<table>
<thead>
<tr>
<th>Statistica Sinica Preprint No: SS-2017-0457</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
</tr>
<tr>
<td>Manuscript ID</td>
</tr>
<tr>
<td>URL</td>
</tr>
<tr>
<td>DOI</td>
</tr>
<tr>
<td>Complete List of Authors</td>
</tr>
<tr>
<td>Corresponding Author</td>
</tr>
<tr>
<td>E-mail</td>
</tr>
<tr>
<td>Notice: Accepted version subject to English editing.</td>
</tr>
</tbody>
</table>
LPRE criterion based estimating equation approaches for the error-in-covariables multiplicative regression models

Qihua Wang1,2 and Dahai Hu3

1 School of Statistics and Mathematics, Zhejiang Gongshang University

Hangzhou, Zhejiang 310018, China.

2 Academy of Mathematics and Systems, Chinese Academy of Sciences

Beijing 100190, China.

3 Department of Statistics and Finance, University of Science and Technology of China

Hefei Anhui, 230026, China.

Abstract: In this paper, we propose two estimating equation based methods to estimate the regression parameter vector in the multiplicative regression model when a subset of covariates are subject to measurement error but replicate measurements of their surrogates are available. Both methods allow the number of replicate measurements to vary between subjects. No parametric assumption is imposed on the measurement error term and the true covariates which are not observed in the data set. Under some regularity conditions, the asymptotic normality is proved for both the proposed estimators. Furthermore, a theoretical comparison is made for them in a special case where the distribution of
LPRE estimation with error-in-covariables

the measurement error follows the normal distribution. Some simulation studies are conducted to assess the performances of the proposed methods. Real data analysis is used to illustrate our methods.

Key words and phrases: Measurement error, multiplicative regression model, product form, relative error, replicate measurement, estimating equations.

1. Introduction

Positive response appears commonly in many practical problems, such as economic filed or survival analysis. To handle the positive response, it is natural to consider the following multiplicative regression model,

\[Y_i = \exp(Z_i^T \beta_0) \varepsilon_i, \quad i = 1, \ldots, n, \quad (1.1) \]

where \(Y_i \) is a scalar response variable, \(Z_i \) is a random covariate vector with the first component being 1 (intercept), \(\beta_0 \) is the true regression parameter vector, and the error term \(\varepsilon \) is strictly positive. When the response variable \(Y_i \) is a failure time, model \((1.1)\) is called the accelerated failure time (AFT) model in survival analysis, which has been applied widely, see [Wei (1992)] and [Jin et al. (2003)] for example. The multiplicative regression model also has an extremely important application in economic theory; see [Teekens and Koerts (1972)].

For the positive response variable, there are many situations where the relative errors, rather than the absolute errors, are of major concern. For
example, we consider the problem to predict persons’ incomes. Assume that the two true values are \{100000, 10000\}. Assume that there are two results of prediction: (1) \{150000, 11000\}, (2) \{101000, 60000\}. Predictors (1) and (2) have absolute errors \{50000, 1000\} and \{1000, 50000\} respectively. The criteria based on absolute error couldn’t tell which of the two predictors is more exact. However, from the view of relative error, predictor (1) has relative error \{0.5, 0.1\} while predictor (2) has relative error \{0.01, 5\}. The relative error criterion suggests choosing the predictor (1), which seems more realistically to reflect the level of two persons’ incomes.

In literature, relative error criterion is applied to the standard linear model and nonlinear regression model. See, for example, Narula and Wellington (1977), Makridakis et al. (1984), Khoshgoftaar, Bhattacharyya and Richardson (1992), Park and Stefanski (1998). However, the theoretical justifications of the relative least squares (RLS) and absolute relative error (ARE) criterion are generally quite challenge for the linear and nonlinear models. As pointed out by Chen et al (2010), the consistency and asymptotic normality of RLS and ARE estimators even for the standard linear regression models are not established under some general regularity conditions. Chen et al. (2010) took into account the following two types of relative errors: \(|Y_i - \exp(Z_i^T\beta)|/Y_i\), which is relative to the response,
LPRE estimation with error-in-covariates

and $|Y_i - \exp(Z_i^T \beta)|/\exp(Z_i^T \beta)$, which is relative to the predictor of the response, and developed the absolute relative error criterion to the multiplicative models (1.1). The criterion that they proposed for model (1.1), called least absolute relative errors (LARE), is to minimize the following objective function:

$$\sum_{i=1}^{n} \left\{ |Y_i - \exp(Z_i^T \beta)|/Y_i + |Y_i - \exp(Z_i^T \beta)|/\exp(Z_i^T \beta) \right\}.$$

Based on the loss function of LARE, some variable selection methods were proposed (Xia, Liu and Yang, 2016; Liu, Lin and Wang, 2016). In order to capture more complex models, Zhang and Wang (2013) extended the criterion of LARE to the partially linear multiplicative regression model by the local smoothing techniques for estimation and variable selection.

In spite of robustness and scale-free, the LARE criterion function is non-smooth and the asymptotic variance of the LARE estimator involves the unknown density of the error term. To avoid density estimation, Li, Lin and Zhou (2014) proposed a novel empirical likelihood approach towards constructing confidence intervals/regions of the regression parameters for the multiplicative regression models. To obtain a differentiable criterion function, Chen et al., (2016) studied the least product relative error (LPRE)
criterion by minimizing the following objective function

\[\text{LPRE}_n(\beta) = \sum_{i=1}^{n} \left\{ \frac{|Y_i - \exp(Z_i^T \beta)|}{Y_i} \times \left\{ \frac{|Y_i - \exp(Z_i^T \beta)|}{\exp(Z_i^T \beta)} \right\} \right\} . \]

(1.2)

The most attractive property of the LPRE objective function is that it is infinitely differentiable and strictly convex. Using LPRE objective function, [Wang, Liu and Lin (2015)](https://www.example.com) developed a testing procedure to detect existence of the unknown change point and discussed a relative-based estimation of the change point.

To the best of our knowledge, the aforementioned LARE and LPRE methods commonly assume that covariates are observed precisely. However, we usually encounter corrupted data in practice, where the covariates are measured with error. Sometimes covariates of interest may be difficult to obtain accurately due to physical location or cost. More commonly, it is impossible to measure them precisely due to the nature of the covariates or the imprecision of the instrument, and only replicate measurements of their surrogate variables are available. A good example of the latter situation is the AIDS Clinical Trials Group (ACTG) 175 study [Hammer et al. (1996)](https://www.example.com), which investigated the effects of the four types of HIV treatments: zidovudine only, zidovudine and didanosine, zidovudine and zalcitabine, and didanosine only. In the ACTG 175 study, the baseline measurements on
CD4 counts were collected before treatment. The CD4 counts can never be measured precisely due to the imprecision of the instrument. Hence, most subjects have two replicate baseline measurements of CD4 counts.

It is well-known that misleading result may be obtained by naively applying the aforementioned methods to the corrupted data. Hence, it is a particularly important topic to develop methods to handle the error data. There has been a vast amount of work on this topic for some other models.

Hu and Lin (2004) introduced a modified score equation for multivariate failure time data. Recently, Sinha and Ma (2015) proposed a semiparametric method to treat errors in covariates in the censored proportional odds model when replicated measurements of their surrogates are available and the number of replicate measurements are fixed. For censored quantile regression with measurement error, Wu, Ma and Yin (2015) developed a corrected estimating equation method based on a kernel smoothing approximation. They considered two types of the measurement error: Laplace distribution and normal distribution. For additive hazard model in survival analysis, Yan and Yi (2016) developed a class of correction methods for error-contaminated survival data with replicate measurements. Comprehensive discussions on measurement error can be found in Carroll et al. (2006), Buonaccorsi (2010) and references therein.
In this paper, we propose two estimating equation approaches based on LPRE criterion to estimate the regression parameter vector in the multiplicative regression model when a subset of covariates are subject to measurement error but replicate measurements of their surrogates are available. The first method is to construct an unbiased estimating equation based on conditional mean score, whereas the second method is to correct the naive method to obtain an unbiased estimating equation. Similar idea to that used in the first method is also used in Hu and Lin (2004). Both the methods allow the study subjects to have unequal numbers of surrogate measurements. Furthermore, no parameter model is imposed on the measurement error term and the true covariates, which are not observed in the data.

The remainder of this article is organized as follows. In Section 2 we describe the framework of the multiplicative model with covariates measured with errors. In Section 3 we propose a conditional mean score based estimating equation method. In Section 4 a corrected estimating equation method is also suggested. For further discussions on the effect of the measurement error, we compare our proposed estimators theoretically in Section 5. Simulation studies are conducted in Section 6 to assess the performances of the proposed methods. An example from ACTG315 data is
presented in Section 7 to illustrate the proposed methods.

2. Model Framework

Assume that the aforementioned covariates \(Z_i = (V_i^T, X_i^T)^T \) is a \((p+q)\)-vector of explanatory variables, where \(V_i \) is a \(q \)-vector of explanatory variables that are precisely measured with the first component being 1 (intercept), and \(X_i \) is a \(p \)-vector of error-prone explanatory variable. Then, model (1.1) turns into

\[
Y_i = \exp(V_i^T \alpha_0 + X_i^T \gamma_0) \varepsilon_i, \quad i = 1, \ldots, n, \tag{2.1}
\]

where \((\alpha_0^T, \gamma_0^T)^T = \beta_0\) is the corresponding regression parameter vector.

Suppose that \(X_i \) is repeatedly measured \(n_i \) times \((n_i \geq 1)\) by the surrogates \(W_{i,r} \), \(r = 1, \ldots, n_i \). We consider the classical additive measurement error model:

\[
W_{i,j} = X_i + U_{i,j}, \quad j = 1, \ldots, n_i, i = 1, \ldots, n, \tag{2.2}
\]

where \(U_{i,j} \)'s are i.i.d. copies of the random variable vector \(U \) whose distribution is symmetric, namely, \(U \) and \(-U\) are from the same distribution. In addition, \(U_{i,j} \)'s are independent of \(Z_i \) and \(\varepsilon_i \).
3. Conditional Mean Score Based Estimating Equation Approach

3.1 Review: Estimation without measurement error

If X_i is accurately observed, the estimation of β can be obtained by minimizing the LPRE objective function \((1.2)\). A simple algebraic manipulation of the LPRE objective function \((1.2)\) yields

$$LPRE_n(\beta) = \sum_{i=1}^{n} \left\{ Y_i \exp(-Z_i^T \beta) + Y_i^{-1} \exp(Z_i^T \beta) - 2 \right\}.$$

Owing to the fact that the LPRE object function is strictly convex, minimizing $LPRE_n(\beta)$ is equivalent to solving the estimating equation $U_n(\beta) = 0$, where $U_n(\beta) = \partial LPRE_n(\beta)/\partial \beta$. Define $\psi(Z_i, Y_i, \beta) = \{ Y_i^{-1} \exp(Z_i^T \beta) - Y_i \exp(-Z_i^T \beta) \}Z_i$. Then

$$U_n(\beta) = \sum_{i=1}^{n} \psi(Z_i, Y_i, \beta). \quad (3.1)$$

With the condition $E(1/\varepsilon - \varepsilon | Z) = 0 \ (\text{Chen et al.} 2016)$, it is easy to obtain that $E[U_n(\beta_0)] = 0$, i.e., $U_n(\beta)$ is an unbiased estimating function of β. By the theory of estimating equation, under regularity conditions, solving $U_n(\beta) = 0$ yields a consistent estimator of $\beta \ (\text{Chen et al.} 2016)$.

3.2 Estimation with measurement error and asymptotic properties

For simplification, denote the observed data $O_{i,r} = (Y_i, V_i, W_{i,r})$ and let $U_i = (Y_i, V_i, X_i)$ for $i = 1, \ldots, n$ and $r = 1, \ldots, n_i$. Recall that $\psi(Z_i, Y_i, \beta)$ is the summand of the unbiased estimating function $U_n(\beta)$ in (3.1). If we can find a function $T^*(O_{i,r}, \beta)$ such that

$$
E[T^*(O_{i,r}, \beta) | U_i] = \psi(Z_i, Y_i, \beta),
$$

which leads to the following unbiased estimating equation,

$$
\sum_{i=1}^{n} n_i^{-1} \sum_{r=1}^{n_i} T^*(O_{i,r}, \beta) = 0. \tag{3.2}
$$

Next, let us construct $T^*(O_{i,r}, \beta)$. Take $\hat{Z}_{i,r} = (V_i^T, W_{i,r}^T)^T$ and $J = (0_{p \times q}, I_{p \times p})^T$. Then $\hat{Z}_{i,r} = Z_i + JU_{i,r}$. For simplicity, define $\varphi_0(\gamma) = E[\exp(U^T\gamma)]$ and $\varphi_1(\gamma) = E[U \exp(U^T\gamma)]$. The independence between the error $U_{i,r}$ and the true covariate Z_i implies

$$
E[\exp(\hat{Z}_{i,r}^T \beta) \hat{Z}_{i,r} | Z_i] = \varphi_0(\gamma) \exp(Z_i^T \beta) Z_i + \exp(Z_i^T \beta) J \varphi_1(\gamma), \tag{3.3}
$$

$$
E[\exp(\hat{Z}_{i,r}^T \beta) | Z_i] = \varphi_0(\gamma) \exp(Z_i^T \beta). \tag{3.4}
$$

For simplification, take

$$
R_{i,r}^{(0)}(\beta) = \varphi_0^{-1}(\gamma) \exp(\hat{Z}_{i,r}^T \beta),
$$

$$
R_{i,r}^{(1)}(\beta) = \varphi_0^{-1}(\gamma) \exp(\hat{Z}_{i,r}^T \beta) \{ \hat{Z}_{i,r} - J \varphi_0^{-1}(\gamma) \varphi_1(\gamma) \}.
$$
3.2 Estimation with measurement error and asymptotic properties

A simple algebraic manipulation of (3.3) and (3.4) yields

\[
\exp(Z_i^T \beta) = E[R_i(\beta)|\mathcal{U}].
\]

(3.5)

\[
\exp(Z_i^T \beta) = E[R_i(0)(\beta)|\mathcal{U}].
\]

(3.6)

Recalling the definition of \(\psi(Z_i, Y_i, \beta) \) in (3.1), the desired function \(T^*(O_{i,r}, \beta) \) can be defined as

\[
T^*(O_{i,r}, \beta) = Y_i^{-1}R_{i,r}^{(1)}(\beta) - Y_iR_{i,r}^{(1)}(-\beta).
\]

By (3.5), \(E[T^*(O_{i,r}, \beta)|\mathcal{U}] = \psi(Z_i, Y_i, \beta) \). However, \(\varphi_0(\gamma) \) and \(\varphi_1(\gamma) \) in \(T^*(O_{i,r}, \beta) \) are unknown. We must define their estimation. Observing that \(W_{i,r} - W_{i,s} = U_{i,r} - U_{i,s} \) (\(r \neq s \)) and the errors \(U_{i,r} 's \) are i.i.d and symmetric, we then have

\[
E[\exp\{\gamma^T(W_{i,r} - W_{i,s})\}] = \varphi_0^2(\gamma)
\]

and

\[
E[(W_{i,r} - W_{i,s})\exp\{\gamma^T(W_{i,r} - W_{i,s})\}] = 2\varphi_0(\gamma)\varphi_1(\gamma).
\]

Denote \(\xi_i = I(n_i > 1) \) and \(\bar{n} = \sum_{i=1}^n \xi_i \). Then, \(\varphi_k(\gamma), (k = 0, 1) \) can be estimated by

\[
\hat{\varphi}_0(\gamma) = \left[1/\bar{n} \sum_{i=1}^n \xi_i/n_i (n_i - 1) \sum_{r \neq s} \exp(\gamma^T(W_{i,r} - W_{i,s}))\right]^{1/2}
\]

and

\[
\hat{\varphi}_1(\gamma) = \{2\bar{n}\hat{\varphi}_0(\gamma)\}^{-1} \sum_{i=1}^n \xi_i/n_i (n_i - 1) \sum_{r \neq s} (W_{i,r} - W_{i,s}) \exp(\gamma^T(W_{i,r} - W_{i,s})),
\]
3.2 Estimation with measurement error and asymptotic properties

where, for every \(i \) with \(n_i > 1 \), \((r,s)\) runs through all possible combinations of numbers in \{1, \ldots, n_i\}. When \(n_i = 1 \), both \(\xi_i \) and \(n_i - 1 \) equal zero and we define the fraction \(\xi_i/(n_i - 1) \) to be 0 for convenience.

Let \(\hat{R}_{i,r}^{(0)}(\beta) \) and \(\hat{R}_{i,r}^{(1)}(\beta) \) be \(R_{i,r}^{(0)}(\beta) \) and \(R_{i,r}^{(1)}(\beta) \) with \(\varphi_0(\gamma) \) and \(\varphi_1(\gamma) \) in them replaced by \(\hat{\varphi}_0(\gamma) \) and \(\hat{\varphi}_1(\gamma) \), respectively. Thereafter, the resulting estimating equation is given by

\[
\sum_{i=1}^{n} n_i^{-1} \sum_{r=1}^{n_i} \hat{T}^*(O_{i,r}, \beta) = 0,
\]

where \(\hat{T}^*(O_{i,r}, \beta) = Y_i^{-1} \hat{R}_{i,r}^{(1)}(\beta) - Y_i \hat{R}_{i,r}^{(1)}(-\beta) \). The solution of the above equation can be defined as an estimator of \(\beta \), denoted as \(\hat{\beta}_{cns} \).

For notational simplicity, we assume that \((Z^T, Y, \varepsilon)^T, (Z_i^T, Y_i, \varepsilon_i)^T, i = 1, \ldots, n\) are independent and identically distributed. To describe the asymptotic properties of the proposed estimator, let us firstly give some notations.

For any vector or matrix \(a \), we denote \(a^{\otimes 2} = aa^T \). Define \(A_k = \{i : n_i = k, i = 1, \ldots, n\} \), \(k = 1, \ldots, m \), and let \(|A_k| \) be the number of members of \(A_k \). Define \(R_{i}^{(0)}(\beta) = n_i^{-1} \sum_{r=1}^{n_i} R_{i,r}^{(0)}(\beta) \), \(\hat{R}_{i}^{(0)}(\beta) = n_i^{-1} \sum_{r=1}^{n_i} \hat{R}_{i,r}^{(0)}(\beta) \), \(R_{i}^{(1)}(\beta) = n_i^{-1} \sum_{r=1}^{n_i} R_{i,r}^{(1)}(\beta) \) and \(\hat{R}_{i}^{(1)}(\beta) = n_i^{-1} \sum_{r=1}^{n_i} \hat{R}_{i,r}^{(1)}(\beta) \).

Then, \(\sum_{i=1}^{n} n_i^{-1} \sum_{r=1}^{n_i} \hat{T}^*(O_{i,r}, \beta) = \sum_{i=1}^{n} [Y_i^{-1} \hat{R}_{i}^{(1)}(\beta) - Y_i \hat{R}_{i}^{(1)}(-\beta)] \).
3.2 Estimation with measurement error and asymptotic properties

Take

\[v_i = Y_i^{-1} R_i^{(1)}(\beta_0) - Y_i R_i^{(1)}(-\beta_0), \]
\[r_i = E(1/\varepsilon + \varepsilon) \{2(1 - \rho_1) \phi_0^2(\gamma_0)\}^{-1} \{h_i^{(1)}(\gamma_0) - 2\phi_0^{-1}(\gamma_0) \phi_1(\gamma_0) h_i^{(0)}(\gamma_0)\}, \]

where \(\rho_1 = \lim |A_1|/n, \) \(h_i^{(0)}(\gamma) = \{n_i(n_i - 1)\}^{-1} \sum_{r \neq s} \exp\{\gamma^T (W_{i,r} - W_{i,s})\} \)

and \(h_i^{(1)}(\gamma) = \{n_i(n_i - 1)\}^{-1} \sum_{r \neq s} (W_{i,r} - W_{i,s}) \exp\{\gamma^T (W_{i,r} - W_{i,s})\}. \)

Here, if \(n_i = 1, \) define \(h_i^{(0)}(\gamma) = 0 \) and \(h_i^{(1)}(\gamma) = 0 \) for convenience. Further define \(V_0 = E[(1/\varepsilon + \varepsilon)ZZ^T]. \) The asymptotic normality of \(\hat{\beta}_{c_m_s} \) is established in the following theorem.

Theorem 1. Under Conditions C1-C6 in the Appendix, \(\hat{\beta}_{c_m_s} \) exists and is unique in a neighbourhood of \(\beta_0 \) with probability converging to 1 as \(n \to \infty, \)

and

\[\sqrt{n}(\hat{\beta}_{c_m_s} - \beta_0) \xrightarrow{D} N(0, \Gamma_{c_m_s}), \]

where \(\Gamma_{c_m_s} = V_0^{-1} \Sigma_{c_m_s} V_0^{-1} \) and \(\Sigma_{c_m_s} = \lim_{n \to \infty} n^{-1} \sum_{i=1}^n E(v_i - \xi_i J_i)^2. \)

To estimate \(\Gamma_{c_m_s}, \) we define

\[\hat{v}_i = Y_i^{-1} \hat{R}_i^{(1)}(\hat{\beta}_{c_m_s}) - Y_i \hat{R}_i^{(1)}(-\hat{\beta}_{c_m_s}), \]
\[\hat{r}_i = \{2n(1 - \hat{\rho}_1) \hat{\phi}_0^2(\hat{\gamma}_{c_m_s})\}^{-1} \sum_{j=1}^n \{Y_j^{-1} \hat{R}_j^{(0)}(\hat{\beta}_{c_m_s}) + Y_j \hat{R}_j^{(0)}(-\hat{\beta}_{c_m_s})\} \]
\[\times \{h_i^{(1)}(\hat{\gamma}_{c_m_s}) - 2\hat{\phi}_0^{-1}(\hat{\gamma}_{c_m_s}) \hat{\phi}_1(\hat{\gamma}_{c_m_s}) h_i^{(0)}(\hat{\gamma}_{c_m_s})\}, \]
where $\hat{\rho}_1 = |A_1|/n$ and $\hat{\gamma}_{\text{cms}}$ is the last p components of $\hat{\beta}_{\text{cms}}$. Then take $\hat{\Sigma}_{\text{cms}} = n^{-1} \sum_{i=1}^{n} \{ \hat{v}_i - \xi_i \hat{J}_i \} \otimes^2$ and $\hat{V}_0 = n^{-1} \sum_{i=1}^{n} \{ Y_i^{-1} \hat{R}_i^{(2)}(\hat{\beta}_{\text{cms}}) + Y_i \hat{R}_i^{(2)}(-\hat{\beta}_{\text{cms}}) \}$, where $\hat{R}_i^{(2)}(\beta) = \partial \hat{R}_i^{(1)}(\beta) / \partial \beta^T$. Denote $\hat{\Gamma}_{\text{cms}} = \hat{V}_0^{-1} \hat{\Sigma}_{\text{cms}} \hat{V}_0^{-1}$. Γ_{cms} can then be estimated by $\hat{\Gamma}_{\text{cms}}$.

4. Corrected estimating equation method

4.1 Naive Method and Bias

Define $\bar{W}_{i,r} = n_i^{-1} \sum_{r=1}^{m_i} W_{i,r}$, and $\bar{Z}_i = (V_i^T, \bar{W}_i^T)^T = Z_i + J \bar{U}_{i,r}$, where $\bar{U}_{i.r} = n_i^{-1} \sum_{r=1}^{m_i} U_{i,r}$. A naive computable estimating function $U_{nv}(\beta)$ can be obtained as follow

$$U_{nv}(\beta) = \sum_{i=1}^{n} \{ Y_i^{-1} \exp(\hat{Z}_i^T \beta) - Y_i \exp(-\hat{Z}_i^T \beta) \} \hat{Z}_i = \sum_{i=1}^{n} \psi(\hat{Z}_i, Y_i, \beta) \quad (4.1)$$

by replacing Z_i in (3.1) with \hat{Z}_i. Let $\hat{\beta}_{nv}$ be the solution of $U_{nv}(\beta) = 0$. $\hat{\beta}_{nv}$ is known as the naive-LPRE estimator of β_0.

Recall the definition of \hat{Z}_i and J, then $\psi(\hat{Z}_i, Y_i, \beta)$ can be written as

$$\{ Y_i^{-1} \exp(Z_i^T \beta) \exp(J \bar{U}_{i,r}) - Y_i \exp(-Z_i^T \beta) \exp(-J \bar{U}_{i,r}) \} (Z_i + J \bar{U}_{i,r}) \quad (4.2)$$

Owing to the symmetry of U and the independence between $U_{i,r}$'s and (Z_i, Y_i), we have

$$E[\psi(\hat{Z}_i, Y_i, \beta)|Y_i, Z_i] = \varphi_{0i}^n(\gamma/n) \psi(Z_i, Y_i, \beta) + J \{ Y_i^{-1} \exp(Z_i^T \beta) + Y_i \exp(-Z_i^T \beta) \} \times \varphi_{0i}^{n-1}(\gamma/n) \varphi_1(\gamma/n_i). \quad (4.3)$$
Comparing (4.3) with $\psi(Z_i, Y_i, \beta)$ in (3.1), the differences are the following two primary aspects. Take $I_{1n}(\beta) = \varphi_0^n(\gamma/n_i)\psi(Z_i, Y_i, \beta)$ and $I_{2n}(\beta) = J\{Y_i^{-1}\exp(Z_i^T \beta) + Y_i\exp(-Z_i^T \beta)\}\varphi_0^{n-1}(\gamma/n_i)\varphi_1(\gamma/n_i)$. On the one hand, the term $I_{1n}(\beta)$ equals the product of the factor $\varphi_0^n(\gamma/n_i)$ and $\psi(Z_i, Y_i, \beta)$ in (3.1). On the other hand, the term $I_{2n}(\beta)$ is an extra term. With the assumption that $E[\varepsilon - 1/\varepsilon | Z] = 0$, we obtain that $E[I_{1n}(\beta_0)] = 0$. Therefore, $E[\psi(\hat{Z}_i, Y_i, \beta_0)] = E[I_{1n}(\beta_0) + I_{2n}(\beta_0)] = E[I_{2n}(\beta_0)]$. However, $E[I_{2n}(\beta_0)] = E(1/\varepsilon + \varepsilon)J\varphi_0^{n-1}(\gamma_0/n_i)\varphi_1(\gamma_0/n_i)$. It is that $I_{2n}(\beta_0)$ may be the term causing bias of the naive estimator $\hat{\beta}_{nv}$. It’s obvious that $\varphi_0(\gamma) > 0$ from the definition of $\varphi_0(\gamma)$. Generally, $\varphi_1(\gamma)$ is also a nonzero vector. In the remark, we discuss some scenarios frequently encountered.

Remark

- When U is a scalar variable, $\partial \varphi_1(\gamma)/\partial \gamma = E[U^2 \exp(U^T \gamma)] > 0$ unless U is zero almost surely. Consequently, $\varphi_1(\gamma)$ increase strictly as γ increases with $\varphi_1(0) = 0$. As a result, $\varphi_1(\gamma)$ departs from zero when $\gamma \neq 0$.

- Denote $a^{(i)}$ the i-th component of vector a. Assume that the measurement error $U = (U^{(1)}, \ldots, U^{(p)})^T$ and $U^{(1)}, \ldots, U^{(p)}$ are independent from each other. Some simple algebraic manipulation can yield that $\varphi_1^{(i)}(\gamma) = E[U^{(i)} \exp(U^{(i)} \gamma^{(i)})] \prod_{j \neq i} E[\exp(U^{(j)} \gamma^{(j)})]$. As
4.1 Naive Method and Bias

discussed above, \(\varphi_1(\gamma) \) does not equal 0 when \(\gamma \neq 0 \).

- Assume that \(U \sim N(0, \Sigma_{p \times p}) \). Some basic calculation implies that \(\varphi_0(\gamma) = \exp(\gamma^T \Sigma \gamma / 2) \) and \(\varphi_1(\gamma) = \Sigma \gamma \exp(\gamma^T \Sigma \gamma / 2) \). Owing to the fact that \(\Sigma \) is positive definite, it can be seen that \(\varphi_1(\gamma) = 0 \) if and only if \(\gamma = 0 \).

In the above discussion, for the three commonly used cases, we come to the conclusion that \(\varphi_1(\gamma) = 0 \) if and only if \(\gamma = 0 \). However, \(\gamma_0 \), the true value of \(\gamma \), is not zero for the measurement error model considered here. Otherwise, the estimating problem reduces to that without measurement error. Combining with the fact that \(\varphi_0(\gamma) > 0 \) and \(E[1/\varepsilon + \varepsilon] > 0 \), we have that \(E[I_{2n}(\beta_0)] \neq 0 \). Consequently, \(E[\psi(\hat{Z}_i, Y_i, \beta_0)] \neq 0 \) and \(U_{nv}(\beta) \) is a biased estimating function. The resultant estimator \(\hat{\beta}_{nv} \) does not converge to the true parameter \(\beta_0 \).

In addition, it is also noticed that \(I_{1n}(\beta) \) is the unbiased estimating function \(\psi(\hat{Z}_i, Y_i, \beta) \) multiplied by \(\varphi_0^{n_i}(\gamma/n_i) \). This factor \(\varphi_0^{n_i}(\gamma/n_i) \) may lead to the loss of efficiency of the naive estimator \(\hat{\beta}_{nv} \). Based on the above two considerations, we develop a corrected estimating equation approach in the following subsection.
4.2 Corrected estimation and asymptotic properties

To eliminate the bias of the naive estimator and obtain a more reasonable estimator, we can construct an unbiased estimating function as

$$U^*(\beta) = \sum_{i=1}^{n} \tilde{\psi}_i$$

where

$$\tilde{\psi}_i = \{\varphi_0^n(\gamma/n_i)\}^{-1} \left[\psi(\hat{Z}_i, Y_i, \beta) - J\{Y_i^{-1} \exp(Z_i^T \beta)
ight.$$

$$+ Y_i \exp(-Z_i^T \beta)\} \varphi_0^{n-1}(\gamma/n_i) \varphi_1(\gamma/n_i) \right].$$

Recalling (4.3), we can see that $E[\tilde{\psi}_i | U_i] = \psi(Z_i, Y_i, \beta)$. However, Z_i in $\tilde{\psi}_i$ cannot be observed. Note that

$$E[Y_i^{-1} \exp(\hat{Z}_i^T \beta) + Y_i \exp(-\hat{Z}_i^T \beta) | U_i]$$

$$= \{Y_i^{-1} \exp(Z_i^T \beta) + Y_i \exp(-Z_i^T \beta)\} \varphi_0^n(\gamma/n_i).$$

From (4.4), we have

$$Y_i^{-1} \exp(Z_i^T \beta) + Y_i \exp(-Z_i^T \beta)$$

$$= E[\varphi_0^{-n_i}(\gamma/n_i) \{Y_i^{-1} \exp(\hat{Z}_i^T \beta) + Y_i \exp(-\hat{Z}_i^T \beta)\} | U_i].$$

Therefore, we can define ψ_i^* as follow,

$$\psi_i^* = \{\varphi_0^n(\gamma/n_i)\}^{-1} \left[\psi(\hat{Z}_i, Y_i, \beta)$$

$$- J\{Y_i^{-1} \exp(\hat{Z}_i^T \beta) + Y_i \exp(-\hat{Z}_i^T \beta)\} \varphi_1(\gamma/n_i) \varphi_0^{-1}(\gamma/n_i) \right]$$
4.2 Corrected estimation and asymptotic properties

by replacing the term \(Y_i^{-1} \exp(Z_i^T \beta) + Y_i \exp(-Z_i^T \beta) \) in \(\tilde{\psi}_i \) with the expression \(\varphi_0^{-n_i}(\gamma/n_i)\{Y_i^{-1} \exp(\hat{Z}_i^T \beta) + Y_i \exp(-\hat{Z}_i^T \beta)\} \). However, \(\varphi_0(\gamma) \) and \(\varphi_1(\gamma) \) in \(\psi^*_i \) are unknown. Define

\[
\hat{\psi}_i^* = \{\hat{\varphi}_0^\gamma(\gamma/n_i)\}^{-1}[\psi(\hat{Z}_i, Y_i, \beta)
- J\{Y_i^{-1} \exp(\hat{Z}_i^T \beta) + Y_i \exp(-\hat{Z}_i^T \beta)\}\hat{\varphi}_1(\gamma/n_i)\hat{\varphi}_0^{-1}(\gamma/n_i)],
\]

by replacing \(\varphi_0(\gamma/n_i) \) and \(\varphi_1(\gamma/n_i) \) in \(\psi^* \) with \(\hat{\varphi}_0(\gamma/n_i) \) and \(\hat{\varphi}_1(\gamma/n_i) \) given in the previous section, and we obtain an resultant estimating equation for \(\beta_0 \) as follows

\[
\sum_{i=1}^{n} \hat{\psi}_i^* = 0.
\]

Let \(\hat{\beta}_{c_{ee}} \) be the solution to the above estimating equation. For simplification, denote \(\eta_0(k, \gamma) = \mathbb{E}[\exp(k^{-1}\gamma^T(U_1 + \cdots + U_k))] \) and \(\eta_1(k, \gamma) = \partial\eta_0(k, \gamma)/\partial\gamma \) for any positive integer \(k \). It is clear to see that \(\eta_0(1, \gamma) = \varphi_0(\gamma), \eta_0(k, \gamma) = \varphi_0^k(\gamma/k) \) and \(\eta_1(k, \gamma) = \varphi_0^{k-1}(\gamma/k)\varphi_1(\gamma/k) \). Then, denote

\[
\bar{R}_i^{(0)}(\beta) = \eta_0^{-1}(n_i, \gamma) \exp(\hat{Z}_i^T \beta),
\]
\[
\bar{R}_i^{(0)}(\beta) = \eta_0^{-1}(n_i, \gamma) \exp(\hat{Z}_i^T \beta),
\]
\[
\bar{R}_i^{(1)}(\beta) = \eta_0^{-1}(n_i, \gamma) \exp(\hat{Z}_i^T \beta)\{\hat{Z}_i - J\eta_1(n_i, \gamma)\eta_0^{-1}(n_i, \gamma)\},
\]
\[
\bar{R}_i^{(1)}(\beta) = \eta_0^{-1}(n_i, \gamma) \exp(\hat{Z}_i^T \beta)\{\hat{Z}_i - J\eta_1(n_i, \gamma)\eta_0^{-1}(n_i, \gamma)\},
\]

where \(\hat{\eta}_0(k, \gamma) = \varphi_0^k(\gamma/k) \) and \(\hat{\eta}_1(k, \gamma) = \varphi_0^{k-1}(\gamma/k)\varphi_1(\gamma/k) \), and \(\varphi_k(\cdot)(k = \)
4.2 Corrected estimation and asymptotic properties

0, 1) is as defined in the previous section. By a simple calculation, we have

\[
\psi^*_i = Y_i^{-1} \tilde{R}_i^{(1)}(\beta) - Y_i \tilde{R}_i^{(1)}(-\beta),
\]

\[
\hat{\psi}^*_i = Y_i^{-1} \hat{R}_i^{(1)}(\beta) - Y_i \hat{R}_i^{(1)}(-\beta).
\]

Let

\[
\tilde{v}_i = Y_i^{-1} \tilde{R}_i^{(1)}(\beta_0) - Y_i \tilde{R}_i^{(1)}(-\beta_0),
\]

\[
\tilde{r}_{i,k} = E(1/\varepsilon + \varepsilon) \{2(1 - \rho_1)\varphi_0^2(\gamma_0/k)\}^{-1}
\times \{h_i^{(1)}(\gamma_0/k) - 2\varphi_0^{-1}(\gamma_0/k)\varphi_1(\gamma_0/k)h_i^{(0)}(\gamma_0/k)\},
\]

where \(h_i^{(k)}(\gamma)(k = 0, 1)\) are defined in Section 3.2. Let \(\rho_k = \lim_{n \to \infty} |A_k|/n\).

Further recall that \(V_0 = E[(1/\varepsilon + \varepsilon)ZZ^T]\), which is defined in Theorem 1.

The asymptotic normality of \(\hat{\beta}_{cee}\) is established in the following theorem.

Theorem 2. Under Conditions C1-C6 in Appendix, \(\hat{\beta}_{cee}\) exists and is unique in a neighbourhood of \(\beta_0\) with probability converging to 1 as \(n \to \infty\), and

\[
\sqrt{n}(\hat{\beta}_{cee} - \beta_0) \overset{D}{\to} N(0, \Gamma_{cee}),
\]

where \(\Gamma_{cee} = V_0^{-1} \Sigma_{cee} V_0^{-1}\) and \(\Sigma_{cee} = \lim n^{-1} \sum_{i=1}^n E\{\tilde{v}_i - \xi_iJ \sum_{k=1}^m \rho_k \tilde{r}_{i,k}\} \otimes 2\).
To estimate Γ_{cee}, we define
\[
\tilde{v}_i = Y_i^{-1}\tilde{R}_i^{(1)}(\hat{\beta}_{cee}) - Y_i\tilde{R}_i^{(1)}(-\hat{\beta}_{cee}),
\]
\[
\tilde{r}_{i,k} = \left\{2n(1 - \hat{\rho}_1)\hat{\varphi}_0(\hat{\gamma}_{cee}/k)\right\}^{-1} \sum_{j=1}^n \left\{Y_j^{-1}\tilde{R}_j^{(0)}(\hat{\beta}_{cee}) + Y_j\tilde{R}_j^{(0)}(-\hat{\beta}_{cee})\right\}
\times \left\{h_i^{(1)}(\hat{\gamma}_{cee}/k) - 2\hat{\varphi}_0^{-1}(\hat{\gamma}_{cee}/k)\hat{\varphi}_1(\hat{\gamma}_{cee}/k)h_i^{(0)}(\hat{\gamma}_{cee}/k)\right\},
\]
where $\hat{\gamma}_{cee}$ is the last p components of $\hat{\beta}_{cee}$. Let $\hat{\rho}_k = |A_k|/n$. Then take
\[
\hat{\Sigma}_{cee} = n^{-1} \sum_{i=1}^n \left\{\tilde{v}_i - \xi_i J \sum_{k=1}^m \hat{\rho}_k \tilde{r}_{i,k} \right\}^2
\]
and $\tilde{V}_0 = n^{-1} \sum_{i=1}^n \left\{Y_i^{-1}\tilde{R}_i^{(2)}(\hat{\beta}_{cee}) + Y_i\tilde{R}_i^{(2)}(-\hat{\beta}_{cee})\right\}$, where $\tilde{R}_i^{(2)}(\beta) = \partial \tilde{R}_i^{(1)}(\beta)/\partial \beta^T$. Denote $\hat{\Gamma}_{cee} = \tilde{V}_0^{-1}\hat{\Sigma}_{cee}\tilde{V}_0^{-1}$.

Γ_{cee} can then be estimated by $\hat{\Gamma}_{cee}$.

5. **Comparison between the two proposed methods**

When the distribution of the measurement error U is unknown, $\varphi_s(\gamma)(s = 0, 1)$ have to be estimated by the sample, which makes the asymptotic covariance structures complex, and hence it is hard to compare the asymptotic efficiency of the two proposed methods. However, we may make a comparison between the two proposed methods for a special case where the distribution of the measurement error U is known to be normal. For simplicity, take $n_i = k$. Hence, the first estimator $\hat{\beta}_{ems}$ reduces to the solution of the following estimating equation,
\[
\sum_{i=1}^n k^{-1} \sum_{r=1}^k T^*(O_{i,r}, \beta) = 0,
\]
denoted as $\hat{\beta}_{\text{cms}}^*$. Similarly, the second estimator $\hat{\beta}_{\text{cee}}^*$ reduces to the solution of the following estimating equation,

$$\sum_{i=1}^{n} \psi_i^* = 0,$$

denoted as $\hat{\beta}_{\text{cee}}^*$. We have the following results.

Theorem 3. Under Condition C1-C3 and C5 in the Appendix, both $\hat{\beta}_{\text{cms}}^*$ and $\hat{\beta}_{\text{cee}}^*$ exist and are unique in a neighbourhood of β_0 with probability converging to 1 as $n \to \infty$. In addition,

$$\sqrt{n}(\hat{\beta}_{\text{cms}}^* - \beta_0) \xrightarrow{D} N(0, \Gamma_{\text{cms}}^*) \quad \text{and} \quad \sqrt{n}(\hat{\beta}_{\text{cee}}^* - \beta_0) \xrightarrow{D} N(0, \Gamma_{\text{cee}}^*),$$

where $\Gamma_{\text{cms}}^* = V_0^{-1}\Sigma_{\text{cms}}^* V_0^{-1}$ and $\Gamma_{\text{cee}}^* = V_0^{-1}\Sigma_{\text{cee}}^* V_0^{-1}$ with $\Sigma_{\text{cms}}^* = E[v_i^2]$ and $\Sigma_{\text{cee}}^* = E[\tilde{v}_i^2]$ with V_0, v_i and \tilde{v}_i defined in Section 3.2 and 4.2.

In order to compare the asymptotic covariances of the two proposed estimators, we only need to compare Σ_{cms}^* and Σ_{cee}^*. In the following lemma, we establish the expressions of Σ_{cms}^* and Σ_{cee}^*.

Lemma 1. Assume the conditions of Theorem 3. If $EZ = 0$, ε is indepen-
dent from Z, $E(U) = 0$ and $\text{cov}(U) = \Sigma_u$, we then have

$$
\Sigma^*_{\text{cms}} = k^{-1} \left\{ E(1/\varepsilon^2 + \varepsilon^2) \varphi_0(2\gamma_0) \varphi_0^{-2}(\gamma_0) \left[E(Z^{\otimes 2}) \right. \\
+ J \varphi_2(2\gamma_0) \varphi_0^{-1}(2\gamma_0) J^T - J \varphi_1(2\gamma_0) \varphi_0^{-1}(2\gamma_0) \varphi_1^T(\gamma_0) \varphi_0^{-1}(\gamma_0) J^T \\
- J \varphi_1(\gamma_0) \varphi_0^{-1}(\gamma_0) \varphi_1^T(2\gamma_0) \varphi_0^{-1}(2\gamma_0) J^T + \left\{ J \varphi_1(\gamma_0) \varphi_0^{-1}(\gamma_0) \right\}^{\otimes 2} \\
- 2 \varphi_0^{-2}(\gamma_0) \left[E(Z^{\otimes 2}) + J \Sigma_u J^T - \left\{ J \varphi_1(\gamma_0) \varphi_0^{-1}(\gamma_0) \right\}^{\otimes 2} \right] \left(1/\varepsilon - 1/\varepsilon \right)^2 E(Z^{\otimes 2}),
\right. \\
+ (k - 1)/k \left(1/\varepsilon - 1/\varepsilon \right)^2 E(Z^{\otimes 2})
\right\}
$$

$$
\Sigma^*_{\text{cee}} = E(1/\varepsilon^2 + \varepsilon^2) \varphi_0^k(2\gamma_0/k) \varphi_0^{-2k}(\gamma_0/k) \\
\times \left[E(Z^{\otimes 2}) + k^{-1} J \varphi_2(2\gamma_0/k) \varphi_0^{-1}(2\gamma_0/k) J^T \\
+ (k - 1)/k \left\{ J \varphi_1(2\gamma_0/k) \varphi_0^{-1}(2\gamma_0/k) \right\}^{\otimes 2} \\
- J \varphi_1(2\gamma_0/k) \varphi_0^{-1}(2\gamma_0/k) \varphi_1^T(\gamma_0/k) \varphi_0^{-1}(\gamma_0/k) J^T \\
- J \varphi_1(\gamma_0/k) \varphi_0^{-1}(\gamma_0/k) \varphi_1^T(2\gamma_0/k) \varphi_0^{-1}(2\gamma_0/k) J^T \\
+ \left\{ J \varphi_1(\gamma_0/k) \varphi_0^{-1}(\gamma_0/k) \right\}^{\otimes 2} \\
- 2 \varphi_0^{-2k}(\gamma_0/k) \left[E(Z^{\otimes 2}) + k^{-1} J \Sigma_u J^T - \left\{ J \varphi_1(\gamma_0/k) \varphi_0^{-1}(\gamma_0/k) \right\}^{\otimes 2} \right] \left(1/\varepsilon - 1/\varepsilon \right)^2 E(Z^{\otimes 2}),
\right. \\
+ (k - 1)/k \left(1/\varepsilon - 1/\varepsilon \right)^2 E(Z^{\otimes 2})
\right\}
$$

It is also hard to compare Σ^*_{cms} and Σ^*_{cee} directly. We compare them in some special cases. We assume that U is from $N(0, \Sigma)$, where Σ is known. Then, $\varphi_0(\gamma) = \exp(\gamma^T \Sigma \gamma/2)$, $\varphi_1(\gamma) = \exp(\gamma^T \Sigma \gamma/2) \Sigma \gamma$, $\varphi_2(\gamma) = \exp(\gamma^T \Sigma \gamma/2) \{ \Sigma + (\Sigma \gamma)^{\otimes 2} \}$. By some simple algebraic manipulation, we
have

$$\Sigma^*_{\text{cms}} = k^{-1} \left[E(\varepsilon^2 + \varepsilon^{-2}) \exp(\gamma_0^T \Sigma \gamma_0) \{ E[Z^\otimes 2] + (J \Sigma \gamma_0)^\otimes 2 + J \Sigma J^T \}
ight]$$

$$- 2 \exp(-\gamma_0^T \Sigma \gamma_0) \left\{ E[Z^\otimes 2] - (J \Sigma \gamma_0)^\otimes 2 + J \Sigma J^T \right\}$$

$$+ (k - 1)/k \{ E(\varepsilon^2 + \varepsilon^{-2}) - 2 \} E[Z^\otimes 2].$$

Similarly, it follows that

$$\Sigma^*_{\text{cee}} = E(\varepsilon^2 + \varepsilon^{-2}) \exp(k^{-1} \gamma_0^T \Sigma \gamma_0) \left\{ E[Z^\otimes 2] + k^{-2}(J \Sigma \gamma_0)^\otimes 2 + k^{-1} J \Sigma J^T \right\}$$

$$- 2 \exp(-k^{-1} \gamma_0^T \Sigma \gamma_0) \left\{ E[Z^\otimes 2] - k^{-2}(J \Sigma \gamma_0)^\otimes 2 + k^{-1} J \Sigma J^T \right\}.$$

Theorem 4. Assume the conditions of Lemma 1. If $U \sim N(0, \Sigma)$, we then have $\Sigma^*_{\text{cms}} \geq \Sigma^*_{\text{cee}}$.

Theorem 4 shows that $\hat{\beta}^*_{\text{cee}}$ performs better than $\hat{\beta}^*_{\text{cms}}$ under the normal assumption of the measurement error. This result implies that $\hat{\beta}_{\text{cee}}$ may perform better than $\hat{\beta}_{\text{cms}}$ under the normal assumption of the measurement error U, which is also verified by our simulation studies. For other familiar distributions of U, the covariance matrices do not have a simple form and hence it is hard to make a comparison. Instead, various simulations have been conducted to compare the two methods.
6. Simulation Studies

In this section, various simulation studies were conducted to assess the finite-sample performances of the proposed estimators. Response variable Y was generated from the multiplicative regression model,

$$Y = \exp(c_0 + \alpha_0 V_1 + \gamma_0 X) \varepsilon,$$ \hspace{1cm} (6.1)

where V_1 and X are two covariates generated from the bivariate normal distribution with $Var(X) = Var(V_1) = 1$ and $Cov(X, V_1) = 0.5$, and $(c_0, \alpha_0, \gamma_0) = (1, 1, 2)$. We considered two model error distributions: $\log \varepsilon \sim Uniform(-2, 2)$ and $\log \varepsilon \sim N(0, 0.25)$. Both cases are usually considered in some literatures on the relative error. See, e.g., Chen et al. (2010), Zhang and Wang (2013), and Chen et al. (2016) among others. The covariate V_1 was measured precisely, whereas X was measured with error. The surrogate W of X was generated from the classical error model $W = X + U$, where U is the measurement error term. In order to show that the proposed error corrected methods can handle many symmetric measurement error distributions, we considered two different distributions for U, $N(0, 0.25)$ and $Uniform(-\sqrt{3}/2, \sqrt{3}/2)$, and in both cases the error variance is 0.25. For each parameter configuration, every subject has three replicates of the surrogate ($n_i = 3$). To assess the finite sample performances, we calculated the
biases (Bias), the empirical standard errors (SE) and the standard error estimators (SEE). The sample size n was taken to be 200 and 500 respectively, and the simulation results are based on 2000 replications.

We analyzed the simulated data sets using seven methods, the LPRE based full data (LPREF) method, the least square based full data (LSF) method, the LPRE based naive method (LPREnv) (given in Section 4.1), the least square based naive (LSnv) method, the corrected least square (CLS) method (Carroll et al., 2006; Buonaccorsi, 2010), the conditional mean score (CMS) method proposed in Section 3.2, and the corrected estimating equation (CEE) method proposed in Section 4.2. The LPREF and LSF methods were treated as gold standards. For the LPREF method, the LPREF estimator was obtained by minimizing the LPRE criterion with the true values of X for all subjects. In order to implement the least square based methods, we converted model (6.1) into the following linear model by taking logarithmic transformation,

$$Y^* = c_0 + \alpha_0 V_1 + \gamma_0 X + \varepsilon^*, \quad (6.2)$$

where $Y^* = \log Y$ and $\varepsilon^* = \log \varepsilon$. The LSF estimator is just the least square estimator of (6.2) using the true covariates. The LSnv estimator is the LSF estimator, but with X replaced by the average of its surrogates. For the CLS method, we implemented the corrected least square method for the
linear model \([6.2]\). For the LPRE based methods, we used the Newton-Raphson procedure to solve the estimating equations by taking \((0, 0, 0)\) as the initial value of \((c, \alpha, \gamma)\). The results was reported in Tables 1 and 2.

Insert Table 1 and Table 2 here

Table 1 was conducted with \(\log \varepsilon \sim Uniform(-2, 2)\) while Table 2 was carried out with \(\log \varepsilon \sim N(0, 0.25)\). From Tables 1 and 2, we have the following observations. Both the naive estimators (LPREnv and LSnv) for \(\alpha_0\) and \(\gamma_0\) are biased seriously and the bias does not decrease as sample size increases. This implies that the both the naive methods may define inconsistent estimators for \(\alpha_0\) and \(\gamma_0\). All the estimators except for both the naive estimators are of very small bias and the bias decreases as sample size increases, as expected. Hence, both the proposed methods and CLS can effectively correct the biases caused by measurement error and define consistent estimators. It is also noted that the bias for all the estimators including both the naive estimators of \(c_0\) were very small, and that the SEE and SE of all the estimators were quite close to each other. When both the model error \(\log \varepsilon\) and the measurement error \(U\) follow the normal distribution, the classical CLS method is of slightly smaller SE than the proposed CEE and CMS methods. However, when both \(\log \varepsilon\) and \(U\) follow the uniform distribution, both the proposed CEE and CMS methods
perform better than the CLS method in terms of SE. When \(\log \varepsilon \) is from the normal distribution but the measurement error \(U \) is from the uniform distribution, the proposed CMS method performs better than CEE and CLS in terms of SE. When \(\log \varepsilon \) is from the uniform distribution but the measurement error \(U \) is from the normal distribution, the proposed CEE estimator is of smaller SE than CMS and CLS.

7. Data Analysis

As an illustration, we apply the proposed methods to an AIDS clinic study conducted by the AIDS Clinical Trial Group (ACTG) 315 (Lederman et al., 1998; Wu and Ding, 1999; Liang, Wu and Carroll, 2003). In this study, patients with evaluable HIV-1 infection were treated with potent antiviral drugs consisting of ritonavir, 3TC and AZT. Both plasma HIV RNA copies (viral load) and CD4+ cell counts were repeatedly quantified at treatment day 0, 2, 7, 10, 14, 28, 56, 84, 168, and 336 after initiation of treatment. Since plasma HIV RNA copies (viral load) and CD4+ cell counts are two crucial medical index in AIDS clinical research, it is necessary to study the relationship during HIV/AIDS treatment. The data of 46 evaluable patients in the study is available at https://www.urmc.rochester.edu/biostat/people/faculty/wusite/datasets/ACTG315LongitudinalDataViralLoad.
In this example, we only focus on the data for the first 2 days of treatment. Among the 45 evaluable patients, there are 33 patients with two measurements of day 0 and day 2, 10 patients with just one measurement on day 0, and 2 patients with just one measurement on day 2. We are interested in the relationship between the average viral load and the average CD4+ cell counts of the first two days of treatment. However, both viral load and CD4+ cell counts are subject to measurement error. To adjust the measurement error, it generally requires replication, validation data, or other information to estimate the error structure.

Inspired by a referee’s suggestion, the paired sample t tests were used to test whether the measured values (viral load and CD4+ cell counts) of day 0 and day 2 can be treated as replicate measurements of the average values for the first two days of treatment. The p-values are 0.347 and 0.128 for viral load and CD4+ cell counts respectively. This implies that the viral loads and the CD4+ cell counts in day 0 and day 2 can be treated as the replicate surrogates of the average viral load and CD4+ cell counts for the first two days of treatment respectively.

Thereafter, we considered the following additive measurement error model to link the underlying CD4+ cell counts with its surrogate mea-
surements:

\[W_{i,r} = X_i + U_{i,r}, \quad r = 1, \ldots, n_i, \quad i = 1, \ldots, 45 \]

where \(n_i = 2 \) for subjects with two measurements in day 0 and day 2, otherwise, \(n_i = 1 \). We take the average of viral loads for day 0 and day 2 as the response variable \(Y_i \) for each patient. It is noted that the response is positive. Hence, it is nature to use the following multiplicative regression model

\[Y_i = \exp(c_0 + \gamma_0 X_i) \varepsilon_i, \]

to fit the data set, where \(c_0 \) is the intercept and \(\gamma_0 \) is the regression parameter. Here we could treat \(X_i \) and \(Y_i \) as the average CD4+ cell counts and viral loads of the first two days respectively. The absolute error criterion cannot be applied to the multiplicative model directly, otherwise an inconsistent estimator is defined. In order to make a comparison with the least square based approach (an absolute error criterion), we also consider the linear model by taking the logarithmic transformation. We analyzed the data set using the five methods, LSnv, CLS, LPREnv, CMS and CEE methods, respectively. Table 3 calculated estimate values of all the five methods and standard error values.

Insert Table 3 here
Firstly, the proposed CMS and CEE estimators for γ_0 and c_0 are of larger absolute values than LPREnv and they close to each other, and the classical corrected least square (CLS) estimator also is of larger absolute value than the naive least square (LSnv) estimator. This implies that ignoring measurement error can attenuate the estimate considerably.

Secondly, it also can be observed that the relative error based LPREnv, CMS and CEE estimators of γ_0 are of bigger absolute values than the least square based LSnv and CLS estimators. Hence, the proposed methods show that the average CD4+ cell counts are more closely related to the HIV viral loads. From Table 3, it is seen that the estimated value of γ_0 based on the CLS is -0.412, and the estimated values of γ_0 based on the two proposed methods are -0.491 and -0.514, respectively. The relative differences between the CLS estimator and the proposed CMS and CEE estimators are 0.1912 and 0.2475, respectively. This together with the simulation conclusion, which the proposed methods perform similarly to the CLS estimator in some cases and perform better in some other cases, suggests that the proposed methods are useful for the practical settings, and the criterion based on the relative error is more reasonable. One of the reason may be that the distribution of log ϵ or the distribution of the measurement error U are not normal. Another reason may be that the proposed criterion is scale free,
which can use information of the subjects with small values effectively. If we use the log-linear model with least square loss, the large values of some subjects can overwhelm the effect of the small values of some subjects.

Supplementary Materials

The supplementary material contains the further simulation with the assumptions violated, and the proofs of the theorems in detail.

Acknowledgements

Wang’s research was supported by the National Natural Science Foundation of China (General program 11171331, Key program 11331011 and program for Creative Research Group in China 61621003), a grant from the Key Lab of Random Complex Structure and Data Science, CAS and Natural Science Foundation of SZU.

Appendix

Regularity Conditions:

Condition C1. $E[(1/\varepsilon + \varepsilon)^2 \exp(\delta \|Z\|)] < \infty$ for some $\delta > 0$.

Condition C2. $E[(1/\varepsilon + \varepsilon)ZZ^T]$ is positive definite.

Condition C3. The model error ε satisfies $E(\varepsilon - 1/\varepsilon|Z) = 0$.

Condition C4. The measurement errors $U_{i,r}$, $r = 1, \ldots, n_i$ are independent
and identically distributed (i.i.d.), symmetrically distributed and independent of (Z_i, Y_i) for $i = 1, \ldots, n$.

Condition C5. $E(|U|^2) < \infty$. In addition, there exists a compact neighborhood \mathcal{B} of γ_0 such that

$$E[\sup_{\gamma \in \mathcal{B}} |U|^2 \exp(U^T \gamma)] < \infty \quad \text{and} \quad E[\sup_{\gamma \in \mathcal{B}} |U|^2 \exp(2U^T \gamma)] < \infty.$$

Condition C6. The repeated times n_i has an upper bound m, namely, $1 \leq n_i \leq m$. In addition, the limit of $|A_k|/n$ exist, denoted by ρ_k, where $k = 1, \ldots, m$.

Conditions C1-C3 are almost minimal for the asymptotic normality to hold in LPRE with the covariates measured precisely. Condition C4-C6 are the regular conditions to deal with the measurement error in the covariates.

References

REFERENCES

REFERENCES

REFERENCES

Qihua Wang, Academy of Mathematics and Systems, Chinese Academy of Science, Beijing, 100190, China.

E-mail: qhwang@amss.ac.cn

Da Hailu, Department of Statistics and Finance, University of Science and Technology of China, Hefei, Anhui, 230026, China.

E-mail: dhh@mail.ustc.edu.cn
Table 1. Simulation results for $\log \varepsilon \sim Uniform(-2, 2)$. LPRef, Lsf, LPRe, LSnv, CLS, CMS and CEE stand for the full LPRE, full least square(LS), naive LPRE, naive LS, classical corrected LS, proposed conditional mean score and proposed corrected estimating equation estimators. All entries are multiplied by 100.

<table>
<thead>
<tr>
<th>method</th>
<th>$\hat{\alpha}$</th>
<th>SE</th>
<th>SEE</th>
<th>SE</th>
<th>SEE</th>
<th>$\hat{\gamma}$</th>
<th>SE</th>
<th>SEE</th>
<th>SE</th>
<th>SEE</th>
<th>\hat{c}</th>
<th>SE</th>
<th>SEE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bias</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bias</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bias</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPRef</td>
<td>-0.17</td>
<td>7.76</td>
<td>7.69</td>
<td>0.14</td>
<td>7.70</td>
<td>0.14</td>
<td>6.68</td>
<td>6.65</td>
<td>0.14</td>
<td>6.68</td>
<td>0.15</td>
<td>8.09</td>
<td>8.13</td>
</tr>
<tr>
<td>Lsf</td>
<td>-0.18</td>
<td>9.37</td>
<td>9.44</td>
<td>0.13</td>
<td>9.32</td>
<td>0.18</td>
<td>8.09</td>
<td>8.13</td>
<td>0.18</td>
<td>8.09</td>
<td>0.15</td>
<td>8.09</td>
<td>8.13</td>
</tr>
<tr>
<td>LPRe</td>
<td>9.63</td>
<td>9.42</td>
<td>8.88</td>
<td>-19.38</td>
<td>8.57</td>
<td>0.16</td>
<td>7.95</td>
<td>7.84</td>
<td>0.16</td>
<td>7.95</td>
<td>0.15</td>
<td>7.77</td>
<td>7.71</td>
</tr>
<tr>
<td>LSnv</td>
<td>9.72</td>
<td>10.53</td>
<td>10.31</td>
<td>-19.65</td>
<td>9.72</td>
<td>0.22</td>
<td>8.97</td>
<td>9.00</td>
<td>0.22</td>
<td>8.97</td>
<td>0.15</td>
<td>8.13</td>
<td>7.97</td>
</tr>
<tr>
<td>CLS</td>
<td>-0.60</td>
<td>11.02</td>
<td>10.76</td>
<td>0.85</td>
<td>11.14</td>
<td>0.19</td>
<td>9.09</td>
<td>9.17</td>
<td>0.19</td>
<td>9.09</td>
<td>0.15</td>
<td>9.09</td>
<td>9.17</td>
</tr>
<tr>
<td>CMS</td>
<td>-0.48</td>
<td>9.41</td>
<td>8.96</td>
<td>0.73</td>
<td>9.31</td>
<td>0.15</td>
<td>7.77</td>
<td>7.71</td>
<td>0.15</td>
<td>7.77</td>
<td>0.15</td>
<td>8.13</td>
<td>7.97</td>
</tr>
<tr>
<td>CEE</td>
<td>-0.71</td>
<td>9.92</td>
<td>9.32</td>
<td>1.14</td>
<td>10.00</td>
<td>0.15</td>
<td>8.13</td>
<td>7.97</td>
<td>0.15</td>
<td>8.13</td>
<td>0.15</td>
<td>8.13</td>
<td>7.97</td>
</tr>
<tr>
<td></td>
<td>$n = 200$, $U \sim Uniform(-\sqrt{3}/2, \sqrt{3}/2)$</td>
<td></td>
</tr>
<tr>
<td>LPRef</td>
<td>-0.08</td>
<td>7.86</td>
<td>7.68</td>
<td>0.17</td>
<td>7.98</td>
<td>0.11</td>
<td>6.74</td>
<td>6.66</td>
<td>0.11</td>
<td>6.74</td>
<td>0.12</td>
<td>8.14</td>
<td>8.14</td>
</tr>
<tr>
<td>Lsf</td>
<td>-0.15</td>
<td>9.38</td>
<td>9.43</td>
<td>0.22</td>
<td>9.70</td>
<td>0.12</td>
<td>8.14</td>
<td>8.14</td>
<td>0.12</td>
<td>8.14</td>
<td>0.15</td>
<td>8.14</td>
<td>8.14</td>
</tr>
<tr>
<td>LPRe</td>
<td>9.90</td>
<td>8.97</td>
<td>8.90</td>
<td>-19.84</td>
<td>9.09</td>
<td>0.06</td>
<td>8.13</td>
<td>7.89</td>
<td>0.06</td>
<td>8.13</td>
<td>0.08</td>
<td>8.73</td>
<td>8.42</td>
</tr>
<tr>
<td>LSnv</td>
<td>9.80</td>
<td>9.96</td>
<td>10.30</td>
<td>-19.80</td>
<td>10.12</td>
<td>0.13</td>
<td>9.06</td>
<td>9.01</td>
<td>0.13</td>
<td>9.06</td>
<td>0.11</td>
<td>9.16</td>
<td>9.18</td>
</tr>
<tr>
<td>CLS</td>
<td>-0.40</td>
<td>10.41</td>
<td>10.76</td>
<td>0.66</td>
<td>11.58</td>
<td>0.11</td>
<td>9.16</td>
<td>9.18</td>
<td>0.11</td>
<td>9.16</td>
<td>0.08</td>
<td>8.73</td>
<td>8.42</td>
</tr>
<tr>
<td>CMS</td>
<td>-0.88</td>
<td>10.75</td>
<td>10.13</td>
<td>1.45</td>
<td>12.81</td>
<td>0.08</td>
<td>8.73</td>
<td>8.42</td>
<td>0.08</td>
<td>8.73</td>
<td>0.10</td>
<td>9.16</td>
<td>9.18</td>
</tr>
<tr>
<td>CEE</td>
<td>-0.51</td>
<td>9.50</td>
<td>9.37</td>
<td>1.01</td>
<td>10.58</td>
<td>0.06</td>
<td>8.31</td>
<td>8.03</td>
<td>0.06</td>
<td>8.31</td>
<td>0.08</td>
<td>8.73</td>
<td>8.42</td>
</tr>
<tr>
<td></td>
<td>$n = 500$, $U \sim Uniform(-\sqrt{3}/2, \sqrt{3}/2)$</td>
<td></td>
</tr>
<tr>
<td>LPRef</td>
<td>0.09</td>
<td>4.98</td>
<td>4.86</td>
<td>-0.14</td>
<td>4.99</td>
<td>0.01</td>
<td>4.27</td>
<td>4.21</td>
<td>0.01</td>
<td>4.27</td>
<td>0.10</td>
<td>5.19</td>
<td>5.16</td>
</tr>
<tr>
<td>Lsf</td>
<td>0.10</td>
<td>6.08</td>
<td>5.96</td>
<td>-0.15</td>
<td>6.10</td>
<td>0.01</td>
<td>5.22</td>
<td>5.15</td>
<td>0.01</td>
<td>5.22</td>
<td>0.12</td>
<td>5.10</td>
<td>5.01</td>
</tr>
<tr>
<td>LPRe</td>
<td>10.14</td>
<td>5.88</td>
<td>5.68</td>
<td>-20.00</td>
<td>5.71</td>
<td>0.12</td>
<td>5.10</td>
<td>5.01</td>
<td>0.12</td>
<td>5.10</td>
<td>0.10</td>
<td>5.10</td>
<td>5.01</td>
</tr>
<tr>
<td>LSnv</td>
<td>10.27</td>
<td>6.68</td>
<td>6.52</td>
<td>-20.28</td>
<td>6.45</td>
<td>0.10</td>
<td>5.82</td>
<td>5.70</td>
<td>0.10</td>
<td>5.82</td>
<td>0.08</td>
<td>4.96</td>
<td>4.90</td>
</tr>
<tr>
<td>CLS</td>
<td>0.17</td>
<td>7.01</td>
<td>6.79</td>
<td>-0.10</td>
<td>7.38</td>
<td>0.07</td>
<td>5.90</td>
<td>5.78</td>
<td>0.07</td>
<td>5.90</td>
<td>0.08</td>
<td>5.18</td>
<td>5.08</td>
</tr>
<tr>
<td>CMS</td>
<td>0.17</td>
<td>5.88</td>
<td>5.70</td>
<td>-0.16</td>
<td>6.09</td>
<td>0.08</td>
<td>4.96</td>
<td>4.90</td>
<td>0.08</td>
<td>4.96</td>
<td>0.08</td>
<td>5.18</td>
<td>5.08</td>
</tr>
<tr>
<td>CEE</td>
<td>0.12</td>
<td>6.21</td>
<td>5.96</td>
<td>-0.01</td>
<td>6.54</td>
<td>0.08</td>
<td>5.18</td>
<td>5.08</td>
<td>0.08</td>
<td>5.18</td>
<td>0.08</td>
<td>5.18</td>
<td>5.08</td>
</tr>
<tr>
<td></td>
<td>$n = 500$, $U \sim N(0,0.25)$</td>
<td></td>
</tr>
<tr>
<td>LPRef</td>
<td>-0.10</td>
<td>4.87</td>
<td>4.87</td>
<td>-0.10</td>
<td>4.94</td>
<td>0.20</td>
<td>4.25</td>
<td>4.21</td>
<td>0.20</td>
<td>4.25</td>
<td>0.22</td>
<td>5.22</td>
<td>5.14</td>
</tr>
<tr>
<td>Lsf</td>
<td>-0.08</td>
<td>5.94</td>
<td>5.97</td>
<td>-0.17</td>
<td>6.01</td>
<td>0.23</td>
<td>5.19</td>
<td>5.16</td>
<td>0.23</td>
<td>5.19</td>
<td>0.23</td>
<td>5.19</td>
<td>5.16</td>
</tr>
<tr>
<td>LPRe</td>
<td>9.75</td>
<td>5.79</td>
<td>5.73</td>
<td>-20.06</td>
<td>5.65</td>
<td>0.23</td>
<td>5.12</td>
<td>5.05</td>
<td>0.23</td>
<td>5.12</td>
<td>0.23</td>
<td>5.12</td>
<td>5.05</td>
</tr>
<tr>
<td>LSnv</td>
<td>9.84</td>
<td>6.55</td>
<td>6.53</td>
<td>-20.18</td>
<td>6.31</td>
<td>0.24</td>
<td>5.75</td>
<td>5.71</td>
<td>0.24</td>
<td>5.75</td>
<td>0.24</td>
<td>5.75</td>
<td>5.71</td>
</tr>
<tr>
<td>CLS</td>
<td>-0.26</td>
<td>6.84</td>
<td>6.82</td>
<td>-0.03</td>
<td>7.24</td>
<td>0.24</td>
<td>5.81</td>
<td>5.79</td>
<td>0.24</td>
<td>5.81</td>
<td>0.24</td>
<td>5.81</td>
<td>5.79</td>
</tr>
<tr>
<td>CMS</td>
<td>-0.56</td>
<td>6.74</td>
<td>6.56</td>
<td>0.44</td>
<td>7.96</td>
<td>0.24</td>
<td>5.49</td>
<td>5.42</td>
<td>0.24</td>
<td>5.49</td>
<td>0.24</td>
<td>5.49</td>
<td>5.42</td>
</tr>
<tr>
<td>CEE</td>
<td>-0.43</td>
<td>6.17</td>
<td>6.03</td>
<td>0.24</td>
<td>6.65</td>
<td>0.22</td>
<td>5.22</td>
<td>5.14</td>
<td>0.22</td>
<td>5.22</td>
<td>0.22</td>
<td>5.22</td>
<td>5.14</td>
</tr>
</tbody>
</table>
Table 2. Simulation results for $\log \varepsilon \sim N(0, 0.25)$. LPREf, LSf, LPREnv, LSnv, CLS, CMS and CEE stand for the full LPRE, full least square (LS), naive LPRE, naive LS, classical corrected LS, proposed conditional mean score and proposed corrected estimating equation estimators. All entries are multiplied by 100.

<table>
<thead>
<tr>
<th>method</th>
<th>$\hat{\alpha}$ Bias</th>
<th>SE</th>
<th>SEE</th>
<th>$\hat{\gamma}$ Bias</th>
<th>SE</th>
<th>SEE</th>
<th>\hat{c} Bias</th>
<th>SE</th>
<th>SEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 200, U \sim Uniform(-\sqrt{3}/2, \sqrt{3}/2)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPREf</td>
<td>-0.08</td>
<td>4.16</td>
<td>4.05</td>
<td>-0.10</td>
<td>4.09</td>
<td>4.04</td>
<td>0.10</td>
<td>3.51</td>
<td>3.53</td>
</tr>
<tr>
<td>LSf</td>
<td>-0.08</td>
<td>4.13</td>
<td>4.09</td>
<td>-0.10</td>
<td>4.07</td>
<td>4.09</td>
<td>0.09</td>
<td>3.50</td>
<td>3.53</td>
</tr>
<tr>
<td>LPREnv</td>
<td>9.75</td>
<td>6.17</td>
<td>5.90</td>
<td>-19.82</td>
<td>5.59</td>
<td>5.62</td>
<td>0.20</td>
<td>5.18</td>
<td>5.21</td>
</tr>
<tr>
<td>LSnv</td>
<td>9.91</td>
<td>6.12</td>
<td>5.97</td>
<td>-20.11</td>
<td>5.55</td>
<td>5.74</td>
<td>0.17</td>
<td>5.14</td>
<td>5.22</td>
</tr>
<tr>
<td>CLS</td>
<td>-0.31</td>
<td>6.65</td>
<td>6.44</td>
<td>0.35</td>
<td>6.94</td>
<td>6.93</td>
<td>0.14</td>
<td>5.24</td>
<td>5.43</td>
</tr>
<tr>
<td>CMS</td>
<td>-0.15</td>
<td>6.08</td>
<td>5.81</td>
<td>-0.04</td>
<td>6.01</td>
<td>6.01</td>
<td>0.13</td>
<td>4.88</td>
<td>4.99</td>
</tr>
<tr>
<td>CEE</td>
<td>-0.34</td>
<td>6.69</td>
<td>6.30</td>
<td>0.38</td>
<td>6.91</td>
<td>6.73</td>
<td>0.15</td>
<td>5.25</td>
<td>5.36</td>
</tr>
<tr>
<td>$n = 200, U \sim N(0, 0.25)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPREf</td>
<td>0.16</td>
<td>4.29</td>
<td>4.04</td>
<td>-0.07</td>
<td>4.25</td>
<td>4.04</td>
<td>0.08</td>
<td>3.61</td>
<td>3.53</td>
</tr>
<tr>
<td>LSf</td>
<td>0.15</td>
<td>4.27</td>
<td>4.08</td>
<td>-0.07</td>
<td>4.24</td>
<td>4.09</td>
<td>0.08</td>
<td>3.59</td>
<td>3.53</td>
</tr>
<tr>
<td>LPREnv</td>
<td>10.06</td>
<td>6.29</td>
<td>5.93</td>
<td>-20.07</td>
<td>5.97</td>
<td>5.72</td>
<td>-0.05</td>
<td>5.39</td>
<td>5.27</td>
</tr>
<tr>
<td>LSnv</td>
<td>10.03</td>
<td>6.22</td>
<td>5.97</td>
<td>-20.04</td>
<td>5.83</td>
<td>5.75</td>
<td>-0.03</td>
<td>5.31</td>
<td>5.23</td>
</tr>
<tr>
<td>CLS</td>
<td>-0.30</td>
<td>7.99</td>
<td>7.05</td>
<td>0.48</td>
<td>7.13</td>
<td>7.02</td>
<td>-0.01</td>
<td>5.44</td>
<td>5.44</td>
</tr>
<tr>
<td>CMS</td>
<td>-0.21</td>
<td>6.83</td>
<td>6.38</td>
<td>0.56</td>
<td>7.34</td>
<td>6.89</td>
<td>-0.05</td>
<td>5.55</td>
<td>5.45</td>
</tr>
<tr>
<td>CEE</td>
<td>-0.21</td>
<td>6.83</td>
<td>6.38</td>
<td>0.56</td>
<td>7.34</td>
<td>6.89</td>
<td>-0.05</td>
<td>5.55</td>
<td>5.45</td>
</tr>
<tr>
<td>$n = 500, U \sim Uniform(-\sqrt{3}/2, \sqrt{3}/2)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPREf</td>
<td>0.00</td>
<td>2.66</td>
<td>2.59</td>
<td>0.03</td>
<td>2.62</td>
<td>2.59</td>
<td>-0.05</td>
<td>2.18</td>
<td>2.24</td>
</tr>
<tr>
<td>LSf</td>
<td>0.00</td>
<td>2.66</td>
<td>2.59</td>
<td>0.03</td>
<td>2.63</td>
<td>2.59</td>
<td>-0.05</td>
<td>2.17</td>
<td>2.24</td>
</tr>
<tr>
<td>LPREnv</td>
<td>9.96</td>
<td>3.76</td>
<td>3.79</td>
<td>-19.77</td>
<td>3.62</td>
<td>3.61</td>
<td>-0.07</td>
<td>3.24</td>
<td>3.34</td>
</tr>
<tr>
<td>LSnv</td>
<td>10.09</td>
<td>3.75</td>
<td>3.79</td>
<td>-20.07</td>
<td>3.58</td>
<td>3.63</td>
<td>-0.06</td>
<td>3.18</td>
<td>3.31</td>
</tr>
<tr>
<td>CLS</td>
<td>-0.04</td>
<td>4.07</td>
<td>4.07</td>
<td>0.12</td>
<td>4.43</td>
<td>4.36</td>
<td>-0.04</td>
<td>3.29</td>
<td>3.42</td>
</tr>
<tr>
<td>CMS</td>
<td>0.02</td>
<td>3.75</td>
<td>3.72</td>
<td>0.02</td>
<td>3.95</td>
<td>3.84</td>
<td>-0.04</td>
<td>3.10</td>
<td>3.18</td>
</tr>
<tr>
<td>CEE</td>
<td>-0.03</td>
<td>4.09</td>
<td>4.05</td>
<td>0.11</td>
<td>4.41</td>
<td>4.30</td>
<td>-0.07</td>
<td>3.33</td>
<td>3.43</td>
</tr>
<tr>
<td>$n = 500, U \sim N(0, 0.25)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPREf</td>
<td>-0.07</td>
<td>2.52</td>
<td>2.58</td>
<td>0.04</td>
<td>2.58</td>
<td>2.58</td>
<td>0.10</td>
<td>2.25</td>
<td>2.24</td>
</tr>
<tr>
<td>LSf</td>
<td>-0.07</td>
<td>2.50</td>
<td>2.58</td>
<td>0.04</td>
<td>2.58</td>
<td>2.58</td>
<td>0.10</td>
<td>2.24</td>
<td>2.23</td>
</tr>
<tr>
<td>LPREnv</td>
<td>9.92</td>
<td>3.77</td>
<td>3.81</td>
<td>-19.99</td>
<td>3.69</td>
<td>3.68</td>
<td>0.03</td>
<td>3.40</td>
<td>3.37</td>
</tr>
<tr>
<td>LSnv</td>
<td>9.90</td>
<td>3.72</td>
<td>3.78</td>
<td>-19.97</td>
<td>3.59</td>
<td>3.63</td>
<td>0.07</td>
<td>3.31</td>
<td>3.31</td>
</tr>
<tr>
<td>CLS</td>
<td>-0.19</td>
<td>4.03</td>
<td>4.07</td>
<td>0.17</td>
<td>4.38</td>
<td>4.41</td>
<td>0.06</td>
<td>3.40</td>
<td>3.43</td>
</tr>
<tr>
<td>CMS</td>
<td>-0.25</td>
<td>4.69</td>
<td>4.60</td>
<td>0.24</td>
<td>5.69</td>
<td>5.46</td>
<td>0.02</td>
<td>3.71</td>
<td>3.70</td>
</tr>
<tr>
<td>CEE</td>
<td>-0.18</td>
<td>4.11</td>
<td>4.10</td>
<td>0.17</td>
<td>4.52</td>
<td>4.42</td>
<td>0.02</td>
<td>3.48</td>
<td>3.48</td>
</tr>
</tbody>
</table>
Table 3. Analysis of the ACTG315 data

<table>
<thead>
<tr>
<th>method</th>
<th>c_0</th>
<th>SEE</th>
<th>γ_0</th>
<th>SEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSnv</td>
<td>12.217</td>
<td>0.436</td>
<td>-0.377</td>
<td>0.216</td>
</tr>
<tr>
<td>CLS</td>
<td>12.282</td>
<td>0.463</td>
<td>-0.412</td>
<td>0.237</td>
</tr>
<tr>
<td>LPREnv</td>
<td>12.309</td>
<td>0.374</td>
<td>-0.453</td>
<td>0.198</td>
</tr>
<tr>
<td>CMS</td>
<td>12.383</td>
<td>0.401</td>
<td>-0.491</td>
<td>0.212</td>
</tr>
<tr>
<td>CEE</td>
<td>12.424</td>
<td>0.416</td>
<td>-0.514</td>
<td>0.220</td>
</tr>
</tbody>
</table>