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Abstract: Unwanted variation, including hidden confounding, is a well-known

problem in many fields, particularly large-scale gene expression studies. Recent

proposals to use control genes, genes assumed to be unassociated with the covari-

ates of interest, have led to new methods to deal with this problem. Going by

the moniker Removing Unwanted Variation (RUV), there are many versions, e.g.

RUV1, RUV2, RUV4, RUVinv, RUVrinv, RUVfun. In this paper, we introduce

a general framework, RUV*, that both unites and generalizes these approaches.

This unifying framework helps clarify connections between existing methods. In

particular we provide conditions under which RUV2 and RUV4 are equivalent.

The RUV* framework also preserves an advantage of RUV approaches, their

modularity, which facilitates the development of novel methods based on exist-

ing matrix imputation algorithms. We illustrate this by implementing RUVB,

a version of RUV* based on Bayesian factor analysis. In realistic simulations

based on real data we found that RUVB is competitive with existing methods in

terms of both power and calibration, although we also highlight the challenges of

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



Unifying and Generalizing RUV 2

providing consistently reliable calibration among data sets.

Key words and phrases: batch effect, correlated test, gene expression, hidden con-

founding, negative control, RNA-seq, unobserved confounding, unwanted varia-

tion

1. Introduction Many experiments and observational studies in genet-

ics are overwhelmed with unwanted sources of variation. Examples in-

clude: processing date (Akey et al., 2007), the lab that collected a sample

(Irizarry et al., 2005), the batch in which a sample was processed (Leek

et al., 2010), and subject attributes such as environmental factors (Gib-

son, 2008) and ancestry (Price et al., 2006). These factors, if ignored, can

result in disastrously wrong conclusions (Gilad and Mizrahi-Man, 2015).

They can induce dependencies between samples, and inflate test statistics,

making it difficult to control false discovery rates (Efron, 2004, 2008, 2010).

Many of the sources of variation mentioned above are likely to be ob-

served, in which case standard methods exist to control for them (Johnson

et al., 2007). However, every study likely also contains unobserved sources

of unwanted variation, and these can cause equally profound problems (Leek

and Storey, 2007), even in the ideal case of a randomized experiment. To

illustrate this we took 20 samples from an RNA-seq dataset (GTEx Con-

sortium, 2015) and randomly assigned them into two groups of 10 samples.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



Unifying and Generalizing RUV 3

Since group assignment is entirely independent of the expression levels of

each gene, the group labels are theoretically unassociated with all genes

and any observed “signal” must be artefactual. Figure 1 shows histograms

of the p-values from two-sample t-tests for three different randomizations.

In each case the distribution of the p-values differs greatly from the theo-

retical uniform distribution. Thus, even in this ideal scenario where group

labels were randomly assigned, problems can arise. One way to understand

this is to note that the same randomization is being applied to all genes.

Consequently, if many genes are affected by an unobserved factor, and this

factor happens by chance to be correlated with the randomization, then the

p-value distributions will be non-uniform. In this sense the problems here

can be viewed as being due to correlation among the p values; see Efron

(2010) for extensive discussion. (The issue of whether the problems in any

given study are caused by correlation, confounding, or something different

is both interesting and subtle; see discussion in Efron (2010); Schwartzman

(2010) for example. For this reason we adopt the “unwanted variation” ter-

minology from Gagnon-Bartsch and Speed (2012), rather than alternative

terminologies such as “hidden confounding”.)

In recent years many methods have been introduced to try to solve

problems due to unwanted variation. Perhaps the simplest approach is to
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Figure 1: Histograms of p-values from two-sample t-tests when group labels

are randomly assigned to samples. Each panel is from a different random

seed. The p-value distributions all clearly deviate from uniform.

estimate sources of unwanted variation using principal components analysis

(Price et al., 2006), and then to control for these factors by using them as

covariates in subsequent analyses. Indeed, in genome-wide association stud-

ies this simple method is widely used. However, in gene expression studies

it suffers from the problem that the principal components will typically also

contain the signal of interest, so controlling for them risks removing that

signal. To address this Leek and Storey (2007, 2008) introduced Surrogate

Variable Analysis (SVA), which uses an iterative algorithm to attempt to

estimate latent factors that do not include the signal of interest (see also

Lucas et al. (2006)). To account for unwanted variation, SVA assumes a

factor-augmented regression model (Section 2.1), which has a long history

(Fisher and Mackenzie, 1923; Cochran, 1943; Williams, 1952; Tukey, 1962;
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Gollob, 1968; Mandel, 1969, 1971; Efron and Morris, 1972; Freeman, 1973;

Gabriel, 1978, and others). Since SVA, a large number of different ap-

proaches have emerged along similar lines, including Behzadi et al. (2007);

Kang et al. (2008); Carvalho et al. (2008); Kang et al. (2008); Stegle et al.

(2008); Friguet et al. (2009); Kang et al. (2010); Listgarten et al. (2010); Ste-

gle et al. (2010); Wu and Aryee (2010); Gagnon-Bartsch and Speed (2012);

Fusi et al. (2012); Stegle et al. (2012); Sun et al. (2012); Gagnon-Bartsch

et al. (2013); Mostafavi et al. (2013); Perry and Pillai (2013); Yang et al.

(2013); Chen and Zhou (2017); Lee et al. (2017); Wang et al. (2017); Gerard

and Stephens (2018); McKennan and Nicolae (2018a,b), among others.

As noted above, a key difficulty in adjusting for unwanted variation in

expression studies is distinguishing between the effect of a treatment and

the effect of factors that are correlated with a treatment. Available methods

deal with this problem in different ways. Here we focus on methods that

use “negative controls” to help achieve this goal. In the context of a gene

expression study, a negative control is a gene whose expression is assumed to

be unassociated with all covariates (and treatments) of interest. Under this

assumption, negative controls can be used to separate sources of unwanted

variation from the treatment effects. The idea of using negative controls in

this way appears in Lucas et al. (2006), and has been recently popularized
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by Gagnon-Bartsch and Speed (2012) and Gagnon-Bartsch et al. (2013) in a

series of methods and software going by the moniker Removing Unwanted

Variation (RUV). There are many methods, including RUV2 (for RUV 2-

step), RUV4, RUVinv (a special case of RUV4), RUVrinv, RUVfun, and

RUV1.

Understanding the relative merits and properties of the different RUV

methods, which are all aimed at solving essentially the same problem, is a

non-trivial task. The main contribution of this paper is to outline a gen-

eral framework, RUV*, that encompasses all versions of RUV (Section 4).

RUV* represents the problem as a general matrix imputation procedure,

both providing a unifying conceptual framework, and opening up new ap-

proaches based on the large literature in matrix imputation. Our RUV*

framework also provides a simple and modular way to account for uncer-

tainty in the estimated sources of unwanted variation, which is an issue

ignored by most methods. On the way to this general framework we make

detailed connections between RUV2 and RUV4, exploiting the formulation

in Wang et al. (2017).

On notation: throughout we denote matrices using bold capital letters

(A), except for α and β, which are also matrices. Bold lowercase letters are

vectors (a), and non-bold lowercase letters are scalars (a). Where there is
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no chance for confusion, we use non-bold lowercase to denote scalar elements

of vectors or matrices. For example, aij is the (i, j)th element of A and ai

is the ith element of a. The notation An×m denotes that the matrix A is

an n by m matrix. The matrix transpose is denoted Aᵀ and the matrix

inverse is denoted A−1. Sets are generally denoted with calligraphic letters

(A), and the complement of a set is denoted with a bar (Ā).

2. RUV4 and RUV2

2.1 Review of the two-step rotation method

Most existing approaches to this problem (Leek and Storey, 2007, 2008;

Gagnon-Bartsch and Speed, 2012; Sun et al., 2012; Gagnon-Bartsch et al.,

2013; Wang et al., 2017) are based in some way on using Factor Analysis

(FA) to capture unwanted variation. Specifically, they assume:

Y n×p = Xn×kβk×p +Zn×qαq×p +En×p, (2.1)

where, in the context of a gene-expression study, yij is the normalized ex-

pression level of the jth gene on the ith sample, X contains the observed

covariates, β contains the coefficients of X, Z is a matrix of unobserved

factors (sources of unwanted variation), α contains the coefficients of Z,

and E contains independent (Gaussian) errors with means 0 and column-
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2.1 Review of the two-step rotation method8

specific variances var(eij) = σ2
j . In this model, the only known quantities

are Y and X.

To fit (2.1), it is common to apply a two-step approach (e.g. Gagnon-

Bartsch et al. (2013); Sun et al. (2012); Wang et al. (2017)). The first step

regresses outX and then, using the residuals of this regression, estimates α

and the σj’s. The second step then assumes that α and the σj’s are known

and estimates β and Z. Wang et al. (2017) helpfully frame this two-step

approach as a rotation followed by estimation in two independent models.

We now review this approach.

First, we let X = QR denote the QR decomposition of X, where Q ∈

Rn×n is an orthogonal matrix (QᵀQ = QQᵀ = In) and Rn×k = (Rᵀ
1,0)ᵀ,

where R1 ∈ Rk×k is an upper-triangular matrix. Multiplying (2.1) on the

left by Qᵀ yields

QᵀY = Rβ +QᵀZα+QᵀE. (2.2)

Suppose that k = k1 + k2, where the first k1 covariates of X are not of

direct interest, but are included because of various modeling decisions (e.g.

an intercept term, or covariates that need to be controlled for). The last

k2 columns of X are the variables of interest whose putative associations

with Y the researcher wishes to test. Let Y 1 ∈ Rk1×p be the first k1 rows

of QᵀY , Y 2 ∈ Rk2×p be the next k2 rows of QᵀY , and Y 3 ∈ R(n−k)×p be
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the last n− k rows of QᵀY . Conformably partition QᵀZ into Z1, Z2, and

Z3, and QᵀE into E1, E2, and E3. Let

R1 =

 R11 R12

0 R22

 .

Finally, partition β = (βᵀ
1,β

ᵀ
2)ᵀ so that β1 ∈ Rk1×p contains the coefficients

for the first k1 covariates and β2 ∈ Rk2×p contains the coefficients for the

last k2 covariates. Then (2.2) may be written as three models

Y 1 = R11β1 +R12β2 +Z1α+E1, (2.3)

Y 2 = R22β2 +Z2α+E2, (2.4)

Y 3 = Z3α+E3. (2.5)

Importantly, the error terms in (2.3), (2.4), and (2.5) are mutually

independent. This follows from the easily-proved fact that E is equal in

distribution to QᵀE. The two-step estimation procedure mentioned above

becomes: first, estimate α and the σj’s using (2.5); second, estimate β2 and

Z2 given α and the σj’s using (2.4). Equation (2.3) contains the nuisance

parameters β1 and is ignored.

2.2 RUV4

One approach to distinguishing between unwanted variation and effects of

interest is to use “control genes” (Lucas et al., 2006; Gagnon-Bartsch and
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Speed, 2012). A control gene is a gene that is assumed a priori to be

unassociated with the covariate(s) of interest. More formally, the set of

control genes, C ⊆ {1, . . . , p}, has the property that

βij = 0 for all i = k1 + 1, . . . , k, and j ∈ C,

and is a subset of the truly null genes. Examples of control genes used in

practice are spike-in controls (Jiang et al., 2011) used to adjust for technical

factors (such as sample batch) and housekeeping genes (Eisenberg and Lev-

anon, 2013) used to adjust for both technical and biological factors (such

as subject ancestry).

RUV4 (Gagnon-Bartsch et al., 2013) uses control genes to estimate

β2 in the presence of unwanted variation. Let Y 2C ∈ Rk2×m denote the

submatrix of Y 2 with columns that correspond to the m control genes.

Similarly subset the relevant columns to obtain β2C ∈ Rk2×m, αC ∈ Rq×m,

and E2C ∈ Rk2×m. The steps for RUV4, including a variation from Wang

et al. (2017), are presented in Procedure 1. (For simplicity we focus on

point estimates of effects here, deferring assessment of standard errors to

Section S6 of the Supplementary Material.)

The key idea in Procedure 1 is that for the control genes model (2.4)
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Procedure 1 RUV4

1: Estimate α and Σ using FA (Definition 1) on Y 3 in (2.5). Call these

estimates α̂ and Σ̂.

2: Estimate Z2 using control genes (equation (2.8)). Let Σ̂C =

diag(σ̂2
j1
, . . . , σ̂2

jm) for ji ∈ C for all i = 1, . . . ,m.

RUV4 in Gagnon-Bartsch et al. (2013) estimates Z2 by ordinary least

squares (OLS)

Ẑ2 = Y 2Cα̂
ᵀ
C(α̂Cα̂

ᵀ
C)
−1. (2.6)

Alternatively, Wang et al. (2017) implement a variation on RUV4

(which we call CATE, and is implemented in the R package cate)

that estimates Z2 by generalized least squares (GLS)

Ẑ2 = Y 2CΣ̂
−1

C α̂
ᵀ
C(α̂CΣ̂

−1

C α̂
ᵀ
C)
−1. (2.7)

3: Estimate β2 using (2.4) by

β̂2 = R−1
22 (Y 2 − Ẑ2α̂).
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becomes

Y 2C = R22β2C +Z2α̂C +E2C,

= Z2α̂C +E2C, (2.8)

e2Cij
ind∼ N(0, σ̂2

j ). (2.9)

The equality in (2.8) follows from the property of control genes that β2C =

0. Step 2 of Procedure 1 uses (2.8) to estimate Z2.

Step 1 of Procedure 1 requires a FA of Y 3. We formally define a FA as

follows.

Definition 1. A Factor Analysis (FA), F , of rank q ≤ min(n, p) on Y ∈

Rn×p is a set of three functions F = {Σ̂(Y ), Ẑ(Y ), α̂(Y )} such that

Σ̂(Y ) ∈ Rp×p is diagonal with positive diagonal entries, Ẑ(Y ) ∈ Rn×q

has rank q, and α̂(Y ) ∈ Rq×p has rank q.

RUV4 allows the analyst to use any FA they desire. Thus, RUV4 is

not a single method, but a collection of methods indexed by the FA used.

When we want to be explicit about this indexing, we write RUV4(F).

2.3 RUV2

Procedure 2 summarizes the RUV2 method introduced in Gagnon-Bartsch

and Speed (2012). It involves two steps: first estimate the factors causing
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unwanted variation from the control genes, and then include these factors

as covariates in the regression models for the non-control genes. Gagnon-

Bartsch et al. (2013) extend this procedure to deal with nuisance covariates

by adding a preliminary step that rotates Y and X onto the orthogonal

complement of the space spanned by the nuisance covariates (equation (64)

in Gagnon-Bartsch et al., 2013).

Procedure 2 RUV2 (without nuisance covariates; Gagnon-Bartsch and

Speed (2012))

1: From (2.1), estimate Z by FA on Y C. Call this estimate Ẑ.

2: Estimate β by regressing Y on (X, Ẑ). That is

β̂ = (XᵀSX)−1XᵀSY ,

where S = In − Ẑ(Ẑ
ᵀ
Ẑ)−1Ẑ

ᵀ
.

Like RUV4, RUV2 is a class of methods indexed by the FA used,

which we here denote RUV2old(F). In Procedure 3 we present a method,

RUV2new(F), that we then prove is equivalent to RUV2old (Theorem 1;

proved in Section S2 of the Supplementary Material).

Theorem 1. For a given orthogonal matrix Q ∈ Rn×n and an arbitrary
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Procedure 3 RUV2 in rotated model framework of Section 2.1

1: Estimate Z2 and Z3 by FA on
(
Y 2C
Y 3C

)
. Call these estimates Ẑ2 and Ẑ3.

2: Estimate α and Σ by regressing Y 3 on Ẑ3. That is

α̂ = (Ẑ
ᵀ

3Ẑ
−1

3 )Ẑ
ᵀ

3Y 3 and (2.10)

Σ̂ = diag[(Y 3 − Ẑ3α̂)ᵀ(Y 3 − Ẑ3α̂)]/(n− k − q). (2.11)

3: Estimate β2 with

β̂2 = R−1
22 (Y 2 − Ẑ2α̂). (2.12)

non-singular matrix A(Y ) that (possibly) depends on Y , suppose

F1(Y ) = {Σ̂(Y ), Ẑ(Y ), α̂(Y )}, and (2.13)

F2(Y ) = {Σ̂(QᵀY ),QẐ(QᵀY )A(Y ),A−1(Y )α̂(QᵀY )}. (2.14)

Then

RUV2old(F2) = RUV2new(F1).

That is, Procedure 2 using FA (2.13) is equivalent to Procedure 3 using FA

(2.14).

The equivalence of RUV2old and RUV2new in Theorem 1 involves us-

ing different factor analyses in each procedure. One can ask under what
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conditions the two procedures would be equivalent if given the same FA.

Corollary 1 states that it suffices for the FA to be left orthogonally equiv-

ariant (see Section S3 of the Supplementary Material for proof).

Definition 2. A FA of rank q on Y ∈ Rn×p is left orthogonally equivariant

if

{Σ̂(QᵀY ), Ẑ(QᵀY )A(Y ),A(Y )−1α̂(QᵀY )} = {Σ̂(Y ),QᵀẐ(Y ), α̂(Y )},

for all fixed orthogonal Q ∈ Rn×n and an arbitrary non-singular A(Y ) ∈

Rq×q that (possibly) depends on Y .

Corollary 1. Suppose F is a left orthogonally equivariant FA. Then

RUV2old(F) = RUV2new(F).

A well-known FA that is left orthogonally equivariant is the truncated

singular value decomposition (formally defined in Section S1 of the Sup-

plementary Material), and this is the only option in the R package ruv

(Gagnon-Bartsch, 2015).

From now on we use RUV2 to refer to Procedure 3 and not Proce-

dure 2, even if the FA is not orthogonally equivariant. (By Theorem 1, this

corresponds to Procedure 2 with some other FA.)
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3. RUV3

Gagnon-Bartsch et al. (2013) provide a lengthy discussion comparing RUV2

with RUV4 (their section 3.4). However, they provide no mathematical

equivalencies. We now introduce RUV3, a procedure that is a version of

both RUV2 and RUV4. We show that it is the only such procedure that is

both RUV2 and RUV4.

3.1 The RUV3 procedure

The main goal in all methods is to estimate β2C̄, the coefficients correspond-

ing to the non-control genes. This involves incorporating information from

four models, which can be written in matrix form: Y 2C Y 2C̄

Y 3C Y 3C̄

 =

 Z2αC +E2C R22β2C̄ +Z2αC̄ +E2C̄

Z3αC +E3C Z3αC̄ +E3C̄

 . (3.1)

The major difference between RUV2 and RUV4 is how the estimation

procedures interact in (3.1); see Figure 2 for illustration. RUV2 performs

FA on (Y ᵀ
2C,Y

ᵀ
3C)

ᵀ, then regresses Y 3C̄ on the estimated factor loadings.

RUV4 performs FA on (Y 3C,Y 3C̄), then regresses Y 2C on the estimated

factors. The main goal in both, however, is to estimate Z2αC̄ given Y 2C,

Y 3C, and Y 3C̄.

Estimating Z2αC̄ given Y 2C, Y 3C, and Y 3C̄ is, in essence, a matrix
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RUV2

Y 2C

Y 3C Y 3C̄

Y 2C̄

Regression

ImputeFactor
Analysis

RUV4

Y 2C

Y 3C Y 3C̄

Y 2C̄

Regression Impute

Factor
Analysis

RUV3

Y 2C

Y 3C Y 3C̄

Y 2C̄

Regression

Regression Impute

Factor
Analysis

RUV*

Y 2C

Y 3C Y 3C̄

Y 2C̄

Impute

Figure 2: Pictorial representation of the differences between RUV2, RUV4,
RUV3, and RUV*.

imputation problem. In the context of matrix imputation (and not remov-

ing unwanted variation), Owen and Wang (2016), generalizing methods of

Owen and Perry (2009), suggest that after applying a FA to Y 3C, one use

the estimates Ẑ2 and α̂C̄ from (3.2) and (3.3), respectively, and then set

Ẑ2αC̄ = Ẑ2α̂C̄. This corresponds to a FA followed by two regressions fol-

lowed by an imputation step. Following the theme of this paper, we would

add an additional step and estimate β2C̄ with (3.5).

This estimation procedure (Procedure 4) unifies RUV2 and RUV4, and

so we call it RUV3. The unification is formalized in the following theorem

(see Section S4 of the Supplementary Material for proof).

Theorem 2. A procedure is both a version of RUV4 (Procedure 1) and

RUV2 (Procedure 3) if, and only if, it is also a version of RUV3 (Proce-

dure 4).
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Procedure 4 RUV3

1: Perform FA on Y 3C to obtain estimates of Z3, αC and ΣC.

2: Regress Y 2C on α̂C to obtain an estimate of Z2 and regress Y 3C̄ on Ẑ3

to obtain estimates of αC̄ and ΣC̄. That is

Ẑ2 = Y 2CΣ̂
−1

C α̂
ᵀ
C(α̂CΣ̂

−1

C α̂
ᵀ
C)
−1, (3.2)

α̂C̄ = (Ẑ
ᵀ

3Ẑ3)−1Ẑ
ᵀ

3Y 3C̄, (3.3)

Σ̂C̄ = diag
[
(Y 3C̄ − Ẑ3α̂C̄)

ᵀ(Y 3C̄ − Ẑ3α̂C̄)
]
/(n− k − q). (3.4)

3: Estimate β2 by

β̂2 = R−1
22 (Y 2C̄ − Ẑ2α̂C̄). (3.5)
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4. A more general framework: RUV*

A key insight that arises from unifying RUV2 and RUV4 (and RUV3)

into a single framework is that they share a common goal: estimation of

Z2αC̄, which represents the combined effects of all sources of unwanted

variation on Y 2C̄. This insight suggests a more general approach: any matrix

imputation procedure could be used to estimate Z2αC̄; RUV2, RUV3, and

RUV4 are just three versions that rely heavily on linear associations between

submatrices. Indeed, we need not even assume a factor model for the form

of the unwanted variation. And we can further incorporate uncertainty in

the estimates. In this section we develop these ideas to provide a more

general framework for removing unwanted variation, which we call RUV*.

4.1 More general approaches to matrix imputation

To allow for more general approaches to matrix imputation we generalize

(3.1) to Y 2C Y 2C̄

Y 3C Y 3C̄

 =

 Ω(φ)2C Ω(φ)2C̄

Ω(φ)3C Ω(φ)3C̄

+

 0 R22β2

0 0

+E, (4.1)

where Ω is the unwanted variation parameterized by some φ. When the

unwanted variation is represented by a factor model, we have that φ =

{Z,α} and Ω(φ) = Zα.
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4.2 Incorporating uncertainty in estimated unwanted variation20

The simplest version of RUV* fits this model in two steps:

1. Use any appropriate procedure to estimate Ω2C̄(φ) given {Y 2C,Y 3C,Y 3C̄};

2. Estimate β2 by

R−1
22 (Y 2C̄ −Ω2C̄(φ̂)).

This idea is represented in the far right panel of Figure 2, and its re-

lationship with other RUV approaches are illustrated in Supplementary

Figure S1. Rather than restrict factors to be estimated via linear regres-

sion, RUV* allows any imputation procedure to be used to estimate Ω2C̄(φ).

This opens up a large literature on matrix imputation for use in removing

unwanted variation with control genes (Hoff, 2007; Allen and Tibshirani,

2010; Candes and Plan, 2010; Stekhoven and Bühlmann, 2012; van Buuren,

2012; Josse et al., 2016, for example). (Note that RUV* is more general

than RUVfun from Gagnon-Bartsch et al. (2013); Section S5 of the Supple-

mentary Material.)

4.2 Incorporating uncertainty in estimated unwanted variation

Like previous RUV methods, the second step of RUV* treats the estimate

of Ω2C̄(φ) from the first step as if it were “known”. Here we generalize this,

using Bayesian ideas to propagate uncertainty.

Although the use of Bayesian methods in this context is not new (Stegle
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et al., 2008, 2010; Fusi et al., 2012; Stegle et al., 2012), our development

here shares one of the great advantages of the RUV methods: modularity.

That is, RUV methods separate the analysis into smaller self-contained

steps: the FA step and the regression step. Modularity is widely used in

many fields: mathematicians modularize results using theorems, lemmas

and corollaries; computer scientists modularize code using functions and

classes. Modularity has many benefits, including: (1) it is easier to concep-

tualize an approach if it is broken into small simple steps, (2) it is easier to

discover and correct mistakes, and (3) it is easier to improve an approach by

improving specific steps. These advantages also apply to statistical analysis

and methods development. For example, in RUV if one wishes to use a new

method for FA then this does not require a whole new approach; one simply

replaces the truncated SVD with the new FA.

To describe this generalized RUV* we introduce a latent variable Ỹ 2C̄

and write (4.1) as  Y 2C Ỹ 2C̄

Y 3C Y 3C̄

 = Ω(φ) +E, (4.2)

Y 2C̄ = R22β2 + Ỹ 2C̄. (4.3)

Now consider the following two-step procedure:

1. Use any appropriate procedure to obtain a conditional distribution
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h(Ỹ 2C̄) = p(Ỹ 2C̄|Ym), where Ym = {Y 2C,Y 3C,Y 3C̄}.

2. Perform inference for β2 using the likelihood

L(β2) = p(Y 2C̄,Ym|β2)

= p(Ym)

∫
p(Y 2C̄|Ỹ 2C̄,β2)p(Ỹ 2C̄|Ym) dỸ 2C̄

∝
∫
δ(Y 2C̄ − Ỹ 2C̄ −R22β2)p(Ỹ 2C̄|Ym) dỸ 2C̄

= h(Y 2C̄ −R22β2)

where δ(·) indicates the Dirac delta function.

Of course, in step 2 one could do classical inference for β2, or place a prior

on β2 and perform Bayesian inference.

This procedure requires an analytic form for the conditional distribu-

tion h. An alternative is to assume that we can sample from this conditional

distribution, which yields a convenient sample-based (or “multiple imputa-

tion”) RUV* algorithm.

1. Use any appropriate procedure to obtain samples Ỹ
(1)

2C̄ , . . . , Ỹ
(t)

2C̄ from

a conditional distribution p(Ỹ 2C̄|Ym).

2. Approximate the likelihood for L(β2) by using the fact that β̂
(i)

2 =

R−1
22 (Y 2C̄ − Ỹ

(i)

2C̄) are sampled from a distribution proportional to

L(β2). (This distribution is guaranteed to be proper; Section S11

of the Supplementary Material.)
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For example, in step 2 we can approximate the likelihood for each element

of β2 by a normal likelihood

L(β2j) ≈ N(β2j; β̂2j, ŝ
2
j), (4.4)

where β̂2j and ŝj are respectively the mean and standard deviation of β̂
(i)

2 .

Alternatively, a t likelihood can be used. Either approach provides an esti-

mate and standard error for each element of β2 that accounts for uncertainty

in the estimated unwanted variation. (In contrast, the various methods used

by other RUV approaches do not account for this uncertainty; Section S6 of

the Supplementary Material.) Here we use these values to rank the “signif-

icance” of genes by the value of β̂2j/ŝj. They could also be used as inputs

to the empirical Bayes method in Stephens (2017) to obtain measurements

of significance related to false discovery rates.

Other approaches to inference in Step 2 are also possible. For example,

given a specific prior on β2, Bayesian inference for β2 could be performed by

re-weighting these samples according to this prior distribution (Section S8

of the Supplementary Material). This re-weighting yields an arbitrarily

accurate approximation to the posterior distribution p(β2|Ym,Y 2C̄) (Sec-

tion S9 of the Supplementary Material). Posterior summaries using this

re-weighting scheme are easy to derive (Section S12 of the Supplementary

Material).
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To illustrate the potential for RUV* to produce new methods for re-

moving unwanted variation we implemented a version of RUV*, using a

Markov chain Monte Carlo scheme to fit a simple Bayesian Factor analy-

sis model, and hence perform the sampling-based imputation in Step 1 of

RUV*. See Section S10 of the Supplementary Material for details. We refer

to this method as RUVB.

5. Empirical evaluations

We now compare methods using simulations based on real data (GTEx

Consortium, 2015). The simulation procedure is described in detail in Sec-

tion S13 of the Supplementary Material. In brief, we use random subsets of

real expression data to create “null data” that contains real (but unknown)

“unwanted variation”, and then modify these null data to add known signal.

We varied the sample size (n = 6, 10, 20, 40), number of genes (p = 1000),

number of control genes (m = 10, 100), and the proportion of null genes

(π0 = 0.5, 0.9, 1).

Being based on real data, these simulations involve realistic levels of

unwanted variation. However, they also represent a “best-case” scenario in

which treatment labels were randomized with respect to the factors causing

this unwanted variation (see Section S16 of the Supplementary Material for
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studying the effects of correlated confounding). They also represent a best

case scenario in that the control genes given to each method are simulated

to be genuinely null (See Section S17 of the Supplementary Material for

studying the effects of misspecifying the negative controls). Even in this

best-case scenario unwanted variation is a major issue, and, as we shall see,

obtaining well calibrated inferences is challenging.

5.1 Summary of methods compared

We compared standard ordinary least squares regression (OLS) against five

other approaches: RUV2, RUV3, RUV4, CATE (the GLS variant of RUV4),

and RUVB. In preceding sections we have focused on how these methods

obtain point estimates for β2. However in practice one also needs to find

standard errors for these estimates. Just as there are many approaches to

producing point estimates, there are also many approaches to producing

standard errors. Key techniques used include “MAD variance calibration”

(Wang et al., 2017), “control gene variance calibration” (Gagnon-Bartsch

et al., 2013) and Empirical Bayes variance moderation (EBVM) (Smyth,

2004); see Section S6 of the Supplementary Material for more details. Our

experience is that the choice of these techniques can greatly affect results,

particularly calibration of interval estimates. We therefore experimented
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with several approaches to standard error estimation for each method,

and summarize results by presenting the best-performing version of each

method. See Section S15 of the Supplementary Material for more extensive

discussion.

For RUVB, we considered two approaches to producing mean and vari-

ance estimates: (i) Using sample-based posterior summaries (Section S12 of

the Supplementary Material), and (ii) Using the normal approximation to

the likelihood in Equation (4.4).

5.2 Comparisons: sensitivity vs specificity

We compare the power of methods to distinguish null and non-null genes by

computing the area under the receiver operating characteristic curve (AUC)

for each method as the significance threshold is varied.

The clearest result here is that all the methods consistently outperform

standard OLS (Supplementary Figure S3). This emphasizes the benefits of

removing unwanted variation in improving power to detect real effects. For

small sample size comparisons (e.g. 3 vs 3) the gains are smaller, though still

apparent, presumably because reliably estimating the unwanted variation

is harder for small samples.

A second clear pattern is that the use of EBVM when estimating stan-
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dard errors consistently improved AUC performance: the best-performing

method in each family used EBVM. As might be expected, these benefits

of EBVM are greatest for smaller sample sizes (Supplementary Figure S3).

Compared with these two clear patterns, differences among the best-

performing methods in each family are more subtle. Figure 3a compares

the AUC of the best method in each family with that of RUVB, which

performed best overall in this comparison. (Results are shown for π0 = 0.5;

results for π0 = 0.9 are similar). We highlight four main results:

1. RUVB has the best mean AUC among all methods we explored;

2. RUV4/CATE methods perform less well (relative to RUVB) when

there are few control genes and the sample size is large;

3. In contrast, RUV2 methods perform less well (relative to RUVB)

when the sample size is small and there are few control genes;

4. RUV3 performs somewhat stably (relative to RUVB) across the sam-

ple sizes.

The mean AUCs for RUVB are in Supplementary Figure S2.

5.3 Comparisons: calibration

We also assessed the calibration of methods by examining the empirical

coverage of their nominal 95% confidence intervals for each effect (based on
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Figure 3: (a) Comparison of AUC achieved by best-performing method in

each family vs RUVB. Each point shows the observed mean difference in

AUC, with vertical lines indicating 95% confidence intervals for the mean.

Results are shown for π0 = 0.5 with 10 control genes (upper facet) or 100

control genes (lower facet). All results are below zero (the dashed horizontal

line), indicating superior performance of RUVB. (b) Median coverage for

the best performing methods’ 95% confidence intervals when π0 = 0.5.

The vertical lines are bootstrap 95% confidence intervals for the median

coverage, made transparent and slightly horizontally dodged to increase

clarity. The horizontal dashed line is at 0.95. (c) Boxplots of coverage for

the best performing methods’ 95% confidence intervals when π0 = 0.5 and

n = 40. For both (b) and (c) the left and right facets show results for 10

and 100 control genes respectively.
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standard theory for the relevant t distribution in each case).

We begin by examining “typical” coverage for each method in each

scenario by computing the median (across datasets) of the empirical cover-

age. We found that, without variance calibration, all method families ex-

cept RUV4/CATE could achieve satisfactory typical coverage (somewhere

between 0.94 and 0.97) across all scenarios (Figure 3b) shows results for

π0 = 0.5; other values yielded similar results, not shown). The best per-

forming RUV4/CATE method was often overly conservative in scenarios

with few control genes, especially with larger sample sizes.

Although these median coverage results are encouraging, in practice

having small variation in coverage among datasets is also important. That

is, we would like methods to have near-95% coverage in most data-sets, and

not only on average. Here the results (Figure 3c; Supplementary Figure S4)

are less encouraging: coverage of methods with good typical coverage (me-

dian coverage close to 95%) varied considerably among datasets. This said,

variability does improve for larger sample sizes and more control genes, and

in this case all methods improve noticeably on OLS (Figure 3c, right facet).

A particular concern is that, across all these methods, for many datasets,

empirical coverage can be much lower than the nominal goal of 95%. Such

datasets might be expected to lead to problems with over-identification

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



5.3 Comparisons: calibration30

of significant null genes (“false positives”), and under-estimation of false

discovery rates.

To summarize variability in coverage — as well as any tendency to be

conservative or anti-conservative — we calculated the proportion of datasets

where the actual coverage deviated substantially from 95%, which we de-

fined as being either less than 90% or greater than 97.5%. Figure 4 shows

the mean proportions for each method (where the mean was taken over

the methods that use each type of variance calibration technique).The key

findings are:

1. RUVB (the normal and sample-based versions) has “balanced” errors

in coverage: its empirical coverage is as likely to be too high as too

low.

2. MAD calibration tends to produce highly conservative coverage —

that is, its coverage is very often much larger than the claimed 95%,

and seldom much lower. This will tend to reduce false positive signifi-

cant results, but also substantially reduce power to detect real effects.

The exception is that when all genes are null (π0 = 1), MAD cal-

ibration works well for larger sample sizes. These results are likely

explained partly by non-null genes biasing upwards the variance cali-

bration parameter, an issue also noted in Sun et al. (2012).
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3. Control-gene calibration is often anti-conservative when there are few

control genes. However, it can work well when the sample size is

large and there are many control genes. Interestingly, with few con-

trol genes the anti-conservative behavior gets worse as sample size

increases.

5.4 Additional Simulations

As mentioned earlier, the simulation results in Sections 5.2 and 5.3 are from

a best-case scenario where treatment labels are randomized for each indi-

vidual. To study the effects of correlated confounding, we extended our

simulation approach to allow for treatment labels to be correlated with la-

tent factors (Section S14 of the Supplementary Material). Our results, pre-

sented in Section S16 of the Supplementary Material, indicate that RUVB

and RUV3 remain competitive in the presence of correlated confounders.

More insidious is the result of misspecifying the negative controls. We

study, in Section S17 of the Supplementary Material, the effects of misspec-

ifying the negative controls. Our results indicate that RUVB and RUV2 are

very sensitive to the negative controls assumption, while RUV3 and RUV4

are relatively robust to the negative controls assumption (an anonymous

reviewer suggested that this might be a result of the regression steps in
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(2.7) and (3.2)). Thus, the use of RUVB (as well as RUV2) should only

occur when one has high quality negative controls.

Software

The methods developed in this paper are implemented in the R pack-

age vicar available at https://github.com/dcgerard/vicar. Code and

instructions for reproducing the empirical evaluations in Section 5 are avail-

able at https://github.com/dcgerard/ruvb sims.

Supplementary Material

The online supplementary material contains proofs, additional theoret-

ical and simulation details, and additional simulation results.
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