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Exchangeable Markov multi-state survival processes
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Abstract: We consider exchangeable Markov multi-state survival processes – tem-

poral processes taking values over a state-space S with at least one absorbing fail-

ure state [ ∈ S that satisfy natural invariance properties of exchangeability and

consistency under subsampling. The set of processes contains many well-known

examples from health and epidemiology – survival, illness-death, competing risk,

and comorbidity processes; an extension leads to recurrent event processes.

We characterize exchangeable Markov multi-state survival processes in both

discrete and continuous time. Statistical considerations impose natural con-

straints on the space of models appropriate for applied work. In particular,

we describe constraints arising from the notion of composable systems. We end

with an application to irregularly sampled and potentially censored multi-state

survival data, developing a Markov chain Monte Carlo algorithm for inference.

Key words and phrases: multi-state survival process; exchangeability; Markov

process; composable systems; Markov chain Monte Carlo
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1. INTRODUCTION

1 Introduction

In many clinical survival studies, a patient’s health status is monitored

intermittently until either an event of interest (e.g., failure) or the end

of the study window. In a simple survival study, health status Y (t) at

time t is a binary variable, dead (0) or alive (1). In clinical trials with

health monitoring, Y (t) is a more detailed description of the state of health

of the individual, containing relevant patient information, e.g., pulse rate,

cholesterol level, cognitive score or CD4 cell count [Diggle et al., 2008,

Farewell and Henderson, 2010, Kurland et al., 2009].

In this paper, we study health processes taking values in some prespeci-

fied “state-space”. For example, in the illness-death model, the participant’s

current state takes one of three possible values {Healthy, Unhealthy, Dead}.

Such a process can be thought of as a coarse view of the state of health

for a patient over time. When no baseline covariates are measured beyond

the initial state Y (0), the model for the set of patient state-space processes

should satisfy natural constraints. First, the model should be agnostic to

patient labeling. Second, the model should be agnostic to sample size con-

siderations. These natural constraints (mathematically defined in section 2)

lead to exchangeable Markov multi-state survival processes. The purpose of

this paper is to characterize this set of multi-state survival processes and
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1. INTRODUCTION

show how the theory of exchangeable stochastic processes fits naturally

into the applied framework of event-history analysis. Both the paramet-

ric continuous-time Markov process with independent participants and the

nonparametric counting process are contained as limiting cases. Next, we

discuss the notion of “composable systems” and its effect on model specifi-

cation. A Markov Chain Monte Carlo (MCMC) algorithm is then derived

for posterior computations given irregularly sampled multi-state survival

data. We end with an application to a cardiac allograft vasculopathy (CAV)

multi-state survival study.

1.1 Related work

Odd Aalen was one of the first to recognize the importance of incorporating

the “theory of stochastic processes” into an “applied framework of event

history analysis” [Aalen et al., 2008, p. 457]. Martingales and counting

processes form the basis of this nonparametric approach. Nonparametric

methods, however, do not adequately handle intermittent observations. For

example, Aalen et al. [2015] consider dynamic path analysis for a liver

cirrhosis dataset. In this study, the prothrombin index, a composite blood

coagulation index related to liver function, is measured initially at three-

month intervals and subsequently at roughly twelve-month intervals. To
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2. MULTI-STATE SURVIVAL MODELS

deal with the intermittency of observation times, Aalen et al. [2015] use the

“last-observation carried forward” (LOCF) assumption. However, such an

assumption is unsatisfactory for highly variable health processes, and can

lead to biased estimates [Little et al., 2010].

One alternative is to consider parametric models such as continuous-

time Markov processes. Prior work [Saeedi and Bouchard-Côté, 2011, Ha-

jiaghayi et al., 2014, Rao and Teh, 2013] has focused on estimation of para-

metric continuous-time Markov processes under intermittent observations.

Most parametric models, however, make strong assumptions about the un-

derlying state-space process; in particular, most models assume indepen-

dence among patients. One implication is that observing sharp changes in

health in prior patient trajectories at a particular time since recruitment

will not impact the likelihood of a similar sharp change in a future patient at

the same timepoint. The proposed approach in this paper balances between

the nonparametric and parametric approaches.

2 Multi-state survival models

In this section we formally define the multi-state survival process and the

notions of exchangeability, Kolmogorov-consistency, and the Markov prop-
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2. MULTI-STATE SURVIVAL MODELS

erty. We combine these in section 3 to provide characterization theorems

for these processes in discrete and continuous-time.

2.1 Multi-state survival process

Formally the multi-state survival process, Y, is a function from the label

set N × T into the state space S. For now, we assume the cardinality is

finite (i.e., |S| < ∞). If the response is in discrete-time, then the process

is defined on T = N. If the response is in continuous-time then the process

is defined on T = R+. Each label is a pair (u, t), and the value Y(u, t) is

an element of S corresponding to the state of patient u at time t.

The distinguishing characteristic of survival processes is flatlining [Dempsey

and McCullagh, 2018]; that is, there exists an absorbing state [ ∈ S such

that Y (u, t) = [ implies Y (u, t′) = [ for all t′ > t. Thus, the survival time Tu

for unit u is a deterministic function of the multi-state survival process Y:

Tu = inf{t ≥ 0 : Y (u, t) = [}.

For all u ∈ N, we assume Y (u, 0) 6= [ at recruitment, so Tu > 0. Multiple

absorbing states {[c} representing different terminal events may occur.

Without loss of generality, we assume S = {1, . . . , s} =: [s]. For exam-

ple, if the state-space is S = {Alive,Dead}, we recode this to [2] = {1, 2}.

At each time t, the population-level process is given by Y(t) = {Y (u, t) |u ∈
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2. MULTI-STATE SURVIVAL MODELS

N} ∈ [s]N. We write y to denote a generic element of [s]N. We write YA to

denote the restriction of the state space process to u ∈ A ⊂ N. We call Y[n]

the n-restricted state-space process for [n] := {1, . . . , n}. We write y[n] to

denote a generic element of [s]n. Finally, for y[n] we define an associated

vector x[n] called the configuration vector.

Definition 1 (Configuration vector). For y[n] ∈ [s]n, define x[n] ∈ [n]s

as the configuration vector – an s-vector summary of the number of units

in each state. For example, if s = 2, n = 4, and y[4] = (1, 2, 2, 1), then

x[4] = (2, 2); for y[4] = (1, 1, 2, 1) then x[4] = (3, 1). We write xi to denote

the ith entry of x[n].

Example 1 ((Bidirectional) illness-death process). To make ideas concrete,

we take the illness-death process as the running example in this paper. The

illness-death process has state space { Healthy, Unhealthy, Dead } with

transitions governed by the graph shown in Figure 1. The bi-directional

illness-death process includes the additional edge (Unhealthy, Healthy), al-

lowing the patient to recover. The state “Dead” (s = 3) is absorbing. Both

processes can be viewed as refinements of the survival process. We highlight

many other examples in supplementary section ??.
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2. MULTI-STATE SURVIVAL MODELS

Figure 1: Graph representation of the illness-death process

2.2 Transition graphs for multi-state survival process

The transition graph associated with a particular multi-state survival pro-

cess is a directed graph G = (V,E) which represents the set of potential

transitions among the states i ∈ [s]. The vertex set V = [s] is all states;

the directed edge set E contains all edges (i, i′) such that, at jump times,

the process can jump from i to i′. In Example 1, a patient can jump from

Healthy to Unhealthy but not back; therefore (Healthy, Unhealthy) is in

the edge set but not (Unhealthy, Healthy). In the bi-directional case, both

edges are present in the transition graph. In continuous-time, jumps can

only occur between distinct states so (i, i) 6∈ E for all i ∈ V . An absorbing

state i ∈ [s] satisfies (i, i′) 6∈ E for all i′ 6= i ∈ [s]. We write PG to denote

the set of s by s transition matrices P satisfying
∑

i′∈V Pi,i′ = 1, Pi,i′ ≥ 0

for all i, i′ ∈ V , and Pi,i′ = 0 for all (i, i′) 6∈ E. In the continuous-time

setting, define Pi,i = 1−
∑

i′,(i,i′)∈E Pi,i′ .

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



2. MULTI-STATE SURVIVAL MODELS

2.3 Consistency under subsampling

Statistical models for multi-state survival processes should be agnostic to

sample size as it is often an arbitrary choice based on power considerations

and/or patient recruitment constraints. Informally, observing n units versus

n + 1 units and then restricting to the first n units should be equivalent,

i.e., the model should exhibit consistency under subsampling.

Consider the multi-state survival process Y[m] for m > n. Define the

restriction operator Rm,n to be the restriction of Y[m] to the first n indi-

viduals. Then the process is consistent under subsampling if Rm,n(Y[m]) is

equivalent in distribution to Y[n] for all [m] ⊃ [n]. That is, for any finite

subset t := (t1, . . . , tk) ⊂ T , Rm,n

(
Y[m](t)

)
=D Y[n](t). Stated another

way, pr(Y[n] ∈ A) = pr(Y[m] ∈ R−1
m,n(A)) for any Borel measurable set A.

Under the consistency assumption, the process Y[n] satisfies lack of

interference; mathematically,

pr(Y[n] ∈ A |H[m](t)) = pr(Y[n] ∈ A |H[n](t))

where H[l](t) is the σ-field generated by the variables Y (u, t′) for i ∈ [l] and

t′ ≤ t. Lack of interference is essential, ensuring the n-restricted multi-state

survival process is unaffected by the multi-state survival process for subse-

quent components. Consistency under subsampling ensures the statistical
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2. MULTI-STATE SURVIVAL MODELS

models are embedded in suitable structures that permit extrapolation.

2.4 Exchangeability

Given no covariates, patient labeling is also an arbitrary choice to which any

suitable multi-state survival process must be agnostic. Define a multi-state

survival process Y to be [partially] exchangeable if for any permutation σ :

[n] → [n], the relabeled process Yσ
[n] = {Y (σ(1), t), . . . , Y (σ(n), t) | t ∈ T }

is equivalent in distribution to Y[n]. That is, for any finite subset t ⊂ T ,

Yσ
[n](t) =D Y[n](t).

2.5 Time-homogeneous Markov process

Y[n] is a time-homogeneous Markov process if, for every t, t′ ≥ 0, the con-

ditional distribution of Y[n](t + t′) given the multi-state survival process

history up to time t, H[n](t), only depends on Y[n](t) and t′. This Marko-

vian assumption is a simplifying assumption which leads to mathematically

tractable conclusions. In this paper, we restrict our attention to time-

homogeneous processes; therefore, we simply say Y[n] is Markovian.
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3. MARKOV, EXCHANGEABLE MULTI-STATE SURVIVAL
PROCESSES

3 Markov, exchangeable multi-state survival

processes

Define a multi-state survival process that is Markovian, exchangeable, and

consistent under subsampling as a Markov, exchangeable multi-state sur-

vival process. We next characterize these processes in both discrete and

continuous time. The behavior is markedly different in each setting show-

ing why choice of time-scale matters in applied settings. All proofs are left

to supplementary materials.

3.1 Discrete-time multi-state survival models

In discrete-time, the Markov, exchangeable multi-state survival process is

governed by a series of random transition matrices Pt each drawn inde-

pendently from a probability measure Σ on PG. The initial state Y(0)

is drawn from an exchangeable distribution on [s]. Then at time t, the

transition distributions for each u ∈ N are given by

pr(Y (u, t) = i′ |Y (u, t− 1) = i) ∼ [Pt]i,i′

i.e., the (i, i′) entry of Pt. Let Y?
Σ denote a discrete-time process constructed

by this procedure with probability measure Σ. By construction, the process
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3. MARKOV, EXCHANGEABLE MULTI-STATE SURVIVAL
PROCESSES

is an exchangeable, Markov multi-state survival process in discrete time.

Theorem 1 states that this procedure describes all such processes.

Theorem 1 (Discrete-time characterization). Let Y = {Y (u, t), u ∈ N, t ∈

N} be a Markov, exchangeable multi-state survival process. Then there

exists a probability measure Σ on PG such that Y?
Σ is a version of Y.

Example 1 (cont.). We provide an illustrative construction for our running

example 1. First, assume all units start in state “Healthy”. Next, for

each t ∈ N, define a set {Z(t)
i,i′} of independent beta random variables with

parameters γαi,i′ and γβi,i′ respectively. Set [Pt]1,2 = Z1,2, [Pt]1,3 = (1 −

Z1,2) × Z1,3, [Pt]1,1 = 1 − [Pt]1,2 − [Pt]1,3; [Pt]2,3 = Z2,3 and [Pt]2,2 = 1 −

[Pt]2,3; [Pt]3,3 = 1. The random matrix Pt governs the illness-death process

at time t. We show simulation results for t = 1, 2, 3 with αi,i′ = βi,i′ = 1 for

all i, i′. For γ = 100, we simulate

P1 =


0.26 0.51 0.23

0.00 0.54 0.46

0.00 0.00 1.00

 , P2 =


0.25 0.50 0.26

0.00 0.54 0.46

0.00 0.00 1.00

 , P3 =


0.25 0.48 0.27

0.00 0.50 0.50

0.00 0.00 1.00

 .
For γ = 1 and the same random seed, we simulate

P1 =


0.13 0.45 0.43

0.00 0.16 0.84

0.00 0.00 1.00

 , P2 =


0.29 0.52 0.20

0.00 0.19 0.81

0.00 0.00 1.00

 , P3 =


0.01 0.69 0.30

0.00 0.62 0.38

0.00 0.00 1.00

 .
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3. MARKOV, EXCHANGEABLE MULTI-STATE SURVIVAL
PROCESSES

As γ →∞, Pt converges to a deterministic matrix P ? . In this limiting case,

Y (u, ·) evolves as independent Markov processes with transition matrix P ?.

3.2 Continuous-time multi-state survival models

In continuous-time, the Markov exchangeable multi-state survival process

is governed by a measure on transition matrices, denoted Σ, and a set

of constants associated with the edge set, denoted c = {ci,i′ | (i, i′) ∈ E}.

Unlike discrete-time, transitions occur at random times (called jump times).

For the n-restricted process Y[n], the holding time in any state y[n] is

exponentially distributed with rate parameter that depends on the number

of units in each state, i.e., the current configuration x[n] (see Definition 1).

At a jump time t, one of two events can occur: (a) a single unit u ∈ [n]

experiences a transition, or (b) a subset of [n] (potentially a singleton)

experience a simultaneous transition. If the jump time is of type (a), a

state i ∈ [s] is chosen with probability proportional to xi · ci,• where ci,• :=∑
i′:(i,i′)∈E ci,i′ . Among the xi units satisfying Y (u, t−) = i for u ∈ [n],

choose one at random and transition that unit to state i′ ∈ [s] such that

(i, i′) ∈ E with probability proportional ci,i′/ci,•. If the jump time is of

type (b), a transition matrix P (t) is obtained from a measure Σ on PG.

Given P (t), all units transition according to P (t) ∈ PG under the constraint
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that at least one unit transitions to a new state. Unlike the discrete-time

setting, the measure Σ need not be integrable.

The above procedure provides a high-level construction of a continuous-

time process Y?
Σ,c. In Section 5, a detailed version of this procedure is given.

Theorem 2 states that this procedure describes all such processes.

Theorem 2 (Continuous-time characterization). Let Y = (Y(t), t ∈ R+)

be a Markov, exchangeable multi-state survival process; and Is be the s× s

identity matrix. Then there exists a probability measure Σ on PG satisfying

Σ({Is}) = 0 and

∫
PG

(1− Pmin)Σ(dP ) <∞, Pmin = min
i∈[s]

Pi,i (3.1)

and constants c = {ci,i′ ≥ 0 | (i, i′) ∈ E} such that Y?
Σ,c is a version of Y.

Theorem 2 generalizes Proposition 4.3 in Dempsey and McCullagh

[2017] from the survival setting. The result contains many well-known ex-

amples from health and epidemiology, e.g., survival, illness-death, compet-

ing risk, and comorbidity processes.

The procedure defined in Section 5 characterizes Y[n] in terms of (1)

exponential holding rates and (2) transition matrix at jump times. In order

to formally define this procedure, we require an additional definition.
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3. MARKOV, EXCHANGEABLE MULTI-STATE SURVIVAL
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Definition 2 (Characteristic index). For any y[n] ∈ [s]n, the characteristic

index, denoted ζ(y[n]), is defined as:

ζn(y[n]) =

∫
PG

(
1−

s∏
j=1

P
xj
j,j

)
Σ(dP ) +

∑
i∈[s]

xi
∑

i′:(i,i′)∈E

ci,i′

where the sum is set to 0 when {i′ ∈ V s.t. (i, i′) ∈ E} = ∅. Condition (3.1)

implies the characteristic index is finite for any y[n] ∈ [s]n.

At a jump time t, let At,[n] ⊆ [n] denote the subset of units that ex-

perience a transition. If |At,[n]| > 1 then the jump is a transition of type

(b) governed by Σ. If |At,[n]| = 1, then the jump may be a transition of

type (a) or (b) and, therefore, will depend on both c and Σ. The transition

probability from Y[n](t−) to Y[n](t), denoted q(Y[n](t−),Y[n](t)), equals

1

ζn(Y[n](t−))

[ ∫
PG

∏
u∈[n]

P [Y (u, t−), Y (u, t)]Σ(dP )︸ ︷︷ ︸
Term 1

+ δ(|At,[n]| = 1)
∑
u∈[n]

δ(u ∈ At,[n])
∑

i′:(i,i′)∈E

ci,i′ δ(Y (u, t−) = i, Y (u, t) = i′)︸ ︷︷ ︸
Term 2

]

=:
λ(Y[n](t−),Y[n](t))

ζn(Y[n](t−))

where P [i, i′] = Pi,i′ , δ(·) is the indicator function, and λ(·, ·) is the non-

normalized transition function from [s]n × [s]n → R+. Term 1 depends

on the measure Σ and is associated with a positive fraction of the popula-

tion transitioning at time t according to P ∼ Σ. Term 2 depends on the
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4. DISCRETIZATION AND ROUNDING

constants c and is associated with the single unit u ∈ At,[n] in state i transi-

tioning to state i′ with probability proportional to ci,i′ . A critical question

is how to specify Σ and c. In applied work, as single unit transitions are

unrelated to the rest of the population, we recommend setting c ≡ 0 and

discuss an appropriate family of parametrized measures ΣΨ in Section 5.4.

4 Discretization and rounding

It has been argued that “there may be no scientific reason to prefer a true

continuous time model over a fine discretization” [Breto et al., 2009, p. 325].

We tend to disagree with such a viewpoint; a basic and very important issue

in multi-state survival analysis is the distinction between inherently discrete

data (coming from intrinsically time-discrete phenomena) and grouped data

(coming from rounding of intrinsically continuous phenomena). Theorems 1

and 2 supplement this scientific distinction with a mathematical one as

we see distinct characterizations of discrete and continuous-time processes.

One example of the former in survival analysis is time to get pregnant, which

should be measured in menstrual cycles. The latter represents the majority

of multi-state survival data. For this reason, we focus the remainder of this

paper on the continuous-time case.
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5 Description of continuous-time process

5.1 Holding times

Let t be a jump time at which the state vector Y[n] transitions into state y[n] ∈

[s]n. To each such state y[n], we associate an independent exponentially

distributed holding time. By choosing the rate functions in an appropriate

way, the Markov multi-state survival process can be made both consistent

under subsampling, and exchangeable under permutation of units.

Corollary 1. A set of rate functions {τn : [s]n → R+}∞n=1, is consistent if

it is proportional to the characteristic index τn(y[n]) ∝ ζn(y[n]).

Corollary 1 follows from Theorem 2, and shows how the exponential holding

rate relates to the characteristic index; in particular, the difference is a

proportionality constant ν which depends on choice of time-scale.

5.2 Density function

Since the evolution of the process Y[n] is Markovian, it is a straightforward

exercise to give an expression for the probability density function for any

specific temporal trajectory. The probability that the first transition occurs
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5. DESCRIPTION OF CONTINUOUS-TIME PROCESS

in the interval dt1 with transition from Y[n](t1−) to Y[n](t1) is

νζn(Y[n](t1−)) exp
(
−νζn(Y[n](t1−))t1

)
dt1 × q(Y[n](t1−),y[n](t1))

= exp
(
−νζn(Y[n](t1−))t1

)
dt1 × λ(Y[n](t1−),Y[n](t1))

where λ(·, ·) is the non-normalized transition probabilities. Continuing in

this way, it can be seen that the joint density for a particular temporal

trajectory Y[n] consisting of k transitions with jump times 0 < t1 < · · · < tk

is

exp
(
−
∫ ∞

0

νζn(Y[n](s)) ds
) k∏
j=1

λ
(
Y[n](tj−),Y[n](tj)

)
. (5.2)

The number of transitions k is a random variable whose distribution is

determined by (5.2), and hence by ζn.

Although the argument leading to (5.2) did not explicitly consider cen-

soring, the density function has been expressed in integral form so that

censoring is accommodated correctly. The pattern of censoring affects the

evolution of Y[n], and thus affects the integral, but the product involves only

transitions and transition times. So long as the censoring mechanism is ex-

changeability preserving [Dempsey and McCullagh, 2017], inference based

on the joint density given by equation (5.2) is possible. Both simple type I

censoring and independent censoring mechanism preserve exchangeability.
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5. DESCRIPTION OF CONTINUOUS-TIME PROCESS

5.3 Sequential description

Kolmogorov consistency permits ease of computation for the trajectory of

a new unit u′ = n + 1 given trajectories for the first n units Y[n] = y[n].

The conditional distribution is best described via a set paired measures

consisting of a continuous component Λ
(c)
i,i′ and an atomic measure Λ

(a)
i,i′ with

positive mass only at the observed transition times of y[n] for (i, i′) ∈ E.

For a time t, not a transition time of y[n], consider the new unit tran-

sitioning from state i to i′, i.e., y[n+1](t−) = (y[n](t−), i) and y[n+1](t) =

(y[n](t), i
′). The continuous component has hazard and cumulative hazard

hi,i′(t) = λ(y[n+1](t−),y[n+1](t)) and Hi,i′(t) =

∫ t

0

hi,i′(s)ds.

The non-normalized transitions λ(·, ·) are piecewise constant as a function

of t, so the integral is trivial to compute, but censoring implies it is not

necessarily constant between transition times.

Now let t be an observed transition time (i.e., y[n](t−) 6= y[n](t)) and

consider the atomic measure Λ
(a)
i,i′ associated with switching from state i to

i′. At each such point, the conditional hazards has an atom with finite mass

Λ
(a)
i,i′({t}) = log

ζn(y[n](t−)) q(y[n](t−),y[n](t))

ζn+1(y[n+1](t−)) q(y[n+1](t−),y[n+1](t))
,

or, on the probability scale,

exp(−Λ
(a)
i,i′({t})) =

λ(y[n+1](t−),y[n+1](t))

λ(y[n](t−),y[n](t))
.
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5. DESCRIPTION OF CONTINUOUS-TIME PROCESS

The above calculations define the conditional holding time of the new

unit after it enters state i at time t (i.e., Y (n+1, t−) 6= i and Y (n+1, t) = i)

conditional on Y[n] = y[n]. For s > 0, let {tj}Lj=1 denote the observed

transition times of y[n] within the time-window (t, t + s]. The probability

that the unit stays in state i for at least s > 0 time points is

exp

− ∑
i′:(i,i′)∈E

ν(Hi,i′(t+ s)−Hi,i′(t))

 · L∏
j=1

exp

− ∑
i′:(i,i′)∈E

Λ
(a)
i,i′({tj})

 ,

and serves as the basis for the proposed MCMC procedure in Section 7.

5.4 Self-similar harmonic process

Theorem 2 implies tied failures are an intrinsic aspect of Markov multi-state

survival processes; however, grouped data are often the result of rounding of

intrinsically continuous data. For these models to be useful in biomedical

applications, it is essential that they not be sensitive to rounding. This

has been previously addressed by restricting attention to processes whose

conditional distributions are weakly continuous, i.e., small perturbations of

transition times imply small perturbations of conditional distributions.

Dempsey and McCullagh [2017] originally studied this question in the

context of exchangeable, Markov survival processes. In particular, it is

shown that the harmonic process is the only Markov survival process with

weakly-continuous conditional distributions. Here, we extend the harmonic
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5. DESCRIPTION OF CONTINUOUS-TIME PROCESS

process to a multi-state survival process by associating with each edge (i, i′) ∈

E an independent harmonic process with parameters (νi,i′ , ρi,i′). For (i, i′) ∈

E let t
(i,i′)
1 < . . . < t

(i,i′)
k(i,i′) denote the unique observed transition times from i

to i′ for Y[n] and let Y]
[n](t; i) = #{u ∈ [n] s.t. Yu(t) = i}; then the con-

tinuous component of the hazard is given by:

Hi,i′(t) =
∑

l:t
(i,i′)
l ≤t

νi,i′
t
(i,i′)
l − t(i,i

′)
l−1

Y]
[n](t

(i,i′)
l−1 ; i) + ρi,i′

+ νi,i′
t− t(i,i

′)
m

Y]
[n](t

(i,i′)
m ; i) + ρi,i′

.

where the sum runs over transition times t
(i,i′)
l ≤ t, and t

(i,i′)
m is the last such

event. The discrete component is a product over transition times∏
l:t

(i,i′)
l ≤t

Y]
[n](t; i) + ρi,i′

Y]
[n](t−; i) + ρi,i′

. (5.3)

For small {ρi,i′}(i,i′)∈E, the combined discrete components are essentially

the same as the right-continuous version of the Aalen-Johansen estimator.

We call this process the self-similar harmonic process with transition

graph G. The associated measure Σ on PG is

Σ(dP ) = δ[#{pi,i′ > 0, (i, i′) ∈ E} = 1] ν?(1− p?)−1pρ?−1
? dp?

where p? is the single non-zero, off-diagonal entry, δ[·] is the indicator func-

tion, and (ν?, ρ?) are the associated parameters.

While the self-similar harmonic process has strong appeal for use in

applied work, we argue it is not universally optimal. The independence as-

sumption implies that at each transition time only transitions along a single
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6. COMPOSABLE MULTI-STATE SURVIVAL MODELS

edge (i, i′) ∈ E are possible. While this may make sense in specific cases,

additional care is needed in writing down appropriate models in general.

6 Composable multi-state survival models

We now discuss constraints on the multi-state survival models based on

decompositions of the state-space [s]. We start with the illness-death pro-

cess (Example 1) as our illustrative example. The state “Dead” is unique,

while the states “Healthy” and “Unhealthy” both require the individual to

be categorized more broadly as alive. Suppose the labels “Healthy” and

“Unhealthy” were uninformative with respect to failure transitions. Then

the refinement is immaterial, and the transition rules should collapse to the

transition rule for an exchangeable, Markov survival process.

This leads to two natural constraints: (1) state “Dead” is distinct,

and (2) states “Healthy” and “Ill” should be considered partially exchange-

able [De Finetti, 1972]. To satisfy this, we constrain the measure Σ to

only take positive mass on one of two sets of transition matrices: (I)

P with off-diagonal positive mass only in entries (1, 3) and/or (2, 3), or

(II) P with off-diagonal positive mass only in entries (1, 2) and/or (2, 1).

The first represent transitions from “Healthy” or “Ill” to “Dead”. The
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second represent transitions between “Healthy” and “Ill”. The partition

B = {B1, B2} = {{1, 2}, {3}} splits the state space. We then say the

process is partially exchangeable with respect to the partition B.

Let (n1, n2) denote the number of individuals in states “Healthy” and

“Unhealthy” directly preceding a transition to state “Dead”. Then the

probability that d1 ≤ n1 and d2 ≤ n2 individuals respectively transition

is proportional to
∫
pn1−d1

1,1 pd11,3p
n1−d1
2,2 pd22,3Σ̃(dP ), where Σ̃ is the measure Σ

restricted to type (I) transition matrices, i.e., Σ̃ puts positive mass on tran-

sition matrices P such that P1,2 = P2,1 = 0 so Pk,k = 1 − Pk,3 for k = 1, 2,

and P3,3 = 1. Here, we restrict attention to measures of the form:

Σ̃(dP ) = ν1,1 · P
ρ1,1−1
1,1 (1− P1,1)−1δ(P γ

2,2 = P1,1)dP1,1dP2,2. (6.4)

Equation (6.4) corresponds to a proportional model on the logarithmic

scale, linking P1,1 and P2,2 via baseline measure for a harmonic process.

Details on the connection to the proportional conditional hazards model

are provided in supplementary section ??.

6.1 Composable multi-state survival process

We now generalize the above by introducing B-composable processes.

Definition 3. A multi-state survival process is B-composable if there exists
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a partition B = (B1, . . . , Bk) of the state-space [s] such that elements within

block Bi are partially exchangeable with respect to transition graph G.

Definition 3 is similar in spirit to that of Schweder 2007—both aim

to formalize the notion that state changes in the process Y are due to

changes in different components. For the bi-directional illness-death pro-

cess (ex. 1), B = ({1, 2}, {3}). For comorbidities (ex. ??), B partitions

the risk processes. For competing risks (ex. ??), B = ({1}, B2, . . . , Bk)

where (B2, . . . , Bk) partition the absorbing states and the single state,

“Alive”, is distinct which implies B1 = {1}. If Y is B′-composable and

B′ is a refinement of the partition B, then Y is also B-composable. To

avoid confusion, from here on when we say Y is B-composable, we assume

no refinement of B′ exists such that Y is also B′-composable.

6.2 Choice of measure for a composable process

Here, we construct an appropriate measure Σ for a B-composable, Markov,

exchangeable multi-state survival process. The measure will take positive

mass only on transitions from states within Bj to states within Bj′ for a

single choice of j, j′ ∈ {1, . . . , k} := [k] indexing components of the parti-

tion B. For each component Bj, let i(j) ∈ [s] denote a representative state.

Then, for j, j′ ∈ [k], define the restricted measure on transitions from states
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in Bj to states in Bj′ , Σ̃jj′(dP ), by

νj,j′ P
ρj,j′−1

i(j),i(j)

(
1− Pi(j),i(j)

)−1
dPi(j),i(j) (6.5)∏

l∈Bj\i(j)

δ
[
P
γl,j′

l,l = Pi(j),i(j′)

]
dPl,l (6.6)

∏
l∈Bj

∏
m∈Bj′ : (l,m)∈E

δ[yl,m = αl,m]dyl,m (6.7)

where γl,j′ > 0, γi(j),j′ = 1, αl,m ∈ [0, 1], Pl,m ∈ [0, 1] and yl,m ∈ [0, 1]

such that
∑

m∈Bj′ : (l,m)∈E yl,m = 1. Here, the assumption is Pl,m = (1 −

Pl,l) · yl,m for l 6= m, and Pl,l = P
γl,j′

i(j),i(j). Lines (6.5) and (6.6) build the

general measure from a baseline harmonic measure and the assumption of

proportionality on the logarithmic scale for Pl,l, where the proportionality

constant depends on l ∈ Bj. Note γi(j),j′ is set to 1 by design, and so

the parameters measure risk relative to the chosen representative state.

Line (6.7) addresses the fact that a single state l ∈ Bj can transition to

multiple states in Bj′ , and leads to a simple Gibbs update procedure.

7 Parameter estimation

In practice, the patient’s health status is typically measured at recruitment

(t = 0), and regularly or intermittently thereafter while the patient is under

observation. A complete observation on one patient (t, Y (t), V,∆) consists
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of the appointment schedule t, multi-state process measurements Y (t), and

a failure/censoring time V , and a censoring indicator ∆. For censored

records, ∆ = 1 and the censoring time V is usually, but not necessarily,

equal to the date of the most recent appointment or end of study.

Here, we assume non-informative observation times. In particular,

given previous appointment times tk−1 = (t1, . . . , tk−1) and observation

values Y (tk−1), the next appointment time tk satisfies

tk ⊥⊥ Y | (tk−1, Y (tk−1)). (7.8)

That is, the conditional distribution of the random interval tk − tk−1 may

depend on the observed history but not on the subsequent health trajectory.

7.1 The MCMC Algorithm

In this section, we derive an MCMC algorithm for posterior computations

given irregularly sampled multi-state survival data under assumption (7.8).

7.1.1 Prior specification and MCMC updates

We start with prior specification. Let Φ denote the complete set of param-

eters. We use bar notation (e.g., ᾱ, γ̄) to denote each subset of parameters.

Recall for identifiability reasons γi(j),j′ = 1 for j, j′ ∈ [k]. For all other

pairs (l, j′), the prior is set to log(γl,j′) ∼ N(0, 1). Weakly informative
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default priors are an alternative [Gelman et al., 2008]; The complete-data

likelihood is non-conjugate, so Metropolis-Hastings updates are performed.

We follow Dempsey and McCullagh [2017] and set ρj,j′ := ρ as a fixed

tuning parameter. We define λj,j′ = νj,j′ ·ρ. Scaling by ρ allows direct com-

parison of λj,j′ across various choices of the ρ. We set a conjugate Gamma

prior λj,j′ ∼ Gamma(α, β). The posterior distribution given Y[n], γ̄, ᾱ, ρ is

Gamma

(
α + kj,j′ , β + ρ ·

∫ ∞
0

ζn(Y[n](s); γ̄, ᾱ, ρ)ds

)
(7.9)

where kj,j′ is the number of transition between blocks j and j′.

Finally, for l ∈ [s] consider transitions to partition Bj′ . Index states in

Bj′ such that a transition from l is possible by 1, . . . ,ml,j′ . Then the prior

for ᾱl,j′ = (αl,1,j′ , . . . , αl,ml,j′ ,j
′) is a Dirichlet distribution with parameters

p̄l,j′ = (pl,1,j′ , . . . , pl,ml,j′ ,j
′). Then the posterior is conjugate and

ᾱl,j′ |Y[n], γ̄, λ̄, ρ ∼ Dir (pl,1,j′ + kl,1,j′ , . . . , pl,ml,j′ + kl,ml,j′) (7.10)

where kl,m′,j′ counts the number of transitions from state l to m′ in Y[n].

7.1.2 Conditional sampling patient trajectories

Uniformization [Jensen, 1953, Hobolth and Stone, 2009] is a well-known

technique for generating sample paths for a Markov state-space process

which is highly adaptable to MCMC. See Rao and Teh [2013] for an excellent
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discussion of uniformization-based MCMC. Direct application of existing

Gibbs samplers based on uniformization to the current setting is problem-

atic due to combinatorial growth in the state-space and time-inhomogeneity

of the conditional Markov process. Luckily, this approach can be adjusted

using the sequential description from Section 5.3 as guidance.

Here, we show how to adapt the uniformization-based Gibbs sampler to

sample a patient trajectory Yi given all other trajectories Y−i = y−i, pa-

rameters Φ, and the prior iteration’s patient trajectory ỹi. For patient i, we

have observe (ti,Yi(ti), Vi,∆i). The appointment schedule ti is an ordered

sequence 0 ≤ ti,0 < . . . < ti,ki ≤ Vi. By the Markov property, we can focus

on sampling in each interval [ti,j, ti,j+1] separately. Define the set of transi-

tion times t̃j, ti,j ≤ t̃1,j < . . . < t̃Lj ,j ≤ ti,j+1, be the unique transition times

in y−i within the interval [ti,j, ti,j+1]. At each time t ∈ [ti,j, ti,j+1], define

the piecewise constant function Ωt = C · max(i,i′)∈E |Λ(c)
i,i′(t)| with C > 1.

Sample a Poisson process wj ⊂ [ti,j, ti,j+1] with piecewise constant rate

Rt = Ωt − Λ
(c)
ỹi(t),ỹi(t)

(t), where Λ
(c)
ỹi(t),ỹi(t)

(t) is the continuous component

of the conditional distribution. Let ui,j denote the transition times of ỹi

in the interval [ti,j, ti,j+1]. We then apply the forward-filtering, backward

sampling algorithm with transition matrix Bt = (I + Λ(c)/Ωt) at times

t ∈ wj ∪ (ui,j \ t̃j) and transition matrix Λ(a) at times t̃j.
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7.1.3 MCMC procedure

In each MCMC iteration, we proceed sequentially through patients, sam-

pling a latent multi-state path for patient Yi given all other latent pro-

cesses Y−i := Y[n]\i as described in Section 7.1.2. Conditional on Y[n],

we perform Metropolis-Hastings updates for γ̄. We end each iteration by

sampling λ̄ and ᾱ respectively using equation (7.9) and (7.10) . One issue

with this procedure is path sampling is computationally expensive. To ad-

dress this issue, we also propose an approximate MCMC algorithm in which

the latent processes are only updated every few iterations. In simulations,

posteriors are not significantly altered, while run time drops significantly.

For the sake of conciseness, we provide a simulation study of the MCMC

procedure in the supplementary materials (see Section 1). We reserve the

remainder of this paper for application of the proposed methodology to an

irregularly sampled multi-state survival dataset.

8 Cardiac allograft vasculopathy case study

To illustrate our methodology, we use data from angiographic examina-

tions of 622 heart transplant recipients at Patworth Hospital in the United

Kingdom. This data was downloaded from the R library http://cran.
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r-project.org/web/packages/msm maintained by Christopher Jackson. Car-

diac allograft vasculopathy (CAV) is a deterioration of the arterial walls.

Four states were defined for heart transplant recipients: no CAV (s = 1),

mild/moderate CAV (s = 2), severe CAV (s = 3), and dead (s = 4). The

transition graph is given by Figure 2. Yearly examinations occurred for

up to 18 years following transplant. Mean follow-up time is 5.9 years. For

censored records, the censoring time is set equal to the final appointment

time. Out of the 622 patients, only 192 patients were observed in state 2

(Mild CAV) at any point during their follow-up. Out of these 192, 43 of

these patients were subsequently observed in state 1. Only 92 patients were

observed in state 3 (Severe CAV) at any point during their follow-up. Out

of these 92, 12 of these patients were subsequently observed in state 2.

Figure 2: Cardiac allograft vasculopathy (CAV) transition diagram.

We set B = (B1 = {1, 2, 3}, B2 = {4}) and ρ = 10. Parameters

are {λ(j,j′)}j,j′=1,2, {γl,1, γl,2}l∈B1\1, and α2,1 ∈ [0, 1]. For identifiability, we

set γ1,1 and γ1,2 equal to one. As transitions from state 2 to 1 occur but

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)

http://cran.r-project.org/web/packages/msm
http://cran.r-project.org/web/packages/msm


8. CARDIAC ALLOGRAFT VASCULOPATHY CASE STUDY

should not occur too often, we set the prior on α = α2,1 ∼ Beta(2, 8).

We set λ11 and λ12 ∼ Gamma(1, 1). Parameters (γ21, γ22, γ31, γ32) have

independent, standard log-normal priors. The approximate MCMC sampler

is used.

Traceplots in Figure 3a suggest convergence after the first 100 itera-

tions. The posterior mean of λ11 is 0.80 (i.e., marginal time until transition

from state 1 to state 2 is 1.25 years). Parameters (γ21, γ31) have posterior

means (2.27, 0.52), translating into marginal holding times of 0.58 and 2.35

years respectively. The posterior mean for α is 0.38, suggesting that the

patient is a bit more likely to experience progression of the CAV status than

regression. The posterior mean for λ12 is 0.60 (i.e., marginally the holding

time in state 1 until a transition to state 4 is 1.68 years). This suggests that

in state 1, disease progression is slightly more likely than failure. Parame-

ters (γ22, γ32) have posterior means (1.03, 1.76) respectively. This translates

marginally into holding times of 1.63 and 0.99 years respectively. Figure 3b

suggests the failure rate from state 3 is high relative to that from state 1,

while the rates from states 1 and 2 are similar.

We next consider the posterior distributions for the survival functions.

Figure 4 plots median survival at each time t over all iterations of the

MCMC sampler, the Kaplan-Meier survival function estimator, and point-
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(a) Traceplots for MCMC algorithm (b) Approximate posterior densities

Figure 3: MCMC traceplots and densities for CAV study

wise 5% and 95% quantiles for the posterior survival function given baseline

state “Severe CAV” (s = 3). We see that the posterior survival curve

is significantly lower than the Kaplan-Meier survival function estimator.

This reflects expected disease progression since baseline. The expected

restricted-mean survival time is estimated under the restriction to t ≤ 20

due to study follow-up ending at that time. For states 1, 2, and 3 the

expectation is 8.84, 8.40, and 7.41, respectively. Recall that all patients are

in state 1 at baseline; therefore, the Kaplan-Meier curve should be compared

with the median survival curve given the new patient is in state 1. Under the

Kaplan-Meier estimator, the expected restricted-mean survival time is 9.66.

The 5% and 95% quantiles for the survival function at each time t when
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the patient is in state 3 at baseline are included. Figure 4b plots median

survival given the user is alive at time t = 5. The expected restricted-mean

remaining survival time from time 5 given new patient is in state 1, 2, and

3 is 6.12, 5.67, and 5.11 respectively.

(a) Survival functions at baseline (b) Survival functions at t = 5

Figure 4: Survival functions for “No CAV” (black), “Mild/Moderate CAV”

(red), and “Severe CAV” (blue); Kaplan-Meier estimator (dotted black).

8.1 Comparison to alternative life history analyses

We compare our results to those obtained from (a) a time-homogeneous,

parametric Markov model [Saeedi and Bouchard-Côté, 2011, Hajiaghayi

et al., 2014, Rao and Teh, 2013] and (b) a non-parametric Aalen-Johansen

estimator under the assumption that jump times coincide with observa-

tion times [Aalen et al., 2015]. Figure 5a visualizes the estimated survival
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curves for each approach. The survival estimator under (a) clearly suffers

from model misspecification, likely over-estimating survival in state 1 and

under-estimating in states 2 and 3. The non-parametric estimator suffers

from the last-observation carried forward assumption. In particular, disease

progression is restricted to occur at observation times. Moreover, it requires

state transitions to be observed. This leads to the state 2 having higher

survival probability over state 1 later in the study, which is scientifically

implausible. The non-parametric survival function more closely matches

our current results for t > 5 given s = 0 at baseline. This is due to state

3 having a holding time that is much longer than the observation, leading

to lower bias under the LOCF assumption. Figure 5a suggests the pro-

posed framework can be viewed as regularizing the nonparametric estima-

tor towards the parametric model; indeed, our model assumes the marginal

process Yu for any u ∈ N is a time-homogeneous Markov model. As we

have sufficient sample size, the conditional distributions account for model

misspecification, yet allow us to deal naturally with intermittent observa-

tion times. For the non-parametric (parametric) estimator, the expected

restricted-mean survival time in states 1, 2, and 3 is 10.85 (24.56), 14.76

(11.62), and 8.36 (5.84) respectively.

Figure 5b compares the estimated conditional survival curves at t = 5
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(a) Comparison at baseline. (b) Comparison at t = 5.

Figure 5: Survival functions from baseline for parametric (red), non-

parametric (black), and current (blue) methodology.

from our proposed methodology to that from the non-parametric estimator.

Here, the gaps among the non-parametric survival curves given state at time

t = 5 are more spaced as there are few observed transitions among states.

The proposed methodology accounts for possible transitions that agree with

the data, suggesting the conditional survival curves are closer than the

non-parametric analysis suggests. For the non-parametric estimator, the

expected restricted-mean survival time in states 1, 2, and 3 is 8.52, 5.71,

and 4.71 respectively.
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9 Discussion

This paper lays a theoretical and methodological foundation for the de-

velopment of models based on exchangeable, Markov multi-state survival

processes. The model class encompasses many examples from health and

epidemiology. Section 5.3 demonstrates how the process accommodates

dependence, providing a data generating description of unobserved tra-

jectory Yn+1 given the observed trajectory Y[n]. The model class, how-

ever, is limited in several respects. First, the models are not yet suited to

handle dynamicity, an important issue when dealing with recurrent event

processes [Peña, 2016]. Second, we only consider the time homogeneous

Markov setting, which implied the measure Σ is fixed across t and holding

times were exponential. Third, in many settings, the observations are noisy

and the state-space should be considered latent. We believe these issues

can be handled by suitable extensions of the proposed methodology. For

recurrent events, a more flexible dependence on the event-history can be

introduced [Peña and Hollander, 2004]. A semi-Markovian structure could

be proposed to allow for more complex holding time distributions. A hid-

den Markov structure could account for measurement-error and allow for

state misclassification. These are considered important future work.
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continuous-time markov chain estimation. In International Conference

on Machine Learning (ICML), 2014.

A. Hobolth and E.A. Stone. Simulation from endpoint-conditioned,

continuous-time markov chains on a finite state space, with applications

to molecular evolution. Ann. Appl. Stat., 3(3):1225–1310, 2009.

A. Jensen. Markoff chains as an aid in the study of markoff processes.

Skand. Aktuarietiedskr., 36:87–91, 1953.

B.F. Kurland, L.L. Johnson, B.L. Egleston, and P.H. Diehr. Longitudinal

data with follow-up truncated by death: match the analysis method to

the research aims. Statistical Science, 24(2):211–222, 2009.

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



REFERENCES

R. Little, R. D’agostino, K. Dickersin, S. Emerson, J. Farrar, C. Fran-

gakis, J. Hogan, G. Molenberghs, S. Murphy, J. Neaton, D. Scharfstein,

W. Shih, J. Siegel, H. Stern, M. Cohen, and A. Gaskin. The prevention

and treatment of missing data in clinical trials. Technical report, Na-

tional Research Council of the National Academies, Washington, D.C.,

2010.

E. Peña and M. Hollander. Models for recurrent events in reliability and

survival analysis. In Mathematical reliability: an expository perspective,

pages 105–123, Kluwer, Boston, 2004.

Edsel A. Peña. Asymptotics for a class of dynamic recurrent event models.

Journal of Nonparametric Statistics, 28(4):716–735, 2016.

V. Rao and Y. W. Teh. Mcmc for continuous-time discrete state systems.

In NIPS, 2013.
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