<table>
<thead>
<tr>
<th>Statistica Sinica Preprint No: SS-2018-0267</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
</tr>
<tr>
<td>Manuscript ID</td>
</tr>
<tr>
<td>URL</td>
</tr>
<tr>
<td>DOI</td>
</tr>
</tbody>
</table>
| **Complete List of Authors** | Boxin Tang
Ching-Shui Cheng and
Yuanzhen He |
| **Corresponding Author** | Boxin Tang |
| **E-mail** | boxint@sfu.ca |
| Notice: Accepted version subject to English editing. |
Minimal Second Order Saturated Designs
and Their Applications to Space-Filling Designs

June 18, 2019

Ching-Shui Cheng
cscheng@berkeley.edu, Academia Sinica and University of California, Berkeley

Yuanzhen He
heyuanzhen@bnu.edu.cn, Beijing Normal University

Boxin Tang
boxint@sfu.ca, Simon Fraser University

Abstract

Second order saturated (SOS) designs allow the estimation of a saturated model consisting of main effects and two-factor interactions. Apart from being useful in their own right, SOS designs have recently found applications in the construction of space-filling designs. The paper introduces the notion of minimal SOS designs to facilitate the study of SOS designs, and presents some characterizing and construction results on minimal SOS designs. Both regular and nonregular minimal SOS designs are considered, and their applications to the construction of space-filling designs are discussed.

Key words and phrases: clear effect; maximal design; nonregular design; space-filling design; strong orthogonal array.
1. Introduction

Second order saturated (SOS) designs allow the estimation of saturated models consisting of main effects and two-factor interactions. They make the most efficient use of the degrees of freedom by allocating all of them to the estimation of the factorial effects of the first two orders, which are the most important orders according to effect hierarchy. SOS designs were first introduced in Block and Mee (2003), and were also discussed in Chen and Cheng (2004) under the notion of estimation index. Some constructions of nonregular SOS designs were explored by Cheng, Mee and Yee (2008). For more details about SOS designs, we refer to Mee (2009, Section 7.2) and Cheng (2014, Section 11.2).

SOS designs are important in their own right, and become more so due to their utility in designing computer experiments. It is widely accepted that space-filling designs are appropriate choices for computer experiments (Santner, Williams and Notz 2003). Among the available methods for constructing space-filling designs, the method based on orthogonal arrays is very attractive as it provides designs that enjoy some guaranteed space-filling properties in low dimensional projections. This line of research started with Latin hypercubes, which are orthogonal arrays of strength one, in McKay, Beckman and Conover (1979), and continued with the work of Owen (1992) and Tang (1993). A significant enhancement to the idea is the recent introduction of strong orthogonal arrays (SOAs) in He and Tang (2013), Liu and Liu (2015), and He, Cheng and Tang (2018). SOAs can be used to construct designs that have better space-filling properties than those constructed by using ordinary orthogonal arrays. In the process of constructing SOAs using regular 2^{m-p} designs, He, Cheng and Tang (2018) found that all such SOAs can be constructed from SOS designs.

This paper aims at conducting a comprehensive study on the applications of regular and nonregular SOS designs to the construction of SOAs, which is done through the in-
troduction of minimal SOS designs. The notion of minimal SOS designs is useful because, as will be seen later, all SOS designs can be generated from minimal ones. Furthermore, to produce SOAs that can accommodate more factors, one needs SOS designs with fewer factors. Section 2 reviews some material on SOAs of strength 2+ from He, Cheng and Tang (2018), in particular, how SOS designs can be used to construct SOAs. Section 3 first presents a characterizing result for regular minimal SOS designs using clear effects, and then shows that the four constructions in He, Cheng and Tang (2018) all produce minimal SOS designs. This section goes on to import some results from projective geometry and coding theory, thanks to the equivalence of regular SOS designs to 1-saturating sets and duals of linear codes with covering radius 2. These results allow us to improve the bounds on the maximum number of factors in an SOA of strength 2+, obtained in He, Cheng and Tang (2018). In Section 4, we turn our attention to nonregular SOS designs. Extensions of the four constructions of regular SOS designs in He, Cheng and Tang (2018) to nonregular designs are first presented, and it is shown that they all give minimal SOS designs. We then discuss the use of these nonregular minimal SOS designs for constructing SOAs of strength 2+. In addition to more flexible run sizes, SOAs constructed from nonregular SOS designs have other advantages including possibly better three- and higher-dimensional projections. Furthermore, nonregular SOS designs provide more options for constructing SOAs since often there are many more nonisomorphic nonregular designs than regular ones. Section 5 concludes the paper with a discussion.

2. Second Order Saturated Designs and Strong Orthogonal Arrays

One major focus of this paper is the two-level SOS designs. The following definition applies to both regular or nonregular designs.

Definition 1. A two-level fractional factorial design with \(n \) runs and \(m \) factors is second
order saturated (SOS) if it can be used to estimate all of the \(m \) main effects together with at least one set of \(n - 1 - m \) two-factor interactions (assuming that all the other effects are negligible).

Regular SOS designs were first considered by Block and Mee (2003). Under such a design one can entertain a model with the largest number of two-factor interactions. Independently, Chen and Cheng (2004) defined a notion of estimation index. It is well known that each regular design is equivalent to a linear code; then the estimation index is the same as the covering radius of the dual code, and a design is SOS if and only if the estimation index is equal to 2.

Given a design of resolution IV, if one factor is added, the resulting design may have resolution III. A resolution IV design is called maximal if no factor can be added to maintain resolution IV. This concept is useful since all resolution IV designs can be obtained as projections of maximal resolution IV designs. It follows from a geometric result in Bruen, Haddad and Wehlau (1998) that two-level designs of resolution IV are maximal if and only if they have estimation index 2. Therefore a resolution IV design is maximal if and only if it is SOS. An important byproduct of this result is that every two-level resolution IV design is a projection of a certain SOS design of resolution IV, a fact also observed by Block and Mee (2003). Thus, in addition to the capability of entertaining the largest number of two-factor interactions, another important practical value of SOS designs of resolution IV is that they can be used to generate all resolution IV designs of the same run size via projections. For example, there are three 32-run two-level SOS designs of resolution IV: a \(2^{16-11} \), \(2^{10-5} \), and \(2^{9-4} \). All the other 32-run resolution IV designs can be obtained by deleting factors from one of these three designs.

Unexpectedly and interestingly, SOS designs have a third application: they can be used to construct strong orthogonal arrays. We use \(OA(n, m, s_1 \times \cdots \times s_m, t) \) to denote
an orthogonal array of strength t in n runs for m factors with its jth factor having s_j levels, $0, 1, \ldots, s_j - 1$. If $s_1 = \cdots = s_m = s$, the array is denoted as $OA(n, m, s, t)$ for simplicity. Hedayat, Sloane and Stufken (1999) and Dey and Mukerjee (1999) are two good general references for orthogonal arrays.

An $n \times m$ matrix with entries from $\{0, 1, \ldots, s^2 - 1\}$ is called an SOA of strength $2+$ for n runs and m factors at s^2 levels, if any subarray of two columns can be collapsed into an $OA(n, 2, s^2 \times s, 2)$ and an $OA(n, 2, s \times s^2, 2)$. We denote this array by $SOA(n, m, s^2, 2+)$. Here collapsing s^2 levels to s levels is according to $\lfloor a/s \rfloor$ for $a = 0, 1, \ldots, s^2 - 1$ where $\lfloor x \rfloor$ denotes the greatest integer not exceeding x. While an s-level orthogonal array of strength 2 can be used to construct a Latin hypercube design which contains an equal number of points in each cell of $s \times s$ grids in all two-dimensional projections, a Latin hypercube design constructed from an $SOA(n, m, s^2, 2+)$ has the better space filling property that it contains the same number points in each cell of finer $s \times s^2$ and $s^2 \times s$ grids in all two-dimensional projections.

Example 1. Displayed below are an SOA$(16, 10, 2^2, 2+)$ (design on the left) and a Latin hypercube design constructed from it:

\[
\begin{array}{cccccccccc}
2 & 2 & 2 & 2 & 2 & 0 & 0 & 0 & 0 & 0 \\
2 & 2 & 0 & 2 & 0 & 0 & 1 & 2 & 2 & 2 \\
2 & 0 & 2 & 2 & 1 & 2 & 1 & 2 & 2 & 2 \\
2 & 0 & 0 & 0 & 0 & 3 & 3 & 3 & 0 & 0 \\
0 & 2 & 2 & 1 & 1 & 2 & 2 & 2 & 1 & 2 \\
0 & 2 & 0 & 1 & 3 & 0 & 3 & 0 & 3 & 0 \\
0 & 0 & 2 & 3 & 1 & 1 & 0 & 3 & 3 & 0 \\
0 & 0 & 0 & 3 & 3 & 1 & 1 & 1 & 1 & 2 \\
1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 1 \\
1 & 1 & 3 & 2 & 0 & 0 & 3 & 0 & 0 & 3 \\
1 & 3 & 1 & 0 & 2 & 1 & 0 & 3 & 0 & 3 \\
1 & 3 & 3 & 0 & 0 & 3 & 1 & 1 & 2 & 1 \\
3 & 1 & 1 & 1 & 1 & 2 & 0 & 0 & 3 & 3 \\
3 & 1 & 3 & 1 & 3 & 0 & 1 & 2 & 1 & 1 \\
3 & 3 & 1 & 3 & 1 & 1 & 2 & 1 & 1 & 1 \\
3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
\end{array}
\begin{array}{cccccccccc}
8 & 9 & 10 & 11 & 8 & 10 & 0 & 2 & 3 & 3 \\
10 & 10 & 0 & 1 & 0 & 1 & 3 & 7 & 8 & 9 & 10 \\
9 & 3 & 11 & 3 & 11 & 7 & 10 & 6 & 11 & 9 \\
11 & 0 & 0 & 1 & 3 & 12 & 14 & 15 & 2 & 2 \\
2 & 8 & 8 & 5 & 4 & 11 & 8 & 10 & 6 & 11 \\
0 & 11 & 2 & 6 & 13 & 2 & 15 & 0 & 15 & 0 \\
1 & 2 & 9 & 12 & 5 & 4 & 2 & 14 & 12 & 1 \\
3 & 1 & 3 & 15 & 15 & 14 & 6 & 7 & 7 & 8 \\
7 & 7 & 4 & 8 & 10 & 9 & 11 & 9 & 10 & 7 \\
5 & 5 & 14 & 9 & 0 & 0 & 12 & 3 & 1 & 12 \\
6 & 15 & 6 & 2 & 9 & 5 & 1 & 12 & 0 & 13 \\
4 & 13 & 13 & 0 & 2 & 15 & 4 & 4 & 8 & 4 \\
13 & 4 & 5 & 7 & 8 & 3 & 1 & 13 & 14 & 14 \\
12 & 6 & 15 & 4 & 14 & 1 & 5 & 11 & 5 & 6 \\
14 & 12 & 7 & 13 & 6 & 6 & 9 & 5 & 4 & 5 \\
15 & 14 & 12 & 14 & 12 & 13 & 13 & 13 & 14 & 15 \\
\end{array}
\]

The SOA has the property that when the entries 0, 1, 2, and 3 in any column are replaced...
by 0, 0, 1, and 1 respectively, then in the 16×2 matrix formed by the resulting column and any other original column, all the eight ordered pairs of $\{0, 1\}$ and $\{0, 1, 2, 3\}$ appear equally often as rows. The Latin hypercube design on the right is obtained from the SOA by replacing the four occurrences of $i, i = 0, 1, 2, 3$, by a permutation of $4i, 4i + 1, 4i + 2$ and $4i + 3$, respectively. If we divide all the entries by 16, and consider each row as a point, then we obtain 16 points in the 10-dimensional unit cube $[0, 1)^{10}$. This design has the uniformity property that there are 2 points in each cell of 4×2 and 2×4 grids in all two-dimensional projections. For a design constructed from a two-level orthogonal array of strength two, only stratification in 2×2 grids is guaranteed.

He, Cheng and Tang (2018) gave the following result, which provides a complete characterization of SOAs of strength 2^+ and also shows how they can be constructed from ordinary orthogonal arrays.

Lemma 1. An $SOA(n, m, s^2, 2^+)$, say D, exists if and only if there exist two arrays A and B where $A = (a_1, \ldots, a_m)$ is an $OA(n, m, s, 2)$ and $B = (b_1, \ldots, b_m)$ is an $OA(n, m, s, 1)$ such that (a_j, a_k, b_k) is an orthogonal array of strength 3 for any $j \neq k$. The three arrays are linked through $D = sA + B$.

Theorem 1 of He, Cheng and Tang (2018) showed how Lemma 1 can be applied to two-level regular designs. As usual, we use $C = (c_{ij})_{n \times m}$ where $c_{ij} = \pm 1$ to represent a two-level factorial design of n runs for m factors. A regular saturated design S of 2^k runs for $2^k - 1$ factors can be obtained by first writing down a full factorial for k factors and then adding all possible interaction columns. Then each regular 2^{m-p} design C with $p = m - k$ consists of m columns of S. The set of columns that are not in C, denoted by $\overline{C} = S \setminus C$, is called the complementary design of C. Being regular, S has the property that $ab \in S$ for any $a, b \in S, a \neq b$, where ab stands for the interaction column of a and b. If C is SOS, then the $2^k - 1$ degrees of freedom of $S = C \cup \overline{C}$ correspond to the main effects and a set of $2^k - 1 - m$ two-factor interactions of the m factors in C. (Our use of
the union symbol technically corresponds to a matrix augmentation, and the above $C \cup \overline{C}$ represents a matrix obtained by combining the column vectors of C with those of \overline{C}.) This gives a very simple description of C: each $d \in \overline{C}$ can be expressed as $d = ab$ for some $a, b \in C$. Let \overline{C} be $(a_1, \ldots, a_{m'})$, where $m' = 2^k - 1 - m$ and $a_i = b_ic_i$ with $b_i, c_i \in C$ for all $i = 1, \ldots, m'$. As shown in the proof of Theorem 1 in He, Cheng, and Tang (2018), this implies that (a_j, a_k, b_k) is an orthogonal array of strength 3 for any $j \neq k$. Thus Lemma 1 is applicable. Following this lemma, one can construct an SOA($n, m', 2^2, 2^+$) by taking $A = \overline{C} = (a_1, \ldots, a_{m'})$ and $B = (b_1, \ldots, b_{m'})$. Then $D = A + B/2 + 3/2$ is a desired SOA($n, m', 2^2, 2^+$). Note that since, for two-level designs, the two levels in Lemma 1 are represented by 0 and 1, to apply Lemma 1, first we need to transform -1 and 1 to 0 and 1, respectively. Thus, instead of $D = 2A + B$ as stated in Lemma 1, we should use $D = A + B/2 + 3/2$ here.

Example 2. Let (x_1, x_2, x_3, x_4) be a full 2^4 factorial in 16 runs. Then $C = (x_1, x_2, x_3, x_4, x_1x_2x_3x_4)$ is an SOS design. Note that this design has defining relation $I = 12345$. It has resolution V with the 5 main effects and 10 2fis distributed in the 15 alias sets, and hence is SOS. By the discussions above, to construct an SOA by using Lemma 1, we can let $A = \overline{C} = (x_1x_2, x_1x_3, x_1x_4, x_2x_3, x_2x_4, x_3x_4, x_1x_2x_3, x_1x_2x_4, x_1x_3x_4, x_2x_3x_4)$, and choose an appropriate $B = (b_1, \ldots, b_{10})$. Denote the ith column of A by a_i; then for all $i = 1, \ldots, 10$, any b_i such that both b_i and a_i+b_i are columns of C will do. One choice is $B = (x_1, x_1, x_1, x_2, x_2, x_3, x_3, x_2, x_1)$. Then $D = A+B/2+3/2$ is the SOA($16, 10, 4, 2^+$) as shown in Example 1.

3. Minimal SOS Designs and Results on Regular Factorials

3.1 SOS designs and their minimality

Let C be an SOS design. Obviously, adding a factor to C still gives an SOS design. When a factor is deleted from C, the resulting design can be SOS but is not necessarily so.
If the resulting design from deleting one factor from \(C \) is still SOS, then we can continue the process of deleting a factor from the current SOS design until no factor can be deleted to maintain being SOS. At the end, we must obtain an SOS design such that if any factor is removed, the resulting design is no longer SOS.

Definition 2. An SOS design is said to be minimal if the design resulting from deleting any factor is no longer SOS.

Let \((x_1, x_2, x_3)\) be a full \(2^3\) factorial in 8 runs. Then \(C = (x_1, x_2, x_3, x_1 x_2 x_3) \) is a minimal SOS design. The SOS design of 16 runs for 5 factors in Example 2 is also minimal.

Our discussion leading to Definition 2 also explains why minimal SOS designs are useful, which we summarize in a lemma.

Lemma 2. Any SOS design is either minimal or can be obtained by adding factors to a minimal SOS design.

Lemma 2 says that all SOS designs can be constructed if all minimal SOS designs are available. Therefore, studies on SOS designs can be focused on minimal SOS designs. Furthermore, by Theorem 1 of He, Cheng, and Tang (2018), using a regular SOS design of \(n \) runs for \(m \) factors, one can construct an \(n \)-run SOA of strength 2+ for \(n - 1 - m \) factors. In order to construct SOAs with more factors, we need SOS designs with fewer factors. Thus SOS designs with fewer factors are of interest.

The next two subsections are devoted to regular minimal SOS designs. We will deal with nonregular SOS designs in Section 4.

3.2 Characterization and construction of regular minimal SOS designs

A main effect or two-factor interaction (2fi) is said to be clear if it is not aliased with
any other main effect or 2fi. Under the reasonable assumption that interactions of order three or higher are negligible, a clear effect is estimable regardless of other effects. For a detailed discussion on clear effects, we refer to Cheng (2014, Chapter 10). The next result provides a complete characterization of a regular SOS design being minimal through clear effects.

Theorem 1. Let \(C = (c_1, \ldots, c_m) \) be a regular SOS design with \(c_j \) denoting its \(j \)th column. Then \(C \) is a minimal SOS design if and only if for any \(i = 1, \ldots, m \), at least one of the following \(m \) effects is clear: main effect \(c_i \) and all 2fi’s \(c_i c_j \) with \(j \neq i \).

Theorem 1 is obvious, not really needing a proof. It simply recognizes the fact that the design given by deleting column \(c_i \) from \(C \) remains SOS, if and only if none of \(c_i \) and \(c_i c_j \) with \(j \neq i \) is clear. Theorem 1 may be mathematically simple but it is a very useful result as will be seen throughout the paper. The next corollary offers a first taste.

Corollary 1. (i) If an SOS design has resolution IV or higher, then it must be minimal. (ii) A minimal SOS design of resolution III must have at least one clear 2fi. (iii) For a minimal SOS design of \(n = 2^k \) runs and \(m \) factors, we must have that \(m \leq n/2 \).

Proof. Part (i) of Corollary 1 is true because all main effects are clear in a resolution IV or higher design. Part (ii) follows as some main effects cannot be clear in a resolution III design, meaning that some 2fi’s have to be clear because of Theorem 1. Parts (i) and (ii) say that a minimal SOS design is either of resolution IV or higher, or have some clear 2fi’s, both of which imply that \(m \leq n/2 \) (Cheng 2014, Corollary 9.6 and Theorem 10.7). Of the two results, the first is from Rao’s bound and the second was originally obtained by Chen and Hedayat (1998). This proves Corollary 1(iii).

He, Cheng and Tang (2018) presented four constructions of regular SOS designs. Using Theorem 1, we will show that these SOS designs are actually minimal. Again let \(S \) be the
saturated design based on \(k \) independent factors which we denote by \(a_1, \ldots, a_{k_1}, b_1, \ldots, b_{k_2} \) where \(k_1 \geq 2, k_2 \geq 2 \) and \(k_1 + k_2 = k \). Consider two subsets \(P \) and \(Q \) of \(S \), where \(P \) consists of \(a_1, \ldots, a_{k_1} \) and all their interaction columns and \(Q \) consists of \(b_1, \ldots, b_{k_2} \) and all their interaction columns. All four constructions build SOS designs using \(P \) and \(Q \).

Construction 1: \(C_1 = P \cup Q \).

Construction 2: \(C_2 = (P \setminus \{a_1\}) \cup (Q \setminus \{b_1\}) \cup \{a_1b_1\} \).

Construction 3: \(C_3 = (P \setminus \{a_1\}) \cup (a_1Q) \).

Construction 4: \(C_4 = (b_1P) \cup (a_1Q \setminus \{a_1b_1\}) \).

Construction 1 gives a design with \(n = 2^k \) runs and \(2^{k_1} + 2^{k_2} - 2 \) factors while Constructions 2-4 all produce designs with the same run size but \(2^{k_1} + 2^{k_2} - 3 \) factors, where \(k_1 \geq 2, k_2 \geq 2 \) and \(k_1 + k_2 = k \geq 4 \).

Theorem 2. Designs \(C_1, C_2, C_3 \) and \(C_4 \) given by Constructions 1–4 are all minimal SOS designs.

Proof. That \(C_1, C_2, C_3 \) and \(C_4 \) are all SOS has been established in He, Cheng and Tang (2018). Design \(C_4 \) has resolution IV and is thus minimal by Corollary 1(i). For design \(C_1 \), it is obvious that the 2fi \(pq \) is clear for any \(p \in P \) and any \(q \in Q \), implying that \(C_1 \) is minimal by Theorem 1. Design \(C_2 \) is minimal because \(pq, a_1b_1p \) and \(a_1b_1q \) are all clear for any \(p \in P \setminus \{a_1\} \) and any \(q \in Q \setminus \{b_1\} \). Design \(C_3 \) is minimal because \(pq \) is clear for any \(p \in P \setminus \{a_1\} \) and any \(q \in a_1Q \).

By Corollary 1, all SOS designs of resolution IV are minimal. On the other hand, it was mentioned in Section 2 that maximal designs of resolution IV are SOS. Therefore we have the following simple result:

Corollary 2. All maximal resolution IV designs are minimal SOS designs.
Chen and Cheng (2006) examined the structures and constructions of maximal designs with \(n/4 + 1 \) or more factors. In contrast, the minimal SOS designs given by Constructions 1–4 all have fewer than \(n/4 + 1 \) factors unless \(k_1 = 2 \) or \(k_2 = 2 \). Finally, we note that Constructions 1 and 4 were also given in Tang, Ma, Ingram and Wang (2002) in their studies of clear 2fi’s.

3.3 Imports from projective geometry and coding theory

It is well known that constructing a regular \(2^{m-p} \) design amounts to choosing \(m \) points, one point for each factor, from the \(2^{m-p} - 1 \) points in an \((m-p-1) \)-dimensional projective geometry based on the Galois field \(GF(2) = \{0, 1\} \). Each line in this geometry contains three points. Then a two-factor interaction can be identified with the third point on the line determined by the points corresponding to the two factors. A set \(A \) of points is called a 1-saturating set if every point in the complement of \(A \) is on the line determined by a certain pair of points in \(A \). Thus it is clear that regular SOS designs are equivalent to 1-saturating sets and regular minimal SOS designs are equivalent to minimal 1-saturating sets. Regular SOS designs also have a coding theory connection since the dual codes of linear codes with covering radius 2 are equivalent to 1-saturating sets. In this subsection, we import some results from projective geometry and coding theory.

Davydov, Marcugini and Pambianco (2006) presented an array of various construction methods for minimal 1-saturating sets. Their Constructions A and B are equivalent to our Constructions 1 and 2 in Section 3.2, respectively. In design language, we will present one of their other methods as it gives SOS designs with smaller numbers of factors than our Constructions 1-4. As commented in the paragraph following Lemma 2, SOS designs with fewer factors are of interest because they result in SOAs with a larger number of factors.

Recall that our Construction 1 gives a minimal SOS design with \(2^{k_1} + 2^{k_2} - 2 \) factors,
and Constructions 2-4 all produce minimal SOS designs with $2^{k_1} + 2^{k_2} - 3$ factors, where $k_1 \geq 2$, $k_2 \geq 2$ and $k_1 + k_2 = k \geq 4$. But if $k \geq 7$, a minimal SOS design with $2^{k_1} + 2^{k_2} - 4$ factors can be constructed for $k_1 \geq 3$, $k_2 \geq 4$ and $k_1 + k_2 = k$. This is Construction C of Davydov, Marcugini and Pambianco (2006), which is detailed below.

Let S, P and Q be defined as in Section 3.2. Let $p_1p_2p_3 = q_1q_2q_3 = 1$ be two defining words of length 3, where $p_1, p_2, p_3 \in P$, $q_1, q_2, q_3 \in Q$, and 1 is the all-ones column. Take any $q_4 \in Q \setminus \{q_1, q_2, q_3\}$. Consider

$$C_5 = (P \setminus \{p_1, p_2, p_3\}) \cup (Q \setminus \{q_1, q_2, q_3, q_4\}) \cup \{p_1q_3, p_2q_3, p_3q_1, p_3q_2, p_3q_4\}.$$

Lemma 3. (Davydov, Marcugini and Pambianco 2006) Design C_5 given above is a minimal SOS design of $n = 2^k$ runs with $2^{k_1} + 2^{k_2} - 4$ factors, where $k_1 \geq 3$, $k_2 \geq 4$ and $k = k_1 + k_2 \geq 7$.

Yet, for $k \geq 7$, SOS designs with even smaller numbers of factors can be constructed, which were given in Theorems 1 and 2 of Gabidulin, Davydov and Tombak (1991) in terms of duals of linear codes with covering radius 2. We summarize their results in a lemma.

Lemma 4. (Gabidulin, Davydov and Tombak 1991) For $k \geq 7$, an SOS design of $n = 2^k$ runs for m factors can be constructed where

$$m = \begin{cases} 5 \times 2^{w-2} - 1 & \text{if } k = 2w - 1, \\ 7 \times 2^{w-2} - 2 & \text{if } k = 2w. \end{cases}$$

To the best of our knowledge, whether or not the SOS designs given in Lemma 4 are minimal has not been established in the literature of coding theory and projective geometry. We are able to provide an affirmative answer to the question.

Proposition 1. The SOS designs in Lemma 4 are minimal.
The proof is rather lengthy and thus given in the Appendix.

Example 3. For $k = 7$ and thus $w = 4$, the construction in Lemma 4 gives an SOS design with $n = 2^k = 128$ runs for $m = 5 \times 2^{w-2} - 1 = 19$ factors. The design matrix is given by taking all linear combinations of the rows of

$$B = \begin{bmatrix}
000 & 111 & 111 & 111 & 111 \\
011 & 011 & 011 & 011 & 000 \\
101 & 010 & 010 & 010 & 000 \\
000 & 011 & 010 & 010 & 011 \\
000 & 010 & 001 & 001 & 001 \\
000 & 000 & 111 & 111 & 111 \\
000 & 000 & 000 & 111 & 111 \\
000 & 000 & 000 & 111 & 111
\end{bmatrix}$$

with all calculations within $GF(2) = \{0, 1\}$. The resulting design can be converted to a version with familiar levels ± 1 by changing 0 to -1. According to Proposition 1, this SOS design is minimal. It is of resolution III, having one word of length 3, which is given by the first three columns. To compare, for $k = 7$ and $n = 128$, Construction 1 can give a minimal SOS design with 22 factors, Constructions 2–4 can generate minimal SOS designs with 21 factors, and Lemma 3 gives a minimal SOS design with 20 factors. For $k = 8$, the construction in Lemma 4 gives an SOS design with 256 runs for 26 factors, which is also minimal by Proposition 1.

Let m_k be the largest m for an SOA(2^k, m, 4, 2+) based on regular designs to exist. Using Constructions 2–4, He, Cheng and Tang (2018) obtained a general lower bound on m_k. Lemma 4 offers an improvement for $k \geq 7$.

Proposition 2. We have that for $k \geq 7$

$$m_k \geq \begin{cases}
2^k - 5 \times 2^{w-2} & \text{if } k = 2w - 1, \\
2^k - 7 \times 2^{w-2} + 1 & \text{if } k = 2w.
\end{cases}$$

Davydov, Marcugini and Pambianco (2006) also did a complete enumeration of all minimal 1-saturating sets in small geometries, and their Table 1 thus classifies all regular
minimal SOS designs for up to 64 runs and all regular minimal SOS designs with \(m \leq 20 \) for 128 runs. We give a summary of their results in our Table 1 for the benefit of design researchers.

Table 1. Classification of all regular minimal SOS designs for \(n \leq 64 \) and \(n = 128 \) with \(m \leq 20 \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>(m)</th>
<th>III</th>
<th>IV</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>32</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>32</td>
<td>10</td>
<td>6</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>32</td>
<td>11</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>64</td>
<td>13</td>
<td>7</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>64</td>
<td>14</td>
<td>19</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>64</td>
<td>15</td>
<td>14</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>64</td>
<td>16</td>
<td>16</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>64</td>
<td>17</td>
<td>48</td>
<td>5</td>
<td>53</td>
</tr>
<tr>
<td>64</td>
<td>18</td>
<td>108</td>
<td>1</td>
<td>109</td>
</tr>
<tr>
<td>64</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>64</td>
<td>32</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>128</td>
<td>19</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>128</td>
<td>20</td>
<td>36</td>
<td>0</td>
<td>36</td>
</tr>
</tbody>
</table>

For given \(n \) and \(m \), the last column of Table 1 gives the number of all regular minimal SOS designs, while the third and fourth columns give the numbers of minimal SOS designs of resolution III and IV, respectively. For example, with \(n = 64 \) runs and \(m = 13 \) factors, there are exactly 7 minimal SOS designs of resolution III, one minimal SOS design of resolution IV, and 8 minimal SOS designs in total.

Table 2 of Davydov, Marcugini and Pambianco (2006) contains more computer search results, using which we can obtain lower and upper bounds on \(m'_k \), the size of the smallest regular minimal SOS design for \(7 \leq k \leq 10 \). These bounds on \(m'_k \) can then be used to obtain upper and lower bounds on \(m_k \), the greatest \(m \) such that an SOA\((2^k, m, 4, 2+) \) based on regular designs exists, since \(m'_k + m_k = 2^k - 1 \). Our Table 2 updates and expands
Table 1 of He, Cheng and Tang (2018). For completeness, we include information on both m'_{k} and m_{k} in Table 2. For $4 \leq k \leq 7$, the m'_{k} and m_{k} values are exact. For $8 \leq k \leq 10$, Table 2 gives the best known lower and upper bounds. For example $25 \leq m'_{8} \leq 26$ and $229 \leq m_{8} \leq 230$.

Table 2. The smallest number m'_{k} of factors for a regular minimal SOS design and the largest number m_{k} of factors for an SOA of strength 2+ based on regular designs.

<table>
<thead>
<tr>
<th>k</th>
<th>$n = 2^k$</th>
<th>m'_{k}</th>
<th>m_{k}</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>16</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>13</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>19</td>
<td>108</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>[25, 26]</td>
<td>[229, 230]</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
<td>[34, 39]</td>
<td>[472, 477]</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
<td>[47, 51]</td>
<td>[972, 976]</td>
</tr>
</tbody>
</table>

4. Nonregular Minimal SOS Designs and Their Applications

4.1 Characterization and construction

Orthogonal arrays have been introduced in Section 2. Throughout this subsection, the two levels in an OA($n, m, 2, t$) are denoted by ± 1 rather than 0 and 1. An OA($n, m, 2, 2$) is said to be a nonregular design if it is not regular. For a review of nonregular designs, see Xu, Phoa and Wong (2009). Prior to Sun and Wu (1993), nonregular designs were called irregular (e.g. Addelman 1961). Hadamard matrices provide rich sources of nonregular designs though not every nonregular design can be imbedded into a Hadamard matrix; see Sun, Li and Ye (2008) and Bulutoglu and Kaziska (2009) for details. A main effect or 2fi is called clear in a nonregular design if it is orthogonal to all other main effects and 2fi’s (Tang 2006).

Our general discussion on SOS designs and their minimality in Section 3.1 applies to nonregular designs as well as regular designs. Theorem 1 in Section 3 gives a complete
characterization of a regular SOS design being minimal. A similar result also holds for nonregular designs.

Theorem 3. Let $C = (c_1, \ldots, c_m)$ be an SOS design, regular or nonregular. Then C is minimal if for any $i = 1, \ldots, m$, at least one of the m effects c_i and c_ic_j with $j \neq i$ is clear.

Similar to Theorem 1, Theorem 3 says that the condition of existence of certain clear effects is still sufficient for a nonregular SOS design to be minimal. Unlike Theorem 1, the necessity part cannot hold in general for nonregular designs. To illustrate this, consider the following example. There are exactly two inequivalent $\text{OA}(12, 5, 2, 2)$s (Sun, Li and Ye 2008), and on a computer we can easily check that one of them is SOS and the other is not. The one that is SOS must also be minimal as there are not enough degrees of freedom for any $\text{OA}(12, 4, 2, 2)$ to be SOS. On the other hand, an $\text{OA}(12, 5, 2, 2)$ cannot have any clear effect for otherwise the run size has to be a multiple of 8 (Tang 2006). Proposition 1 of Tang (2006) is for the existence of a clear 2^fi and the same argument also applies to a clear main effect.

Corollary 3. If an $\text{OA}(n, m, 2, 3)$ is SOS, then it must be minimal.

This result follows from Theorem 3 because all main effects are clear in an orthogonal array of strength 3. Cheng, Mee and Yee (2008) introduced some constructions of SOS $\text{OA}(n, m, 2, 3)$s, which are all minimal according to Corollary 3. These minimal SOS designs have relatively large numbers of factors; for example their first construction gives $m = n/4 + 1$. For the purpose of constructing SOAs, it is desirable to obtain some minimal SOS designs with smaller numbers of factors, which we discuss next.

It turns out that the four constructions in Section 3 can all be adapted to the setting of nonregular designs. Let $H_{n_1} = (1_{n_1}, a_1, \ldots, a_{n_1-1})$ and $H_{n_2} = (1_{n_2}, b_1, \ldots, b_{n_2-1})$ be
two Hadamard matrices of orders \(n_1 \geq 4 \) and \(n_2 \geq 4 \), respectively, where \(1_{n_1} \) is a column vector of \(n_1 \) ones. Let \(p_i = a_i \otimes 1_{n_2} \) for \(i = 1, \ldots, n_1 - 1 \), and \(q_j = 1_{n_1} \otimes b_j \) for \(j = 1, \ldots, n_2 - 1 \). Further let \(P = \{ p_1, \ldots, p_{n_1-1} \} \) and \(Q = \{ q_1, \ldots, q_{n_2-1} \} \). Consider the following constructions:

Construction (i): \[C_1 = P \cup Q. \]

Construction (ii): \[C_2 = (P \setminus \{ p_1 \}) \cup (Q \setminus \{ q_1 \}) \cup \{ p_1q_1 \}. \]

Construction (iii): \[C_3 = (P \setminus \{ p_1 \}) \cup (p_1Q). \]

Construction (iv): \[C_4 = (q_1P) \cup (p_1Q \setminus \{ p_1q_1 \}). \]

All four designs have \(n_1n_2 \) runs. Design \(C_1 \) has \(n_1 + n_2 - 2 \) factors and designs \(C_2, C_3 \) and \(C_4 \) have \(n_1 + n_2 - 3 \) factors.

Theorem 4. Designs \(C_1, C_2, C_3 \) and \(C_4 \) given above are minimal SOS designs.

Proof. For brevity, we only give proofs for Constructions (i) and (ii). The proofs for Constructions (iii) and (iv) use similar ideas although they are more tedious and complicated.

First consider design \(C_1 = P \cup Q \) from Construction (i). The Hadamard matrix \(H_{n_1} \otimes H_{n_2} \) then consists of \(1_{n_1n_2} \), all main effect columns in \(P \), all main effect columns in \(Q \) and all interaction columns \(pq \) where \(p \in P \) and \(q \in Q \). This shows that design \(C_1 = P \cup Q \) is SOS. As any 2fi \(pq \) with \(p \in P \) and \(q \in Q \) is obviously clear, design \(C_1 \) is minimal by Theorem 3.

Now consider design \(C_2 \) from Construction (ii). We first decompose the set of \(n_1n_2 \) columns in Hadamard matrix \(H_{n_1} \otimes H_{n_2} \) into a union of six disjoint subsets as given by

\[H_{n_1} \otimes H_{n_2} = R_0 \cup R_1 \cup R_2 \cup R_3 \cup R_4 \cup R_5, \]

where \(R_0 = \{ 1_{n_1n_2} \}, R_1 = P, R_2 = Q, R_3 = p_1Q, R_4 = q_1P \setminus \{ p_1q_1 \} \) and \(R_5 = \{ p_iq_j \mid i = 2, \ldots, n_1 - 1; j = 2, \ldots, n_2 - 1 \} \). To prove that design \(C_2 = (P \setminus \{ p_1 \}) \cup (Q \setminus \{ q_1 \}) \cup \{ p_1q_1 \} \) is SOS, we need to show that for each \(R_j \) where \(j = 1, \ldots, 5 \), we can choose a set of linearly
independent main effects or 2fi’s from design C_2 such that they span the same linear subspace as that spanned by the columns of R_j. As every column in R_5 is a 2fi of design C_2, the job is done for R_5. Now consider $R_1 = P$. If we can find a 2fi p_ip_j of design C_2 where $2 \leq i < j \leq n_1 - 1$ such that it is not orthogonal to p_1, then the main effects p_2, \ldots, p_{n_1-1} of C_2 plus this 2fi p_ip_j are linearly independent and thus span the linear subspace spanned by $R_1 = P$. Such a 2fi must exist; otherwise $p_2, \ldots, p_{n_1-1}, p_1p_2, \ldots, p_1p_{n_1-1}$ are mutually orthogonal within the linear subspace spanned by P, which is a contradiction. The same argument works for $R_2 = Q$. We now turn our attention to $R_3 = p_1Q$. Since the column vectors $p_1q_1, p_1q_1q_2, \ldots, p_1q_1q_{n_2-1}$ are mutually orthogonal and all belong to $L(R_3)$, the linear subspace spanned by the columns of $R_3 = p_1Q$, they therefore span $L(R_3)$. But p_1q_1 is a main effect of design C_2, and $p_1q_1q_j$ for $j \geq 2$ is a 2fi between factor p_1q_1 and factor q_j of design C_2. This takes care of R_3. The same argument used for R_3, with just a bit of modification, also works for R_4. We have thus proved that design C_2 is SOS. That design C_2 is minimal follows from the fact that the 2fi of factor p_i and factor q_j is clear for all $i \geq 2$ and $j \geq 2$ and that the main effect p_1q_1 is also clear.

In the next subsection, we will examine how to use the designs given by Constructions (i)-(iv) to construct SOAs of strength 2^+. Small orthogonal arrays were completely enumerated by Sun, Li and Ye (2008) and Schoen, Eendebak and Nguyen (2010). Using these existing results, we conduct a complete search of $OA(n, m, 2, t)$s that are minimal SOS designs for $t = 2$ with $n = 12, 16$ and 20, and for $t = 3$ with $n = 16, 24, 32$ and 40. Table 3 presents a summary of all minimal SOS designs for these parameters. For given strength t and pair (n, m), the last column of Table 3 gives the number N_{minsos} of $OA(n, m, 2, t)$s that are minimal SOS designs. For comparison, we also include in Table 3 the number N_{all} of all nonisomorphic designs and the number N_{SOS} of all SOS designs. For example, there are in all 474 nonisomorphic
OA(20, 7, 2, 2)s, out of which 339 arrays are SOS. Among the 339 SOS designs, 22 of them are minimal SOS designs. For another example, Table 3 shows that there exist exactly three OA(16, 5, 2, 2)s that are minimal SOS designs. If we look at Table 1, we conclude that one of these minimal SOS designs is regular and the other two are nonregular.

Table 3. Classification of all OA(n, m, 2, t)s that are minimal SOS designs for t = 2 with n = 12, 16 and 20, and for t = 3 with n = 16, 24, 32 and 40, where N_all, N_sos, and N_minsos denote the number of all nonisomorphic designs, the number of SOS designs and the number of minimal SOS designs, respectively.

<table>
<thead>
<tr>
<th>t</th>
<th>(n, m)</th>
<th>N_all</th>
<th>N_sos</th>
<th>N_minsos</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(12, 5)</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>(16, 5)</td>
<td>11</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>(16, 6)</td>
<td>27</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>(16, 8)</td>
<td>80</td>
<td>80</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>(20, 6)</td>
<td>75</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>(20, 7)</td>
<td>474</td>
<td>339</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>(20, 9)</td>
<td>2477</td>
<td>2466</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>(16, 5)</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>(16, 8)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>(24, 12)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>(32, 9)</td>
<td>34</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>(32, 10)</td>
<td>32</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>(32, 16)</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>(40, 20)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

4.2 Applications to strong orthogonal arrays

In this subsection, we consider the problem of constructing SOA(n, m, 4, 2+)s. According to Lemma 1, we first need to find two arrays \(A \) and \(B \) where \(A = (a_1, \ldots, a_m) \) is an OA(n, m, 2, 2) and \(B = (b_1, \ldots, b_m) \) is an OA(n, m, 2, 1) such that \((a_j, a_k, b_k) \) has strength 3 for any \(j \neq k \), and then, as noted in the paragraph following Lemma 1, obtain an SOA(n, m, 4, 2+) via \(D = A + B/2 + 3/2 \).
He, Cheng and Tang (2018) examined how to obtain A and B if their columns are to be selected from a saturated regular design. We now consider obtaining A and B by choosing their columns from a saturated orthogonal array, which can be nonregular.

Theorem 5. Let S be an $OA(n, n-1, 2, 2)$. If an $SOA(n, m, 4, 2^+)$ is to be constructed using $D = A + B/2 + 3/2$ with the columns of A and B selected from S, then it is necessary and sufficient that for any column $a \in A$, there exists a column $b \in S \setminus A$ such that ab is orthogonal to all columns in A.

Theorem 5 extends Theorem 1 of He, Cheng and Tang (2018) and includes the latter as a special case, as one can easily see that the condition for array A in Theorem 5 is equivalent to $S \setminus A$ being SOS if S is a regular saturated design. We omit the proof for Theorem 5 because it is very similar to that for Theorem 1 of He, Cheng and Tang (2018).

Theorem 5 is actually constructive. Suppose that $A = (a_1, \ldots, a_m)$ satisfies the required condition in Theorem 5, meaning that for any a_i, there exists a column in $S \setminus A$, say b_i, such that $a_i b_i$ is orthogonal to all a_j’s. Then we simply take $B = (b_1, \ldots, b_m)$.

Remark 1. When S is a nonregular saturated design, the condition for array A in Theorem 5 may not be equivalent to $S \setminus A$ being SOS. Further discussion on this issue will be given in Section 5. It is therefore not true that every nonregular SOS design can be used to construct an $SOA(n, m, 4, 2^+)$. On the other hand, as shown below, almost all SOS designs given by Constructions (i)-(iv) allow the construction of SOAs.

All minimal SOS designs obtained by Constructions (i)-(iii) can be used to construct $SOA(n, m, 4, 2^+)$s. The minimal SOS designs obtained by Construction (iv) can also be used provided that one of H_{n_1} and H_{n_2} is regular. Details are given as follows. Note that $S = H_{n_1} \otimes H_{n_2} \setminus \{1_{n_1n_2}\}$.

Construction (i). Let $A_1 = S \setminus C_1$. All columns in A_1 have form pq for $p \in P$ and $q \in Q$. For any $a = pq \in A_1$, we take $b = p$.

20
Construction (ii). Let $A_2 = S \setminus C_2$. For $a = p_iq_j \in A_2$ where $i, j \geq 2$, we take $b = p_i$. For $a = p_1$, take $b = p_2$. For $a = q_1$, take $b = q_2$. For $a = p_1q_j$ where $j \geq 2$, take $b = p_1q_1$.

For $a = q_1p_i$ where $i \geq 2$, take $b = p_1q_1$.

Construction (iii). Let $A_3 = S \setminus C_3$. For $a = p_i q_j$ where $i \geq 2, j \geq 1$, we take $b = p_1 q_j$.

For $a = p_1$, take $b = p_2$. For $a = q_j$ where $j \geq 1$, take $b = p_1 q_j'$ where $j' \neq j$.

Construction (iv). Assume H_{n_1} is regular. Let $A_4 = S \setminus C_4$. For $a = p_i$, take $b = p_{i'} q_1$ where $i' \neq i$. For $a = q_j$, take $b = p_1 q_{j'}$ where $j' \neq j$. For $a = p_i q_j$ where $i \geq 2$ and $j \geq 2$, take $b = p_{i'} q_1$ where $p_{i'} = p_1 p_i$, which is possible because H_{n_1} is regular.

We can verify routinely that each of the A_1, A_2, A_3, A_4 satisfies the condition in Theorem 5. The above also shows how to obtain the corresponding B_1, B_2, B_3, B_4. Using $D = A + B/2 + 3/2$, we can then obtain D_1, D_2, D_3, D_4. We summarize these developments in a theorem.

Theorem 6. Design D_1 is an SOA$(n_1 n_2, m, 4, 2+)$ with $m = n_1 n_2 - n_1 - n_2 + 1$, and designs D_2, D_3, D_4 are all SOA$(n_1 n_2, m, 4, 2+)$s with $m = n_1 n_2 - n_1 - n_2 + 2$.

Example 4. Take $n_1 = 4$ and $n_2 = 12$. Then D_1 is an SOA($48, 33, 4, 2+$), and D_2, D_3, D_4 are SOA($48, 34, 4, 2+$)s. If we take $n_1 = n_2 = 12$, then D_1 is an SOA($144, 121, 4, 2+$), and D_2, D_3 are both SOA($144, 122, 4, 2+$)s. Such run sizes cannot be attained by using regular SOS designs. Note that D_4 is not available for $n_1 = n_2 = 12$ because H_{n_1} and H_{n_2} are both nonregular.

SOAs constructed from regular designs and those from nonregular designs are different in their three-dimensional space-filling properties. The distribution of the design points in the eight cells when projected onto a three-dimension and viewed on a $2 \times 2 \times 2$ grid is determined by the three corresponding columns of the array A in Lemma 1. This array of three columns has only two possible structures for regular A but a lot more for nonregular A.
Example 5. Hall (1961) identified five nonisomorphic Hadamard matrices of order 16, denoted by $H_I, H_{II}, H_{III}, H_{IV}$ and H_V, respectively, where only H_I is regular. Denote a submatrix consisting of the j_1, j_2, \ldots, j_m-th columns of H_i by $H_i(j_1, j_2, \ldots, j_m)$, where $i = I, II, III, IV, V$. Then it can be verified that all of $C_1 = H_I(7, 11, 12, 13, 14, 15), C_2 = H_I(6, 7, 9, 11, 13, 14)$ and $C_3 = H_{II}(1, 2, 3, 7, 11, 15)$ are SOS. All of their complementary designs $A_1 = H_I(1, 2, 3, 4, 5, 6, 8, 9, 10), A_2 = H_I(1, 2, 3, 4, 5, 8, 10, 12, 15)$, and $A_3 = H_{II}(4, 5, 6, 8, 9, 10, 12, 13, 14)$ satisfy the condition of Theorem 5. One can construct SOA(16, 9, 4, 2+) $D_i = A_i + B_i/2 + 3/2$, for $i = 1, 2, 3$, by choosing $B_1 = H_I(12, 12, 12, 11, 11, 11, 7, 7, 7), B_2 = H_I(6, 9, 13, 9, 11, 6, 7, 7, 6)$, and $B_3 = H_{II}(3, 2, 1, 3, 2, 1, 3, 2, 1)$. Since A_1 has seven defining words of length three, for D_1, there are seven three-dimensional projections in which there are points in only four of the eight cells in a $2 \times 2 \times 2$ grid. For D_2, there are six such three-dimensional projections. Due to the nonregular structure of A_3, for all three-dimensional projections of D_3, there is at least one point in each cell. The number of four-dimensional projections for which only eight of the sixteen cells in a $2 \times 2 \times 2 \times 2$ grid is occupied is 51, 45, and 9, respectively for D_1, D_2 and D_3. This comparison shows that D_3, which is constructed from a nonregular SOS design, has better coverage than D_1 and D_2, which are constructed from regular SOS designs.

5. Discussion

This paper conducts a comprehensive investigation on SOS designs and their minimality with particular attention on their usefulness in constructing strong orthogonal arrays. In both regular and nonregular cases, we establish characterizing results for SOS designs to be minimal, and provide some construction results for minimal SOS designs. In the case of regular designs, the results from projective geometry and coding theory allow SOAs of strength 2+ with more factors to be constructed as given in Proposition 2 and Table 2, as compared with those in He, Cheng and Tang (2018). The nonregular counterparts of
the four constructions in He, Cheng and Tang (2018) allow us to construct four families of SOAs of strength 2+.

In the case of regular designs, Grynkiewicz and Lev (2010) studied the structures and sizes of large 1-saturating sets. Although these results are less useful for us because we are more concerned with SOS designs with small numbers of factors, it is interesting to note one result in that paper. They show that while the largest minimal SOS design has \(m = n/2 \), the second largest minimal SOS design must have \(m = 5n/16 \), provided that \(n \) is large enough. From Table 1, we see that this is already true for \(n = 64 \). The results in Table 2 of Davydov, Marcugini and Pambianco (2006) also confirm the statement.

One important problem we would like to have a solution for is if the constructions as in Lemmas 3 and 4 can be adapted to nonregular designs. As the construction for the design in Lemma 4 heavily relies on the regular structure, it does not seem possible to make a generalization to nonregular settings. The situation is different, however, for the construction in Lemma 3. As long as both \(H_{n_1} \) and \(H_{n_2} \) contain a defining word of length 3, there is a nonregular counterpart for the construction. The questions then are if the resulting design is minimal SOS and if it can be used to construct an SOA of strength 2+. We leave these questions to future research.

The construction of SOAs as given in Theorems 5 and 6 raises an intriguing question, which is at least of technical interest. Exactly what is the relationship between the condition in Theorem 5 and the property of being SOS? We know that they are equivalent in the case of regular designs. In the nonregular case, the following result sheds some light on the issue.

Lemma 5. Let \(C \), an OA\((n, m, 2, 2)\), be an orthogonal SOS design, meaning that there exists a set \(A \) of \(n - 1 - m \) mutually orthogonal 2fi’s that are also orthogonal to the main effects. Then array \(A \) satisfies the condition in Theorem 5.
The proof is straightforward by taking \(S = A \cup C \), which is an OA\((n, n - 1, 2, 2)\).

Lemma 5 seems to suggest that the condition in Theorem 5 is stronger than being SOS. A proof or a counterexample is worth seeking in the future.

Acknowledgement. The research of Boxin Tang is supported by the Natural Sciences and Engineering Research Council of Canada. The authors thank Richard Groeneveld for computational assistance with Example 3 and two OA\((12, 5, 2, 2)\)s in Section 4.1. The authors are most grateful to Professor Eric Schoen for providing them with an OA package of all the nonisomorphic designs in Table 3.

Appendix: Proof of Proposition 1

The constructions were given in Theorems 1 and 2 of Gabidulin, Davydov and Tombak (1991). Our notation in this appendix is different from the main body of our paper. Instead, we use the notation in Gabidulin, Davydov and Tombak (1991). This is just to make presentation easier. Let \(e_0, e_1, \ldots, e_B \) be the elements of \(GF(2^b) \), where \(B = 2^b - 1 \). Further let \((e_i)^b \) denote the column vector that is the binary \(b \)-bit representation of \(e_i \). Define two matrices \(E^b \) and \(F^{2b} (e_j) \) as follows

\[
E^b = \begin{bmatrix} (e_0)^b & (e_1)^b & \cdots & (e_B)^b \end{bmatrix},
\]

\[
F^{2b} (e_j) = \begin{bmatrix} (e_0)^b & (e_1)^b & \cdots & (e_B)^b \\
(e_0)^b & (e_1)^b & \cdots & (e_B)^b \\
\cdots & \cdots & \cdots & \cdots \\
(e_0)^b & (e_1)^b & \cdots & (e_B)^b \end{bmatrix}.
\]

Let \(E^b_0 \) be \(E^b \) with the first column deleted. We use \(P^b (e_i) \) to denote a matrix with the same column \((e_i)^b \) repeated where the number of repetitions is determined by context.

Lemma A. (Gabidulin, Davydov and Tombak 1991, Theorem 1) Let the parity check matrix of a code be

\[
B^{2m-1} = [N \ D \ Q \ M \ G],
\]

24
where \(2m - 1 = r \geq 7\) and matrices \(N, D, Q, M\) and \(G\) are, respectively, given by

\[
\begin{bmatrix}
0 & \cdots & 0 \\
E_0^{m-2} \\
P^m(e_0)
\end{bmatrix}, \quad
\begin{bmatrix}
1 & \cdots & 1 \\
F^2(m-2)(w_1) \\
0 & \cdots & 0
\end{bmatrix}, \quad
\begin{bmatrix}
1 & \cdots & 1 \\
F^2(m-2)(w_2) \\
0 & \cdots & 0
\end{bmatrix}, \quad
\begin{bmatrix}
1 & \cdots & 1 \\
F^2(m-2)(w_3) \\
1 & \cdots & 1
\end{bmatrix}, \quad
\begin{bmatrix}
1 & \cdots & 1 \\
P^{m-2}(e_0) \\
E^{m-2}
\end{bmatrix},
\]

where \(w_1, w_2, w_3 \in GF(2^{m-2})\); \(w_1, w_2 \neq 0, w_1 \neq w_2, w_1 + w_2 = w_3\). Then this code has covering radius \(R = 2\).

Let \(C\) be the design generated by taking linear combinations of the rows of \(B^{2m-1}\) with coefficients from \(GF(2) = \{0, 1\}\). According to Lemma A, design \(C\) is SOS as the code has covering radius \(R = 2\).

Proposition 1a. The array \(C\), generated by \(B^{2m-1}\), is a minimal SOS design.

Proof. We already know that \(C\) is SOS. To show its minimality, we use our Theorem 1 in Section 3. As design \(C\) has entries from \(GF(2) = \{0, 1\}\), a main effect column \(c_i\) is clear if \(c_i \neq c_j\) and \(c_i \neq c_j + c_k\) for any other columns \(c_j\) and \(c_k\), and a 2fi \(c_ic_j\) is clear if \(c_i + c_j \neq c_k\) and \(c_i + c_j \neq c_k + c_l\) for any other columns \(c_k\) and \(c_l\). Equivalently, one can verify these properties for the columns of \(B^{2m-1}\). We will prove that each column in \([D, Q, M, G]\) is clear, and each column in \(N\) has a clear 2fi.

Suppose that a column \(\vec{d}\) in \(D\) is not clear. Then there must exist two other columns \(x\) and \(y\) in \(B^{2m-1}\) such that \(\vec{d} = x + y\), where \(x \neq \vec{d}\) and \(y \neq \vec{d}\). By examining the first row and last two rows of \(B^{2m-1}\), we see that \(\vec{d} = x + y\) is possible only if \(x\) is a column in \(N\) and \(y\) a column in \(D\). Suppose that neither \(\vec{d}\) nor \(y\) is the first column of \(D\). Since \(\vec{d}\), \(x\) and \(y\) have form

\[
\vec{d} = \begin{bmatrix}
1 \\
(e_i)^{m-2} \\
(e_i^{-1}w_1)^{m-2} \\
0 \\
0
\end{bmatrix}, \quad x = \begin{bmatrix}
0 \\
(e_j)^{m-2} \\
0 \\
\vdots \\
0
\end{bmatrix}, \quad y = \begin{bmatrix}
1 \\
(e_k)^{m-2} \\
(e_k^{-1}w_1)^{m-2} \\
0 \\
0
\end{bmatrix},
\]
it is impossible to have \(\vec{d} = x + y \) unless \((e_i^{-1}w_1)^{m-2} = (e_k^{-1}w_1)^{m-2}\). But \((e_i^{-1}w_1)^{m-2} = (e_k^{-1}w_1)^{m-2}\) implies \(e_i = e_k\), which leads to \(\vec{d} = y\). This is a contradiction. It is also obvious that \(\vec{d} = x + y\) cannot hold if one of \(\vec{d}\) and \(y\) is the first column of \(D\). Therefore, \(\vec{d}\) must be clear. Similarly, one can prove that any column in \(Q, M\) or \(G\) is also clear.

For any column \(\vec{n}\) of \(N\), we will show that \(\vec{n} + \vec{d}\) is clear where \(\vec{d}\) is any except the first column of \(D\). Since \(\vec{d}\) is clear, we only need to prove \(\vec{n} + \vec{d} \neq x + y\) for any other two columns \(x, y\) in \(B^{2m-1}\). Again by examining the first row and the last two rows of \(B^{2m-1}\), the only possible scenario for \(\vec{n} + \vec{d} = x + y\) is that \(x\) is a column of \(N\) and \(y\) a column of \(D\). An argument very similar to that in the last paragraph shows that if \(\vec{n} + \vec{d} = x + y\), then we must have \(\vec{n} = x\) and \(\vec{d} = y\). This shows that \(\vec{n} + \vec{d}\) is clear, and thus each column in \(N\) has a clear 2fi. The proof is completed.

Let \(D_1\) and \(B_1^{2m-1}\) be the matrices of \(D\) and \(B^{2m-1}\) with their first column \((1, 0, \ldots, 0)^T\) deleted, respectively.

Lemma B. (Gabidulin, Davydov and Tombak 1991, Theorem 2) Let the parity check matrix of a code be

\[
T^{2m} = [Z \ Y],
\]

where \(2m = r \geq 8\) and

\[
Z = \begin{bmatrix} 0 & \cdots & 0 \\ B_1^{2m-1} \end{bmatrix}, \quad Y = \begin{bmatrix} 1 & \cdots & 1 \\ E^{m-1} \\ P^{m}(e_i) \end{bmatrix},
\]

where \(i \in \{0, \ldots, 2^m - 1\}\). Then the code has covering radius \(R = 2\).

Let \(N^*, D_1^*, Q^*, M^*\) and \(G^*\) denote the matrices of \(N, D_1, Q, M\) and \(G\) with an added head row \((0, \ldots, 0)\). Partition \(Y\) into \(Y = [Y_1, Y_2]\) such that the second row of \(Y_1\) is the all-zeros row, and the second row of \(Y_2\) is the all-ones row. Then \(T^{2m}\) can be partitioned into seven submatrices as \(T^{2m} = [N^*, D_1^*, Q^*, M^*, G^*, Y_1, Y_2]\) with \(N^*, D_1^*, Q^*, M^*, G^*, Y_1, Y_2\)
given, respectively, by
\[
\begin{bmatrix}
0 & \cdots & 0 \\
0 & \cdots & 0 \\
E_{0}^{m-2} \\
P^{m}(e_0)
\end{bmatrix}
\begin{bmatrix}
0 & \cdots & 0 \\
1 & \cdots & 1 \\
F_{0}^{2(m-2)}(w_1) \\
0 & \cdots & 0 \\
0 & \cdots & 0
\end{bmatrix}
\begin{bmatrix}
0 & \cdots & 0 \\
1 & \cdots & 1 \\
F_{2}^{2(m-2)}(w_2) \\
0 & \cdots & 0 \\
1 & \cdots & 1 \\
0 & \cdots & 0
\end{bmatrix}
\begin{bmatrix}
0 & \cdots & 0 \\
1 & \cdots & 1 \\
F_{3}^{2(m-2)}(w_3) \\
1 & \cdots & 1 \\
0 & \cdots & 0 \\
0 & \cdots & 0
\end{bmatrix}
\]
where \(F_{0}^{2(m-2)}(w_1) \) is obtained from \(F_{2}^{2(m-2)}(w_1) \) by deleting its first column which consists of all zeros.

Proposition 1b. The array \(C' \), generated by \(T^{2m} \), is a minimal SOS design.

Proof. We are going to prove that each column in \([D^{*}_1, Q^{*}, M^{*}, G^{*}]\) is clear and each column in \([N^{*}, Y_1, Y_2]\) has a clear 2fi.

Since any column of \(D \) is clear in \(B^{2m-1} \) (from the proof of Proposition 1a), we have that if a column \(\vec{d} \) in \(D^{*}_1 \) has \(\vec{d} = x_1 + x_2 \) for two other columns \(x_1, x_2 \) from \(T^{2m} \), then at least one of \(x_1 \) and \(x_2 \) must come from \(Y \). Examining the first two rows of \(T^{2m} \), we see that the only possible case is that \(x_1 \) is from \(Y_1 \) and \(x_2 \) is from \(Y_2 \). Now if we take a look at the \((m + 1)\)th to \((2m - 2)\)th rows of \(D^{*}_1, Y_1 \) and \(Y_2 \), we see that it is impossible for \(\vec{d} = x_1 + x_2 \) to hold. This is because the \((m + 1)\)th to \((2m - 2)\)th entries of \(x_1 + x_2 \) are all zeros whereas the corresponding entries of \(\vec{d} \) are those of \((e_i^{-1}w_1)^{m-2} \), which cannot be all zeros. We have thus established that any column \(\vec{d} \) in \(D^{*}_1 \) is clear. According to the entries in the first and the last two rows of \(T^{2m} \), one can prove that each column in \([Q^{*}, M^{*}, G^{*}]\) is also clear.

In a manner almost identical to that of showing a column in \(D^{*}_1 \) is clear as given above, we can show that the 2fi \(\vec{n} + \vec{d} \) is clear for any column \(\vec{n} \) from \(N^{*} \) and any column \(\vec{d} \) from
For any column \vec{y} from Y_1 or Y_2, and any column \vec{d} from D_1^*, we can show that $\vec{y} + \vec{d}$ is clear. The arguments are, though a bit more involved, also very similar to the above. We omit the details. This completes the proof.

References

