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Adaptive Estimation in Two-way Sparse

Reduced-rank Regression

Zhuang Ma, Zongming Ma and Tingni Sun

University of Pennsylvania and University of Maryland

Abstract: This paper studies the problem of estimating a large coefficient matrix

in a multiple response linear regression model when the coefficient matrix could

be both of low rank and sparse in the sense that most nonzero entries concentrate

on a few rows and columns. We are especially interested in the high dimensional

settings where the number of predictors and/or response variables can be much

larger than the number of observations. We propose a new estimation scheme,

which achieves competitive numerical performance and at the same time allows

fast computation. Moreover, we show that (a slight variant of) the proposed esti-

mator achieves near optimal non-asymptotic minimax rates of estimation under

a collection of squared Schatten norm losses simultaneously by providing both

the error bounds for the estimator and minimax lower bounds. The effectiveness

of the proposed algorithm is also demonstrated on an in vivo calcium imaging

dataset.

Key words and phrases: Adaptive estimation, dimension reduction, group spar-

An earlier version of the present paper (Ma and Sun, 2014) under the title “Adaptive
sparse reduced-rank regression” studied a one-way sparse reduced-rank regression model,
which can be viewed as a special case of the model considered in this paper. The earlier
version has been uploaded on arXiv, but is not intended for publication.
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sity, high dimensionality, low rank matrices, minimax rates, neuroimaging, vari-

able selection.

1. Introduction

High dimensional sparse linear regression has been one of the central topics

of high dimensional statistical inference. When the response is univariate,

researchers have developed a dazzling collection of tools to take advantage of

the potential sparsity of the regression coefficients, e.g., Lasso (Tibshirani,

1996; Chen et al., 1998), SCAD (Fan and Li, 2001), Dantzig selector (Can-

des and Tao, 2007), MCP (Zhang, 2010), etc. In contemporary applications,

we routinely face multivariate or even high dimensional response variables

together with a large number of predictors, while the sample size can be

much smaller. For example, in a cognitive neuroscience study, Vounou et al.

(2012) used around ten thousand voxels from fMRI imaging as the response

variables for each subject, and over four hundred thousand SNPs (single-

nucleotide polymorphisms) as predictors. In comparison, the sample size

was just several hundred.

Let n denote the sample size, m the number of responses, and p the

number of predictors. We observe a pair of matrices Y and X from the

following linear model

Y = XA+ Z, (1)
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where Y is an n×m response matrix, X is an n× p design matrix, A is a

p ×m coefficient matrix that we are interested in estimating, and Z is an

unobserved n×m matrix with i.i.d. noise entries. Thus, the ith rows of Y

and X collect the measurements of the response and the predictor variables

on the ith subject, respectively. When either the number of predictors

p or the number of response variables m is large, it is hard to estimate

the coefficient matrix A accurately unless certain structural assumption is

imposed so that its intrinsic dimension is low.

In the literature, researchers have considered several important types of

structural assumptions. One is low-rankness where the rank of A is assumed

to be much smaller than its matrix dimensions p andm. Model (1) with such

a structure has been referred to as reduced-rank regression and has been

widely used in econometrics. See, for instance, Izenman (1975), Reinsel and

Velu (1998) and the references therein. The other is sparsity where a large

number of entries in the coefficient matrix are zeros. One may consider

several different types of sparsity depending on the application problem

one has in mind. If only s out of the p rows in A have non-zero entries, it is

called row sparsity. In other words, only a small subset of size s out of the

p predictors contribute to the variation of Y . Structures of this kind arise

naturally in the context of multi-task learning (Koltchinskii et al., 2011).

It can also be viewed as a leading example of group sparsity (Yuan and
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Lin, 2006), where the rows of A form natural groups. If only k out of the

m columns in A have non-zero entries, it is called column sparsity. In this

case, only k out of the m response variables are affected by the predictors

under consideration.

In this paper, we are interested in the situation where low-rankness,

row sparsity and column sparsity could be present in the coefficient matrix

simultaneously. In what follows, we refer to model (1) with these structures

as the two-way sparse reduced-rank regression model. The interest in such

a model comes from both applications and theory, and has risen signifi-

cantly in recent years. In applications such as genomics and neurosciences,

researchers can now measure a lot of response and predictor variables and

so the size of the coefficient matrix is ever increasing. Thus, imposing both

low-rankness and two-way sparsity leads to enhanced interpretability and

hence can be more attractive than simply imposing one type of structure.

For instance, Ma et al. (2014) conducted a case study of regulatory relation-

ships between different genome-wide measurements, in which the predictors

are micro-RNA measurements and the response variables are gene expres-

sion levels. The sparsity results from the fact that a relatively small number

of micro-RNAs regulated a small collection of genes under the specific ex-

periments of interest, and the low-rankness assumption is reasonable since

only a handful of regulatory programs were present. For estimating the
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coefficient matrix in this model, several algorithms have been introduced.

See, for instance, Chen et al. (2012) and Ma et al. (2014). However, to

the best of our limited knowledge, there is no theoretical guarantee on the

performance of these procedures in the high dimensional regime where the

number of predictors and/or response variables exceeds the sample size.

Main contributions The main contributions of the present paper are

two-folded. On one hand, we propose a new computationally efficient es-

timator for the coefficient matrix in (1) that could take advantage of the

potential presence of low-rankness and two-way sparsity adaptively. The

new estimator shows competitive numerical performance under a variety of

simulation settings when compared with state-of-the-art methods. We also

demonstrate how the estimation scheme can play a critical role in analyz-

ing the spatial-temporal structure in calcium imaging data. On the other

hand, we obtain new minimax estimation rates of the coefficient matrix

with respect to a large class of squared Schatten norm losses and show

that (a slight variant of) our estimator can achieve the near optimal rates

adaptively for this large collection of loss functions simultaneously when

the noise terms are homoscedastic and Gaussian.

Connection to the literature When the coefficient matrix is either

sparse or of low rank, researchers have obtained deep understanding on

how the optimal mean squared estimation/prediction error depends on the
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model parameters and on how to achieve near optimal error rates without

knowing the true rank or sparsity. See, for instance, Bunea et al. (2011) for

the low rank case, and Huang and Zhang (2010) and Lounici et al. (2011)

for the row sparse case.

In addition, researchers have performed extensive study of the case

where both low-rankness and row sparsity are present. Chen and Huang

(2012) proposed a weighted rank-constrained group Lasso approach with

two heuristic numerical algorithms and studied its fixed dimension large

sample asymptotics. Bunea et al. (2012) derived oracle inequalities and

studied the minimax rates under squared prediction error loss for this model

in the high dimensional setting. See also She (2014) and an earlier version

of the present paper (Ma and Sun, 2014).

The line of work that is closest to the present paper includes Chen

et al. (2012) and Ma et al. (2014). The main focus of these two papers

was on methodology. In comparison, the present paper not only proposes a

new method but also justifies its practical effectiveness by both numerical

and theoretical studies. From a slightly different perspective, a series of

papers have considered the problem of sparse SVD (Lee et al., 2010; Yang

et al., 2014, 2016), which can be viewed as a special case of two-way sparse

reduced-rank regression with orthogonal design.

Organization The rest of the paper is organized as follows. Section 2
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presents our new methodology for obtaining a simultaneously sparse and

low rank estimator of the coefficient matrix. Its competitive numerical

performance is demonstrated in Section 3 through both simulated and real

data examples. In Section 4, we provide finite sample upper bounds for

(a slight variant of) the proposed estimator with respect to a collection of

squared Schatten norm losses. In addition, we derive minimax lower bounds

and hence show that the proposed estimator is simultaneously adaptive

and near optimal with respect to all loss functions under consideration.

Section 5 discusses interesting related problems for future research. The

proofs of the theorems are presented in Section 6 in the supplement.

Notation For an n×p matrix X = (xij), the ith row of X is denoted by Xi∗

and the jth column X∗j. For a positive integer k, [k] denotes the index set

{1, 2, ..., k}. For any set I, |I| denotes its cardinality and Ic its complement.

For two subsets I and J of indices, we write XIJ for the |I|×|J | submatrices

formed by xij with (i, j) ∈ I × J . For conciseness, we let XI∗ = XI[p] and

X∗J = X[n]J . For any matrix X, supp(X) stands for the index set of its

nonzero rows. We denote the rank of X by rank(X), and σi(X) stands for

its ith largest singular value. For any q ∈ [1,∞), the Schatten-q norm of

X is ‖X‖sq =
(∑n∧p

i=1 σ
q
i (X)

)1/q
, and for q = ∞, ‖X‖S∞ = σ1(X). Note

that ‖X‖S2 = ‖X‖F is the Frobenius norm and ‖X‖S∞ = ‖X‖op is the

operator norm of X. For any vector a, ‖a‖ denotes its `2 norm. The `2/`1
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norm of X is defined as the `1 norm of the vector consisting of its row `2

norms: ‖X‖2,1 =
∑n

j=1 ‖Xj∗‖. If n ≥ p and X has orthonormal columns,

then we say X is an orthonormal matrix, and we write X ∈ O(n, p). We

use 1d to denote the all-one vector in Rd. For any real number a and b, set

a ∨ b = max{a, b}, a ∧ b = min{a, b} and a+ = a ∨ 0.

2. Methodology

2.1 Main Algorithm

The proposed estimation scheme, called Double Projected Penalization (DPP),

is summarized in Algorithm 1. To initialize the algorithm, we need to spec-

ify the rank r of the estimated coefficient matrix and a penalty function

ρ(· ;λ) to be used in group penalized regression. In what follows, we ex-

plain the main ideas underlying the algorithm, while the choice of penalty

and other initialization details are deferred to Sections 2.2 and 2.3.

The algorithm consists of two stages. The first stage involves steps 1–2

and the second stage steps 3–5. In either stage, one first screens the columns

of Y , then computes the r leading right singular vectors of the screened

response matrix, and finally performs a group penalized regression on the

projected data where the projection is onto the subspace spanned by the

leading right singular vectors. The purpose of the screening step is to pick

those response variables the signals of which stand out of noise. To motivate
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the projection step, we observe that if the right singular vector matrix V

of XA were known, then one could immediately reduce dimensionality by

considering the new regression problem which replaces Y and A in (1) with

their projected counterparts Y V and AV . Thus, in either stage, we first

estimate V by the r leading right singular vectors of the screened response

matrix (a further projection is involved in the second stage), and then

project the data by post-multiplying the response matrix with the estimated

right singular vector matrix. When regressing the projected responses on

X, we actually estimate AV . Note that if A has at most s nonzero rows, so

does AV . Thus, the rows of AV form natural groups and it makes sense to

induce row sparsity in our estimator of AV by performing a group penalized

regression.

We now move on to discuss the necessity of the second stage. Compar-

ing the two stages, we note that both the screening step and the estimation

of the right singular matrix V are different, but both differences are due

to the involvement of the matrix U(1). By definition, U(1) ∈ Rn×r consists

of the left singular vectors of XB(1). Since B(1) is an estimate of AV , the

column subspace of U(1) estimates the left singular subspace of XAV , or

equivalently, the left singular subspace of XA. By projecting onto U(1),

we increase the signal-to-noise ratio in the screening step. As a result, we

would be able to select more columns the signals of which might have been
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drowned in noise in the first stage. The inclusion of more signal columns of

Y would in turn contribute to the estimation accuracy of the final estima-

tor. Similarly, by pre-multiplying Ỹ (1) with U(1)U
′
(1), we further boost the

signal-to-noise ratio when estimating the right singular vector matrix V ,

and thus obtain a better estimator V(1). As to be revealed by later analysis,

the second stage is critical for achieving high estimation accuracy for A.

In an earlier version of the present paper (Ma and Sun, 2014), we consid-

ered a one-way sparse reduced rank regression model that does not assume

column sparsity in A. Compared with the earlier version, the current algo-

rithm takes advantage of the potential column sparsity by column screening

in both steps 1 and 3. As we shall show later in Section 4, even when column

sparsity is absent, our procedure could still adapt automatically to achieve

the best possible accuracy of estimation subject to some multiplicative log

factor in the low-rank and row sparse scenario.

2.2 Group Penalized Regression

The penalized regression in steps 2 and 4 of Algorithm 1 can be viewed as a

special case of linear regression with group sparsity, where each row of the

coefficient matrix is considered as a group and all groups are of the same

size r.

Penalized regression with group structure has been extensively studied.
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Algorithm 1: Estimation scheme for A via the Double Projected
Penalization

Input: Observed response matrix Y , design matrix X, rank r, noise
level σ, positive constants α, β and penalty function ρ(·;λ)
with penalty level λ.

Output: Estimated coefficient matrix Â.
1 Column screening of Y . Select columns

J(0) =
{
j : ‖Y∗j‖2 ≥ σ2(n+ α

√
n log(p ∨m))

}
.

Define Ỹ (0), where Ỹ
(0)
∗j = Y∗jI{j ∈ J(0)}.

Compute the right singular vectors of Ỹ (0), denoted by an m× r
matrix V(0).

2 Group penalized regression

B(1) = arg min
B∈Rp×r

{
‖Y V(0) −XB‖2

F/2 + ρ(B;λ)
}
,

3 Column screening of Y . Compute the left singular vectors of XB(1),
denoted by an n× r matrix U(1). Select columns

J(1) = J(0) ∪
{
j : ‖U ′(1)Y∗j‖2 ≥ βσ2(r + 2

√
3r log(p ∨m) + 6 log(p ∨m))

}
.

Define Ỹ (1), where Ỹ
(1)
∗j = Y∗jI{j ∈ J(1)}.

Compute the first r right singular vectors of U(1)U(1)
′Ỹ (1), denoted

by an m× r matrix V(1).
4 Group penalized regression

B(2) = arg min
B∈Rp×r

{
‖Y V(1) −XB‖2

F/2 + ρ(B;λ)
}
,

5 Compute the estimated coefficient matrix by Â = B(2)V(1)
′.

One of the most popular procedures is the group Lasso (Bakin, 1999; Yuan

and Lin, 2006), where the penalty function is defined by the `2/`1 matrix
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norm as follows

ρ(B;λ) = λ‖B‖2,1 = λ

p∑
j=1

‖Bj∗‖2. (2)

The theoretical properties of group Lasso have been studied in the litera-

ture, using ideas originating from the study of Lasso. Huang and Zhang

(2010) showed the upper bounds for the estimation and prediction errors

of group Lasso with proper penalty level under strong group sparsity and

group sparse eigenvalue conditions. Lounici et al. (2011) provided similar

error bounds under a group version of the restricted eigenvalue condition.

In Section 4, we will present a theoretically justified choice of the

penalty level λ for the group Lasso penalty function (2) when we have

i.i.d. Gaussian noises.

2.3 Initialization

We now discuss the initialization of Algorithm 1. Throughout, we assume

the noise standard deviation σ is known. Otherwise, we can estimate it by

σ̂ = median(σ(Y ))/
√
n ∨m, (3)

where σ(Y ) is the collection of all nonzero singular values of Y . If the true

rank of A is not known, we propose to apply the estimator in Bunea et al.
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Algorithm 2: Rank Estimation

Input: Response matrix Y , design matrix X, noise level σ and a
threshold level η.

Output: Estimated rank r̂, initial matrix V(0).
1 Compute P = XM−X ′, where M = X ′X and M− its

Moore–Penrose pseudo-inverse.
2 Compute the singular values of PY and select

r̂ = max {j : σj(PY ) ≥ ση} .

(2011), which is summarized in Algorithm 2. The user specified parameter

can be selected as

η =
√

2m+
√

2(n ∧ p), (4)

which was suggested by Bunea et al. (2012) for Gaussian data.

In practice, we may also select the rank based on cross validation. Sup-

pose the data is split into training and test samples. For any given value

of r ∈ [m ∧ p], we may run Algorithm 1 using only the training sample,

and the resulting Â is then used to calculate the prediction error on the

test sample. Thus, we can select the value of r that leads to the smallest

prediction error on the test sample, or the smallest average prediction error

if k-fold cross validation is used.
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3. Numerical Study

3.1 Simulation

In this part, we compare the proposed DPP method, i.e. Algorithm 1, with

the thresholding SVD method (TSVD) in Ma et al. (2014) and the exclu-

sive extraction algorithm (EEA) in Chen et al. (2012). For fair comparison,

equations (3)–(4) and Algorithm 2 were applied to estimate the noise vari-

ance and the rank of the coefficient matrix for all methods in all simulation

settings.

Comparison under different model parameters We first compare

these methods under different design matrices, ranks and sparsity levels. To

this end, we borrow several simulation settings from Bunea et al. (2012), but

also add columns of pure noises in the response matrices to induce two-way

sparsity. The rows of the design matrix X are i.i.d. random vectors sampled

from a multivariate Gaussian distribution with mean zero and covariance

matrix Σ, where Σij = ρ|i−j|. The coefficient matrix A ∈ Rp×m has the form

A =

A1 0

0 0

 =

bB0B1 0

0 0


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with b > 0, B0 ∈ Rs×r and B1 ∈ Rr×k, where all entries in B0 and B1 are

filled with i.i.d. random numbers from N(0, 1). The noise matrix Z ∈ Rn×m

has i.i.d. N(0, σ2) entries. The following settings are considered with σ = 1

and ρ = 0.1 or 0.9:

• n = 30, m = 50, p = 100, s = 15, k = 10, r = 2, b = 0.5 or 1;

• n = 100, m = 50, p = 25, s = 15, k = 25, r = 5, b = 0.2 or 0.4.

Large values of b correspond to large signal-to-noise ratios.

We compare the following five estimators derived from the three meth-

ods. The first two estimators are computed by Algorithm 1 with α = 2
√

3,

β = 1 and two possible choices of penalty level λ. The one with an es-

timated universal penalty level λuniv = σ̂
√

2 log(p)/n is denoted by DPP,

while the estimator DPP.cv selects a penalty level λ from the set {2i/2λuniv :

i = −5, . . . , 4} via 5-fold cross validation. The third is the TSVD estimator

which was implemented by the R package “tsvd” (version 1.3) with the

default penalization option “BICtype=2”. The last two are EEA and its

iterative extension, denoted by iEEA.

Fig. 1 and Fig. 2 show the boxplots of the prediction errors, estimation

errors and sizes of selected models based on 50 replications in each set-

ting. The red lines indicate the true model sizes (the numbers of nonzero

rows/columns). The estimated ranks for each simulation setting are re-
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Figure 1: Performance of five methods: prediction errors, estimation er-
rors and sizes of selected models across 50 replications. Sample size
n = 30, model size m = 50, p = 100, s = |supp(A)| = 15, k =
|supp(A′)| = 10 and rank r = 2. The four blocks in each plot are for
(ρ, b) = (0.1, 0.5), (0.1, 1), (0.9, 0.5), (0.9, 1), respectively.
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Figure 2: Performance of five methods: prediction errors, estimation er-
rors and sizes of selected models across 50 replications. Sample size
n = 100, model size m = 50, p = 25, s = |supp(A)| = 15, k =
|supp(A′)| = 25 and rank r = 5. The four blocks in each plot are for
(ρ, b) = (0.1, 0.2), (0.1, 0.4), (0.9, 0.2), (0.9, 0.4), respectively.
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Table 1: The estimated ranks for all simulation settings.

Dimensions (n,m, p, s, k, r) b ρ = 0.1 ρ = 0.9

(30,50,100,15,10,2)
0.5 1.92± 0.27 1.54± 0.5
1 2± 0 2± 0

(100,50,25,15,25,5)
0.2 4.74± 0.44 3.16± 0.55
0.4 5± 0 4.56± 0.5

ported in Table 1. It is noticed that DPP.cv has the best performance for

almost all cases considered, while DPP with the estimated universal penalty

level tends to choose a smaller model with slightly larger estimation errors.

In some settings, DPP.cv was able to reduce the estimation errors by up to

40% when compared to TSVD, EEA and iEEA. Note that when comparing

prediction errors, the quantity that makes most sense is the excessive error

an estimator makes in addition to the oracle error that one would make

even when the true coefficient matrix is given. In the current setting, the

(normalized) oracle error is 1. In terms of the excessive prediction error, it

is observed that the prediction accuracy of DPP.cv outperformed the other

methods by a similar percentage. Additionally, it is worth noting that the

proposed method tends to choose more rows than the true model, while the

column selection, relying on the screening of the columns of U ′Y , is more

accurate. This is somewhat expected as group Lasso tends to over-select

variables when cross validation is deployed for choosing tuning parameter

values.
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Comparison under different noise distributions We now compare

the performance of these methods on non-Gaussian data. To this end, we

consider three different noise distributions:
√

3/5t5,
√

4/5t10 and 3 Uni-

form (the sum of three uniform [−1, 1] random variables). Here, tν stands

for the t-distribution with ν degrees of freedom. We note that all three

distributions have been normalized to have unit variance. Fig. 3 shows the

simulation results for the second setting with ρ = 0.1, b = 0.2 and for all

three noise distributions along with the standard normal error. It shows

that our methods, esp. DPP.cv, preserve competitive performance even for

non-Gaussian data. Moreover, when compared with the corresponding per-

formance measures on Gaussian data (the first block of boxplots), we see

that all the estimators were relatively robust to the noise distributions,

though their performance (with the exception of TSVD) did degrade as the

tail of the noise distribution gets heavier.

Performance under heteroscedastic noises Although the proposed

method is designed under the model that the responses have equal variances,

we test the robustness of our method for heteroscedastic cases. In what

follows, the noise matrix Z ∈ Rn×m has independent normal entries with

mean zero and variance σ2
j for the j-th column, where σ2

j is selected from

a uniform distribution U [ 2
ω+1

, 2ω
ω+1

] with four choices of ω = 1, 2, 5, 10. In
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Figure 3: Performance of five methods on non-Gaussian data. Sample size
n = 100, model size m = 50, p = 25, s = |supp(A)| = 15, k = |supp(A′)| =
25, rank r = 5, ρ = 0.1 and b = 0.2. The four blocks in each plot are
for different noise distributions: standard normal,

√
3/5t5,

√
4/5t10 and 3

Uniform (the sum of three uniform [−1, 1] random variables).
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this setting, ω is the ratio of the largest possible variance over the smallest

one. When ω = 1, this becomes the case of equal variance as above (the

second setting with ρ = 0.1, b = 0.2). When ω is getting larger, the noise

variance varies among columns, while the average noise variance remains 1.

In Fig. 4, we report the prediction, estimation and selection performance

of the proposed DPP method for different ω’s. When heteroscedasticity

occurs, our approach selected more columns than and comparable numbers

of rows to the homoscedastic case. The prediction and estimation errors

were not significantly affected.

3.2 In vivo Calcium Imaging Data

Calcium imaging has become an increasingly important tool in neuroscience

to track the activity of neuronal populations by recording the dynamics of

the time-varying fluorescence of the neurons (Akerboom et al., 2012; Chen

et al., 2013). When a neuron fires an electrical action potential (spike),

calcium will enter the cell and change its fluorescent properties by attach-

ing to genetically encoded calcium indicators. By recording the movies of

fluorescence activities, researchers hope to identify and demix the regions of

interest (ROIs) as well as extract spike traces (Pnevmatikakis et al., 2014;

Haeffele et al., 2014).

Following the spatiotemporal model in Pnevmatikakis et al. (2014),
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Figure 4: Performance of the proposed DPP method on heteroscedastic
data. Sample size n = 100, model size m = 50, p = 25, s = |supp(A)| = 15,
k = |supp(A′)| = 25, rank r = 5, ρ = 0.1 and b = 0.2. The four boxplots in
each plot are for ω = 1, 2, 5, 10, respectively.

suppose an l1 × l2 area (2d imaging plane of an original 3d volume) con-

taining K neurons (possibly overlapping) is monitored for T time frames.

Here, K is typically much smaller compared to l1 × l2 and T . Let ci =

(ci(1), · · · , ci(T ))′ ∈ RT be the calcium activity and ωi ∈ Rm (m = l1 × l2)

be the spatial footprint (stacked by the monitored area) of the ith neuron.
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Then the fluorescence intensity observed at time t can be modeled as

yt =
K∑
i=1

ωici(t) + zt, 1 ≤ t ≤ T,

where zt
iid∼ N(0, σ2Im) is the noise vector at time t. In matrix notations,

Y = CΩ + Z,

where Y = (y1, · · · , yT )′ ∈ RT×m,Ω = (ω1, · · · , ωK)′ ∈ RK×m, C = (c1, · · · , cK) ∈

RT×K , Z = (z1, · · · , zT )′ ∈ RT×m. Let si = (si(1), · · · , si(T ))′ ∈ RT be the

spike trace of the ith neuron. Then the calcium activity can be characterized

by a simple first order autoregressive model,

ci(t) = γci(t− 1) + si(t), 1 ≤ t ≤ T,

or equivalently (ci(0) = 0 by convention), S = GC, where S = (s1, · · · , sK) ∈

RT×K and

G =



1 0 · · · 0

−γ 1
. . .

...

...
. . . . . . 0

0 · · · −γ 1


∈ RT×T .
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In this way,

Y = G−1SΩ + Z = XA+ Z (5)

where A = SΩ is the spatiotemporal convolution matrix and X = G−1

is a known design matrix. The support of Ω is the location of the neu-

rons and the support of S represents the time frames when the neurons

fire. Because the number of neurons in the monitored area is small and the

neurons do not fire very frequently, Ω is approximately row sparse and S

is approximately column sparse, which together imply that A is two-way

sparse (also low-rank since the rank is no greater than the number of neu-

rons K). Therefore, the generative model (5) can be viewed as a special

case of model (1) with n = p = T and m = l1 × l2. To recover Ω and S,

we suggest first estimating A by the proposed algorithm and then running

a nonnegative matrix factorization (NMF) on Â to obtain Ω̂ and Ŝ. Pnev-

matikakis et al. (2014) proposed an alternating l1 minimization strategy to

estimate Ω and S but no theoretical guarantee has been established for such

heuristic.

The calcium imaging data (n = p = T = 559, m = 135 × 131) we use

here is taken in vivo from the primary auditory cortex of a mouse with

genetically encoded calcium indicator GCaMP5 (Akerboom et al., 2012).

Following Vogelstein et al. (2010), γ is set at γ = 1− 1/(frame rate).
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Figure 5: Application to in vivo calcium imaging data. First row: manu-
ally segmented regions of neurons. Second row: heat maps of the recovered
spatial components by Algorithm 1. Third row: estimated spike trace by
Algorithm 1. Fourth row: heat maps of the corresponding spatial compo-
nents recovered by the method in Pnevmatikakis et al. (2014). Fifth row:
estimated spike trace by the method in Pnevmatikakis et al. (2014). In the
third row and the fifth row, the spatial components have been rescaled to
have the same `2 norms.
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We report here four most significant neurons to demonstrate the effective-

ness of the proposed method as illustrated in Figure 5. For comparison,

we have also included the best matching findings by the method in Pnev-

matikakis et al. (2014) and its matlab implementation Giovannucci et al.

(2017). In Figure 5, the first row shows the manually segmented regions of

the neurons from the raw dataset, which can be approximately regarded as

the true support of the spatial component Ω. The first neuron consists of

a cell body with a dendritic branch and it heavily overlaps with the second

neuron, making manual segmentation very challenging. The second row

displays the heat maps of the recovered neurons by the proposed approach

and they match the manual segmentation very well. The third row of Fig-

ure 5 shows the estimated spike traces by our method. The fourth and

the fifth rows show the corresponding components found by the method

proposed in Pnevmatikakis et al. (2014). These estimates are in general

sparser than those obtained by Algorithm 1. However, they fail to recover

the dendritic branch in the top-left subplot. Indeed none of the spatial com-

ponents extracted by the method in Pnevmatikakis et al. (2014) captured

this important structure in our experiment.
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4. Theoretical Properties

In this section, we present theoretical results for a slight variant of the pro-

posed estimation scheme when the noise matrix Z in (1) has i.i.d. Gaussian

entries. Their proofs are provided in the supplementary materials.

4.1 Minimax Upper Bounds

To facilitate the discussion, we put the estimation problem in a decision–

theoretic framework. We are interested in estimating the coefficient matrix

A in model (1) where A is both two-way sparse and of low rank, and Z

has i.i.d. N(0, σ2) entries. Thus, we assume that A belongs to the following

parameter space

Θ(s, k, r, d, γ) =
{
A ∈ Rp×m : rank(A) = r, γd ≥ σ1(A) ≥ · · · ≥ σr(A) > d > 0,

|supp(A)| ≤ s, |supp(A′)| ≤ k
}
, (6)

where supp(M) is the index set of nonzero rows in matrix M . Here and

after, we treat γ as an absolute positive constant. To measure the accuracy

of any estimator Ã, we consider the following class of squared Schatten

norm losses:

Lq(A, Ã) = ‖Ã− A‖2
sq , q ∈ [1, 2]. (7)
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For simplicity, we assume the noise variance σ2 is known. In addition,

we treat the design matrix X as fixed and the only source of randomness

is the noise matrix Z. In what follows, we present high probability error

bounds for (a slight variant of) the DPP estimator where independent sam-

ples are generated and used in steps 1–4. We believe the deviation from

Algorithm 1 is an artifact of the proof technique. Numerical studies (not

reported) showed that the algorithm produces comparable results whether

independent samples are used or a single sample is used repeatedly.

Independent sample generation Note that we can generate the de-

sired independent samples from the observed (X, Y ) when the noises are

homoscedastic and Gaussian. Indeed, when the entries of the noise matrix

Z are i.i.d. N(0, σ2), we can first generate an independent copy Z̃ so that

all entries in Z + Z̃ and Z − Z̃ are mutually independent and all follow

the same Gaussian distribution N(0, 2σ2). Thus, Y + Z̃ and Y − Z̃ are

independent, following model (1) with i.i.d. N(0, 2σ2) noises. Employing

this trick twice, we can generate four independent copies of responses

Y(i) = XA+ Z(i), i = 0, 1, 2, 3,

where Z(i) has i.i.d. N(0, σ̃2) entries with σ̃ = 2σ. In the rest of this paper,

when we mention Algorithm 1, we refer to the procedure with independent
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samples Y(i) used in the (i+1)th step, i = 0, 1, 2, 3, where the noise variance

is σ̃2 = 4σ2.

The design matrix Without of loss of generality, we assume X is of full

rank. Otherwise, we can always perform the following operation to reduce

to the full rank case. If rank(X) = q < n ∧ p and let O ∈ Rn×q be its left

singular vector matrix. Setting Ỹ = O′Y and X̃ = O′X, we obtain that Ỹ

and X̃ satisfy model (1) with the same coefficient matrix A, i.i.d. N(0, σ2)

noises and a design matrix of full rank.

We write the singular value decomposition of XA as

XA = U∆V ′ (8)

with U ∈ O(n, r), V ∈ O(m, r) and ∆ = diag(δ1, . . . , δr) collects the non-

zero singular values of XA. To introduce appropriate assumptions on X,

we first make the following definition.

Definition 1. For any k ∈ [p], the `-sparse Riesz constants κ±(`) of X are

defined as

κ2
−(`;X) = min

B⊂[p],|B|=`
σmin(X ′∗BX∗B), κ2

+(`;X) = max
B⊂[p],|B|=`

σmax(X ′∗BX∗B)

(9)
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By definition, if the `-sparse Riesz constants of X are κ±(`;X), then for

any l ∈ [`], the l-sparse Riesz constants κ±(l;X) of X satisfy κ−(`;X) ≤

κ−(l;X) ≤ κ+(l;X) ≤ κ+(`;X).

To establish upper bounds for the proposed estimator, for some integer

s∗ depending only on s, we require the s∗-sparse Riesz constants of X to

satisfy the following condition.

Condition 1 (Sparse eigenvalue condition). There exist positive constants

s∗ and c∗ and K ≥ 1, such that the s∗-sparse Riesz constants satisfy K−1 ≤

κ−(s∗;X) ≤ κ+(s∗;X) ≤ K and

κ2
+(s∗;X)− κ2

−(2s∗;X)

κ2
−(s∗;X)

< c∗.

We do not put condition on κ−(2s∗;X). Following the above definition

and discussion, we know that 0 ≤ κ−(2s∗;X) ≤ κ−(s∗;X) always holds.

The following theorem gives high probability upper bounds, provided

that the design matrix satisfies mild regularity conditions and the penalty

level is properly chosen.

Theorem 1. Let A ∈ Θ(s, k, r, d, γ) where s ≥ r ≥ 1. Set the penalty level

λ = 4σmax
j≤p
‖X∗j‖(

√
r +

√
4 log(p ∨m)) (10)
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in steps 2 and 4 of Algorithm 1 with the group Lasso penalty (2). Let

α = 2
√

3 and β = 1.1 in Algorithm 1. Suppose that Condition 1 holds with

an absolute constant K > 1 for all X and positive constants s∗, c∗ satisfying

s∗ ≥ 2s, 6c∗ ≤
√
s∗/s− 1, (11)

and that there exist sufficiently small constants c0 > 0 and c1 > 0 such that

2σ

d

{√
n+
√
k + 2

√
log(p ∨m) +

√
k
√
n log(p ∨m)

}
≤ c0,

√
sλ/d ≤ c1.

(12)

Then uniformly over Θ(s, k, r, d, γ) in (6), with probability at least 1−3(p∨

m)−1, the output Â of Algorithm 1 satisfies

Lq(A, Â) ≤ Cσ2r2/q−1(k + s)(r + log(p ∨m)), for all q ∈ [1, 2]

where C is a constant depending only on κ±(s∗), γ, c∗, c0 and c1.

When we specialize to the case of simultaneously low-rank and row-

sparse setting, condition (12) is stronger than some related condition in the

literature, e.g. that in Bunea et al. (2012), for establishing minimax rates.

However, we deal with the theoretical guarantee of an actual estimator that

we compute by Algorithm 1 while Bunea et al. (2012) was concerned with
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the global optimum of a non-convex program which is not always attainable

by heuristic algorithms. So they are not directly comparable.

4.2 Minimax Lower Bounds

To assess the tightness of the error bounds in Theorem 1, we now provide

lower bounds on minimax risk for estimating A under loss functions in (7).

Theorem 2. Let the observed X, Y be generated by (1) with Z having

i.i.d. N(0, σ2) entries. Suppose that the coefficient matrix A ∈ Θ(s, k, r, d, γ)

for some k ≥ 2r and s ≥ 2r and that the (2s)-sparse Riesz constants of the

design matrix X satisfy K−1 ≤ κ−(2s) ≤ κ+(2s) ≤ K for some absolute

constant K > 1. Then there exists a positive constant c depending only on

γ and κ+(2s) such that the minimax risk for estimating A satisfies

inf
Â

sup
Θ

ELq(A, Â) ≥ cσ2

{(
r2/q−1 d

2

σ2

)
∧
[
r2/q(s+ k) + r2/q−1

(
s log

ep

s
+ k log

em

k

)]}
,

(13)

for all q ∈ [1, 2].

Remark 1. Comparing Theorem 1 and Theorem 2, we find that they match

up to a multiplicative log factor in general and up to a constant multiplier

when r is no smaller than log(p ∨ m) in order of magnitude. Moreover,

Theorem 1 imposes an additional condition on the minimum singular value
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of A in (12). Therefore, under the conditions of Theorem 1, Algorithm 1

attains nearly optimal convergence rates adaptively for all losses in (7).

As we have mentioned earlier, the one-way sparse reduced rank regres-

sion model considered in the literature, such as Chen and Huang (2012),

Bunea et al. (2012), She (2014) and Ma and Sun (2014), does not consider

column sparsity in A and can be viewed as a special case of model (1) with

k = m. In view of the foregoing discussion, our estimator is also adaptive

to this special case while retaining the ability of fully exploiting potential

column sparsity.

5. Conclusion and Discussion

In this paper, we have proposed a new Double Projected Penalization

(DPP) estimator for the coefficient matrix in two-way sparse reduced-rank

regression. The model is well motivated by massive datasets arising in a

number of application fields, especially genomics and neuroimaging. The

proposed estimator is fast to compute and demonstrates competitive per-

formance when compared with existing methods in simulation studies. In

addition, we have illustrated its potential use in neuroscience by applying

it to the analysis of a calcium imaging dataset and it compared favorably

with some state-of-the-art method. Last but not least, we have further jus-

tified its nice empirical performance by a decision-theoretic analysis when
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the data is Gaussian.

In terms of the DPP estimator, an interesting problem to be studied

in future is to establish high probability error bounds when the data is not

Gaussian. Since one cannot easily generate independent samples in such

cases, we anticipate that different proof techniques will be needed to achieve

this goal. In addition, it is worth noting that steps 3–4 of Algorithm 1 can

be iterated till certain convergence criterion is met. Thus, we could also

define an iterative projected penalization estimator. However, based on

simulation results not reported here, we did not find significant performance

gain by employing such an iterative scheme, which is more costly in terms

of computation. Furthermore, it is of interest to investigate what one would

be able to achieve in the low signal-to-noise ratio scenario when (12) fails

to hold.

Another potential direction for future research is to consider certain

nonlinear extensions of the model. When the response is univariate, re-

searchers have considered sparse sliced inverse regression (Li and Nacht-

sheim, 2012; Lin et al., 2015). It would be of great interest to conduct

analogous investigations for multiple responses where both low-rankness

and sparsity are involved.
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Supplementary Document

The supplementary document provides all technical proofs.
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We provide the technical proofs for all theorems in this supplementary

document.

6. Proofs

6.1 Proof of Theorem 1

We analyze each step of Algorithm 1 to prove Theorem 1. Throughout the

proof, some useful lemmas on tail probabilities will be stated without proof.

Analysis of V(0). We first study the property of the right singular vector

matrix V (0) obtained in the column-thresholding step of Stage I. For 0 <

a− < 1 < a+, define

J±(0) =
{
j : ‖XA∗j‖2 ≥ σ̃2a∓α

√
n log(p ∨m))

}
.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



2

More specifically, let a− = 0.1 and a+ = 2 in the proof. Recall that α =
√

12

and σ̃ = 2σ.

Lemma 1. [Stage I column selection] With probabbility at least 1 − 4(p ∨

m)−2,

J−(0) ⊂ J(0) ⊂ J+
(0)

Proof of Lemma 1. Due to Gaussianity, ‖Y (0)
∗j ‖2/σ̃2 follows a non-central

χ2 distribution with n degrees of freedom and noncentrality parameter

‖XA∗j‖2/σ̃2. By Lemma 2,

P (J−(0) 6⊂ J(0)) ≤
∑
j∈J−

(0)

P
{
‖Y (0)
∗j ‖2 < σ̃2(n+ α

√
n log(p ∨m))

}
≤ mP

{
‖Y (0)
∗j ‖2 < σ̃2n+ ‖XA∗j‖2 − σ̃2α(a+ − 1)

√
n log(p ∨m)

∣∣∣ j ∈ J−(0)

}
≤ 2m exp

(
− α2(a+ − 1)2n log(p ∨m)

4(
√
n+ (a+α)1/2(n log(p ∨m))1/4)2

)
≤ 2(p ∨m)−2.

Similarly, it is proved that J(0) ⊂ J+
(0) holds with probability at least 1 −

2(p ∨m)−2.

Lemma 2. Let X follow a non-central chi-square distribution χ2
n(λ) with
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n degrees of freedom and non-centrality parameter λ. Then

P
{
X ≥ (n+ λ) + 2(

√
n+
√
λ)s
}
≤
(

1 +
1√
2s

)
exp(−s2), if 0 ≤ s ≤ 1

2
n9/16,

P
{
X ≤ (n+ λ)− 2(

√
n+
√
λ)s
}
≤ 2 exp(−s2), if 0 ≤ s ≤ 1

2
n1/2.

Lemma 3. Let X be an n×m matrix with iid standard Gaussian entries.

Then for any t > 0,

P
{
‖X‖ >

√
n+
√
m+ t

}
≤ exp(−t2/2).

Lemma 4. [Stage I subspace estimation] With probability at least 1−3(p∨

m)−2,

‖V V ′ − V(0)V(0)
′‖ ≤ C1σ̃

d

{√
n+
√
k + 2

√
log(p ∨m) +

√
k
√
n log(p ∨m)

}
,

‖V V ′ − V(0)V(0)
′‖F ≤ C2σ̃

d

{√
r(
√
n+
√
k + 2

√
log(p ∨m)) +

√
k
√
n log(p ∨m)

}
.

Proof of Lemma 4. We study the upper bounds in the event where J−(0) ⊂

J(0) ⊂ J+
(0) holds. We may reorder the columns of matrices such that XA−

Ỹ (0) is of the following form

XA− Ỹ (0) =

(
−Z∗J(0) UDV ′∗Jc

(0)

)
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Lemma 3 provides an upper bound for ‖Z∗J(0)‖ as follows

‖Z∗J(0)‖ ≤ σ̃(
√
n+

√
J(0) + 2

√
log(p ∨m)) ≤ σ̃(

√
n+
√
k + 2

√
log(p ∨m))

with probability at least 1− (p∨m)2, since |J(0)| ≤ |J+
(0)| = k. Moreover, it

holds that, in the event of J−(0) ⊂ J(0),

‖U∆V ′∗Jc
(0)
‖2 ≤ ‖∆V ′∗(J−

(0)
)c
‖2
F ≤ σ̃2a−αk

√
n log(p ∨m).

Thus, we have

‖XA− Ỹ (0)‖ ≤ σ̃(
√
n+
√
k + 2

√
log(p ∨m)) + σ̃

√
a−αk

√
n log(p ∨m)

and the desired results then follows from the sin θ theorem.

Analysis of U(1).

Lemma 5. [Stage I Regression] Under the condition of Theorem 1, there

exists a constant C depending only on κ±(s∗), c∗ and c0, such that with

probability at least 1− (p ∨m)−1,

‖U(1)U
′
(1) − UU ′‖F ≤ C

√
sλ/d.
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Proof of Lemma 5. Let U∗ ∈ Rn×r be the left singular vector matrix of

XAV(0) = UDV ′V(0). Under condition (12), V ′V(0) is an r× r matrix of full

rank, and so the column space of U∗ is the same as the column space of U ;

i.e., U∗U
′
∗ = UU ′. By Wedin’s sin θ Theorem (Wedin, 1972),

‖U(1)U
′
(1) − UU ′‖F = ‖U(1)U

′
(1) − U∗U ′∗‖F ≤

‖XB(1) −XAV(0)‖F
σr(XAV(0))

,

where σr(XAV(0)) is the rth singular value of XAV(0).

Since for any unit vector x,

‖V ′V(0)x‖2 = x′V ′(0)V V
′V(0)x

= 1− x′V ′(0)(V V
′ − V(0)V

′
(0))V(0)x

≥ 1− ‖V V ′ − V(0)V
′

(0)‖.

Thus, we have σ2
r(V

′V(0)) = min‖x‖=1 ‖V ′V(0)x‖2 ≥ 1 − ‖V V ′ − V(0)V
′

(0)‖.

When c0 is small enough, ‖V V ′−V(0)V
′

(0)‖ is sufficiently small by Lemma 4.

So there exists a constant c′ such that σr(V
′V(0)) > c′. Note that XAV(0) =

XAV V ′V(0), and so

σr(XAV(0)) ≥ σr(XAV )σr(V
′V(0)) ≥ δrc

′,

where the last inequality holds under condition (12) since σr(XAV ) =
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σr(XA) = δr. Further note that

‖XB(1) −XAV(0)‖F ≤ κ+(2s)‖B(1) − AV(0)‖F ≤ κ+(s∗)‖B(1) − AV(0)‖F

and that δr ≥ κ−(s)σr(A) ≥ κ−(s∗)d, the desired result then follows from

Part (ii) of Theorem 3 with η = 1/(p ∨m).

Analysis of V(1). Recall

J(1) = J(0) ∪
{
j : ‖U(1)

′Y
(2)
∗j ‖2 ≥ βσ̃2(r + 2

√
3r log(p ∨m) + 6 log(p ∨m))

}
.

For b− < b+, define

J±(1) =
{
j : ‖XA∗j‖2 ≥ σ̃2b∓(r + 2

√
3r log(p ∨m) + 6 log(p ∨m))

}
.

More specifically, let b+ = 4.5 and b− = 0.002 in the proof. Recall that

β = 1.1.

Lemma 6. Let X follow a chi-square distribution χ2
n with n degrees of

freedom. Then for any t > 0

P (X > n+ 2
√
nt+ 2t2) < exp(−t2)

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



7

Lemma 7. [Stage II column selection] Assume ‖U(1)U
′
(1) − UU ′‖ < c for

some small positive constant c < 0.05. With probabbility at least 1− 2(p ∨

m)−2,

J−(1) ⊂ J(1) ⊂ J+
(1)

Proof of Lemma 7. For j ∈ J−(1) \ J(0),

‖U ′(1)Y
(2)
∗j ‖ = ‖U ′(1)(UDV

′
∗j + Z

(2)
∗j )‖

≥ ‖U ′(1)UDV
′
∗j‖ − ‖U ′(1)Z

(2)
∗j ‖

The first term is

‖U ′(1)UDV
′
∗j‖2 ≥ ‖XA∗j‖2(1− ‖U(1)U

′
(1) − UU ′‖) ≥ ‖XA∗j‖2(1− c)

≥ σ̃2(1− c)b+(r + 2
√

3r log(p ∨m) + 6 log(p ∨m))

Since U ′(1)Z
(2)
∗j ∼ N(0, σ̃2Ir), it follows from Lemma 6 that

‖U ′(1)Z
(2)
∗j ‖2 ≤ σ̃2(r + 2

√
3r log(p ∨m) + 6 log(p ∨m)),
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with probability at least 1− (p ∨m)−3. Thus, in the same event, we have

‖U ′(1)Y
(2)
∗j ‖ ≥ (

√
(1− c)b+ − 1)σ̃

{
r + 2

√
3r log(p ∨m) + 6 log(p ∨m)

}1/2

≥ β1/2σ̃(r + 2
√

3r log(p ∨m) + 6 log(p ∨m))1/2,

due to (
√

(1− c)b+ − 1)2 > (
√

0.95× 4.5− 1)2 > 1.1 = β. Hence, we have

j ∈ J(1). So it holds that J−(1) ⊂ J(1) with probability at least 1− (p∨m)−2.

Similarly, we have J(1) ⊂ J+
(1) with probability at least 1 − (p ∨m)−2, due

to (
√

(1 + c)b− + 1)2 < 1.1 = β.

Lemma 8. [Stage II subspace estimation] Suppose ‖U(1)U
′
(1) − UU ′‖F < c′1

for a sufficiently small positive constant c′1. Then there exists a constant

C depending only on κ±(s∗), γ and c′1 such that with probability at least

1− (p ∨m)−1,

‖V(1)V
′

(1) − V V ′‖F ≤ Cσ
√

(k + s)(r + log(p ∨m))/d

Proof of Lemma 8.

‖V(1)V
′

(1) − V V ′‖F ≤
‖U(1)U

′
(1)Ỹ

(1) − U(1)U
′
(1)XA‖F

σr(U(1)U
′
(1)XA)

. (14)
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We first upper bound the numerator

‖U(1)U
′
(1)Ỹ

(1) − U(1)U
′
(1)XA‖F

≤ ‖U ′(1)(Ỹ
(1)
∗J(1) −XA∗J(1))‖F + ‖U(1)U

′
(1)XA∗Jc

(1)
‖F

≤ ‖U ′(1)(Ỹ
(1)

∗J(1) −XA∗J(1))‖F + ‖(U(1)U
′
(1) − UU ′)XA∗Jc

(1)
‖F + ‖UU ′XA∗(J−

(1)
)c‖F

≤ σ̃(
√
rk +

√
log(p ∨m)) + d‖(U(1)U

′
(1) − UU ′‖+ σ̃

√
k

√
b+(r + 2

√
3r log(p ∨m) + 6 log(p ∨m))

≤ Cσ
√

(k + s)(r + log(p ∨m)) (15)

To lower bound the denominator, we apply Weyl’s theorem to obtain

σr(U(1)U
′
(1)XA) ≥ σr(UU

′XA)− ‖U(1)U
′
(1)XA− UU ′XA‖op

≥ δr − ‖U(1)U
′
(1) − UU ′‖op‖XA‖op.

Note that δr ≥ κ−(s∗)d, ‖XA‖op ≤ κ+(s∗)γd and that ‖U(1)U
′
(1)−UU ′‖op ≤

‖U(1)U
′
(1) − UU ′‖F ≤ c′1. Thus, for sufficiently small value of c′1, we obtain

σr(U(1)U
′
(1)XA) ≥ C−1d, (16)

where C > 0 is a constant depending only on κ±(s∗), γ and c′1. Combining

(14) – (16), we complete the proof.

Proof of Theorem 1.
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Proof. By the definition of Â, we have

‖Â− A‖F = ‖B(2)V
′

(1) − AV V ′‖F

≤ ‖B(2)V
′

(1) − AV(1)V
′

(1)‖F + ‖AV(1)V
′

(1) − AV V ′‖F

≤ ‖V(1)‖op‖B(2) − AV(1)‖F + ‖A‖op‖V(1)V
′

(1) − V V ′‖F .

Assembling the bounds in all lemmas,

‖Â− A‖2
F . σ2(k + s)(r + log(p ∨m)) (17)

The desired upper bound on other Schatten norm losses is a consequence

of (17) and the inequality ‖Â−A‖2
sq ≤ (2r)2/q−1‖Â−A‖2

F for all q ∈ [1, 2].

6.2 Proof of Theorem 2

For any probability distributions P andQ, letD(P ||Q) denote the Kullback–

Leibler divergence of Q from P . For any subset K of Rm×n, the volume

of K is vol(K) =
∫
K

dµ where dµ is the usual Lebesgue measure on Rm×n

by taking the product measure of the Lebesgue measures of individual en-

tries. With these definitions, we state the following variant of Fano’s lemma

(Ibragimov and Has’minskii, 1981; Birgé, 1983; Tsybakov, 2009). This ver-

sion has been established as Proposition 1 in Ma and Wu (2015). It will be
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used repeatedly in the proof of the lower bounds. Throughout the proof,

we denote κ+(2s) by κ+.

Proposition 1. Let (Θ, ρ) be a metric space and {Pθ : θ ∈ Θ} a collection of

probability measures. For any totally bounded T ⊂ Θ, denote by M(T, ρ, ε)

the ε-packing number of T with respect to ρ, i.e., the maximal number of

points in T whose pairwise minimum distance in ρ is at least ε. Define the

Kullback-Leibler diameter of T by

dKL(T ) , sup
θ,θ′∈T

D(Pθ ||Pθ′). (18)

Then

inf
θ̂

sup
θ∈Θ

Eθ[ρ2(θ̂(X), θ)] ≥ sup
T⊂Θ

sup
ε>0

ε2

4

(
1− dKL(T ) + log 2

logM(T, ρ, ε)

)
. (19)

In particular, if Θ ⊂ Rd and ‖·‖ is some norm on Rd, then

inf
θ̂

sup
θ∈Θ

Eθ[‖θ̂(X)− θ‖2] ≥ sup
T⊂Θ

sup
ε>0

ε2

4

1− dKL(T ) + log 2

log vol(T )
vol(B‖·‖(ε))

 . (20)

We first prove an oracle version of the lower bound. One can think of

it as an lower bound for the minimax risk when we know that the nonzero

entries of the coefficient matrix A ∈ Rp×m are restricted to the top–left s×r

block (or the top left r × k block).
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Lemma 9. Let Θ0(s, r, r, d, γ) ⊂ Θ(s, k, r, d, γ) be the sub-collection of all

matrices whose nonzero entries are in the top left s × r block. Suppose

σ = 1. There exists a positive constant c that depends only on κ+ and γ,

such that for any q ∈ [1, 2], the minimax risk for estimating A over Θ0

satisfies

inf
Â

sup
Θ0

ELq(A, Â) ≥ c
[
(r2/q−1d2) ∧ (r2/qs)

]
.

Similarly, let Θ′0(r, k, r, d, γ) ⊂ Θ(s, k, r, d, γ) be the sub-collection of all

matrices whose nonzero entries are in the top left r × k block. Under the

same conditions, we have

inf
Â

sup
Θ′0

ELq(A, Â) ≥ c
[
(r2/q−1d2) ∧ (r2/qk)

]
.

Proof. In what follows, we focus on proving the first claim and the second

claim follows from essentially the same argument.

By a simple sufficiency argument, we can reduce to model (1) with

p = s and m = r, which we assume in the rest of this proof without loss of

generality.

Let A0 = diag(1, . . . , 1) ∈ Rs×r. Moreover, for any δ and any q ∈ [1, 2],

let BSq(δ) = {A ∈ Rs×r : ‖A‖sq ≤ δ} denote the Schatten-q ball with radius
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δ in Rs×r. For some constant a > 0 to be specified later, define

T (a) =
γd

2
A0 +BS2(

√
a) =

{
γd

2
A0 +M : M ∈ BS2(

√
a)

}
. (21)

For any A1, A2 ∈ T (a), we have

D(PA1||PA2) =
1

2
‖XA1 −XA2‖2

S2
≤ 1

2
‖X‖2

op ‖A1 − A2‖2
S2
≤ 2κ2

+a.

Here, the last inequality holds since ‖X‖op ≤ κ+ under the assumption that

X ∈ Rs×r and ‖A1 − A2‖2
S2
≤ 4a by definition (21). So

dKL(T (a)) ≤ 2κ2
+a. (22)

By the inverse Santalo’s inequality (see, e.g., Lemma 3 of Ma and Wu

(2015)), for some universal constants c0,

vol(T (a))
1
sr = vol(BS2(

√
a))

1
sr =

√
a · vol(BS2(1))

1
sr

≥
√
a · c0

E ‖Z‖S2

(23)

≥
√
a · c′0√

sr
. (24)

In (23), Z is a s × r matrix with i.i.d. N(0, 1) entries. The inequality in

(24) holds since by Jensen’s inequality, E ‖Z‖S2
≤
√

E ‖Z‖2
S2

=
√
sr.
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On the other hand, by Urysohn’s inequality (see, e.g., Eq.(19) of Ma

and Wu (2015)), for any ε > 0 and q ∈ [1, 2],

vol(BSq(ε))
1
sr ≤

εE ‖Z‖Sq′√
sr

≤ εr
1
q′E‖Z‖op√

sr
≤ 2εr

1
2
− 1

q .

Here, 1
q′

+ 1
q

= 1 and Z is a s × r matrix with i.i.d. N(0, 1) entries. The

last inequality is due to Gordon’s inequality (see, e.g., Davidson and Szarek

(2001)): E‖Z‖op ≤
√
s+
√
r ≤ 2

√
s.

Now let

a =

(
γ ∧ 2− 1

2

)2 (
sr ∧ d2

)
, and ε =

c′0
2κ+

√
a r

1
q
− 1

2 . (25)

Then for any A ∈ T (a) and any i ∈ [r], |σi(A) − γ
2
d| ≤

√
a ≤ γ∧2−1

2
d, and

so σi(A) ∈ [d, γd] and T (a) ⊂ Θ0(s, r, d, γ). Applying Proposition 1 with

T (a) and ε in (21) and (25), we obtain a lower bound on the order of ε2.

This completes the proof.

Lemma 10. Let s ≥ r be positive integers. There exist a matrix W ∈ Rs×r

and two absolute constants c0 ∈ (1
2
, 1) and c1 > 0 such that ‖W‖F ≤ 1

and for any subset B ⊂ [s] such that |B| ≥ c0s, ‖WB∗‖sq ≥ c1r
1
q
− 1

2 for any

q ∈ [1, 2].

Proof. We divide the proof into two cases, namely when s ≥ 25 and when
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s < 25.

1◦ When s ≥ 25, let Z ∈ Rs×r have i.i.d. N(0, 1) entries. Then ‖Z‖2
F ∼

χ2
sr, and Laurent and Massart (2000, Eq.(4.3)) implies that

P
{
‖Z‖2

F ≥ sr + 2s
√
r + 2s

}
≤ e−s.

Moreover, for any c0 >
1
2
,

P
{
∃B ⊂ [s], s.t. |B| = c0s and σr(ZB∗) <

√
c0s−

√
r − 1

2

√
c0s

}
≤

∑
B⊂[s],|B|=c0s

P
{
σr(ZB∗) <

√
c0s−

√
r − 1

2

√
c0s

}

≤
(

s

(1− c0)s

)
e−c0s/4

≤ exp
{
−s
[c0

4
+ (1− c0) log(1− c0)

]}
.

Here, the first inequality is due to the union bound, the second inequality

is due to the Davidson-Szarek bound, and the last inequality holds since

for any α ∈ (1
2
, 1),

(
s
αs

)
=
(

s
(1−α)s

)
≤ ( e

1−α)(1−α)s. If we set c0 ≥ 0.96, then

the multiplier c0
4

+ (1− c0) log(1− c0) ≥ 0.1.

So when c0 = 0.96 and s ≥ 25, the sum of the right hand sides of the

last two displays is less than 1. Thus, there exists a deterministic matrix Z0

on which both events happen. Now define W = Z0/‖Z0‖F. Then ‖W‖F = 1
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by definition, and for any B ⊂ [s] with |B| = c0s,

‖WB∗‖sq ≥ r1/qσr(WB∗)

= r1/qσr((Z0)B∗)/‖Z0‖F

≥ r1/q
1
2

√
c0s−

√
r√

sr + 2s
√
r + 2r

≥ c1r
1/q−1/2.

Note that the last inequality holds with an absolute constant c1 when r ≤

1
8
c0s. When r > 1

8
c0s, we can always let r̃ = 1

8
c0r ≤ 1

8
c0s and repeat

the above arguments on the s × r̃ submatrix of Z consisting of its first r̃

columns, and the conclusion continues to hold with a modified absolute

constant c1. This completes the proof for all subsets B with |B| = c0s. The

claim continues to hold for all |B| ≥ c0s since the Schatten-q norm of a

submatrix is always no smaller than the the whole matrix.

2◦ When s < 25, we have r < 25 since r ≤ s always holds. Let

W =

[
1√
s
1s 0

]
∈ Rs×r, i.e., the first column of W consists of s entries

all equal to 1/
√
s and the rest are all zeros. So W is rank one. It is

straightforward to verify the desired conclusion holds since for any B ⊂ [s],

‖WB∗‖sq = ‖WB∗‖F =
√
|B|/s. This completes the proof.

Lemma 11. Let a = d2 ∧ s log ep
s

. There exist three positive constants

c1, c2, c3 that depend only on γ and κ+, and a subset Θ1 ⊂ Θ(s, k, r, d, γ),
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such that c3 ≤ c2/3, dKL(Θ1) ≤ c3a and that for any q ∈ [1, 2],

logM(Θ1, ‖ · ‖sq , c1

√
a r1/q−1/2) ≥ c2s log

ep

s
,

where dKL is the Kullback–Leibler diameter and M is the packing number

defined in Proposition 1.

Similarly, for b = d2∧k log em
k

, there is another subset Θ′ ⊂ Θ(s, k, r, d, γ)

such that dKL(Θ′1) ≤ c3b and that for any q ∈ [1, 2],

logM(Θ′1, ‖ · ‖sq , c1

√
b r1/q−1/2) ≥ c2k log

em

k
.

Proof. Let us focus on the first claim and we shall remark on how to estab-

lish the second claim at the end of this proof.

Let W ∈ R(s−r)×r satisfy the conclusion of Lemma 10 and define s0 =

(1−c0)(s−r). Let B = {B1, . . . , BN} be a maximal set consisting of subsets

of [p]\[r] with cardinality s − r and for any Bi 6= Bj, |Bi ∩ Bj| ≤ s0. By

Lemma A.3 of Rigollet and Tsybakov (2011) and Lemma 2.9 of Tsybakov

(2009), there exists an absolute positive constant c′2 such that

logN ≥ c′2(s− r) log
e(p− r)
s− r

.

Now for each Bi ∈ B, define W (i) ∈ Rm×n by setting the submatrix W
(i)
Bi[r]

=

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



18

W and filling the remaining entries with zeros. Then for any i 6= j, |Bi ∩

Bj| ≤ s0, and so there exists a set Bij ⊂ [s] with |Bij| ≥ s−r−s0 = c0(s−r),

such that

‖W (i) −W (j)‖sq ≥ ‖WBij∗‖sq ≥ c′1r
1/q−1/2,

where c′1 is an absolute constant due to Lemma 10.

Define M0 =

Ir 0

0 0

 ∈ Rp×m and for some positive constant c′′1 ≤

γ∧2−1
2
∧
√

c′2
6κ2+

, let

Θ1 =

{
A(i) =

γd

2
M0 + c′′1

√
aW (i) : i = 1, . . . , N

}
.

Note that each A(i) has s nonzero rows and r nonzero columns. Moreover,

for i ∈ [N ], and j ∈ [r]

∣∣∣∣σj(A(i))− σj(
γd

2
M0)

∣∣∣∣ ≤ ‖A(i) − γd

2
M0‖op = c′′1

√
a‖W (i)‖op ≤ c′′1

√
a‖W (i)‖F ≤

γ ∧ 2− 1

2
d.

Here, the second last inequality holds since ‖W (i)‖op ≤ ‖W (i)‖F ≤ 1, and

the last inequality holds since c′′1 ≤
γ∧2−1

2
and
√
a ≤ d. Since σj(

γd
2
M0) = γd

2

for all j ∈ [r], and so σj(A
(i)) ∈ [d, γd] for all j ∈ [r] and i ∈ [N ]. Thus,

Θ1 ⊂ Θ(s, r, d, γ).
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For any i 6= j, D(PA(i)||PA(j)) = 1
2
‖XA(i) −XA(j)‖2

F ≤ (c′′1κ+)2a, and

‖A(i) − A(j)‖sq ≥ c′′1c
′
1

√
a r1/q−1/2.

Hence, for c1 = c′1c
′′
1, c2 = c′2/2 and c3 = (c′′1κ+)2, dKL(F0) ≤ c3a and

logM(Θ1, ‖ · ‖sq , c1

√
a r1/q−1/2) ≥ c′2(s− r) log

e(p− r)
s− r

≥ c2s log
ep

s
.

Here, the second inequality holds since s ≥ 2r and p−r
s−r ≥

p
s
. Moreover, by

our choice of c3, it is guaranteed that c3 ≤ c2/3. This completes the proof

of the first claim.

To establish the second claim, we note that Lemma 10 continues to hold

if we replace s with k and W with W ′. Thus, we could essentially repeat

the foregoing arguments to obtain the second claim. This completes the

proof.

Proof of Theorem 2. Throughout the proof, let c > 0 denote a generic con-

stant that depends only on γ and κ+, though its actual value might vary

at different occurrences. Note that we only need to prove the lower bounds

for σ = 1, and the case of σ 6= 1 follows directly from standard scaling

argument.

First, by restricting the nonzero entries of any matrix in Θ(s, k, r, d, γ)
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to the top left s× r (or r× k) corner, we obtain a minimax lower bound by

applying Lemma 9, i.e., for Θ = Θ(s, r, d, γ) and any q ∈ [1, 2],

inf
Â

sup
Θ

E‖Â− A‖2
sq ≥ c(r2/q−1d2) ∧ (r2/q(s+ k)). (26)

Here, we have used the fact that for any a, b, c > 0,

(a ∧ b) ∨ (a ∧ c) = a ∧ (b ∨ c) � a ∧ (b+ c). (27)

Next, by Proposition 1, Lemma 11 and (27), we obtain

inf
Â

sup
Θ

E‖Â− A‖2
sq ≥ c(

√
a r1/q−1/2)2 = c(r2/q−1d2) ∧

(
r2/q−1

(
s log

ep

s
+ k log

em

k

))
.

(28)

Thus, the minimax risk is lower bounded by the maximum of the lower

bounds in (26) and (28). Applying (27) again, we complete the proof.

6.3 A Theorem on Group Lasso

Theorem 3. Consider the linear model W = XB+Z, where W is an n×r

response matrix, X is an n×p design matrix, B is a p×r coefficient matrix

with s-sparse row support for some s ≥ 1, and Z is an n× r error matrix.
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Let

B̂ = arg min
B∈Rp×r

‖W −XB‖2
F/2 + λ‖B‖2,1,

with a given penalty level λ. Let Condition 1 hold with an absolute constant

K > 1 and positive constants s∗, c∗ satisfying (11).

(i) If 2‖X ′∗j(W −XB)‖F ≤ λ for all j, then it holds that

‖B̂ −B‖F ≤
3(1 + (4c∗)

−1)

κ2
−(s∗)

√
sλ. (29)

(ii) Assume the error matrix Z has iid N(0, σ2) entries. For any given

η ∈ (0, 1), if we set

λ ≥ 2σmax
j
‖X∗j‖(

√
r +

√
2 log(p/η)),

then (29) holds with probability at least 1− η.

Proof of Theorem 3. We may rewrite the minimization problem in a vec-

torized version as follows

min
B∈Rp×r

‖vec(W )− (Ir ⊗X)vec(B)‖2
2/2 + λ‖B‖2,1,

where vec is usual vectorization operator and ⊗ is the Kronecker product
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as defined in (Muirhead, 1982, Section 2.2). In this case, the rows of B

form natural groups which are all of size r and vec(B) satisfies the (s, rs)

strong group-sparsity as defined in Huang and Zhang (2010).

We are to prove the desired result by invoking Lemma D.4 of Huang

and Zhang (2010). To this end, we first verify that the two conditions of

the lemma is satisfied. Note that the penalty level in Huang and Zhang

(2010) corresponds to 2λ/(nr) in our notion, XGj
corresponds to X∗j, and

the sparse eigenvalues ρ+(Gj) and ρ±(rs) are identified as

ρ+(Gj) = ‖X∗j‖2/(nr), ρ±(rs) = κ2
±(s)/(nr).

Let ` = s∗ − s − 1 and λ2
− = min{kλ2 : kr ≥ `r + 1, k ∈ Z+} = (` + 1)λ2.

The conditions of Huang and Zhang (2010, Lemma D.4) can be rewritten

in our notation as

2‖X ′∗j(W −XB)‖F ≤ λ and
κ̃2

+(s∗, s∗ − s)
κ2
−(s∗)

≤
√
`+ 1

s
, (30)

where κ̃2
+(s∗, s∗−s) =

√
(κ2

+(s∗)− κ2
−(2s∗ − s))(κ2

+(s∗ − s)− κ2
−(2s∗ − s)).

Since by Definition 1, κ2
−(s) ≤ κ2

−(t) ≤ κ2
+(t) ≤ κ2

+(s), ∀t ≤ s, we

obtain

κ̃2
+(s∗, s∗ − s) ≤ κ2

+(s∗)− κ2
−(2s∗).

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



23

Thus, the conditions in (30) are satisfied under the assumption of Theorem

3. Then the conclusion of Huang and Zhang (2010, Lemma D.4) leads to

‖B̂ −B‖F ≤
3

κ2
−(s∗)

(1 + 1.5
√
s/(`+ 1))

√
sλ ≤ 3(1 + (4c∗)

−1)

κ2
−(s∗)

√
sλ.

This completes the proof of part (i).

Turning to part (ii), we need to upper bound 2‖X ′∗j(W −XB)‖F . Since

X ′∗j(W − XB) is a vector of length r with iid N(0, σ2‖X∗j‖2) entries, it

follows from Laurent and Massart (2000, Eq.(4.3)) that with probability

1− η/p,

‖X ′∗j(W −XB)‖2
F ≤ σ2‖X∗j‖2(r + 2

√
r log(p/η) + 2 log(p/η))

≤ σ2‖X∗j‖2(
√
r +

√
2 log(p/η))2.

With probability at least 1 − η, we have 2‖X ′∗j(W −XB)‖F ≤ λ for all j

and thus (29) holds.
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