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YINGYING ZHANG1, HENG LIAN2, GUODONG LI3 ZHONGYI ZHU4

East China Normal University1, City University of Hong Kong2,

University of Hong Kong3, Fudan University4

Abstract: We investigate functional additive quantile regression that models the condition-

al quantile of a scalar response by nonparametric effects of a functional predictor. We

model the nonparametric effects of the principal component scores as additive components

which are approximated by B-splines. We also select the relevant components using a

nonconvex SCAD penalty. We establish that, when the relevant components are known,

the convergence rate of the estimator using the estimated principal component scores is

the same as that using the true scores. We also show that the estimator based on relevant

components is a local solution of the SCAD penalized quantile regression problem. The

practical performance of the proposed method is illustrated via simulation studies and an

empirical application to the corn yield data.

Key words and phrases: Additive quantile regression; functional data; principal component

analysis; splines.
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1. Introduction

The functional quantile regression gives us an overall picture of the predictive

distribution of the scalar response given the function-valued covariates rather

than just focusing on the mean response. The functional linear quantile regres-

sion model is adopted, for instance, in Cardot et al. (2005), Chen and Müller

(2012), Kato (2012), in which the τ th conditional quantile of a scalar response

y is constructed from a functional predictor X through a linear operation as

Qy(τ |X) = α(τ) +

∫
T
X(t)β(t, τ)dt, (1.1)

where X(t) is a predictor process which is a square integrable random function

defined on a compact interval T , and β(t, τ) is the square integrable coefficient

function for a given τ . Yao et al. (2017), Ma et al. (2019) further extend the

model to accomodate high-dimensional scalar predictors. To deal with function-

al data which are infinite-dimensional objects, the most widely used approach is

to project functional data onto a space spanned by a finite number of basis func-

tions. The basis can be either fixed in advance (e.g. B-splines, Fourier basis,

c.f Crambes et al. (2013), Crambes et al. (2014)) or data-driven. One conve-

nient choice for the latter is to use the eigenbasis of the covariance operator of

X(t), which often provides a parsimonious and efficient representation. More
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specifically, the covariance kernel is defined as G(s, t) = Cov(X(s), X(t)).

By the well-known functional principal component analysis (FPCA) (Yao et al.

(2005), Hall et al. (2006), Li and Hsing (2010)), we have the spectral expan-

sion G(s, t) =
∑∞

k=1 λkφk(s)φk(t) as well as the Karhunen-Loeve expansion

X(t) =
∑∞

k=1 ξkφk(t), where λ1 ≥ λ2 ≥ · · · ≥ 0 are ordered eigenval-

ues, {φk}∞k=1 are eigenfunctions making up an orthonormal basis of L2(T ) and

ξk =
∫
T X(t)φk(t)dt are called the principal component scores for X(t). Us-

ing the expansion β(t, τ) =
∑∞

k=1 bk(τ)φk(t) where bk(τ) =
∫
T β(t, τ)φk(t)dt,

the model (1.1) is transformed into a quantile regression model with an infinite

number of “regressors”:

Qy(τ |X) = α(τ) +
∞∑
k=1

bk(τ)ξk, (1.2)

and regularization is necessary. In Kato (2012), the regularization is achieved

by truncating the eigensequence to the first K leading terms, where K is chosen

such that it retains most of the variation in predictor X(t).

There is an obvious limitation for model (1.2) in that the linear relationship

can be restrictive for general applications. To make it more flexible, we pro-

pose the functional additive quantile regression where the linear components are
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replaced by a sum of non-linear functional components, i.e.

Qy(τ |X) = α(τ) +
∞∑
k=1

fk,τ (ξk),

where {fk,τ (·)} are unknown smooth functions. To make the estimation feasible,

we assume all useful information is contained in the first s components. That

is, we assume fk,τ ≡ 0, k > s for some sufficiently large s. Furthermore,

to avoid possible scaling issues, we instead use the standardized version ζik =

Φ(λ
−1/2
k ξik), where Φ(·) is a continuously differentiable map from R to [0, 1].

Then the model becomes

Qy(τ |X) = α(τ) +
s∑

k=1

fk,τ (ζk). (1.3)

To ensure identification of the fk,τ ’s, we assume that Efk,τ (ζk) = 0, k =

1, 2, . . . , s. We assume the significant components are contained in the first s

components, but not all of the s components are significant.

In this paper, we approximate the component functions using B-splines

method which is computationally convenient. To automatically select significant

components, we impose a SCAD penalty (Sherwood and Wang (2016)) on the l1

norm of each coefficient group. With l1 penalty, the minimization can be solved

by linear programming, while the computation is more involved if l2 penalty is
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used. This choice is also made for theoretical convenience. If we penalize the

l2 norm, the sufficient condition for the local minimizer of a convex difference

problem in Wang et al. (2012) is too restrictive and hard to satisfy, since the

subgradients of ‖θ‖1 only involves the signs of θk while the gradients of ‖θ‖2

are not restricted to {−1, 0, 1}. Empirically, we find that when we penalize ‖θ‖1

inside a SCAD penalty, the individual components of θ are not sparse as long as

θ 6= 0. Other penalties such as group LASSO or adaptive group LASSO could

also be used instead of the SCAD penalty. Our choice is mainly for convenience

while many penalties exist in the literature with similar performances.

There is a rich literature on functional additive models when the conditional

mean of the scalar response is of interest. Müller and Yao (2008) considered

the model E(y|X) = α +
∑∞

k=1 fk(ξk). They estimated {fk} by local poly-

nomial smoothing and regularized the model by truncation as we do here. Zhu

et al. (2014) estimated and selected the additive components in the framework

of reproducing kernel Hilbert space (RKHS) and adopted the COSSO penalty.

Furthermore, Wong et al. (2018) extended the model to partial linear function-

al additive regression with multivariate functional predictors. There are fewer

works for conditonal quantile modeling with functional predictors. Kato (2012)

pioneered this field by investigating functional linear quantile regression. His

analysis is based on fully observed X(t). In contrast, we allow observation er-

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



6

rors in the predictor and apply B-spline approximation which is computationally

convenient for implementation compared to the kernel method. The selection

of the relevant components is then obtained by using a SCAD penalty on the l1

norm of each coefficient group.

Another related line of research is on additive or sparse additive quantile

regression models, such as Horowitz and Lee (2005), Koenker (2011), Kato

(2011), Lian (2012), Lv et al. (2018). Our work is different from the above

in that the scores, which serve as pseudo-predictors, are estimated by functional

principal component analysis. Thus theoretically we need to deal with the error

caused by the estimated predictors. This requires new bounds throughout the

proof and new conditions constraining the number of components, the number

of knots in splines, and the tuning parameter in the penalty.

The rest of the paper is organized as follows. In Section 2, we present the

proposed approach and the computational algorithm. In Section 3, we investigate

the asymptotic properties of the proposed estimator. We illustrate the method

with simulation studies in Section 4 and apply it to a real dataset in section 5.

Concluding remarks are provided in Section 6. The proofs are contained in the

appendix.
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2. Proposed Methodology

Let {yi, Xi(t)}ni=1 be independent and identically distributed (i.i.d.) realizations

of the pair {y,X(t)}. The trajectories {Xi(t) : t ∈ T } are observed intermittent-

ly on possibly irregular grids ti = (ti1, . . . , tiNi
)T . We also assume that the pre-

dictor trajectories are subject to i.i.d. measurement errors, i.e. Xij = Xi(tij)+εij

with Eεij = 0 and var(εij) = σ2, j = 1, . . . , Ni. The sequence of FPC s-

cores of Xi(t) is denoted by ξi,∞ = (ξi1, ξi2, . . .)
T . Denote the s truncated

FPC scores as ξi = (ξi1, , . . . , ξis)
T . Similarly, write ζi,∞ = (ζi1, ζi2, . . .)

T and

ζi = (ζi1, . . . , ζis)
T . The transformed FPC scores {ζi} cannot be observed and

need to be estimated from discrete observations of Xi(t).

When Xi(t) are fully observed, the mean and covariance of X(t) can be

estimated by sample counterpart µ̂(t) and Ĝ(s, t) respectively. Spectral decom-

position on the estimated covariance function, Ĝ(s, t) =
∑n−1

k=1 λ̂kφ̂k(s)φ̂k(t),

provides the estimated eigenvalues and eigenfunctions. The FPC scores are es-

timated by projecting Xi(t) onto the eigenfunctions, ξ̂ik =
∫
T Xi(t)φ̂k(t)dt, and

we set ζ̂ik = Φ(λ̂
−1/2
k ξ̂ik) for transformed FPC scores. When only discrete obser-

vations are available, we focus on the case where dense measurements are made

such that each Xi(t) can be effectively recovered by smoothing. The eigen-

values, eigenfunctions and FPC scores are estimated by replacing Xi(t) with

estimated X̂i(t). For detailed algorithm, the readers can refer to section 3.1 in
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Wong et al. (2018). The estimated transformed FPC scores are denoted by ζ̂i,

which serve as the predictors in the following.

The additive components fk,τ (·), k = 1, . . . , s are approximated by B-spline

basis functions. Let (b1(t), . . . , bKn+l+1(t))
T be the vector of normalized B-

spline basis functions of order l with Kn quasi-uniform internal knots on [0, 1].

We refer the readers to Schumaker (2007) for details of the B-spline construc-

tion. For ease of notation and simplicity of proofs, we use the same number of

basis functions for all nonlinear components. To accommodate the identifying

restriction Efk,τ (ζk) = 0, 1 ≤ k ≤ s, we use the centered B-spline basis func-

tions Bm(ζk) = bm+1(ζk)− 1
n

∑n
i=1 bm+1(ζ̂ik) for m = 1, . . . , Kn + l as Huang

et al. (2010a) has done and denote w(ζk) = (B1(ζk), . . . , BKn+l(ζk))
T . We

can approximate each fk,τ (t) by fk,τ (t) ≈ w(t)′θk. Let θ = (θ0,θ
T
1 , . . . ,θ

T
s )T

be the spline coefficient for the estimation of component functions and define

W (ζi) = (K
−1/2
n ,w(ζi1)

T , . . . ,w(ζis)
T )T where K−1/2n is used to make the s-

cale of the intercept comparable with the scale of B-spline basis functions. Now

we can apply the SCAD penalty on the l1 norms of θk, 1 ≤ k ≤ s to select the

significant components. We estimate θ by θ̂ that minimizes

Sn(θ) = n−1
n∑
i=1

ρτ (yi −W (ζ̂i)
Tθ) +

s∑
k=1

pλ(‖θk‖1), (2.1)
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where ρτ (u) = |u|+(2τ−1)u is the quantile loss function, ‖θk‖1 =
∑Kn+l

j=1 |θkj|

and pλ(t) is the SCAD penalty function defined as

pλ(t) = λtI(0 ≤ t < λ)+
aλt− (t2 + λ2)/2

a− 1
I(λ ≤ t ≤ aλ)+

(a+ 1)λ2

2
I(t > aλ)

for some a > 2. Then we can estimate the parameters in model (1.3) by α̂(τ) =

K
−1/2
n θ̂0 and f̂k,τ (t) = w(t)T θ̂k.

Owing to the l1 norm in the penalization, the above penalized problem can

be solved by local linear approximation (LLA) proposed in Zou and Li (2008).

More specifically, for each step t, we update the estimator by

θ̂t = arg min
θ
n−1

n∑
i=1

ρτ (yi −W (ζ̂i)
Tθ) +

s∑
k=1

p′λ(‖θ̂t−1k ‖1)‖θk‖1.

This problem can be transformed to unpenalized weighted quantile regression

problem based on the observation |θkj| = ρτ (θkj) + ρτ (−θkj) and an augmented

data set. Similar algorithm was used in Sherwood and Wang (2016).

In practice, the selection of the tuning parameter λ is important. We choose

λ to minimize the Bayesian Information Criterion (BIC, section 3.1 in Lee et al.
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(2014)) defined as

BIC(λ) = log
n∑
i=1

ρτ (yi −W (ζ̂i)
T θ̂λ) + Jλ

log n

2n
Cn, (2.2)

where θ̂λ is the SCAD penalized estimator given λ , Jλ = 1 + (Kn + l)|Sλ|,

|Sλ| is the number of selected components and Cn is defined in the asymptotic

theory.

3. Asymptotic Properties

In this section, we first study the asymptotic properties of the oracle estimator

when the important components are known a priori. Then we show that the

oracle estimator is a local minimizer of Sn(θ).

3.1 Oracle estimator

Assume there are q nonzero components in {fk,τ (·), 1 ≤ k ≤ s}. In partic-

ular, we denote by S∗ = {k1, k2, . . . , kq} ⊆ {1, 2, . . . , s} the index set of the

important components with |S∗| = q, where | · | denotes the cardinality of a

set. Denote the corresponding transformed scores as ζi,S∗ = (ζi,k1 , . . . , ζi,kq)
T .

Then θ can be divided as θS∗ = (θ0,θ
T
k1
, . . . ,θTkq)

T and θS∗c , which is the com-

plement vector of θS∗ in θ. Similarly define the B-spline basis W (ζi,S∗) =
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3.1 Oracle estimator 11

(K
−1/2
n ,w(ζik1)

T , . . . ,w(ζikq)
T )T . Then we can obtain the oracle estimator θ∗

as θ∗S∗c = 0 and

θ∗S∗ = arg min
θS∗

n−1
n∑
i=1

ρτ (yi −W (ζ̂i,S∗)
TθS∗). (3.1)

The oracle estimation for each component functions are α∗(τ) = K
−1/2
n θ∗0,

f ∗kj ,τ (t) = w(t)Tθ∗kj for j = 1, . . . , q and f ∗k,τ (t) = 0 for k /∈ S∗. The fol-

lowing technical conditions are imposed for analyzing the asymptotic behavior

of θ∗ and f ∗k,τ (t).

(C1) Condition on the functional predictor: E(‖X(t)‖4) < ∞ and there

exists a constant Cξ > 0 such that E(ξ2kξ
2
k′) ≤ Cξλkλk′ and E(ξ2k−λk)2 < Cξλ

2
k

for all k and k′ 6= k. In addition, C−1λ k−β ≤ λk ≤ Cλk
−β , λk − λk+1 ≥

C−1λ k−1−β for some constant Cλ and β > 1.

This condition was previously used in Wong et al. (2018). It imposes a

weak moment condition on the functional predictor and is satisfied if X(t) is a

Gaussian process. In addition, it assumes the eigenvalues decay at a polynomial

rate. Under this condition, we have the following lemma is Proposition 1 in

Wong et al. (2018).

Lemma 3.1. Suppose the transformation function Φ(·) has a bounded deriva-

tive. Under condition (C1) and miniNi > C1n
1/4 for some positive constant C1,
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3.1 Oracle estimator 12

there exists a constant C such that E(ζ̂ik−ζik)2 ≤ Ck2/n uniformly for k ≤ Gn

where Gn = C2n
1/(2+2β) for some constant C2 > 0.

The dense condition miniNi > C1n
1/4 is justified in Hall et al. (2006) to en-

sure that the smoothed function estimators X̂(t) are as good as the true functions

X(t), in the sense that the resulting estimators of both λk and φk are first-order

equivalent to the estimators that arise on applying conventional principal com-

ponent analysis to the true curves X(t).

(C2) Condition on the random error: The random error εi = yi − α(τ)−∑s
k=1 fk,τ (ζik) has the conditional distribution function Fi and conditional den-

sity function fi given Xi(t). fi are uniformly bounded away from zero and

infinity in a neighborhood of zero. Its first derivative f ′i has a uniform upper

bound in a neighborhood of zero for i = 1, . . . , n.

(C3) Condition on the component functions: Efkj ,τ (ζik) = 0 and fkj ,τ ∈

Hr for all 1 ≤ j ≤ q, where q is fixed and Hr is the collection of functions

f on [0, 1] such that the vth order derivative satisfies the Hölder condition of

order m with r = m + v > 3/2, v is a positive integer and m ∈ (0, 1], i.e.,

|f (v)(t) − f (v)(t′)| ≤ Ch|t − t′|m for all t, t′ ∈ [0, 1] for some positive constant

Ch. In addition, fk,τ (t) = 0 for all k /∈ S∗.

Condition 2 is more relaxed than what is usually imposed on random er-

ror for mean regression, which often requires independence with predictors or
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3.1 Oracle estimator 13

homoscedasticity. Conditions 3 and 4 are typical for application of B-splines.

From Schumaker (2007), under Condition 3, there exists θ0S∗ such that

sup
t∈[0,1]q

|W (t)Tθ0S∗ − α(τ)−
q∑
j=1

fkj ,τ (tj)| = O(K−rn ),

where W (t) = (K
−1/2
n ,w(t1)

T , . . . ,w(tq)
T )T and t = (t1, . . . , tq)

T . The fol-

lowing theorem summarizes the asymptotic properties of the oracle estimator.

Theorem 3.1. Assume Conditions in Lemma 3.1 and (C2)-(C3) hold. The num-

ber of oracle predictors q is fixed and q ≤ s ≤ Gn = C2n
1/(2+2β). If K3

ns
2 � n

and max{Kn, s
2, K−2rn n} � K2

n{ s√
n

+K−rn } log n, we have

‖θ∗S∗ − θ0S∗‖2 = Op(
Kn√
n

+

√
Kn

n
s+K−r+1/2

n ), (3.2)

n−1
n∑
i=1

(g∗(ζ̂i,S∗)− g(ζi,S∗))
2 = Op(

Kn

n
+
s2

n
+K−2rn ), (3.3)

where g∗(ζ̂i,S∗) = α∗(τ)+
∑q

j=1 f
∗
kj ,τ

(ζ̂i,kj) and g(ζi,S∗) = α(τ)+
∑q

j=1 fkj ,τ (ζi,kj).

Remark 1. Except the two familiar terms as in nonparametric regression in the

convergence rate, we have a third term s2/n caused by the error-contaminated

predictors ζ̂i,S∗ . The technical condition K3
ns

2 � n is to guarantee that the

B-spline design matrix with estimated scores behaves as well as the one with

true scores. And max{Kn, s
2, K−2rn n} � K2

n{ s√
n

+K−rn } log n comes from the
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3.2 SCAD penalized estimator 14

application of Bernstein’s inequality in the proof.

Remark 2. Obviously the optimal choice of Kn is Kn = O(n1/(2r+1)), which

satisfies the order condition max{Kn, s
2, K−2rn n} � K2

n{ s√
n

+ K−rn } log n for

any s. If s is fixed, the convergence rate for g∗ is the traditional nonparametric

convergence rate Op(
Kn

n
+K−2rn ). This implies that ζ̂i,S∗ converges fast enough

and do not influence the global convergence rate. If s = O(n1/(2+2β)) under the

framework laid out in Lemma 3.1, the condition K3
ns

2 � n becomes 3
2r+1

+

1
1+β

< 1. In this case, there is a trade-off between r and β. With smaller β,

the number of scores which can be consistently estimated is larger. Meanwhile,

we require stronger smoothness assumption on the functions to be estimated, i.e.

fkj ,τ satisfy the Hölder condition with larger r.

3.2 SCAD penalized estimator

To investigate the asymptotic properties of the SCAD penalized estimator, we

need an additional condition on how quickly the nonzero signal can decay.

(C4) Condition on the signal strength: The minimal signal mink∈S∗ ‖θ0k‖2 ≥

C
√

Kn

n
(K

1/2
n + s)nα for some positive constants C and α.

Due to the nonsmoothness and nonconvexity of the penalized objective func-

tion, in our proof we use a sufficient condition for the local minimizer of a

convex difference problem as in Wang et al. (2012) and Sherwood and Wang
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3.3 Consistency of BIC in model selection 15

(2016). Specifically, the penalized objective function can be represented as the

difference of two convex functions. By verifying that the oracle estimator meets

the sufficient condition, we obtain the main theorem of the paper. Let E(λ) be

the set of local minima of Sn(θ). The oracle estimator belongs to the set E(λ)

with probability approaching one.

Theorem 3.2. Assume Conditions in Theorem 3.1 and (C4) are satisfied. The

optimal rateKn = O(n1/(2r+1)) is used. Let θ∗ be the oracle estimator defined in

(3.1). If max{ 1√
n
, s√

Knn
} � λ�

√
Kn

n
(K

1/2
n + s)nα, then P (θ∗ ∈ E(λ))→ 1

as n→∞.

3.3 Consistency of BIC in model selection

In this section, we investigate the consistency of BIC in model selction. The

generic notation S ⊆ {1, · · · , s} denotes an arbitrary candidate model. We

define the BIC for model S as

BIC(S) = log
n∑
i=1

ρτ (yi −W (ζ̂i,S)T θ̂S) + JS
log n

2n
Cn, (3.4)

where θ̂S is the estimator under model S, JS = (1+(Kn+l)|S|) andCn diverges

to infinity. The diverging order of Cn will be specified later. The main challenge

lies in that the number of candidate models increases exponentially with s. We
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3.3 Consistency of BIC in model selection 16

use additional conditions to establish the model selection consistency of BIC for

our model.

(C5) Condition on the spline design covariates:

(i) max1≤k≤s ‖W (ζi,k)‖ = Op(1),

(ii) b2
Kn
≤ infS Eλmin(W (ζi,S)W (ζi,S)T ) ≤ supS Eλmax(W (ζi,S)W (ζi,S)T ) ≤

b∗2
Kn

for some positive constant b2 and b∗2.

The condition (C5) is not strong and is satisfied in most nonparametric es-

timation based on B-spline basis approximation (see Lee et al. (2014)). It’s

well known that ‖W (ζi,k)‖ = Op(1) for every 1 ≤ k ≤ s. Also we have

b2
Kn
≤ Eλmin(W (ζi,S)W (ζi,S)T ) ≤ supS Eλmax(W (ζi,S)W (ζi,S)T ) ≤ b∗2

Kn
for

every S (see proof of Lemma S1.1(2)). The condition (C5) specifies a uniform

version. With these conditions, we obtain the model selection consistency of

BIC when s is diverging under the framework laid out in Lemma 3.1.

Theorem 3.3. Assume Conditions in Theorem 3.2 and (C5) are satisfied. The

number of candidate components s = O(n1/2(1+β)) and mink∈S∗ ‖θ0k‖ ≥ C
√
Kn.

For any sequence Cn →∞ satisfying Kn
logn
2n
Cn → 0 and s

KnCn
→ 0, we have

P ( inf
S6=S∗

BIC(S) > BIC(S∗))→ 1.

Let Sλ denote the model selected by penalized estimation with λ. From the

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



17

definitions, BIC(λ) ≥ BIC(Sλ) because in the latter unpenalized estimator is

used. In addition, Theorem 3.1 implies that, with high probability, the oracle

estimator can be produced by some λ∗ on the solution path; thus BIC(λ∗) =

BIC(Sλ∗). Therefore, by Theorem 3.3, for any λ not inducing the oracle model,

we have BIC(λ) ≥ BIC(Sλ) > BIC(Sλ∗) = BIC(λ∗). This suggests that BIC is

consistent for tuning parameter selection.

4. Simulation Studies

We conduct simulation studies to illustrate the empirical performance of the pro-

posed method. We generate predictor trajectories Xi(t) over a grid with 100

equally spaced points over 0 ≤ t ≤ 10 from

Xi(t) = t+ sin(t) +
10∑
k=1

ξikφk(t),

where ξik ∼ N(0, λk), λk = 30k−2, corr(ξik, ξik′) = 0 for k 6= k′ and φk(t) =

(1/
√

10)sin(πkt/10 + π/4). This is the Karhunen-Loève expansion and scores

are independent. The measurement errors are generated independently from

N(0, 0.22). For the regression function, we set f1(ζ1) = 3ζ1 − 3/2, f2(ζ2) =

sin(2π(ζ2 − 1/2)), f3(ζ3) = 8(ζ3 − 1/3)2, f4(ζ4) = 8(ζ4 − 1/3)2 − 8/9. Then

we generate responses using five models:
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Model 1: yi = 1.4 + f1(ζi1) + f2(ζi2) + f4(ζi4) + εi, εi ∼ N(0, 1);

Model 2: yi = 1.4 + f1(ζi1) + f2(ζi2) + f4(ζi4) + εi, εi ∼ t(5).

Model 3: yi = 1.4 + f1(ζi1) + f2(ζi2) + f4(ζi4) + f3(ζi3)εi, εi ∼ N(0, 1);

Model 4: yi = 1.4 + f1(ζi1) + f2(ζi2) + f4(ζi10) + εi, where εi is N(0.5, 0.2)

when u < 0.3 and N(−0.5, 1) when u > 0.7 with u ∼ Uniform(0, 1).

Model 5: yi = 1.4 + f1(ζi1) + f2(ζi2) + f10(ζi10) + εi, where εi ∼ N(0, 1) and

f10(x) = 8(x− 1/3)2 − 8/9.

Model 1 is homoscedastic and the τ th conditional quantile is Qyi(τ |Xi) =

1.4 + Φ−1(τ) + f1(ζi1) + f2(ζi2) + f4(ζi4). For identification, the functions we

fit are actually the demeaned ones f1(ζ1) − E(f1(ζ1)), f2(ζ2) − E(f2(ζ2)) and

f4(ζ4) − E(f4(ζ4)). With abuse of notation, we still denote these demeaned

functions as f1(ζ1), f2(ζ2) and f4(ζ4) respectively. Model 2 mimics Model 1

with a heavy-tailed error. Model 3 is heteroscedastic and the τ th conditional

quantile is Qyi(τ |Xi) = 1.4 + f3(ζi3)Φ
−1(τ) + f1(ζi1) + f2(ζi2) + f4(ζi4). ζ3

plays a role in the conditional distribution of y given X(t), but does not directly

influence the center (mean or median) of the conditional distribution. Model 4

mimics Model 1 with a bimodal distribution. And Model 5 uses the tenth score

to replace the fourth score in Model 1. The estimation of the tenth score is more

challenging than that of the fourth score.
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We consider sample size n = 200 and n = 400 with three different quantiles

τ = 0.1, 0.5 and 0.9. We choose s to recover at least 99.9% of the total variation

in X(t), use cubic splines with two knots and select tuning parameters by BIC

with Cn = 1.5 which is demonstrated to perform well when s is small compared

with n in Lee et al. (2014). One could select the number of knots using cross-

validation or some information criterion but it would increase the computational

burden with no appreciable numerical advantages in our experience. In the lit-

erature using a pre-fixed number of basis functions is not uncommon, and this

is the case, for example, in Huang et al. (2010b); Fan et al. (2011). This choice

of the number of knots is small enough to avoid overfitting in typical problems

with sample size not too small, and big enough to flexibly approximate many

smooth functions accurately.

Based on 500 repetitions, Tables 1-5 report component-selection results for

Model 1-5 respectively. We show the selection percentages of the first 6 compo-

nent functions by our functional additive modeling and quantile linear regression

modeling (also with a SCAD penalty for variable selection) for Models 1-5 (for

Model 5 we show the result for the first 5 and the tenth component functions).

Column “correct set” corresponds to the percentages of exact selection, while

column “super set” gives percentages of fittings that include all nonzero func-

tions. For linear regression modeling, we also use the SCAD penalty to select
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Table 1: Model 1: percentages of times of selection for the first 6 component
and mean of selected model size (last column).

Model 1 1 2 3 4 5 6 correct set super set model size
n = 200 τ = 0.1 QFAM 1.00 0.84 0.03 0.85 0.07 0.05 0.52 0.73 2.98

QFLM 1.00 0.84 0.20 0.90 0.27 0.14 0.21 0.76 4.00
τ = 0.5 QFAM 1.00 0.80 0.01 0.99 0.01 0.00 0.78 0.80 2.82

QFLM 1.00 0.86 0.12 1.00 0.20 0.05 0.52 0.86 3.33
τ = 0.9 QFAM 1.00 0.85 0.06 1.00 0.08 0.02 0.67 0.85 3.07

QFLM 1.00 0.79 0.19 1.00 0.22 0.10 0.27 0.79 3.85

n = 400 τ = 0.1 QFAM 1.00 0.99 0.01 1.00 0.05 0.01 0.88 0.99 3.10
QFLM 1.00 0.98 0.18 0.99 0.34 0.09 0.36 0.98 4.00

τ = 0.5 QFAM 1.00 0.99 0.00 1.00 0.01 0.00 0.99 0.99 3.00
QFLM 1.00 0.99 0.14 1.00 0.28 0.04 0.56 0.99 3.55

τ = 0.9 QFAM 1.00 0.99 0.04 1.00 0.06 0.00 0.88 0.99 3.12
QFLM 1.00 0.97 0.16 1.00 0.28 0.07 0.38 0.97 3.91

QFAM: quantile functional additive model; QFLM: quantile functional linear model.

Table 2: Model 2: percentages of times of selection for the first 6 component
and mean of selected model size (last column).

Model 2 1 2 3 4 5 6 correct set super set model size
n = 200 τ = 0.1 QFAM 1.00 0.60 0.01 0.64 0.04 0.02 0.34 0.46 2.43

QFLM 1.00 0.72 0.17 0.83 0.24 0.13 0.17 0.61 3.69
τ = 0.5 QFAM 1.00 0.64 0.00 0.96 0.01 0.00 0.63 0.64 2.61

QFLM 1.00 0.83 0.11 0.99 0.17 0.03 0.51 0.82 3.26
τ = 0.9 QFAM 1.00 0.70 0.04 0.97 0.04 0.02 0.57 0.69 2.84

QFLM 1.00 0.71 0.16 0.99 0.22 0.10 0.29 0.70 3.68

n = 400 τ = 0.1 QFAM 1.00 0.90 0.02 0.96 0.03 0.01 0.78 0.88 2.98
QFLM 1.00 0.88 0.14 0.97 0.26 0.09 0.32 0.86 3.80

τ = 0.5 QFAM 1.00 0.98 0.00 1.00 0.01 0.00 0.97 0.98 2.99
QFLM 1.00 0.97 0.09 1.00 0.23 0.02 0.61 0.97 3.41

τ = 0.9 QFAM 1.00 0.89 0.03 1.00 0.03 0.01 0.81 0.89 2.97
QFLM 1.00 0.87 0.12 1.00 0.17 0.09 0.42 0.87 3.64

QFAM: quantile functional additive model; QFLM: quantile functional linear model.

important components and use ordinary BIC to select tuning parameter. One can

see that the functional additive model performs slightly better than the functional

linear model and the linear model tends to select a little larger model sizes.

As to estimation accuracy of fk, we calculate the averaged integrated squared

errors (AISEs) of the estimated component functions. The integrated squared er-
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Table 3: Model 3: percentages of times of selection for the first 6 component
and mean of selected model size (last column).

Model 3 1 2 3 4 5 6 correct set super set model size
n = 200 τ = 0.1 QFAM 1.00 0.70 0.86 0.91 0.06 0.02 0.52 0.63 3.65

QFLM 1.00 0.58 0.89 0.84 0.24 0.10 0.16 0.43 4.16
τ = 0.5 QFAM 1.00 0.96 0.02 0.99 0.01 0.00 0.94 0.96 2.98

QFLM 1.00 0.90 0.12 1.00 0.17 0.02 0.60 0.90 3.27
τ = 0.9 QFAM 1.00 0.93 0.95 1.00 0.05 0.01 0.80 0.90 4.00

QFLM 1.00 0.80 0.92 0.99 0.17 0.08 0.37 0.74 4.46

n = 400 τ = 0.1 QFAM 1.00 0.98 1.00 1.00 0.08 0.00 0.88 0.98 4.09
QFLM 1.00 0.83 0.98 0.98 0.30 0.08 0.38 0.80 4.54

τ = 0.5 QFAM 1.00 1.00 0.01 1.00 0.01 0.00 0.98 1.00 3.02
QFLM 1.00 0.99 0.15 1.00 0.29 0.02 0.55 0.99 3.53

τ = 0.9 QFAM 1.00 1.00 1.00 1.00 0.05 0.00 0.94 1.00 4.05
QFLM 1.00 0.96 0.99 1.00 0.17 0.07 0.54 0.96 4.55

QFAM: quantile functional additive model; QFLM: quantile functional linear model.

Table 4: Model 4: percentages of times of selection for the first 6 component
and mean of selected model size (last column).

Model 4 1 2 3 4 5 6 correct set super set model size
n = 200 τ = 0.1 QFAM 1.00 0.78 0.04 0.82 0.09 0.04 0.45 0.68 2.95

QFLM 1.00 0.80 0.21 0.90 0.26 0.14 0.20 0.72 3.98
τ = 0.5 QFAM 1.00 0.82 0.00 0.98 0.02 0.00 0.79 0.81 2.83

QFLM 1.00 0.91 0.16 1.00 0.20 0.05 0.53 0.90 3.43
τ = 0.9 QFAM 1.00 0.96 0.10 1.00 0.06 0.00 0.80 0.95 3.13

QFLM 1.00 0.90 0.19 1.00 0.22 0.07 0.37 0.89 3.82

n = 400 τ = 0.1 QFAM 1.00 0.97 0.03 0.99 0.04 0.01 0.85 0.97 3.10
QFLM 1.00 0.94 0.18 1.00 0.29 0.12 0.32 0.94 4.13

τ = 0.5 QFAM 1.00 1.00 0.00 1.00 0.01 0.00 0.98 1.00 3.01
QFLM 1.00 0.99 0.16 1.00 0.30 0.02 0.54 0.99 3.55

τ = 0.9 QFAM 1.00 1.00 0.08 1.00 0.09 0.00 0.84 1.00 3.17
QFLM 1.00 0.98 0.13 1.00 0.25 0.09 0.43 0.98 3.84

QFAM: quantile functional additive model; QFLM: quantile functional linear model.

Table 5: Model 5: percentages of times of selection for the first 6 component
and mean of selected model size (last column).

Model 5 1 2 3 4 5 10 correct set super set model size
n = 200 τ = 0.1 QFAM 1.00 0.74 0.02 0.01 0.03 0.61 0.39 0.51 2.52

QFLM 1.00 0.85 0.12 0.15 0.15 0.82 0.20 0.70 3.92
τ = 0.5 QFAM 1.00 0.82 0.00 0.00 0.00 0.95 0.78 0.80 2.80

QFLM 1.00 0.88 0.06 0.04 0.04 1.00 0.45 0.88 3.52
τ = 0.9 QFAM 1.00 0.80 0.01 0.00 0.02 0.99 0.60 0.79 3.04

QFLM 1.00 0.83 0.14 0.09 0.11 1.00 0.24 0.83 4.05

n = 400 τ = 0.1 QFAM 1.00 0.98 0.02 0.01 0.01 0.97 0.82 0.95 3.10
QFLM 1.00 0.98 0.15 0.09 0.11 0.98 0.33 0.97 4.08

τ = 0.5 QFAM 1.00 1.00 0.00 0.00 0.00 1.00 0.97 1.00 3.02
QFLM 1.00 1.00 0.06 0.03 0.02 1.00 0.53 1.00 3.58

τ = 0.9 QFAM 1.00 0.99 0.01 0.00 0.00 1.00 0.88 0.99 3.11
QFLM 1.00 0.96 0.11 0.09 0.09 1.00 0.36 0.96 4.01

QFAM: quantile functional additive model; QFLM: quantile functional linear model.
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rors are defined as

ISE(f̂k) =

∫ 1

0

{f̂k(t)− fk(t)}2dt.

Tables 6-10 show the AISEs of the 6 component functions for Models 1-5. The

AISEs for ĝ is the summation of AISEs for the first 6 component functions. The

last column shows the prediction errors, which is computed by 1
n

∑n
i=1{Q̂yi(τ |Xi)−

Qyi(τ |Xi)}2 on 200 newly generated testing points. To compute the prediction,

we first estimate the transformed FPC scores of Xi(t) in the test set using es-

timates of mean function, eigenvalues and eigenfuncions from the training da-

ta, and then plug these scores into the estimated component functions. Notice

that functional additive model performs significantly better than functional linear

model with smaller estimation errors as well as smaller prediction errors.

5. Empirical Application

Weather has a significant impact on crop yield and many studies developed sta-

tistical models to relate weather and crop yield (Cadson et al. (1996), Prasad

et al. (2006), Lobell and Burke (2010)). In this section, we apply our pro-

posed method to a corn yield dataset from Wong et al. (2018). We have yield-

related variables for corn from 105 counties in Kansas from 1999 to 2011.
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Table 6: Model 1: averaged integrated squared errors (AISEs) and standard de-
viations (in parentheses).

Model 1 f̂1 f̂2 f̂3 f̂4 f̂5 f̂6 ĝ prediction error
n = 200 τ = 0.1 QFAM 0.11 0.18 0.01 0.27 0.01 0.01 0.58 0.88

(0.07) (0.16) (0.04) (0.34) (0.05) (0.04) (0.40) (0.42)
QFLM 2.80 0.79 0.09 1.65 0.13 0.04 5.50 1.02

(1.02) (0.36) (0.26) (0.76) (0.26) (0.13) (1.47) (0.28)
τ = 0.5 QFAM 0.07 0.16 0.00 0.13 0.00 0.00 0.36 0.58

(0.04) (0.17) (0.03) (0.30) (0.04) (0.01) (0.38) (0.22)
QFLM 2.67 0.76 0.05 1.76 0.09 0.02 5.35 0.74

(0.79) (0.27) (0.17) (0.53) (0.20) (0.08) (0.99) (0.11)
τ = 0.9 QFAM 0.11 0.18 0.02 0.17 0.02 0.00 0.51 0.77

(0.07) (0.15) (0.07) (0.32) (0.08) (0.03) (0.41) (0.27)
QFLM 2.62 0.77 0.08 1.93 0.09 0.03 5.52 0.96

(0.98) (0.33) (0.20) (0.67) (0.20) (0.12) (1.25) (0.22)

n = 400 τ = 0.1 QFAM 0.05 0.08 0.00 0.08 0.01 0.00 0.22 0.46
(0.03) (0.06) (0.02) (0.14) (0.03) (0.01) (0.17) (0.16)

QFLM 2.70 0.75 0.05 1.69 0.10 0.02 5.30 0.85
(0.67) (0.25) (0.13) (0.57) (0.18) (0.06) (0.99) (0.16)

τ = 0.5 QFAM 0.03 0.06 0.00 0.05 0.00 0.00 0.14 0.36
(0.02) (0.05) (0.00) (0.13) (0.01) (0.00) (0.14) (0.11)

QFLM 2.68 0.73 0.03 1.78 0.07 0.01 5.30 0.68
(0.57) (0.20) (0.10) (0.37) (0.14) (0.04) (0.69) (0.08)

τ = 0.9 QFAM 0.05 0.08 0.01 0.06 0.01 0.00 0.21 0.45
(0.03) (0.06) (0.03) (0.13) (0.05) (0.01) (0.16) (0.13)

QFLM 2.62 0.72 0.03 1.87 0.07 0.01 5.32 0.85
(0.68) (0.24) (0.09) (0.40) (0.15) (0.06) (0.84) (0.16)

QFAM: quantile functional additive model; QFLM: quantile functional linear model.
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Table 7: Model 2: averaged integrated squared errors (AISEs) and standard de-
viations (in parentheses).

Model 2 f̂1 f̂2 f̂3 f̂4 f̂5 f̂6 ĝ prediction error
n = 200 τ = 0.1 QFAM 0.16 0.31 0.00 0.44 0.01 0.00 0.92 1.26

(0.11) (0.21) (0.03) (0.39) (0.05) (0.04) (0.49) (0.57)
QFLM 2.65 0.80 0.10 1.68 0.14 0.05 5.43 1.11

(1.10) (0.43) (0.27) (0.86) (0.35) (0.17) (1.60) (0.34)
τ = 0.5 QFAM 0.08 0.23 0.00 0.15 0.00 0.00 0.46 0.66

(0.05) (0.23) (0.00) (0.31) (0.02) (0.00) (0.42) (0.27)
QFLM 2.72 0.79 0.05 1.80 0.08 0.01 5.44 0.76

(0.84) (0.31) (0.16) (0.60) (0.19) (0.07) (1.10) (0.12)
τ = 0.9 QFAM 0.18 0.28 0.02 0.23 0.01 0.00 0.72 1.07

(0.13) (0.22) (0.09) (0.35) (0.06) (0.03) (0.47) (0.45)
QFLM 2.76 0.85 0.09 1.94 0.12 0.04 5.80 1.06

(1.20) (0.45) (0.25) (0.71) (0.30) (0.15) (1.49) (0.29)

n = 400 τ = 0.1 QFAM 0.08 0.14 0.00 0.12 0.00 0.00 0.35 0.61
(0.05) (0.13) (0.02) (0.16) (0.03) (0.01) (0.23) (0.27)

QFLM 2.69 0.76 0.05 1.68 0.10 0.02 5.30 0.90
(0.79) (0.32) (0.14) (0.64) (0.22) (0.09) (1.13) (0.22)

τ = 0.5 QFAM 0.04 0.07 0.00 0.04 0.00 0.00 0.15 0.37
(0.02) (0.07) (0.01) (0.08) (0.02) (0.00) (0.11) (0.12)

QFLM 2.70 0.74 0.03 1.79 0.07 0.00 5.32 0.68
(0.57) (0.22) (0.09) (0.35) (0.14) (0.02) (0.72) (0.08)

τ = 0.9 QFAM 0.08 0.15 0.01 0.09 0.00 0.00 0.33 0.60
(0.05) (0.14) (0.04) (0.08) (0.03) (0.02) (0.19) (0.22)

QFLM 2.66 0.76 0.04 1.90 0.05 0.02 5.44 0.90
(0.83) (0.30) (0.12) (0.44) (0.14) (0.09) (0.93) (0.18)

QFAM: quantile functional additive model; QFLM: quantile functional linear model.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



25

Table 8: Model 3: averaged integrated squared errors (AISEs) and standard de-
viations (in parentheses).

Model 3 f̂1 f̂2 f̂3 f̂4 f̂5 f̂6 ĝ prediction error
n = 200 τ = 0.1 QFAM 0.06 0.21 0.35 0.18 0.01 0.00 0.81 1.52

(0.05) (0.20) (0.33) (0.25) (0.04) (0.01) (0.59) (0.74)
QFLM 2.45 0.60 1.64 1.44 0.10 0.03 6.26 2.10

(0.98) (0.21) (0.66) (0.90) (0.22) (0.10) (1.60) (0.45)
τ = 0.5 QFAM 0.02 0.07 0.00 0.09 0.00 0.00 0.18 0.46

(0.02) (0.09) (0.02) (0.21) (0.01) (0.00) (0.25) (0.19)
QFLM 2.45 0.70 0.05 1.28 0.06 0.00 4.54 0.73

(0.65) (0.23) (0.16) (0.49) (0.14) (0.03) (0.83) (0.11)
τ = 0.9 QFAM 0.06 0.11 0.25 0.12 0.01 0.00 0.55 1.20

(0.05) (0.12) (0.24) (0.24) (0.03) (0.01) (0.48) (0.57)
QFLM 2.51 0.90 1.90 1.14 0.07 0.03 6.56 2.03

(0.98) (0.49) (0.83) (0.53) (0.18) (0.13) (1.39) (0.37)

n = 400 τ = 0.1 QFAM 0.02 0.07 0.15 0.07 0.00 0.00 0.32 0.85
(0.02) (0.07) (0.10) (0.06) (0.02) (0.00) (0.15) (0.31)

QFLM 2.43 0.55 1.56 1.34 0.08 0.01 5.97 1.89
(0.62) (0.12) (0.52) (0.59) (0.15) (0.06) (1.06) (0.31)

τ = 0.5 QFAM 0.01 0.03 0.00 0.04 0.00 0.00 0.09 0.32
(0.01) (0.02) (0.02) (0.06) (0.01) (0.00) (0.07) (0.11)

QFLM 2.43 0.68 0.04 1.28 0.06 0.00 4.49 0.68
(0.46) (0.17) (0.10) (0.29) (0.10) (0.02) (0.56) (0.08)

τ = 0.9 QFAM 0.03 0.04 0.13 0.05 0.00 0.00 0.25 0.69
(0.02) (0.03) (0.09) (0.09) (0.01) (0.00) (0.13) (0.24)

QFLM 2.49 0.84 1.81 1.11 0.04 0.02 6.30 1.84
(0.68) (0.32) (0.57) (0.34) (0.11) (0.07) (0.93) (0.26)

QFAM: quantile functional additive model; QFLM: quantile functional linear model.
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Table 9: Model 4: averaged integrated squared errors (AISEs) and standard de-
viations (in parentheses).

Model 4 f̂1 f̂2 f̂3 f̂4 f̂5 f̂6 ĝ prediction error
n = 200 τ = 0.1 QFAM 0.13 0.21 0.01 0.28 0.02 0.01 0.65 0.96

(0.08) (0.17) (0.04) (0.32) (0.08) (0.04) (0.43) (0.42)
QFLM 2.75 0.80 0.10 1.66 0.14 0.04 5.49 1.01

(1.04) (0.38) (0.24) (0.77) (0.30) (0.14) (1.44) (0.27)
τ = 0.5 QFAM 0.06 0.15 0.00 0.11 0.00 0.00 0.33 0.60

(0.04) (0.17) (0.01) (0.22) (0.04) (0.00) (0.30) (0.24)
QFLM 2.73 0.78 0.06 1.75 0.09 0.01 5.43 0.77

(0.78) (0.31) (0.16) (0.53) (0.21) (0.06) (1.02) (0.13)
τ = 0.9 QFAM 0.07 0.11 0.02 0.10 0.01 0.00 0.31 0.63

(0.05) (0.10) (0.06) (0.23) (0.06) (0.01) (0.29) (0.24)
QFLM 2.72 0.77 0.06 1.88 0.08 0.02 5.52 1.11

(0.89) (0.33) (0.14) (0.52) (0.19) (0.07) (1.07) (0.27)

n = 400 τ = 0.1 QFAM 0.06 0.10 0.00 0.09 0.01 0.00 0.26 0.51
(0.04) (0.09) (0.03) (0.14) (0.03) (0.01) (0.18) (0.18)

QFLM 2.68 0.75 0.05 1.71 0.09 0.02 5.31 0.85
(0.75) (0.29) (0.14) (0.59) (0.18) (0.08) (1.07) (0.17)

τ = 0.5 QFAM 0.03 0.05 0.00 0.05 0.00 0.00 0.14 0.37
(0.02) (0.04) (0.01) (0.13) (0.01) (0.00) (0.14) (0.12)

QFLM 2.66 0.76 0.04 1.78 0.08 0.00 5.31 0.71
(0.55) (0.22) (0.09) (0.40) (0.13) (0.02) (0.73) (0.10)

τ = 0.9 QFAM 0.03 0.06 0.01 0.05 0.01 0.00 0.15 0.43
(0.02) (0.04) (0.03) (0.16) (0.03) (0.00) (0.18) (0.16)

QFLM 2.63 0.74 0.02 1.91 0.06 0.01 5.37 1.03
(0.60) (0.22) (0.08) (0.36) (0.12) (0.05) (0.73) (0.21)

QFAM: quantile functional additive model; QFLM: quantile functional linear model.
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Table 10: Model 5: averaged integrated squared errors (AISEs) and standard
deviations (in parentheses).

Model 5 f̂1 f̂2 f̂3 f̂4 f̂5 f̂10 ĝ prediction error
n = 200 τ = 0.1 QFAM 0.11 0.21 0.00 0.00 0.00 0.45 0.80 1.22

(0.07) (0.18) (0.02) (0.02) (0.02) (0.38) (0.47) (0.46)
QFLM 2.62 0.77 0.04 0.04 0.05 1.33 5.11 1.16

(0.94) (0.35) (0.12) (0.13) (0.14) (0.61) (1.31) (0.32)
τ = 0.5 QFAM 0.07 0.15 0.00 0.00 0.00 0.18 0.41 0.79

(0.05) (0.17) (0.01) (0.00) (0.00) (0.31) (0.41) (0.27)
QFLM 2.56 0.77 0.02 0.01 0.01 1.59 5.17 0.84

(0.76) (0.29) (0.09) (0.07) (0.06) (0.51) (0.99) (0.12)
τ = 0.9 QFAM 0.12 0.21 0.00 0.00 0.00 0.21 0.61 1.05

(0.08) (0.17) (0.02) (0.01) (0.04) (0.34) (0.45) (0.36)
QFLM 2.58 0.79 0.06 0.03 0.04 1.88 5.69 1.08

(0.98) (0.36) (0.17) (0.11) (0.13) (0.68) (1.26) (0.24)

n = 400 τ = 0.1 QFAM 0.05 0.08 0.00 0.00 0.00 0.14 0.29 0.66
(0.03) (0.07) (0.01) (0.01) (0.01) (0.17) (0.19) (0.21)

QFLM 2.59 0.75 0.03 0.02 0.02 1.30 4.87 0.96
(0.66) (0.25) (0.09) (0.06) (0.06) (0.40) (0.84) (0.19)

τ = 0.5 QFAM 0.03 0.05 0.00 0.00 0.00 0.06 0.15 0.51
(0.02) (0.04) (0.00) (0.00) (0.00) (0.09) (0.11) (0.12)

QFLM 2.57 0.75 0.02 0.01 0.00 1.62 5.08 0.75
(0.56) (0.20) (0.07) (0.04) (0.03) (0.32) (0.70) (0.08)

τ = 0.9 QFAM 0.05 0.08 0.00 0.00 0.00 0.08 0.24 0.64
(0.04) (0.06) (0.01) (0.01) (0.01) (0.12) (0.16) (0.17)

QFLM 2.59 0.74 0.02 0.02 0.02 1.90 5.44 0.96
(0.70) (0.26) (0.07) (0.07) (0.06) (0.47) (0.88) (0.17)

QFAM: quantile functional additive model; QFLM: quantile functional linear model.
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The dataset contains the average corn yield per acre for a specific year and

county which is the scalar outcome of interest. The functional predictor is

X(t) = (X1(t) + X2(t))/2 with X1(t) the daily maximum temperature tra-

jectories and X2(t) the daily minimum temperature trajectories with the time

domain T = [0, 365], which are gathered from 1123 weather stations and aggre-

gated at the county level. After deleting missing data, we use the remaining 857

observations in our analysis.

For data exploration, we include 45 principal components in the regression

model which account for 99.9% of the variation in the daily temperature tra-

jectories. Then we fit the proposed functional additive quantile regression and

linear quantile regression for τ = 0.1, 0.5, 0.9 separately. The linear model is

also equipped with a SCAD penalty for variable selection. We choose the tun-

ing parameter using both BIC and 5-fold cross-validation (CV). Results in Table

11 show that tuning parameters chosen by CV produce better prediction. Thus

in the following we focus on results with tuning parameter chosen by CV. In

Figures 1-3, we show the corresponding additive component functions f̂k(ζ) s-

elected for τ = 0.1, 0.5, 0.9 respectively. The dashed curves are the pointwise

confidence bands f̂k(ζ) ± 2 × se{f̂k(ζ)}. The standard errors are estimated by

se{f̂k(ζ)} = 1
B−1

∑B
b=1(f̂

(b)
k (ζ) − f̄

(b)
k (ζ))2, where f̄ (b)

k (ζ) = 1
B

∑B
b=1 f̂

(b)
k (ζ)

and f̂
(b)
k (ζ) is the estimation from pair bootstrap sample {y(b)i , X

(b)
i } for b =
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Table 11: Averaged model size across 500 bootstrap and averaged prediction
error (standard deviation in parentheses) for 5-fold cross-validation across 100
random partitions for corn yield data.

τ = 0.1 τ = 0.5 τ = 0.9
QFAM QFLM QFAM QFLM QFAM QFLM

MS 7.42 39.89 14.95 40.72 11.69 42.91
PE-BIC 5.77 5.42 14.70 13.13 5.77 5.34

(0.60) (0.30) (0.90) (0.64) (0.56) (0.33)
PE-CV 5.77 5.37 13.94 12.89 5.77 5.25

(0.60) (0.34) (0.71) (0.63) (0.56) (0.32)
MS: model size; PE-BIC: prediction error with BIC tuning; PE-CV: prediction error with CV tuning; QFAM: quantile

functional additive model; QFLM: quantile functional linear model.

1, . . . , B. We report the average model size over different bootstrap samples in

Table 11. We note that additive regression modeling produces notably small-

er models than linear regression without sacrificing much prediction accuracy.

Only ζ1, ζ2 are shared among the three conditional quantile regressions. Figures

1-3 show that temperature trajectory influences corn yield in different ways for

different quantile levels, because different components are selected.

6. Discussion

Many authors focused on functional linear quantile regression to study the rela-

tionship between functional predictor and the conditional quantile of response.

In this paper, we model the effects of functional covariate nonparametrically to

increase model flexibility. We consider nonconvex penalized estimation of func-

tional additive quantile regression model. Under mild conditions, we derive the

oracle convergence rate when true relevant components are used.
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Figure 1: Additive component functions f̂k(ζ) selected by FAQR with τ = 0.1,
sorted by selection frequencies (in parentheses) across 500 bootstrap.
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Figure 2: Additive component functions f̂k(ζ) selected by FAQR with τ = 0.5,
sorted by selection frequencies (in parentheses) across 500 bootstrap.
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Figure 3: Additive component functions f̂k(ζ) selected by FAQR with τ = 0.9,
sorted by selection frequencies (in parentheses) across 500 bootstrap.
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A problem of important practical interest is to extend our model to take into

account scalar covariates and functional covariates simultaneously as Wong et al.

(2018) has investigated for mean regression. Another relevant problem is to es-

timate the conditional quantile function in the reproducing kernel Hilbert space

(RKHS) framework and compare the performance with our proposed method.

Finally, because we fit each quantile level separately, the phenomenon of quan-

tile crossing may occur. Methods proposed in the literature, such as Koenker

and Ng (2005); Bondell et al. (2010); Chernozhukov et al. (2010); Qu and Yoon

(2015), may be used to address the problem. These deserve to be investigated in

the future.
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