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Abstract: Experiments in functional magnetic resonance imaging (fMRI) are im-

portant to render a correct statistical inference on brain function, but the the-

oretical constructions of efficient designs for these crucial experiments are few

in the literature. Recent work on the construction of circulant orthogonal ar-

rays by using algebraic difference sets was promising, but it was of limited use

assuming that any interactions between the effect of a hemodynamic response

function (HRF) and its residual effects are negligible on the magnitude estima-

tion of BOLD signals collected from fMRI. In this work, we proposed a theoretical

construction of the circulant orthogonal array of high strength via an extension

from the complete difference system. In the analysis of fMRI experiments that

are conducted by our proposed designs, the main effects of the individual HRF

towards the signal are unbiased from the main effects from other HRFs and the

interaction with its residual effects. Some properties of this new class of designs

are studied, and the statistical regression model associated with this class of

designs is revealed.

Keywords and phrases: Circulant Almost Orthogonal Arrays; Complete Differ-
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ence System; Design efficiency; Hemodynamic response function.

1. Introduction

Functional magnetic resonance imaging (fMRI) experiments are widely

conducted to provide guidelines for the prevention and treatment of some

terrible brain disorders such as Alzheimer’s disease. A highly efficient exper-

imental design is an important step towards a successful study of functional

brain images. The event-related fMRI (ER-fMRI) leads to the shape esti-

mation of hemodynamic response functions (HRFs), which are associated

with transient brain activation evoked by various mental stimuli. An ER-

fMRI design is a sequence of stimuli administrated by an experimenter, and

such design is regarded as a circulant design (Kao (2013)). In the study of

an fMRI experiment, a design may contain tens to hundreds of stimuli from

cerebral neuronal activities. They lead to a change, described in the form of

HRFs, in the ratio of “oxy- to deoxy-blood” that was detected in the MRI

scanner as a change in the strength of the magnetic field. After the onset of

a stimulus, HRF takes several seconds to return to the baseline completely.

Researchers then make a statistical inference on the brain activity by using

an MRI scanner that repeatedly scans the subject’s brain to collect data.

See (Lazar (2008)) for more details.

Buračas and Boynton (2002) proposed the use of the m-sequence in
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the fMRI experiments and its performance is good, as indicated in several

studies (Liu and Frank (2004); Liu (2004); Jansma et al. (2013)), but its

length was limited to be n = (Q + 1)r − 1, where Q stands for the total

number of stimulus types and r is a positive integer. To relax this con-

straint, Liu (2004) and Kao (2013) proposed the uses of a truncated version

and an extended version respectively. Since the former suffered from an

efficiency loss (Kao (2014)) while the latter was universally optimal as only

a few effects were estimated, a new class of highly efficient fMRI designs

with flexible run sizes were of great interest. Kao (2014) proposed the H-

sequence, which existed when its length n ≡ 3 (mod 4) is a prime, twins

prime or a power of 2, for ER-fMRI experiments with one stimulus type.

Run size flexibility was the advantage of H-sequence, but it fitted for some

specific n only. A matrix (ai,j)n×n is circulant if ai+1,j+1 = ai,j, where the

subscripts i and j are reduced modulo n. Obtained from a computer search

(Low et al. (2005)), Craigen et al. (2013) introduced the r-row-regular cir-

culant partial Hadamard matrix, denoted as r-H(k × n), where H was a

k× n circulant (±1)-matrix such that HHT = nIk, and r was the row sum

of H. A 0-H(k × n) was a two-symbol, n-run, k-factor circulant orthog-

onal array (COA) and it could be highly efficient for fMRI experiments

(Kao (2015)) when n ≡ 0 (mod 4). The optimal design properties of these

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



Efficient Designs for 2nd Order ER-fMRI

classes were comprehensively described in (Buračas and Boynton (2002);

Liu (2004); Kao (2013, 2015); Cheng and Kao (2015); Lin, Phoa, and Kao

(2017a,b)).

Introduced in (Rao (1946)), an orthogonal array (OA) is a widely used

class of experimental designs in various areas, such as medicine, agricul-

ture, manufacturing, and many others. See (Hedayat, Sloane, and Stufken

(1999)) for more details. Orthogonality and projectivity of effect estimates

are the major advantages when an OA is used as an experimental plan

(Cheng (1980, 1995); Raktoe, Hedayat, and Federer (1981)). However, an

OA is also constrained for its inflexibility in run sizes (a multiple of st).

Recently, Lin, Phoa, and Kao (2017b) proposed a unified method to ob-

tain orthogonal arrays with circulant property, which can be used in fMRI

experiments with any run sizes and two or higher number of levels. This

generalized structure of fMRI designs, called circulant (almost-)orthogonal

array (CAOA), guarantees the t-tuples to appear almost equally often. We

provide its definition below.

Definition 1. A circulant k×n array A with entries from Zs is said to be

a circulant almost orthogonal array (CAOA) with s levels, strength t, and

bandwidth b, if each ordered t-tuple α based on Zs occurs λ(α) times as

column vectors of any t×n submatrices of A such that |λ(α)−λ(β)| ≤ b for
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any two t-tuples α and β. Such an arrayA is denoted as CAOA(n, k, s, t, b).

Lin, Phoa, and Kao (2017a,b) studied the CAOAs of strength two and

compiled a table of universally optimal CAOA(n,K, 2, 2, 1) when n ≤ 600.

These CAOAs helped the researchers to measure the magnitudes of HRFs

at specific time points under an assumption that no interactions between

the direct effect and the residual effects were detected in the signal output

from the MRI scanner. Such an assumption was highly unlikely to be real,

but the ignorance of these interaction effects was common in practice for

analytical simplicity, and it might lead to a bias on the estimation of the

direct effect if the residual effects were still significant. In the language

of experimental designs, an orthogonal array of strength three or higher

provided an ability to estimate the main effect that was free from the bias

of two-factor interactions. Therefore, a CAOA of strength three provided an

adjusted estimation on the HRFs so that it was unbiased from its residual

effects.

This paper aims to propose a systematic construction of good CAOAs

of strength three, denoted as CAOA(n,K, 2, 3, b) for b = 0, 1. Section 2

provides some properties of CAOAs and connects them to the De Bruijn

sequences introduced in (Bruijn (1946)). Section 3 is a theoretical study on

the construction of CAOAs of high strength. A table of generating vectors
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of CAOA(n,K, 2, 3, 0) is provided as a result of the theoretical derivations.

Section 4 provides the proofs of the theorems. Some discussions on the

analysis model are given together with a conclusion in the last section.

2. Circulant (Almost-)Orthogonal Arrays: Some Properties

We begin with a discussion on the properties of CAOA(n, k, s, t, b). A

specific orthogonal array, OA(st, t+1, s, t), can be constructed via zero-sum

array property that the levels in every run add up to zero, which provides

a lower bound for the number of factors, but this method cannot apply to

COAs and CAOAs. Although an OA(st, t, s, t) can be trivially obtained by

finding out all strings with s symbols, the structure of a CAOA(n, t, s, t, b) is

more difficult. When b = 0, the generating vector of a CAOA(st, t, s, t, 0) is

a s−ary De Bruijn sequence of order t, which is a cyclic s−ary sequence with

the property that every s−ary t−tuple appears exactly once consecutively

in the cycle (Bruijn (1946)). For example, (112233132) is a De Bruijn

sequence for s = 3 and t = 2. De Bruijn sequences have been applied to

the study of pseudo-random codes, cryptography, nonlinear shift registers,

coding theory, and genome assembly (see Fredricksen (1982); Good (1946);

MacWilliams and Sloane (1976); Compeau, Pevzner, and Tesler (2011)).

In graph theory, a t−dimensional De Bruijn graph of s symbols is a
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directed graph whose vertices are sequences of symbols from some symbols

and whose edges indicate the sequences that might overlap. An Eulerian

circuit in a directed graph is a directed circuit that uses each edge exactly

once. Please refer to (van Lint and Wilson (2001); West (2001, Sec. 1)) for

details. The De Bruijn sequences can be constructed by taking an Eulerian

circuit of a t-dimensional De Bruijn graph over s symbols (or equivalently,

a Hamiltonian cycle of a (t+1)-dimensional De Bruijn graph). In tradition,

a De Bruijn sequence requires every t−tuple to appear exactly once, so its

graph is a regular simple graph. We extend the De Bruijn graph to construct

CAOA(n, t, s, t, b) below. Define Λ to be a frequency sequence (λa1...at)ai∈Zs ,

which represents the frequency of a s−ary (t − 1)-tuple (lexicographical

order). In addition, the bandwidth of Λ, denoted as B(Λ), is the difference

between the maximum and the minimum entries in Λ.

Definition 2. A t-dimensional De Bruijn frequency graph of s symbols,

based on a frequency sequence (λa1...at)ai∈Zs , is a directed multi-graph whose

vertex set comprises all s-ary (t − 1)-tuples (d1, d2, . . . , dt−1), and there

are m edges from (d1, d2, . . . , dt−1) to (d′1, d
′
2, . . . , d

′
t−1) if d′i = di+1 for all

i = 1, 2, . . . , t− 2 and λd1d2...dt−1d′t−1 = m.

In a t-dimensional De Bruijn frequency graph, each directed edge from

(d1, d2, . . . , dt−1) to (d′1, d
′
2, . . . , d

′
t−1) is labeled as d1d2 · · · dt−1d′t−1. In gen-
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eral, each vertex (d1, d2, . . . , dt−1) is also written as d1d2 · · · dt−1 for short. A

circuit in a t-dimensional De Bruijn frequency graph can be represented by

a sequence d1d2 . . . dn that comprises the edges d1d2 . . . dt, d2d3 . . . dt+1, · · · ,

dnd1 . . . dt−1. For example, a circuit 00 −→ 01 −→ 11 −→ 10 can be simply

represented by 0011. Through finding an Eulerian circuit in a t-dimensional

De Bruijn frequency graph of s symbols based on Λ, the generating vector

of a COA(n, t, s, t, b) can be easily found, where n is the total sum of each

component of Λ and b = B(Λ).

Theorem 1. Let s, t ≥ 2, b ≥ 0 and Λ = (λa1...at)ai∈Zs be a frequency se-

quence of s−ary t−tuple such that B(Λ) = b. If
s−1∑
x=0

λa1...at−1x =
s−1∑
x=0

λxa1...at−1

and λa1...at ≥ 1 for all ai ∈ Zs, then there exists a CAOA(n, t, s, t, b) where

n =
∑
ai∈Zs

λa1...at.

The proof of this theorem will be given in Section 4. The above theorem

provides an easy construction to find the generating vector of a CAOA. This

also guarantees the lower bound for k in a CAOA of strength t is at least

t. As in the demonstration, we construct a CAOA(20, 3, 2, 3, 1) via a De

Bruijn frequency graph.

Example 1. Let the frequency sequence Λ = (λ000, λ001, λ010, λ011, λ100,

λ101, λ110, λ111) = (3, 2, 2, 3, 2, 3, 3, 2). A 3-dimensional De Bruijn frequency

graph G = (V,E) is given in Figure 1.
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Figure 1: A 3-dimensional De Bruijn frequency graph of two symbols based

on (3, 2, 2, 3, 2, 3, 3, 2)

The vertex set V (G) = {00, 01, 10, 11} and each directed edge from x1x2

to x2x3 is labeled as x1x2x3. For instance, λ001 = 2 implies that there are

two directed edges labeled as 001 from 00 to 01. It can be verified that

λa1a20 + λa1a21 = λ0a1a2 + λ1a1a2 for all a1, a2 ∈ Z2, such as λ010 + λ011 =

λ101 +λ001 = 5. In addition, λa1a2a3 ≥ 1 and
∑
λa1a2a3 = 20 for all ai ∈ Z2.

In Figure 1, each vertex has equal in-degree and out-degree, so G is an

Eulerian. By Theorem 1, there exists a CAOA(20, 3, 2, 3, 1) and the Eule-

rian circuit corresponds to the generating vector of a CAOA. For instance,
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the Eulerian circuit 000 → 000 → 001 → 010 → 101 → . . . → 100 → 000

can be represented by the sequence 00001010110011110110. It is a gen-

erating vector of a CAOA(20, 3, 2, 3, 1) and each column is a triplet. The

occurrence number of each triplet (a1, a2, a3) is equal to its frequency λa1a2a3.

Corollary 1. Let k, s be non-zero integers and s > 1. There exists a

CAOA(sk, k, s, t, 0) for all 2 ≤ t ≤ k.

Corollary 1 can be trivially proved via Theorem 1. According to Corol-

lary 1, we found the generating vectors of a CAOA(sk, k, s, t, 0) when

8 ≤ sk ≤ 1000 and 2 ≤ s ≤ 10. All the designs are listed in Table 1

of supplementary materials.

With an appropriate choice of a frequency sequence, a CAOA of strength

t might produce a CAOA of strength t′ where t′ ≤ t. For example, the

generating vector of a CAOA(20, 3, 2, 3, 1) in Example 1 can generate a

CAOA(20, 7, 2, 2, 0) with the maximal number of columns. Furthermore,

for an Eulerian graph, there are many different Eulerian circuits. Every Eu-

lerian circuit guarantees the existence of a CAOA(n, t, s, t, b), but a good

choice of an Eulerian circuit can construct a CAOA(n, k, s, t, b) such that

k > t.

Theorem 1 provides the necessary condition of the existence of CAOAs.

If there exists a CAOA(n, k, s, t, b) associated with Λ = (λa1...at)ai∈Zs , then
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s−1∑
x=0

λa1...at−1x =
s−1∑
x=0

λxa1...at−1 and λa1...at ≥ 1 for all ai ∈ Zs.

3. Circulant (Almost-)Orthogonal Arrays: Construction Method

In the aspect of fMRI experiments, designs with circulant property are re-

quired for estimating HRFs, and such designs are not well-studied in the

literature. We consider applying CAOAs (Definition 1) in fMRI experi-

ments. Lin, Phoa, and Kao (2017b) revealed the mathematical structure

of CAOAs of strength two via a complete difference system (CDS), which

describes the entire matrix structure of a circulant design of strength two

and obtained many optimal circulant designs. However, the extension onto

designs of higher strength via a CDS is not trivial.

We present the difference structure of CAOAs of high strength via the

high-order complete difference system (HCDS). In this work we only con-

sider the designs of strength three, but it can be easily extended to designs

of strength higher than three. Let V = {V0, V1, · · · , Vs−1} be a partition of

Zn. The collection of differences is S α,β = {Sα,βai | for all ai ∈ Vα} where

Sα,βai = {ai − bj (mod n)| for all bj ∈ Vβ} and α, β ∈ Zs. Let {r1, · · · , rm}

be a subset of Zn \ {0}, there are m distinct differences coming from S α,β.

In addition, S = (S α,β)s×s is called a difference matrix. It is a Latin

square, so each element appears exactly once in each row and column of
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S .

We define the mth-order difference λα,βr1,··· ,rm = #{g ∈ Vα|{r1, · · · , rm} ⊆

Sα,βg }, which counts the total number of Sα,βg containing the subset {r1, · · · , rm}.

As in the definition of CDS (Lin, Phoa, and Kao (2017b)), the λα,βr in the

Λ of a (n, k, s,Λ)-CDS is the first-order difference.

We define the high-order complete difference system (HCDS) that sum-

marizes all information on mth-order (1 ≤ m ≤ t− 1) differences and cap-

tures the whole structure of strength t. An (r1, · · · , rm)-frequency matrix

of V is a matrix Λr1,··· ,rm = (λα,βr1,··· ,rm)s×s. An HCDS of V is a collection of

ordered multi-tuple (Λ1,··· ,m, . . . ,Λn−m,··· ,n−1) for 1 ≤ m ≤ t− 1, which de-

scribes all frequency matrices of V . Let ID(Φ1,Φ2, · · · ,Φt−1) be the largest

index k such that Λr1,··· ,rm = Φm for 1 ≤ r1 < · · · < rm ≤ k. We say V is

an (n, k, s; Φ1, · · · ,Φt−1)-HCDS if V contains s disjoint parts from Zn such

that ID(Φ1, · · · ,Φt−1) = k − 1. Its incidence matrix is defined as follows.

Definition 3. Let V be an (n, k, s; Φ1, · · · ,Φt−1)-HCDS. The incidence

matrix of V is a k × n matrix A = (ai,j) defined as

ai,j = l if j ∈ Vl + (i− 1),

where Vl +(i−1) = {x+(i−1)|for all x ∈ Vl} and all elements are reduced

modulo n; i = 1, . . . , k, j = 1, . . . , n and l = 0, . . . , s− 1.
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Table 1: The collection of all differences of partition V =

{{1, 2, 3, 5}, {4, 6, 7, 8}}

S =

 S 0,0 S 0,1

S 1,0 S 1,1

 =

S0,0
1

S0,0
2

S0,0
3

S0,0
5

S1,0
4

S1,0
6

S1,0
7

S1,0
8



0 7 6 4 5 3 2 1

1 0 7 5 6 4 3 2

2 1 0 6 7 5 4 3

4 3 2 0 1 7 6 5

3 2 1 7 0 6 5 4

5 4 3 1 2 0 7 6

6 5 4 2 3 1 0 7

7 6 5 3 4 2 1 0



S0,1
1

S0,1
2

S0,1
3

S0,1
5

S1,1
4

S1,1
6

S1,1
7

S1,1
8

Example 2. Let V = {V0, V1} be a partition of Z8, where V0 = {1, 2, 3, 5}

and V1 = {4, 6, 7, 8}. Then the collection of all differences can be rep-

resented by the difference matrix S in Table 1. Let α, β ∈ {0, 1} and

r, r1, r2 ∈ Z8 \ {0}. The first-order difference λα,βr is the frequency of the el-

ement r in S α,β. Furthermore, the second-order difference λα,βr1,r2 is the

number of rows in S α,β that contains the elements r1 and r2 simulta-

neously. This implies that the frequency matrices Λ1 = Λ2 = 2J2 and

Λ1,2 = J2, but Λ3 6= 2J2 and Λ1,3 6= J2. Let Φ1 = 2J2 and Φ2 = J2.

Then ID(Φ1,Φ2) = ID(2J2,J2) = 2, the partition V is an (8, 3, 2; 2J2,J2)-

HCDS and the incidence matrix of V is
0 0 0 1 0 1 1 1

1 0 0 0 1 0 1 1

1 1 0 0 0 1 0 1

 .

The above matrix is a CAOA(8, 3, 2, 3, 0), but the relationship between
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HCDSs and CAOAs of strength three is not trivial. In addition, high-order

differences are difficult to count, which may increase the difficulty in the

construction of the design. For 2-level CAOAs, we state a useful proposition

that describes the relationship between the first-order and the second-order

differences. It also provides an easy way to calculate the second-order dif-

ference via the first-order differences.

Proposition 1. Let (λα,βr1 )2×2 and (λα,βr1,r2)2×2 be the r1- and (r1, r2)−frequency

matrices of a partition V = {V0, V1} = Zn where 1 ≤ r1 < r2 ≤ n−1. Then

(i) λα,βr1,r2 + λβ,βr1,r2 = λβ,β(r2−r1) and

(ii) λα,βr1,r2 = |Vα| − (λα,αr1 + λα,αr2 − λ
α,α
r1,r2

).

Furthermore, if |Vα| = |Vβ| = n/2 and λα,αr = n/4 for 1 ≤ r ≤ k, then

λα,βr1,r2 = λα,αr1,r2 and λα,αr1,r2 + λβ,βr1,r2 = n/4 for 1 ≤ r1 < r2 ≤ k.

Since an (n, k, s; Φ1, · · · ,Φt−1)-HCDS is also a (n, k, s,Φ1)-CDS, the

existence of an HCDS is equivalent to the existence of a CAOA of strength

two (by Corollary 3.3 in (Lin, Phoa, and Kao (2017b))). In a (n, k, s,Φ1)-

CDS, the frequency of two-factor combinations is described by the given

frequency matrix Φ1 only. However, the good properties do not hold

for CAOAs of strength three. Now, let c0, c1, · · · , cm be a level combi-

nation of m + 1 factors. Following the definition of HCDS, we define
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δc0,c1,··· ,cmr1,r2,··· ,rm = #{g ∈ Vc0|rj ∈ Sc0,cjg for j = 1, 2, · · · ,m}, then the high-order

factor combinations can be explicitly represented by HCDS.

Lemma 1. Let V = {V0, V1, · · · , Vs−1} be an (n, k, s; Φ1, · · · ,Φt−1)-HCDS

and A be its incidence matrix. Then δc0,c1,··· ,cmr1,r2,··· ,rm is equal to the total number

of level combination c0, c1, · · · , cm as column vectors of Ag0,g1,··· ,gm, which

comprises the g0th, g1th, · · · , gmth rows of A, where gi − g0 = ri.

In Example 2, the δ0,0,11,2 is the number of rows in (S 0,0|S 0,1) such that

S 0,0 and S 0,1 contains 1 and 2, respectively. Since only the second row

satisfies 1 ∈ S0,0
2 and 2 ∈ S0,1

2 , we have δ0,0,11,2 = 1. This implies that the

triple 001 occurs exactly once as a column vector of a CAOA(8, 3, 2, 3, 0).

The definition of δc0,c1,··· ,cmr1,r2,··· ,rm can lead to the mth-order differences or

lower. We only show the relationship between δc0,c1,c2r1,r2
and λα,βr1,r2 for 2-

level CAOAs of strength three but the results are readily extended to high-

strength multi-level CAOAs.

Lemma 2. Let V be an (n, k, 2; Φ1,Φ2)-HCDS and its (r1, · · · , rm)-frequency

matrix Λr1,··· ,rm = (λα,βr1,··· ,rm)2×2, where m = 1, 2 and α, β ∈ {0, 1}. Then

δr1,r2 = δ0,0,0r1,r2 δ0,1,1r1,r2 δ0,0,1r1,r2 δ0,1,0r1,r2

δ1,0,0r1,r2 δ1,1,1r1,r2 δ1,0,1r1,r2 δ1,1,0r1,r2

 =

 λ0,0r1,r2 λ0,1r1,r2 λ0,0r1 − λ
0,0
r1,r2 λ0,0r2 − λ

0,0
r1,r2

λ1,0r1,r2 λ1,1r1,r2 λ1,1r2 − λ
1,1
r1,r2 λ1,1r1 − λ

1,1
r1,r2

 .

From Lemmas 1 and 2, if V is an (n, k, 3; Φ1,Φ2)-HCDS and A is
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its incidence matrix, then A1,1+r1,1+r2 is the 3 × n submatrix of A and

the frequency of level-combination associated with A1,1+r1,1+r2 is equal to

δr1,r2 . Even if A is a CAOA of strength three with bandwidth one, the

pattern of distinct 3× n submatrices of A satisfies Lemma 2, but the com-

binations might be different. It implies that the bandwidth of δr1,r2 and

δr′1,r′2 are all less than one, but δr1,r2 is not equal to δr′1,r′2 . If the pat-

terns of δr1,r2 are all the same, then it helps in our analysis. We call a

CAOA(n, k, s, t, b) is uniform if the frequency of the level-combination as-

sociated with each t× n submatrix equals a fixed pattern δ. The existence

of a uniform CAOA(n, k, 2, 3, 1) is given by the following theorem.

Theorem 2. Let V = {V0, V1} be an (n, k, 2; Φ1,Φ2)-HCDS, where |V0| =

bn/2c. Let Λr = (λα,βr )2×2 and Λr1,r2 = (λα,βr1,r2)2×2 be its r- and (r1, r2)-

frequency matrices. A uniform CAOA(n, k, 2, 3, 1) exists if and only if

(i) λ0,0r = n/4 and λ0,0r1,r2 = n/8 when n ≡ 0 (mod 8),

(ii) λ0,0r = bn/4c and λ0,0r1,r2 = bn/8c when n ≡ 1, 3, 6, 7 (mod 8),

(iii) λ0,0r = dn/4e and λ0,0r1,r2 = dn/8e when n ≡ 2 (mod 8),

(iv) λ0,0r = n/4 and bn/8c ≤ λ0,0r1,r2 ≤ dn/8e when n ≡ 4 (mod 8),

(v) λ0,0r = bn/4c and λ0,0r1,r2 = dn/8e when n ≡ 5 (mod 8),
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for 1 ≤ r ≤ k − 1 and 1 ≤ r1 < r2 ≤ k − 1. Furthermore, a uniform

CAOA(n, k, 2, 3, 0) exists if and only if the condition (i) holds.

Theorem 2 provides a good strategy to find a uniform CAOA(n, k, 2, 3, 1)

without an exhaustive search. Moreover, it helps us to explore the maxi-

mum value of k of a CAOA(n, k, 2, 3, 0) in practice. Using a difference vari-

ance algorithm (DVA) proposed by Lin, Phoa, and Kao (2017a), we find

all CAOA(n, k, 2, 3, 1) that possess maximum values of k when 8 ≤ n ≤ 27

and we summarize the results in Table 2. The maximum value k of a

CAOA(n, k, 2, 3, 1) is approximately n/4.

Table 2: CAOA(n, k, 2, 3, 1) for all 8 ≤ n ≤ 27.

n 8 – 13 14 – 21 22 23 24 25 26 27

k 3 4 5 5 6 6 6 5

We propose a method to construct a CAOA(n, k, 2, 3, 0) with a max-

imum empirical value of k = n/4. According to Theorem 2, if n ≡

0 (mod 8), then we need an (n, k, 2; Φ1,Φ2)-HCDS V = {V0, V1} where

|V0| = |V1| = n/2, Φ1 = (n/4)J2, and Φ2 = (n/8)J2. Let D be a

(n/2, n/4−1;λ1, · · · , λn/2−1) GDS, where all λs are equal to n/8−1 except

λn/4 = 0. Then there exist two elements g, g′ ∈ Dc such that g′ − g = n/4,

where Dc is the complement of D. By the square principle in Lin, Phoa,
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and Kao (2017b), Dc is a (n/2, n/4− 1;λ1, · · · , λn/2−1) GDS, where all λs

are equal to n/8+1 except λn/4 = 1. Let V0 = D∪ (D+n/2)∪{g, g+n/4}

and V1 = (D+n/4)∪ (D+ 3n/4)∪{g+n/2, g+ 3n/4}. Then V = {V0, V1}

is the required HCDS and its incidence matrix is the required CAOA of

strength three. The following theorem states the existence of a uniform

CAOA(n, k, 2, 3, 0) and shows that V = {V0, V1} is the required HCDS.

Theorem 3. Let n ≡ 0 (mod 8). If n/4− 1 is an odd prime power, there

exists a uniform CAOA(n, n/4, 2, 3, 0).

Table 3: The maximal value of k of a CAOA(n, k, 2, 3, 1) obtained from

m-sequences.

n 7 15 31 63 127 255 511 1023

k 3 4 8 11 21 27 61 83

The m-sequence is commonly used and popular in ER-fMRI experi-

ments. It is equivalent to a CAOA(n− 1, n− 1, 2, 2, 1) where n is a power

of two (Lin, Phoa, and Kao (2017b)); thus the CAOAs of strength two ob-

tained from m-sequence have the maximum value of k. However, this good

property does not hold for CAOAs of strength three. The maximal values

of k of a CAOA(n, k, 2, 3, 1) obtained from m-sequences are shown in Table

3, which are smaller than those of CAOAs obtained by Theorem 3 when
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their run sizes are close. For example, if one needs a CAOA of strength

three with k ≥ 83, we recommend the CAOA(336, 84, 2, 3, 0), which can be

found in the appendix, instead of the CAOA(1023, 83, 2, 3, 1) in Table 3.

Although their k is very close, the run size of m-sequence is much higher

than the CAOAs in Theorem 3. In addition, the CAOA of bandwidth zero

always has a higher priority than the CAOA of bandwidth one. Therefore,

CAOAs described Theorem 3 is effective as well as economical.

4. Discussion and Conclusion

In this work, we introduce the use of circulant (almost-)orthogonal arrays

(CAOAs) of strength three as an experimental plan for an ER-fMRI exper-

iment, where the estimates of the direct effects in HRFs are biased from

their residual effects. Although this work is an extension from (Lin, Phoa,

and Kao (2017b)), the core tool, namely the complete difference system

(CDS), is not enough for characterizing and constructing the CAOAs of

strength three. Thus, it leads to our introduction of its generalized version

called high-order complete difference system (HCDS). We not only theoret-

ically study some properties of CAOAs of high strength, but also establish

an equivalence relation between HCDSs and CAOAs of high strength as an

efficient construction method.
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As mentioned before, it is efficient to search for the generating vectors

that can be used to construct the class of CAOA(n, k, 2, 3, 0). In the sup-

plementary material, we provide the generating vectors when n/4− 1 is an

odd prime power and n ≤ 392. The practitioners can simply use this table

and find their required fMRI experimental plans. For example, if an ex-

perimenter administrates an ER-fMRI experiment with two stimuli and 40

time points, and if the residual effects are assumed to bias the estimates of

the direct effects in HRFs, one may use the generating vector with n = 40

and b = 0, which is (1100001011101111010001000010110011110100). Then

a CAOA with 40 time points (number of columns) circulating 10 times

(number of rows) enjoys the orthogonality property among rows, which is

reflected from the all-zero off-diagonal entries in its information matrix.

As mentioned in the introduction, the primary goal of this work is

to provide a cost-efficient experimental plan for fMRI experiments when

the interactions between the direct effect and its residual effects are non-

negligible. Following the notations in Cheng, Kao and Phoa (2017), let

y1, . . . , yN be the BOLD signals collected by using an fMRI scanner to

repeatedly scan a voxel of the subject’s brain while a stimulus sequence

d = (d1, . . . , dN)T is presented to the subject. The traditional model con-

siders the aggregated magnitude of the signals from the main effects of the
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individual HRF:

yn = γ +
K∑
k=1

(x1,n−k+1h1k + (x2,n−k+1h2k) + εn

where xi,j, for i = 1, 2 and j = n − K + 1, . . . , n, is the indicator of the

stimulus choice (xi,j = 1 if the ith stimulus is assigned in the jth entry of

the fMRI sequence, or 0 otherwise). A CAOA of strength two guarantees

that any two selected sequences (rows) from that CAOA are independent.

Combining with the circulant property, this independency ensures that the

magnitude measurement in a BOLD signal within a certain range of length

K is independent of the others.

However, this signal independency assumption may be valid only when

the time interval between two stimuli is long enough. When two stimuli

are given without an appropriate amount of interval time, it is possible

for memory effects to appear in the brain’s recognition to the stimuli. This

memory effect can be expressed as the interaction effect between the current

main-effect signal and its past main-effect signals . In order to guarantee the

main-effect signals in a certain sequence segment of length K to be unbiased

from other main-effect signals and these interaction effects of two signals, we

need a CAOA with strength three or higher, so that any selected row from

that CAOA is independent from both any other rows and the interaction

between two selected rows. The following model considers the aggregated
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magnitude of BOLD signals from the main effects of the individual HRF

and the memory (interaction) effects for n = 1, . . . , N :

yn = γ +
K∑
k=1

((x1,n−k+1h1k +
K∑

k′=k+1

x1,n−k+1x1,n−k′+1h1kh1k′)

+(x2,n−k+1h2k +
K∑

k′=k+1

x2,n−k+1x2,n−k′+1h2kh2k′)) + εn

This argument solidifies our contribution to developing the theory of CAOAs

of strength three. However, the detailed analysis and optimality studies of

fMRI experiments conducted via our proposed design are still under investi-

gation, and we view these analysis methods as important future work built

on our theoretical findings.

There are several other potential future areas of interest that can be

extended from this work. First, it is of great interest to propose a systematic

construction method for CAOAs of strength higher than 3. An orthogonal

array of a high strength avoids the bias estimates of the main effects from

the effects of significant higher-order interactions and opens an opportunity

to study significant lower-order interaction effects. In the case of fMRI

experiments, a CAOA of high strength possesses the disentanglement ability

towards the bias on the estimates of the direct effects of HRF from the multi-

steps residual effects. In addition, if some interaction effects are significant

and perhaps meaningful from expert viewpoints, one may use these high-
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strength CAOAs to conduct the fMRI experiments. Second, it is of great

interest to consider fMRI experiments with more than two stimuli. Lin,

Phoa, and Kao (2017b) proposed the 3-level and 4-level CAOAs of strength

two. It is non-trivial to extend such results to CAOAs of strength 3 or

higher using the HCDS method, but such experimental plans can further

expand the applications of CAOAs in the fMRI experiment.
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