n(θ) = {λ | λTπ−1
i gi(θ) > −1, i ∈ S} for the given θ.

Our first major theoretical result is on design-consistency and asymptotic

normality of the maximum sample empirical likelihood estimator θ̂SEL. The re-

quired regularity conditions C1-C6 are specified in the Supplementary Materials.

Proofs of the results under the general setting involve extending the modern em-

pirical process theory (e.g., Pakes and Pollard, 1989; van der Vaart and Wellner,

1996; Chen et al., 2003) for independent data to dependent complex survey data.

Let ‖A‖ = {trace(ATA)}1/2 for any matrix or vector A.

Theorem 1. Suppose that Conditions C1-C6 given in the Supplementary Mate-

rials hold. We have that

(i) The maximum sample empirical likelihood estimator θ̂SEL is design-consistent

for θN , i.e., for any ε > 0,

lim
N→∞

P{‖θ̂SEL − θN‖ > ε | FN} = 0 .

(ii) The estimator θ̂SEL is asymptotically normally distributed with mean θN and

variance-covariance matrix

V1 = (ΓTW−1Γ)−1ΓTW−1ΩW−1Γ(ΓTW−1Γ)−1 ,
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where Γ = Γ(θN), Γ(θ) = ∂U(θ)/∂θ with U(θ) as the limiting function of

UN(θ) defined in Condition C2, W = nBN
−2
∑N

i=1 π
−1
i [gi(θN)][gi(θN)]T, Ω =

Var
[
ÛN(θN) | FN

]
, and ÛN(θ) = N−1

∑
i∈S π

−1
i gi(θ).

It should be noted that the factor nBN
−2 in the definition of W is not needed

for defining V1 since it all cancels out. The design-based variance Ω may depend

on joint inclusion probabilities. Applications of Theorem 1 and other general

results presented in this section require estimation of quantities such as Γ, W

and Ω, which are discussed in Section 4.

Corollary 1. Under the same regularity conditions for Theorem 1, the asymp-

totic variance-covariance matrix V1 for θ̂SEL is simplified for the following two

special cases:

(i) If r = p, then V1 reduces to V2 = Γ−1Ω(ΓT)−1.

(ii) Under single-stage PPS sampling with replacement or single-stage PPS sam-

pling without replacement with negligible sampling fractions, the variance-covariance

matrix V1 reduces to V3 = (nBΓTW−1Γ)−1.

Theorem 1 and and Corollary 1 are important for our subsequent analysis

and play a key role in establishing limiting distributions of sample empirical

likelihood ratio test statistics presented in the next section.

2.2. Empirical likelihood ratio tests for general hypotheses on θN

We first present the result on the asymptotic distribution of the sample em-
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pirical likelihood ratio statistic for θN under the general setting and an arbitrary

sampling design. The sample empirical likelihood ratio statistic for θN is defined

as

Tn(θ) = −2{ln(θ̂SEL, λ̂SEL)− ln(θ, λ)} , (2.4)

where λ̂SEL = λ̂(θ̂SEL) and λ̂(θ) = arg supλ∈Λ̂n(θ) ln(θ, λ). We have the following

general result on the asymptotic distribution of Tn(θN).

Theorem 2. Suppose that Conditions C1-C6 given in the Supplementary Ma-

terials hold. Then, as N → ∞, Tn(θN) converges in distribution to QT∆Q

when θN is the true value of the vector parameter, where Q follows the standard

multivariate normal distribution N(0, Ir) and

∆ = nBΩ1/2W−1Γ(ΓTW−1Γ)−1ΓTW−1Ω1/2 .

The asymptotic distribution of Tn(θN) can be alternatively represented by∑p
j=1 δjχ

2
j , where χ2

j , j = 1, · · · , p are independent random variables, all fol-

lowing the same distribution as χ2 with one degree of freedom, and δj , j =

1, · · · , p are the non-zero eigenvalues of the r × r matrix ∆. For the special

case r = p = 1, the parameter θ becomes a scalar and ∆ reduces to a constant

a = Var{
∑

i∈S π
−1
i gi(θN) | FN}/

∑N
i=1 π

−1
i [gi(θN)]2. In general, the test statistic

Tn(θN) follows a scaled χ2 distribution with one degree of freedom when p = 1,

which is similar to the main result presented in Wu and Rao (2006).

Corollary 2. Suppose that Conditions C1-C6 given in the Supplementary Ma-
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terials hold. Under single-stage PPS sampling with replacement or single-stage

PPS sampling without replacement with negligible sampling fractions, the sample

empirical likelihood ratio statistic Tn(θN) converges in distribution to a χ2 ran-

dom variable with p degrees of freedom as N → ∞, where p is the dimension of

θN .

Corollary 2 can also be found in Oguz-Alper and Berger (2016) and in Berger

and Torres (2016) (when p = 1), where differentiability is not needed to establish

the result. For the sampling designs described in Corollary 2, the (1 − α)100%

confidence region for θN can be constructed as

Cα =
{
θ | −2{ln(θ̂SEL, λ̂SEL)− ln(θ, λ)} ≤ χ2

1−α(p)
}
,

where χ2
1−α(p) is the 1 − α quantile of the χ2 distribution with p degrees of

freedom. For a general sampling design, the value χ2
1−α(p) needs to be replaced

by the 1−α quantile from
∑p

j=1 δ̂jχ
2
j , where the δ̂j , j = 1, · · · , p are the estimated

non-zero eigenvalues of ∆ given in Theorem 2.

We now consider sample empirical likelihood ratio tests for a general hy-

pothesis H0: Φ(θN) = 0 against a suitable alternative, where Φ(θ) has k (≤ p)

smooth components and Φ(θ) = 0 imposes k constraints on θ, either linear

or nonlinear. Let Θ∗ =
{
θ | θ ∈ Θ and Φ(θ) = 0

}
be the restricted pa-

rameter space under H0. The restricted maximum sample empirical likelihood

estimator of θ under H0 is defined as θ̂∗SEL = arg minθ∈Θ∗ supλ∈Λ̂n(θ) ln(θ, λ).
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Let λ̂∗SEL = arg supλ∈Λ̂n(θ̂∗SEL) ln(θ̂∗SEL, λ). The sample empirical likelihood ratio

statistic for testing H0: Φ(θN) = 0 against a suitable alternative is defined as

Tn(θN | H0) = −2
{
ln(θ̂SEL, λ̂SEL)− ln(θ̂∗SEL, λ̂

∗
SEL)

}
.

Let Ψ(θ) = ∂Φ(θ)/∂θ, which is a k × p matrix. We assume that Ψ(θ) has full

rank k.

Theorem 3. Suppose that Conditions C1-C6 given in the Supplementary Mate-

rials and the null hypothesis H0: Φ(θN) = 0 hold. As N →∞, we have that

(i) The restricted maximum sample empirical likelihood estimator θ̂∗SEL has asymp-

totic variance-covariance matrix given by

V ∗ = P ∗1 ΓTW−1ΩW−1ΓP ∗1 ,

where P ∗1 = Σ− ΣΨT(ΨΣΨT)−1ΨΣ, Σ = (ΓTW−1Γ)−1 and Ψ = Ψ(θN).

(ii) The sample empirical likelihood ratio statistic Tn(θN | H0) converges in dis-

tribution to QT∆∗Q, where Q ∼ N(0, Ir) and

∆∗ = nBΩ1/2W−1Γ(Σ− P ∗1 )ΓTW−1Ω1/2 .

We notice that ∆∗ has the same structure as ∆ from Theorem 2, with the

central piece Σ in ∆ replaced by Σ− P ∗1 = ΣΨT(ΨΣΨT)−1ΨΣ for ∆∗. Under

general settings the distribution of QT∆∗Q is a weighted χ2 involving eigenvalues

of ∆∗. If r = p, ∆∗ = nBΩ1/2(ΓT)−1ΨT(ΨΣΨT)−1ΨΓ−1Ω1/2. Theorem 2 of Oguz-

Alper and Berger (2016) presented a result similar to Part (ii) under the setting
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that ÛN (θ) is differentiable, the over-identified system is specified by calibration

constraints and the Φ(θ) defines a sub-parameter. The result in Part (ii) is

simplified for single-stage PPS sampling designs.

Corollary 3. Suppose that Conditions C1-C6 given in the Supplementary Ma-

terials hold. Under single-stage PPS sampling with replacement or single-stage

PPS sampling without replacement with negligible sampling fractions, the sample

empirical likelihood ratio statistic Tn(θN | H0) converges in distribution to a χ2

random variable with k degrees of freedom as N →∞.

A similar simplified result was presented in Oguz-Alper and Berger (2016)

under the setting used in their paper. There are two practically important ap-

plications of the general results presented in Theorem 3 and Corollary 3. The

first is for testing a linear hypothesis on θN in the form of H0: AθN = 0, where

A is a known k × p matrix. In this case we have Ψ(θ) = ∂Φ(θ)/∂θ = A. Let

θN = (θTN1, θ
T
N2)

T be a partition of the parameters. The most commonly used

linear hypothesis for model building is H0: θN2 = 0, corresponding to a simple

form of A.

The second application is to construct confidence intervals or regions in the

presence of nuisance parameters. This is the topic discussed by Oguz-Alper and

Berger (2016) using a profile empirical likelihood method. Suppose that θN1

is the vector of the parameters of interest and θN2 is treated as the vector of

nuisance parameters. Let θ = (θT1 , θ
T
2 )T correspond to the same partition as θN
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with dimension k for θN1 and θ1. For single-stage PPS sampling designs, the

(1− α)100% confidence region for θN1 can be constructed as

C∗α =
{
θ1 | −2{ln(θ̂SEL, λ̂SEL)− ln[θ̃(θ1), λ̃]} ≤ χ2

1−α(k)
}
, (2.5)

where θ̃(θ1) = (θT1 , θ̂2(θ1)T)T, θ̂2(θ1) = arg minθ2 ln(θ, λ) for the given θ1, and

λ̃ = arg supλ∈Λ̂n(θ̃(θ1)) ln(θ̃(θ1), λ). For general sampling designs, the cut-off point

χ2
1−α(k) needs to be replaced by the estimated 1−α quantile from the weighted

χ2 distribution given in Theorem 3.

3. Design-based Variable Selection and Its Oracle Property

Complex surveys often collect information on a large number of variables.

Some of those variables measure basic characteristics of the units and some are

specifically designed for broad scientific objectives. Section 6 presents an example

from the ITC Project where many variables related to demographical, psychoso-

cial, behavioural and health aspects of the units are measured for the survey

data. The initial stage for model building requires identification and selection

of important factors for several responses on addiction and quitting behaviours.

Variable selection for complex survey data is an important topic that has not

been fully addressed in the existing literature.

Under the non-survey context, the basic setting for variable selection is to

identify variables in a regression model with the coefficients being zero. For

finite population regression coefficients θN defined as the solution to the census

estimating equations, the components of θN are usually not exactly equal to zero
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even if the corresponding superpopulation parameters are zero. The usual root-

n order implies that θN = O(N−1/2) if the model parameters are zero and the

model holds for the finite population. We consider practical scenarios where N

is very large and certain components of θN can be treated as zero, corresponding

to the zero coefficients in the superpopulation model.

We consider the SCAD penalty pτn(·) proposed by Fan and Li (2001) with

a tuning parameter τn to be selected by a data-driven method. To estimate θN

and identify its nonzero components, we propose to use the following penalized

sample empirical likelihood function

lτn(θ) =
∑
i∈S

log{1 + λTπ−1
i gi(θ)}+ n

p∑
j=1

pτn(|θj |) , (3.1)

where λ solves the equation given by (2.2) with the given θ. The penalty function

pτn(·) satisfies pτn(0) = 0 with its first order derivative given by

p′τ (θ) = τ

{
I(θ ≤ τ) +

(aτ − θ)+

(a− 1)τ
I(θ > τ)

}
,

where a > 2. Fan and Li (2001) recommended to use a = 3.7 for most applica-

tions.

Let θN [j] be the jth component of θN and let A = {j | 1 ≤ j ≤ p and θN [j] 6=

0} be the index set of the nonzero components. For asymptotic development,

two conditions are assumed (Fan and Li, 2001) for the penalty function and the

tuning parameter τn. See Supplementary Materials for further detail.

Without loss of generality, we assume that θN = (θTN1, θ
T
N2)

T, where θN1
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consists of the d non-zero components and θN2 = 0. Let θ̂PSEL = (θ̂TP1, θ̂
T
P2)

T be

the penalized maximum sample empirical likelihood estimator of θN , which is

the minimizer of (3.1). Using the partition of θN , we decompose the variance-

covariance matrices Vj (j = 1, 2, 3) and Σ defined in Theorem 3 and Corollary 3

into the following block matrices

Vj =

 Vj11 Vj12

Vj21 Vj22

 , Σ =

 Σ11 Σ12

Σ21 Σ22

 .

The asymptotic properties of the penalized estimator θ̂PSEL = (θ̂TP1, θ̂
T
P2)

T are

summarized in the following theorem and corollary.

Theorem 4. Suppose that Conditions C1-C8 given in the Supplementary Mate-

rials hold, and that p = dim(θN) is finite. Then as N →∞,

(i) The penalized maximum sample empirical likelihood estimator θ̂P2 for the

zero-components satisfies P(θ̂P2 = 0 | FN)→ 1.

(ii) The estimator θ̂P1 for the non-zero components is asymptotically normal with

mean θN1 and variance-covariance matrix

V1A = V111 − V112Σ−1
22 Σ21 − Σ12Σ−1

22 V121 + Σ12Σ−1
22 V122Σ−1

22 Σ21 .

Part (i) of Theorem 4 is the oracle property of design-based variable selec-

tion through the penalized sample empirical likelihood method. The most crucial

difference between our proposed approach and the standard approach for inde-

pendent data is the use of survey weighted constraints in defining the sample
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empirical likelihood function, which is the first part of lτn(θ) given by (3.1). It

ensures design-consistency of the unpenalized point estimator, which is the foun-

dation for the penalized approach for variable selection under the design-based

framework.

Corollary 4. Under the same regularity conditions for Theorem 4, the asymp-

totic variance-covariance matrix V1A for θ̂P1 is simplified for the following two

special cases:

(i) If r = p, then V1 reduces to V2 = Γ−1Ω(ΓT)−1 and V1A is given by

V2A = V211 − V212Σ−1
22 Σ21 − Σ12Σ−1

22 V221 + Σ12Σ−1
22 V222Σ−1

22 Σ21.

(ii) Under single-stage PPS sampling with replacement or single-stage PPS sam-

pling without replacement with negligible sampling fractions, the asymptotic variance-

covariance matrix V1A reduces to V3A = V311 − V312V
−1

322V321.

Our proposed penalized sample empirical likelihood also provides more effi-

cient estimation for the nonzero components of the parameters in terms of smaller

asymptotic variances as shown in Corollary 4. By using a nonconvex penalty

function such as the SCAD, the penalized maximum sample empirical likelihood

estimator of θN is asymptotically equivalent to the “unpenalized” maximum sam-

ple empirical likelihood estimator of Section 2 on the restricted parameter space

Θ∗ = {θ | θ ∈ Θ and θN2 = 0}.

The penalized sample empirical likelihood can be further used as a general
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tool to conduct hypotheses tests on the d × 1 non-zero components of θN as

subsequent steps to variable selection. Specifically, we consider the problem of

testing linear hypotheses

H0 : BθN1 = 0 , H1 : BθN1 6= 0 , (3.2)

where the known q × d matrix B satisfies BBT = Iq with fixed q. We assume

that q < d, i.e., the number of constraints in H0: BθN1 = 0 is smaller than the

number of parameters in θN1, which excludes H0: θN1 = 0 from consideration.

In a model-based parametric likelihood framework, Fan and Peng (2004) studied

a similar type of hypothesis testing when the number of parameters is diverging

with the sample size. The problem (3.2) includes hypotheses for individual and

multiple components of θN1 as special cases. The most common hypothesis is:

H0 : θN1j = 0 , H1 : θN1j 6= 0 , where θN1j denotes the jth coordinate of θN1. The

penalized sample empirical likelihood ratio function is computed as

Tτn(θN1 | H0) = −2{lτn(θ̂PSEL)− min
θ:Bθ1=0

lτn(θ)} , (3.3)

where θ = (θT1 , θ
T
2 )T follows the same partition as θN = (θTN1, θ

T
N2)

T.

Theorem 5. Suppose that Conditions C1-C8 given in the Supplementary Ma-

terials hold. Then, under single-stage PPS sampling with replacement or single-

stage PPS sampling without replacement with negligible sampling fractions, the

Tτn(θN1 | H0) converges in distribution to a χ2 random variable with q degrees of

freedom.
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As a direct consequence, a (1−α)100% confidence region for βN = BθN1 can

be constructed as

C [1]
α =

{
β | −2{lτn(θ̂PSEL)− min

θ:Bθ1=β
lτn(θ)} ≤ χ2

1−α(q)
}
.

4. Practical Implementations

The asymptotic variance of θ̂SEL and the asymptotic distributions of the

sample empirical likelihood ratio statistics presented in Sections 2 and 3 are

derived under a general sampling design for smooth and non-differentiable esti-

mating functions. Practical implementations of the methods require estimation

of three major components: W , Γ and Ω, which further leads to the estimation

of quantities such as V1, ∆ and ∆∗.

The first quantity W = nBN
−2
∑N

i=1 π
−1
i [gi(θN)][gi(θN)]T can be consistently

estimated by Ŵ = nBN
−2
∑

i∈S π
−2
i [gi(θ̂SEL)][gi(θ̂SEL)]T. As noted in Section 2,

the factor nBN
−2 is included for theoretical purposes and is not required for

computation.

The second quantity is Γ = Γ(θN), where Γ(θ) = ∂U(θ)/∂θ, and U(θ) is the

limiting function of UN(θ) = N−1
∑N

i=1 gi(θ). For smooth estimating functions

with differentiable gi(θ), we can use a simple plug-in estimator Γ̂ = Γ̂(θ̂SEL),

where Γ̂(θ) = ∂ÛN(θ)/∂θ = N−1
∑

i∈S π
−1
i ∂gi(θ)/∂θ. For nondifferentiable es-

timating functions, the estimation of Γ requires additional effort. We provide

details for the quantile regression models used for the simulation studies reported

in Section 5, where g(X,Y, θ) = X{I(Y < XTθ)−γ} for a prespecified γ ∈ (0, 1).
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Let f(y|X) and F (y|X) be, respectively, the conditional pdf and cdf of Y

given X under the superpopulation model for (X,Y ). It follows that UN(θ) →

U(θ) where

U(θ) = E
{
g(X,Y, θ)

}
= E

[
X
{

P(Y < XTθ|X)− γ
}]

= E
[
X
{
F (XTθ|X)− γ

}]
.

It further leads to Γ(θ) = ∂U(θ)/∂θ = E[f(XTθ|X)XXT]. Let K(·) be a kernel

function. The quantity Γ(θ) with the given θ can be estimated by the survey

weighted estimator

Γ̂(θ) =
1

Nh

∑
i∈S

π−1
i K{(Yi −XT

i θ)/h}XiX
T
i ,

where h is the bandwidth for kernel density estimation.

The estimation of the third quantity Ω = Var[ÛN(θN) | FN ] amounts to

design-based variance estimation for the Horvitz-Thompson estimator. This is

one of the major topics in survey sampling and is not unique to the sample

empirical likelihood methods developed in this paper. For single-stage PPS sam-

pling without replacement with small sampling fractions, the results presented

in Sections 2 and 3 do not require the estimation of Ω. We provide details in

the Supplementary Materials for three other commonly encountered sampling

designs in survey practice. Each of these designs will further be examined in the

simulation studies.

5. Simulation Studies
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We presents results from several simulation studies on the finite sample per-

formances of the proposed methods for point estimation, hypothesis tests and

variable selection. We focused on quantile regression (QR) models where the

estimating functions are non-differentiable. The topic on QR itself has attracted

increased attention in recent years on alternative regression modelling techniques.

Results on point estimation and hypothesis tests are reported in this section. Re-

sults on variable selection for quantile regression models and results from another

simulation on linear regression models are reported in the Supplementary Mate-

rials.

5.1. Basic settings and sampling designs

We considered design-based inferences where the finite population was gen-

erated from a superpopulation and was fixed for repeated simulation samples.

We considered four sampling designs: (I) Single-stage PPS sampling without

replacement with negligible sampling fractions; (II) Single-stage PPS sampling

without replacement with non-negligible sampling fractions; (III) Stratified PPS

sampling; (IV) Two-stage cluster sampling with self-weighting designs. Details

on the finite population size, sample sizes and the four sampling designs are given

in Section 6 of the Supplementary Document.

5.2. Point estimation and hypothesis tests

Our first simulation study investigated the design-based performances of the

sample empirical likelihood estimator and the sample empirical likelihood ratio
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tests for quantile regression models. The finite population was generated from

the model

Y = θ0 + Z1θ1 + Z2θ2 + σ(Z1, Z2)(ε−Qε(γ)) , (5.1)

where Qε(γ) is the γth quantile of ε. The scale factor σ(Z1, Z2) allows for the

presence of conditional heteroscedasticity. The true values of the model param-

eters were set as (θ0, θ1, θ2) = (0.5, 1, 1), with the regressors Z1 ∼ N(0, 1) and

Z2 ∼ χ2(3). We considered σ(Z1, Z2) = 1 and σ(Z1, Z2) = 1 + Z2 to explore

the effect of conditional heteroscedasticity. For the error term ε, we considered

three scenarios: (i) ε ∼ N(0, 1); (ii) ε ∼ χ2(3); and (iii) ε ∼ t(3). Our simulation

examined three quantile regression models corresponding to τ = 0.25, 0.50 and

0.75.

Let θ = (θ0, θ1, θ2)T, X = (1, Z1, Z2)T, and Xi = (1, Z1i, Z2i)
T, i = 1, · · · , N .

The finite population parameters θN(γ) = (θN0(γ), θN1(γ), θN2(γ))T under the

quantile regression model are defined through the census estimating equations∑N
i=1 g(Xi, Yi, θN(γ)) = 0, where g(X,Y, θ) = X{I(Y < XTθ) − γ}. Under

the model (5.1) with the shifted Qε(γ) for the error term, the true values of

θN(γ) = (θN0(γ), θN1(γ), θN2(γ))T for the finite population were essentially the

same as the superpopulation model parameters θ = (0.5, 1, 1)T. For hypothesis

tests, we considered testing H0: θN1(γ) = 1.0 versus H1: θN1(γ) = b for b ∈

{0.5, 0.75, 1.0, 1.25, 1.5} to examine the size and the power of the sample empirical

likelihood ratio test.
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For each simulated sample, the maximum sample empirical likelihood esti-

mator θ̂SEL was computed, and the three unknown quantities W , Γ and Ω were

estimated using the methods described in Section 4. We used the Gaussian kernel

function with bandwidth h = n−1/3 for estimating Γ. The size and the power

of the test were reported in Table 1 under the heteroscedastic error terms with

σ(Z1, Z2) = 1 + Z2. The simulated relative bias (Bias) and root mean squared

error (RMS) of the point estimators and additional simulation results under the

homogeneous structure σ(Z1, Z2) = 1 were included in the Supplementary Ma-

terials. The simulation results were based on B = 2000 repeated simulation

samples and can be summarized as follows.

(a) Point estimation: The relative biases of the maximum sample empirical likeli-

hood estimators are uniformly small (< 3%) for all scenarios considered, including

skewed error distributions, heteroscedasticity and different sampling designs. The

values of RMS are similar to each other across the four different sampling designs

but are smaller under homogeneous error terms or symmetric error distributions.

(b) Hypothesis test: The sizes of the test, corresponding to b = 1.00, are close to

the nominal value 0.05 for the vast majority of cases included in the simulation.

There are a few cases, mostly under the skewed error distribution χ2(3), where

the sizes of the test are slightly over the target (around 0.07). The power of the

test (with b 6= 1.00) has demonstrated the effectiveness of the test for all scenarios,

and the test is more powerful under the homogeneous structure σ(Z1, Z2) = 1.
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This is consistent to general observations from other studies that the presence of

heteroscedasticity has impact on the performance of tests for quantile regression

models.

6. An Application to the ITC Survey Data

The International Tobacco Control Policy Evaluation Project (The ITC

Project) conducts longitudinal surveys to measure the effectiveness of national-

level tobacco control policies in more than 20 countries which signed and rati-

fied the Framework Convention on Tobacco Control (FCTC). The ITC project

first started in four countries: Canada, USA, Australia and the UK. The first

wave ITC Four Country Survey used a stratified sampling design and conducted

telephone interviews of over 2000 adult smokers in each of the four countries.

The initial group of respondents was followed in subsequent waves and a new

cross-sectional replenishment sample was added at each wave to make up for the

reduced size of the longitudinal sample due to attrition. In wave 8, respondents

were given options to complete the survey either through telephone interviews

or by self-administered internet surveys with a user-specific link to the ques-

tionnaire pages. The ITC survey questionnaires cover a wide range of measures

on demographic variables, smoking behaviour, warning labels, advertising and

promotion, light/mild brand descriptors, taxation and purchase behaviour, stop-

smoking medications and alternative nicotine products, cessation and quitting

behaviour as well as key psychosocial variables. Thompson et al. (2006) contain
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further details on the ITC Four Country Survey.

One of the important research problems in tobacco control is to model the

relation between smoking addiction and factors such as those included in the ITC

survey questionnaires. Due to the large number of potential variables available

from the data file, variable selection techniques for the initial model building

become highly valuable. In this section we apply the proposed sample empirical

likelihood method to build a model for the response variable Y : Cigarettes Per

Day, which is a common measure of the degree of addiction for smokers. We use

the data set from the ITC Four Country wave 8 survey which contains n = 901

smokers from Canada. We consider the following covariates for the initial model:

X1: “Gender”, X1 = 1 for male, and X1 = 0 for female; X2: “Age”, treated

as a continuous variable; X3: “Ethnicity”, X3 = 1 if “White, English only”,

X3 = 0 otherwise; X4: “Visited doctor since last survey”, X4 = 1 if “Yes”,

X4 = 0 otherwise; X5: “Describe your health”, X5 = 1 if “Very good”, X5 = 0

otherwise; X6: “A measure on depression”, X6 = 1 if either “Little interest or

pleasure” or “Feeling down or hopeless”, X6 = 0 otherwise; X7: “Frequency of

alcohol drinks consumed in the last 12 months”, X7 = 1 if “At least one day a

week”, X7 = 0 otherwise; X8: “Income categories”, X8 = 1 if “Low”, X8 = 0

otherwise; X9: “Education categories”, X9 = 1 if “Low”, X9 = 0 otherwise;

X10: “Marital status”, X10 = 1 if “Married” or “Commonlaw, defacto”, X10 = 0

otherwise; X11: “Mode of data collection”, X11 = 1 if “Internet”, X11 = 0
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otherwise.

The data set also contains a column of survey weights for analytical purposes

but stratum indicators are not available. In the following analysis, we treat the

sample as if it was selected by a single-stage unequal probability sampling design.

We first considered a linear regression model with the estimating functions

g(Xi, Yi, θ) = Xi{Yi − XT
i θ} where Xi = (1, Xi1, · · · , Xi11)T and θ is the 12 ×

1 vector of model parameters. We also considered quantile regression models

QY (γ | X) = XTθγ for γ = 0.25, 0.50 and 0.75 to capture a more complete

picture of the effects of the covariates X on the daily cigarette consumption Y .

The corresponding estimating functions are g(Xi, Yi, θγ) = Xi{I(Yi < XT
i θγ)−γ}.

Without loss of generality, we use θN to denote the finite population parameters

for either the linear regression model or the quantile regression model. The

maximum sample empirical likelihood estimator θ̂SEL of θN is presented in Table

2, where the sub-header “Linear Reg.” indicates the linear regression model and

the other three sub-headers with γ = 0.25, 0.50 and 0.75 represent the quantile

regression models. Also included in the table are the p-values (pval) of the sample

empirical likelihood ratio test for H0: θN [j] = 0 versus H1: θN [j] 6= 0 for each of

the 12 components of θN , and the tests are done one at a time for j = 1, 2, · · · , 12.

Results in Table 2 provide a preliminary picture on which factors might be

important for the model. For the linear regression model, the least significant

factor is X6, “A measure on depression”. This seems to be counter-intuitive
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to common beliefs. The quantile regression models show different pictures for

different γ, and X6 is indeed significant for γ = 0.25 at the level of 0.05. Since the

tests are done one at a time, a final model cannot be selected from Table 2 unless

one uses an iterative method such as stepwise variable selection procedures.

We further consider variable selection using the penalized sample empiri-

cal likelihood method. The tuning parameter τn is chosen by minimizing the

proposed BIC(τn) through a fine grid search. The maximum penalized sample

empirical likelihood estimates of θN for the linear model and the three quantile

regression models are presented in Table 3. The final selected models with non-

zero coefficients are slightly different for the four models but they all involve a

much smaller set of covariates. None of the covariates X2 (Age), X7 (Alcohol

drinks) and X11 (Mode of data collection) is selected in any of the models and

X9 (Education categories) is included for all final models. Other significant fac-

tors include X3 (Ethnic background), which is a bit of surprise, and X8 (Income

categories). The finding that alcohol drinking is unrelated to the heaviness of

smoking is also a surprise since drinking and smoking are often believed to go

hand-by-hand.

7. Additional Remarks

Survey data are one of the main sources of information for official statis-

tics where descriptive finite population parameters are of primary interest and

design-based inferences have been the foundation for survey data analysis. How-
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ever, there have been increased use of complex surveys for analytical studies in-

volving statistical models, especially for researchers in social sciences and health

and medical fields. The estimating equations approach was first championed

by Binder (1983) and Godambe and Thompson (1986). It provides an unified

framework for both descriptive and analytical use of survey data and has become

a standard tool for both survey researchers and survey data users.

Theoretical developments on survey weighted estimating equations focus

mostly on point estimators and variance estimation, and the involved estimating

functions are differentiable with the same dimension as the parameters. Binder

and Patak (1994) provided a result on confidence intervals for a scalar param-

eter in the presence of nuisance parameters. In the existing survey sampling

literature, the general case over-identified estimating equations system with non-

differentiable estimating functions and on general linear or nonlinear hypothesis

tests cannot be found. However, there are results which are not as general. Berger

and Torres (2016) considered non-differentiable estimating functions for a scalar

parameter. This result has been extended for multidimensional parameter by

Oguz-Alper and Berger (2016) when the estimating functions are differentiable.

Over-identified estimating equations are also considered by Berger and Torres

(2016) and Oguz-Alper and Berger (2016) but they are specified by calibration

constraints and are not as general as the over-identified system considered here.

Wang and Opsomer (2011) discussed variance estimation for parameters involv-
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ing non-differentiable estimating functions but the work focused primarily on a

scalar parameter.

Variable selection techniques have been extensively discussed in several areas

of statistics for model-based inferences. While the same issue of building a model

with a large number of covariates is faced by the use of complex survey data,

the topic has not been formally discussed under general settings for design-based

inferences. Wang, Wang and Wang (2014) is among the first to discuss variable

selection for longitudinal survey data using a penalized survey-weighted GEE

method.

The sample empirical likelihood methods for complex surveys and the design-

based oracle variable selection theory are a general statistical tool for analysis

of complex survey data. Zhao and Wu (2018) extended the results presented

in this paper to the pseudo empirical likelihood (Chen and Sitter, 1999; Wu

and Rao, 2006), and compared the performances of the sample empirical like-

lihood with the pseudo empirical likelihood through simulation studies. Our

proposed design-based variable selection method using the penalized sample em-

pirical likelihood is particularly appealing. It takes into account the sampling

design features through the survey weighted estimating equations, which ensures

design-consistency for point estimation, and carries over for variable selection

through the penalty terms. Design-based variance estimation is not required

for variable selection. For large scale complex survey data, the original inclu-
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sion probabilities πi are typically not available. Instead, final adjusted and/or

calibrated survey weights are included as part of the public-use survey data.

Extending our proposed sample empirical likelihood methods to this practically

important topic is currently under investigation.

Supplementary Material

The online Supplementary Material contains technical details and proofs to major

theoretical results presented in the main paper and additional simulation results.
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Table 1: Size and Power of the SEL Ratio Test Under Heteroscedasticity

τ = 0.25 τ = 0.5 τ = 0.75

Design b N(0, 1) χ2(3) t(3) N(0, 1) χ2(3) t(3) N(0, 1) χ2(3) t(3)

I 0.50 0.952 0.774 0.909 0.982 0.502 0.975 0.975 0.316 0.893

0.75 0.498 0.312 0.402 0.578 0.200 0.504 0.553 0.118 0.400

1.00 0.070 0.069 0.047 0.052 0.060 0.046 0.060 0.055 0.055

1.25 0.477 0.264 0.377 0.616 0.167 0.499 0.527 0.103 0.326

1.50 0.952 0.728 0.898 0.993 0.536 0.966 0.970 0.284 0.841

II 0.50 0.926 0.794 0.847 0.989 0.537 0.981 0.984 0.283 0.932

0.75 0.417 0.335 0.371 0.632 0.193 0.620 0.602 0.123 0.421

1.00 0.075 0.064 0.060 0.059 0.056 0.053 0.060 0.057 0.049

1.25 0.516 0.315 0.399 0.660 0.181 0.537 0.588 0.140 0.400

1.50 0.971 0.789 0.905 0.994 0.557 0.969 0.988 0.381 0.909

III 0.50 0.951 0.743 0.897 0.977 0.492 0.964 0.978 0.306 0.885

0.75 0.501 0.305 0.397 0.553 0.180 0.505 0.553 0.126 0.393

1.00 0.069 0.081 0.051 0.055 0.057 0.056 0.052 0.057 0.048

1.25 0.472 0.252 0.380 0.638 0.168 0.510 0.504 0.120 0.315

1.50 0.946 0.729 0.886 0.987 0.530 0.968 0.977 0.286 0.830

IV 0.50 0.978 0.863 0.914 0.989 0.530 0.977 0.977 0.291 0.879

0.75 0.564 0.339 0.423 0.564 0.186 0.516 0.545 0.126 0.391

1.00 0.061 0.055 0.055 0.056 0.060 0.050 0.055 0.067 0.057

1.25 0.557 0.331 0.378 0.653 0.224 0.487 0.526 0.125 0.312

1.50 0.982 0.865 0.895 0.993 0.600 0.966 0.973 0.307 0.815

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



P. Zhao, D. Haziza and C. Wu

Table 2: ITC Data: Point Estimates and Tests for H0 : θN [j] = 0 vs H1 :

θN [j] 6= 0

Linear Reg. γ = 0.25 γ = 0.50 γ = 0.75

X θ̂SEL pval θ̂SEL pval θ̂SEL pval θ̂SEL pval
1 10.532 0.000 3.000 0.000 10.948 0.350 17.352 0.476
X1 1.501 0.036 0.387 0.109 3.309 0.000 2.145 0.004
X2 0.077 0.005 0.032 0.000 0.087 0.000 0.083 0.000
X3 3.179 0.016 5.548 0.000 2.889 0.005 1.899 0.003
X4 0.729 0.399 0.774 0.023 0.403 0.248 2.244 0.007
X5 -2.221 0.004 -1.452 0.007 -2.399 0.006 -2.728 0.000
X6 0.135 0.865 -1.065 0.036 -0.287 0.235 0.545 0.354
X7 -0.920 0.215 -0.678 0.064 -1.486 0.074 -1.857 0.008
X8 1.186 0.224 1.677 0.043 0.544 0.474 0.125 0.780
X9 1.775 0.017 1.645 0.008 2.015 0.000 2.032 0.013
X10 -0.931 0.244 0.580 0.077 -2.121 0.005 -1.583 0.000
X11 -1.304 0.062 -0.420 0.433 -1.587 0.018 -2.815 0.000

Table 3: ITC Data: Variable Selection with Penalized SEL
X Linear Reg. γ = 0.25 γ = 0.50 γ = 0.75
1 13.856 2.664 10.136 6.173
X1 0.000 0.000 4.025 12.288
X2 0.000 0.000 0.000 0.000
X3 3.145 5.486 4.319 0.000
X4 0.000 1.743 0.000 0.000
X5 -2.450 0.000 0.000 0.000
X6 0.000 0.000 0.000 25.069
X7 0.000 0.000 0.000 0.000
X8 2.072 2.301 6.706 0.000
X9 1.871 2.691 2.488 22.962
X10 0.000 0.000 -3.315 0.000
X11 0.000 0.000 0.000 0.000
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