<table>
<thead>
<tr>
<th>Title</th>
<th>Maximum Penalized Likelihood Estimation For The Endpoint And Exponent Of A Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>SS-2016-0336.R4</td>
</tr>
<tr>
<td>URL</td>
<td>http://www.stat.sinica.edu.tw/statistica/</td>
</tr>
<tr>
<td>DOI</td>
<td>10.5705/ss.202016.0336</td>
</tr>
</tbody>
</table>
| Complete List of Authors | Fang Wang
 | Liang Peng
 | Yongcheng Qi and
 | Meiping Xu |
| Corresponding Author | Yongcheng Qi |
| E-mail | yqi@d.umn.edu |

Notice: Accepted version subject to English editing.
Maximum Penalized Likelihood Estimation For
The Endpoint And Exponent Of A Distribution

Fang Wang∗, Liang Peng†, Yongcheng Qi‡, Meiping Xu§

Abstract. Consider a random sample from a regularly varying distribution function with a
finite right endpoint θ and an exponent α of regular variation. The primary interest of the paper
is to estimate both the endpoint and the exponent. Since the distribution is semiparametric and
the endpoint and the exponent reveal asymptotic properties of the right tail for the distribution,
inference can only be based on a few of the largest observations in the sample. The conventional
maximum likelihood method can be used to estimate both α and θ, see e.g., Hall (1982) and Drees,
Ferreira and de Haan (2004) for the regular case (i.e. α ≥ 2), and Smith (1987) and Peng and Qi
(2009) for the irregular case (i.e. α ∈ (1, 2)). Unfortunately a global maximum of the likelihood
function doesn’t exist if one allows α ∈ (0, 1], and a local maximum exists with probability tending
to one only if α > 1, i.e., a local maximum may not exist for some given sample. In this paper
we propose a penalized likelihood method to estimate both parameters. The estimators derived
from this new likelihood method exist for all α > 0 and any sample such that the largest two
observations are distinct. We present the asymptotic distributions for the proposed maximum
penalized likelihood estimators. A simulation study shows that the proposed method works very
well for the irregular case, and has even better finite sample performance than the conventional
maximum likelihood method for the regular case.

Keywords: endpoint, exponent, irregular case, limiting distribution, maximum likelihood

Running title: Maximum Penalized Likelihood Method

∗School of Mathematical Sciences, Capital Normal University, Beijing 100037, PR China. Email:
fang72_wang@cnu.edu.cn
†Department of Risk Management and Insurance, Georgia State University, Atlanta, GA 30303, USA.
Email: lpeng@gsu.edu
‡Department of Mathematics and Statistics, University of Minnesota - Duluth, 1117 University Drive,
Duluth, MN 55812, USA. Email: yqi@d.umn.edu
§School of Science, Beijing Technology and Business University, Beijing 100048, P.R. China. Email:
xumeiping2006@163.com
1 Introduction

Let F be a distribution function with a finite right endpoint θ. By assuming that

$$1 - F(x) = c(\theta - x)^\alpha + o((\theta - x)^\alpha) \quad \text{as } x \uparrow \theta,$$

where $c > 0$ is a constant and $\alpha > 0$ is called the exponent of F, statistical inference for both θ and α has been of importance in the applications of extreme value theory; see, e.g., de Haan and Ferreira (2006), Einmahl and Magnus (2008), and Einmahl and Smeets (2011). When the underlying distribution function is $F(x) = 1 - (1 - x/\theta)^\alpha$ for $x \in [0, \theta]$ and some $\alpha, \theta > 0$, it is easy to check that Fisher information with respect to θ will be finite for $\alpha > 2$ and infinite for $\alpha \leq 2$. Therefore, finding an efficient inference for the endpoint θ depends on whether $\alpha > 2$ or $\alpha \leq 2$, which are called regular case and irregular case, respectively in the literature.

Taking a high threshold u_n and approximating the tail probability $1 - F(x)$ for $x \geq u_n$ by the parametric family $c(\theta - x)^\alpha$, a type of maximum likelihood (ML) method can be employed to estimate both θ and α. See, e.g., Hall (1982) and Drees, Ferreira and de Haan (2004) for the regular case, and Smith (1985, 1987), Smith and Weissman (1985), Woodroofe (1974), Zhou (2009), and Peng and Qi (2009) for the irregular case. For some other inference procedures for the endpoint such as resampling, minimum distance, high order moments, Bayesian inference and others, we refer to Athreya and Fukuchi (1997), Falk (1995), Hall and Wang (1999, 2005), Loh (1984), Girard, Guillou and Stupfler (2012a,b), Beirlant, Fraga Alves and Gomes (2016), and Fraga Alves, Neves and Rosário (2017). Bias correction and interval estimation for the endpoint are available in Hall and Park (2002), Li and Peng (2009), Li, Peng and Xu (2011), and Li, Peng and Qi (2011). Instead of assuming (1.1), Fraga Alves and Neves (2014) estimated the finite right endpoint of a distribution function by assuming that the underlying distribution is in the domain of attraction of Gumbel distribution.

Assume X_1, \cdots, X_n are independent and identically distributed random variables having a distribution function F satisfying (1.1). Let $X_{n,1} \leq \cdots \leq X_{n,n}$ denote the order statistics of X_1, \cdots, X_n, and let $k = k_n$ be a sequence of integers satisfying $k/n \to 0$ as $n \to \infty$. When (2.4) below holds with $\rho < 0$, it is known that $X_{n,n} - \theta = O_p(n^{-1/\alpha})$. When $\alpha > 2$ (i.e., regular case), an endpoint estimator based on the largest k order statistics may have a faster rate of convergence than $n^{-1/\alpha}$ especially for a larger α. Although many
existing endpoint estimators work for all $\alpha > 0$, their convergence rate is usually slower than $n^{-1/\alpha}$ in the irregular case $\alpha < 2$. For example, the estimators in Girard, Guillou and Stupfler (2012a,b) have the rate of convergence $n^{-1/2}p_n^{\alpha/2-1}$ for some p_n such that $np_n^{-\alpha} \to \infty$ in case of $\alpha < 2$, which implies that $n^{-1/2}p_n^{\alpha/2-1}/n^{-1/\alpha} \to \infty$, i.e., the estimators in Girard, Guillou and Stupfler (2012a,b) have a slower rate of convergence than the maximum in case $\alpha < 2$ under condition (2.4) with $\rho < 0$. This is understandable since their estimators have a normal limit. Of course, given the information that $\alpha < 2$, one can select the value of p_n as large as possible in the estimators by Girard, Guillou and Stupfler (2012a,b) such that $n^{-1/2}p_n^{\alpha/2-1}/n^{-1/\alpha} \to \infty$ at an arbitrarily slow rate. In this sense, one may argue that the estimators in Girard, Guillou and Stupfler (2012a,b) are essentially optimal for the irregular case. In order to achieve the exact rate of convergence as the maximum for the irregular case, a simple strategy suggested by Remark 4.5.5 of de Haan and Ferreira (2006) is to either use two different endpoint estimators for the regular case and the irregular case or employ different choices of sample fraction in the construction of an endpoint estimator. Obviously this depends on how effectively one could distinguish the regular case and the irregular case. Likelihood based estimators via (1.1) only exist for $\alpha > 1$ and the corresponding endpoint estimators have the same rate of convergence as $X_{n,n}$ in the irregular case (see Hall (1982)). Based on exceedances and a generalized Pareto distribution, Smith (1987) estimated the endpoint separately for the regular case and irregular case.

Likelihood based approaches have been shown to be efficient for the regular case (see Coles and Dixon (1999) and Pauli and Coles (2001)), but they are problematic for the irregular case (see Hall (1982) and Smith (1987)). The problem of interest in this paper is to find a method which is efficient as the likelihood approach in the regular case and overcomes the difficulties of the likelihood approach in the irregular case. Let us first introduce the conventional maximum likelihood estimators for α and θ in Hall (1982) and point out some serious drawbacks.

Treat $X_{n,n-k+1, \cdots, n,n}$ as k left censored observations above the threshold $u_n = X_{n,n-k}$. By temporarily assuming that $1 - F(x) = c(\theta - x)^{\alpha}$ for $u_n < x < \theta$, the censored likelihood function for $X_{n,n-k, \cdots, n,n}$, up to a constant scale, is given by

$$L(\theta, c, \alpha) = \left\{ \prod_{j=0}^{k} c(\theta - X_{n,n-k+j})^{\alpha-1} \right\} (1 - c(\theta - X_{n,n-k})^{\alpha})^{n-k-1}. \quad (1.2)$$
By maximizing the above likelihood function one can find the ML estimators for the parameters θ, α if it is unknown. More specifically Hall (1982) derived the limiting distribution for the ML estimator for θ when $\alpha > 2$ is known and the joint limiting distribution for the ML estimators for θ and α when $\alpha > 2$ is unknown. The limiting distribution for the ML estimator of θ was also obtained in Hall (1982) when $1 < \alpha < 2$ is known and $k \geq 2$ is fixed rather than divergent.

Note that if $\alpha \in (0, 1)$ is known, the ML estimator for θ is simply $X_{n,n}$ at which the likelihood function $L(\theta, c, \alpha)$ is infinity. Hence, the ML estimator is biased and always underestimates θ. On the other hand, when $\alpha > 0$ is unknown, the endpoint θ is the only parameter that can be estimated and the ML estimator for θ is also $X_{n,n}$ since $L(X_{n,n}, c, \alpha) = \infty$ for any $\alpha \in (0, 1)$. The ML estimator of θ is also $X_{n,n}$ if $\alpha = 1$. In other words, when $\alpha > 0$ is unknown, jointly estimating θ and α by the maximum likelihood estimation in Hall (1982) is impossible if we don’t impose the constraint $\alpha > 1$. Some specific problems related with the ML estimation in Hall (1982) are: i) when the unknown α is between one and two, the joint asymptotic distribution of the ML estimators remains unknown; ii) when the known α is between one and two, the asymptotic distribution of the endpoint estimator was derived only for fixed $k \geq 2$; iii) when $\alpha > 1$ is unknown, the endpoint estimator, which is defined as the smallest solution to $m(\theta) = 0$ given in (3.2), may not exist for some given sample and $k \geq 2$, see Figure 2 below for some illustrative examples.

The above arguments motivate us to find a new method that avoids picking up the maximum observation as an estimator for the endpoint θ, can estimate θ and α simultaneously for all $\alpha > 0$ with the same rate of convergence as the maximum for estimating θ in the irregular case. Specifically we propose a penalized likelihood method to achieve these goals so as to improve the inference in Hall (1982). After showing that the corresponding score equations exist a solution for any given sample and $k \geq 2$ as long as the largest two observations are distinct, we derive the limiting distribution for the new endpoint estimator when $\alpha > 0$ is known, and the joint limiting distribution for the new estimators of θ and α when $\alpha > 0$ is unknown. In particular, we show that the limiting distribution for the new estimator of α is normal for all $\alpha > 0$ and, for the new estimator of θ, that the limiting distribution is normal if $\alpha \geq 2$ and non-normal if $\alpha < 2$.

The rest of the paper is organized as follows. Section 2 presents the penalized likelihood
approach and main asymptotic results of the paper. In Section 3 some simulation studies are conducted to compare the performance of the new estimators with the maximum likelihood estimators in Hall (1982), with the high order moments estimator for the endpoint by Girard, Guillou and Stupfler (2012b), and some discussions on these estimators are given as well. Further comparisons with the endpoint estimator proposed in Fraga Alves and Neves (2014) and with the moment estimator for the tail index proposed by Dekkers, Einmahl and de Haan (1989) can be found in Section A of the Supplement by Wang et al. (2017). In Section 4, two real data sets on men’s and women’s 100 meters athletics are analyzed, and results from the new likelihood method and the moment method are compared. Some conclusions are summarized in Section 5. All proofs are given in Section B of the Supplement by Wang et al. (2017).

2 Methodologies and main results

Throughout we assume our observations X_1, \cdots, X_n are independent and identically distributed random variables with distribution function F satisfying (1.1). Let $X_{n,1} \leq \cdots \leq X_{n,n}$ denote the order statistics of X_1, \cdots, X_n and $k = k_n$ such that $k/n \to 0$ as $n \to \infty$. As argued in the introduction, if we directly maximize the censored likelihood function $L(\theta, c, \alpha)$ defined in (1.2), then the resulting estimator for θ will always be $X_{n,n}$ when $\alpha \in (0, 1]$, which surely underestimates the endpoint, and α is not estimable when $\alpha \in (0, 1)$. Moreover, given the sample X_1, \cdots, X_n and $k \geq 2$, the score equations with respect to $L(\theta, c, \alpha)$ may have no solution even for $\alpha > 1$.

A simple idea to overcome the above drawbacks is to add a penalization multiplier to $L(\theta, c, \alpha)$ such that the penalized likelihood function is always bounded and the corresponding score equations always exist a solution for any given sample and k as long as the largest two observations are distinct. Assume $p(\theta, \alpha, X_{n,n-k}, \cdots, X_{n,n})$ is a general penalization function such that $L_1(\theta, c, \alpha) = L(\theta, c, \alpha)p(\theta, \alpha, X_{n,n-k}, \cdots, X_{n,n})$ is bounded globally. Since $L(\theta, c, \alpha)$ is unbounded as $\theta \to X_{n,n}$, we need $p(\theta, \alpha, X_{n,n-k}, \cdots, X_{n,n}) \to 0$ as $\theta \to X_{n,n}$. A simple choice of such a penalization function is

$$p(\theta, \alpha, X_{n,n-k}, \cdots, X_{n,n}) = \frac{\theta - X_{n,n}}{\alpha(\theta - X_{n,n-k})},$$

where the numerator ensures that the penalization goes to zero as $\theta \to X_{n,n}$, but the de-
nominator slows the convergence to avoid over-penalization, and the involved \(\alpha \) is to ensure that the corresponding score equations always have a solution. Using this penalization, the penalized likelihood function becomes

\[
L_1(\theta, c, \alpha) = c^{k+1} \alpha^k (\theta - X_{n,n})^\alpha (\theta - X_{n,n-k})^{\alpha - 2} \times \left\{ \prod_{j=1}^{k-1} (\theta - X_{n,n-k+j})^{\alpha - 1} \right\} (1 - c(\theta - X_{n,n-k})^\alpha)^{n-k-1}
\]

for \(\theta > X_{n,n} \), and zero otherwise. The maximum penalized likelihood estimators are obtained by maximizing the above likelihood function. When both \(\alpha \) and \(\theta \) are unknown, Hall’s (1982) estimator and the maximum penalized likelihood estimator for \(\theta \) are defined as the smallest solutions to \(m(\theta) = 0 \) and \(g(\theta) = 0 \), respectively, where \(m(\theta) \) is defined in (3.2) and \(g(\theta) \) is defined in (2.15). More details on maximum penalized likelihood estimators will be given in next two subsections. Figure 2 below plots functions \(m(\theta) \) and \(g(\theta) \) against \(\theta \) from \(X_{n,n} + 0.01 \) to 0.1 by step 0.01 for some particular samples drawn from the reverse Gamma distribution given in Section 3 with true \(\theta = 0 \) and \(n = 200 \), which clearly shows that maximum likelihood estimate in Hall (1982) may not exist, but the proposed maximum penalized likelihood estimate always exists, which will be justified below.

Like Hall (1982), we consider the cases of known \(\alpha \) and unknown \(\alpha \) separately. When \(\alpha \) is assumed to be known, we focus on the endpoint estimation. When \(\alpha \) is unknown, we estimate \(\theta \) and \(\alpha \) jointly. Throughout we let \((\alpha_0, \theta_0) \) denote the true value of \((\alpha, \theta) \).

2.1 Estimating \(\theta \) with known \(\alpha \)

Assume the parameter \(\alpha = \alpha_0 > 0 \) is known and we are interested in estimating \(\theta \). Note that we do not treat the regular case and the irregular case separately unlike the existing studies in the literature. This study is of interest in many situations. For example, for a truncated distribution, the endpoint of the distribution is the truncation point and \(\alpha \) is known to be one if the underlying density function at this point is finite and positive. The limiting distributions for the estimator of \(\theta \) will remain the same when \(\alpha \in (0, 2] \) is unknown and will be used in Section 2.2.

Maximize \(L_1 \) with respect to \(c \) and \(\theta \), and denote the estimators of \(c \) and \(\theta \) as \(\hat{c} \) and \(\hat{\theta} \), respectively. More specifically, by differentiating the log-likelihood function \(\log L_1 \) with
respect to θ and c we have $\hat{c} = ((k + 1)/n)(\hat{\theta} - X_{n,n-k})^{-\alpha_0}$, and $\hat{\theta}$ is the solution to the following equation

$$h(\theta) := \frac{\theta - X_{n,n-k}}{\theta - X_{n,n}} + \left(1 - \frac{1}{\alpha_0}\right) \sum_{j=1}^{k-1} \frac{\theta - X_{n,n-k}}{\theta - X_{n,n-k+j}} - \frac{2}{\alpha_0} - k = 0. \quad (2.1)$$

Assume that $X_{n,n} > X_{n,n-1}$. Since

$$h(X_{n,n}+) = \infty, \quad h(\infty) = -\frac{k+1}{\alpha_0} < 0 \text{ and } h(\theta) \text{ is continuous}, \quad (2.2)$$

there exists at least one root to (2.1). Note that

$$h(\theta) = \frac{X_{n,n} - X_{n,n-k}}{\theta - X_{n,n}} + \frac{\alpha_0 - 1}{\alpha_0} \sum_{j=1}^{k-1} \frac{X_{n,n-k+j} - X_{n,n-k}}{\theta - X_{n,n-k+j}} - \frac{k+1}{\alpha_0} \quad (2.3)$$

is strictly decreasing in $\theta \in (X_{n,n}, \infty)$ when $\alpha_0 \geq 1$. Therefore the estimator $\hat{\theta}$ is unique if $\alpha_0 \geq 1$ and $X_{n,n} > X_{n,n-1}$. If $\alpha_0 \in (0,1)$, then

$$h'(\theta)(\theta - X_{n,n})^2 = \frac{1 - \alpha_0}{\alpha_0} \sum_{j=1}^{k-1} (X_{n,n-k+j} - X_{n,n-k}) \left(\frac{(\theta - X_{n,n})^2}{(\theta - X_{n,n-k+j})^2} - \{X_{n,n} - X_{n,n-k}\}\right)$$

is increasing in θ if $X_{n,n} > X_{n,n-1}$, which implies that the equation $h'(\theta) = 0$ has at most one root in $(X_{n,n}, \infty)$. By noting that $h'(X_{n,n}+) = -\infty$, we conclude that either i) $h'(\theta) < 0$ for all $\theta > X_{n,n}$ or ii) there exists a unique $\theta^* > X_{n,n}$ such that $h'(\theta) < 0$ for $\theta \in (X_{n,n}, \theta^*)$, $h'(\theta^*) = 0$ and $h'(\theta) > 0$ for $\theta > \theta^*$ or iii) there exists a unique $\theta^* > X_{n,n}$ such that $h'(\theta) < 0$ for $\theta \in (X_{n,n}, \theta^*) \cup (\theta^*, \infty)$ and $h'(\theta^*) = 0$. That is, $h(\theta)$ is either i) a decreasing function on $(X_{n,n}, \infty)$ or ii) a decreasing function on $(X_{n,n}, \theta^*)$ and an increasing function on (θ^*, ∞) or iii) a decreasing function on $(X_{n,n}, \theta^*) \cup (\theta^*, \infty)$, which imply that there exists a unique estimator $\hat{\theta}$ for $\alpha_0 \in (0,1)$ by using (2.2) when $X_{n,n} > X_{n,n-1}$. In conclusion, there exists a unique solution to (2.1) for all $\alpha > 0$, any $k \geq 2$ and any given sample with $X_{n,n} > X_{n,n-1}$.

After the above discussion on the existence of our new estimator for θ, we now present the consistency and asymptotic distributions for the proposed estimator. First, we show that the estimator $\hat{\theta}$ is strongly consistent under some general conditions.

Theorem 2.1. Assume that F has a finite right endpoint θ and is continuous in a neighborhood of θ. If $k \geq 2$ and $k/n \to 0$ as $n \to \infty$, then $\hat{\theta} \overset{a.s.}{\to} \theta_0$ as $n \to \infty$.

7
Note that the consistency does not require $k \to \infty$ as $n \to \infty$. In order to derive the asymptotic distribution for the proposed endpoint estimator we need the following second order regular variation condition, which controls the asymptotic bias of the proposed estimator. Suppose there exist functions $a(t) > 0$ and $A(t) \to 0$ such that

$$
\lim_{t \to \infty} \frac{U(tx) - U(t)}{a(t)} = H_{\gamma_0, \rho}(x) := \frac{1}{\rho} \left(\frac{x^{\gamma_0 + \rho} - 1}{\gamma_0 + \rho} - \frac{x^{\gamma_0} - 1}{\gamma_0} \right),
$$

(2.4)

where $U(t)$ is the inverse function of $1/(1 - F)$, $\gamma_0 = -1/\alpha_0 < 0$ and $\rho \leq 0$. Note that $H_{\gamma_0, 0}(x)$ is defined as $\lim_{\rho \to 0} H_{\gamma_0, \rho}(x)$. When (2.4) holds, $|A(t)|$ is a regularly varying function with exponent ρ and (1.1) holds with $c = (\lim_{t \to \infty} (\theta_0 - U(t)) t^{-\gamma_0})^{1/\gamma_0}$; see Lemma B.4 of Wang et al. (2017) for an explicit expression of U.

It is expected that the asymptotic distribution of the endpoint estimator is quite different for the case $\alpha > 2$ and the case $\alpha < 2$. A typical technique in handling the irregular case $\alpha < 2$ is via conditional characteristic function given in Woodroofe (1974). Although we follow the idea in Woodroofe (1974) to handle the irregular case, our analyses are more complicated since the new endpoint estimator is valid for all $\alpha > 0$ instead of $\alpha > 1$ in Woodroofe (1974). Therefore we need some similar, but more complicated notations.

Define

$$
\varphi_x = \begin{cases}
(-x)^{-1}, & \text{if } x < 0, \\
\infty, & \text{if } x \geq 0,
\end{cases}
$$

$$
H_{\lambda, x}(y) = \begin{cases}
\int_0^{\frac{1}{\lambda}} \frac{1}{1+\lambda y} \varphi_x \lambda v^2 \exp(-v^2) dv, & \text{if } \lambda \in (1/2, 1), \\
\int_0^{\frac{1}{\lambda}} \frac{1}{1-\lambda} \varphi_x \lambda v^2 \exp(-v^2) dv, & \text{if } \lambda > 1,
\end{cases}
$$

and write $H_{\lambda, x}(0) = H_{\lambda, x}(0)$ for $x \in \mathbb{R}$, where $G_{\lambda, v, x}$ is a distribution function with the characteristic function $f_{\lambda, v, x}$ given by

$$
f_{\lambda, v, x}(t) = \left\{ \begin{array}{ll}
\exp\left\{ \int_0^v \left(\exp\left(\frac{y^\lambda}{1+yv} - 1 - it\frac{y^\lambda}{1+yv} \right) y^{-2} dy - it(\int_0^v y^{2\lambda-2} dy + \frac{\lambda^\lambda - 1}{1-\lambda}) \right) \right\}, & \lambda \in (1/2, 1) \\
\exp\left\{ \int_0^v \left(\exp\left(\frac{y^\lambda}{1+yv} - 1 \right) y^{-2} dy \right) \right\}, & \lambda > 1.
\end{array} \right.
$$

Theorem 2.2. Assume (2.4) holds and $k = k_n$ satisfies one of the following conditions:

$$
k \to \infty, \quad k/n \to 0, \quad k^{1/2} A(n/k) \to 0 \quad \text{if} \quad \alpha_0 > 2;
$$

(2.5)
\[k \to \infty, \quad k/n \to 0, \quad k^{1/2}(\log k)^{-1/2}A(n/k) \to 0 \quad \text{if} \quad \alpha_0 = 2; \quad (2.6) \]
\[k \to \infty, \quad k/n \to 0, \quad k^{1+\gamma_0}A(n/k) \to 0 \quad \text{if} \quad \alpha_0 \in (1, 2); \quad (2.7) \]
\[k \to \infty, \quad k/n \to 0 \quad \text{if} \quad \alpha_0 \in (0, 1]. \quad (2.8) \]

Then we have
\[n^{-\gamma_0}k^{1/2+\gamma_0}c^{-\gamma_0}(\hat{\theta} - \theta_0) \xrightarrow{d} N(0, (1 + 2\gamma_0)) \quad \text{if} \quad \alpha_0 > 2; \quad (2.9) \]
\[(n \log k)^{1/2}c(\hat{\theta} - \theta_0) \xrightarrow{d} N(0, 1) \quad \text{if} \quad \alpha_0 = 2; \quad (2.10) \]
\[n^{-\gamma_0}c^{-\gamma_0}(\hat{\theta} - \theta_0) \xrightarrow{d} \Lambda_{-\gamma_0} \quad \text{if} \quad \alpha_0 \in (0, 2), \quad \alpha_0 \neq 1; \quad (2.11) \]
\[n^{-\gamma_0}c^{-\gamma_0}(\hat{\theta} - \theta_0) \xrightarrow{d} 1 - Z \quad \text{if} \quad \alpha_0 = 1, \quad (2.12) \]

where \(Z \) is a standard exponential random variable.

Remark 1. (a) It is apparent from (2.3) that \(\hat{\theta} = X_{n,n} + (k+1)^{-1}(X_{n,n} - X_{n,n-k}) \) when \(\alpha_0 = 1 \), and it is asymptotically unbiased in the sense that its limiting distribution has a zero mean. An anonymous referee has drawn our attention to the jackknife estimators for endpoint in Miller (1964) and Robson and Whitlock (1964). The two estimators for \(\theta \) in Miller (1964) and Robson and Whitlock (1964) are given, respectively, by
\[
\hat{\theta}_{\text{Miller}} = X_{n,n} + \frac{n-1}{n}(X_{n,n} - X_{n,n-1}), \quad \hat{\theta}_{\text{RW}} = X_{n,n} + (X_{n,n} - X_{n,n-1}).
\]

Our estimator \(\hat{\theta} = X_{n,n} + (k+1)^{-1}(X_{n,n} - X_{n,n-k}) \) has a similar form. For a brief comparison, we assume that \(F \) has a uniform \((0, \theta)\) distribution with \(\theta > 0 \). Then the mean squared errors for the three estimators are
\[
\sigma^2_{\text{Miller}}(n) := E(\hat{\theta}_{\text{Miller}} - \theta)^2 = \frac{2\theta^2(n^2 - n + 1)}{n^2(n + 1)(n + 2)}, \quad (2.13)
\]
\[
\sigma^2_{\text{RW}}(n) := E(\hat{\theta}_{\text{RW}} - \theta)^2 = \frac{2\theta^2}{(n + 1)(n + 2)}
\]
and
\[
\sigma^2_{N}(n,k) := E(\hat{\theta} - \theta)^2 = \frac{k + 2}{k + 1} \frac{\theta^2}{(n + 1)(n + 2)}.
\]

These mean squared errors can be obtained by using the formulas for the variances and covariances of order statistics from uniform distributions (see, e.g., Section 3.4 in Balakrishnan and Cohen (1991)). Note that (2.13) is available in Miller (1964). One can see that
\[\sigma_{RW}^2(n) > \sigma_{Miller}^2(n) > \sigma_{N}^2(n, k) \text{ for } n \geq 4, \ k \geq 1. \]
Since \(k \to \infty \), we have
\[
\lim_{n \to \infty} \frac{\sigma_{N}^2(n, k)}{\sigma_{Miller}^2(n)} = \frac{1}{2} \quad \text{and} \quad \lim_{n \to \infty} \frac{\sigma_{N}^2(n, k)}{\sigma_{RW}^2(n)} = \frac{1}{2}.
\]

(b) The conditions (2.6)–(2.8) are weaker than (2.5). To our surprise, the condition (2.8) imposes the weakest condition on \(k \), and the second-order convergence rate \(A \) is not involved although the second-order regular variation condition (2.4) is assumed. Some intuitive explanations are as follows. Note that \(X_{n,n} - \theta_0 = O_p(n^{-1/\alpha}) \) under (2.4) with \(\rho < 0 \), which means \(X_{n,n} \) is far away from the endpoint for a larger \(\alpha \). In the regular case (i.e., \(\alpha > 2 \)), an endpoint estimator using the upper \(k \) order statistics generally has the rate of convergence \(n^{-1/\alpha} k^{-1/2+1/\alpha} \), which is faster than \(n^{-1/\alpha} \) when the second order approximation error is smaller. In this case, the second order approximation rate determines that \(k \) can not be too large in order to ensure that the bias is negligible. However, when \(\alpha \) is smaller, many observations are quite close to the endpoint. Hence, in the irregular case, the rate of convergence \(n^{-1/\alpha} \) can not be improved and so the second order approximation does not play a role in determining the asymptotic distribution unlike the regular case.

(c) It can be shown that the resulting estimator \(\tilde{c} = ((k + 1)/n)(\hat{\theta} - X_{n,n-k})^{-\alpha_0} \) for \(c \) is consistent.

2.2 Estimating \(\theta \) and \(\alpha \) jointly

When both \(\theta \) and \(\alpha \) are unknown, we can develop our new estimators of \(c \), \(\theta \) and \(\alpha \) via maximizing the penalized likelihood function \(L_1(\theta, c, \alpha) \), that is, the new estimator \((\hat{\theta}, \hat{c}, \hat{\alpha}) \) of \((\theta, c, \alpha) \) is defined as the maximizer of \(L_1(\theta, c, \alpha) \). By solving score equations, we have
\[
\tilde{c} = ((k + 1)/n)(\hat{\theta} - X_{n,n-k})^{-\alpha},
\]
\[
\hat{\alpha}^{-1} = \frac{1}{k} \sum_{j=1}^{k} \log \frac{\hat{\theta} - X_{n,n-k}}{\hat{\theta} - X_{n,n-k+j}}, \tag{2.14}
\]
and \(\hat{\theta} \) is the smallest root to the equation
\[
g(\theta) := \sum_{j=1}^{k} \left(\frac{\theta - X_{n,n-k}}{\theta - X_{n,n-k+j}} - 1 \right) - \frac{1}{k} \left(\sum_{j=1}^{k} \log \frac{\theta - X_{n,n-k}}{\theta - X_{n,n-k+j}} \right) \left(2 + \sum_{j=1}^{k-1} \frac{\theta - X_{n,n-k}}{\theta - X_{n,n-k+j}} \right) = 0 \tag{2.15}
\]

10
for \(\theta > X_{n,n} \).

First we observe that, when \(\theta \) is known, the best estimator for \(\alpha^{-1} \) in a certain class of distributions is the uniform minimum variance unbiased (UMVU) estimator \(\alpha_n^{-1} \) given by

\[
\alpha_n^{-1} = \frac{1}{k} \sum_{j=1}^{k} \log \frac{\theta - X_{n,n-k}}{\theta - X_{n,n-k+j}},
\]

see, e.g., Falk (1995). The estimator of \(\alpha^{-1} \) given by (2.14) is coincident with (2.16) if \(\tilde{\theta} \) happens to be \(\theta \). Thus, if \(\tilde{\theta} \) gives a good estimate for \(\theta \), \(\tilde{\alpha}^{-1} \) should perform well as an estimator of \(\alpha^{-1} \).

If \(X_{n,n-1} < X_{n,n} \), we have \(g(X_{n,n}+) = \infty \). By using Taylor’s expansion one can easily verify that \(g(\theta) < 0 \) if \(\theta \) is large enough. Hence, it follows from the continuity of \(g(\theta) \) that there exists at least one root to (2.15) for any given sample and \(k \) such that \(X_{n,n-1} < X_{n,n} \). That is, the estimator \(\tilde{\theta} \) is well defined from equation (2.15). Unlike the case of known \(\alpha \), we can not show that there is a unique solution when \(\theta \) and \(\alpha \) are jointly estimated.

Now we are ready to present the joint limiting distributions for the estimators \(\tilde{\theta} \) and \(\tilde{\alpha} \).

Theorem 2.3. Assume condition (2.4) holds and

\[
k \to \infty, \quad k/n \to 0, \quad k^{1/2} A(n/k) \to 0 \quad \text{as} \quad n \to \infty.
\]

(i) If \(\alpha_0 > 2 \), then

\[
(n^{-\gamma} k^{1/2+\gamma} e^{-\gamma}(\tilde{\theta} - \theta_0), k^{1/2}(\tilde{\alpha}^{-1} - \alpha_0^{-1})) \overset{d}{\to} N(0, \Sigma),
\]

where

\[
\Sigma = \begin{pmatrix}
\gamma_0^{-2}(1 + \gamma_0)^2(1 + 2\gamma_0) & (-\gamma_0)^{-1}(1 + \gamma_0)(1 + 2\gamma_0) \\
(-\gamma_0)^{-1}(1 + \gamma_0)(1 + 2\gamma_0) & (1 + \gamma_0)^2
\end{pmatrix};
\]

(ii) If \(\alpha_0 \in (0, 2] \), then

\[
k^{1/2}(\tilde{\alpha}^{-1} - \alpha_0^{-1}) \overset{d}{\to} N(0, \gamma_0^2),
\]

\(\tilde{\theta} \) has the same limiting distribution as \(\hat{\theta} \) given in Theorem 2.2, and \(\tilde{\alpha}^{-1} \) and \(\tilde{\theta} \) are asymptotically independent.

Remark 2. (a) The estimator for \(\alpha \) is always asymptotically normal, and the estimator for \(\theta \), when \(\alpha \) is unknown, behaves as if \(\alpha \) were known in the irregular case \(\alpha \leq 2 \). We
also observe that the condition (2.17) (i.e., (2.5)) is required this time for all cases. This condition is needed only for (2.19) to hold.

(b) It can be shown that the estimator \(\hat{c} = ((k+1)/n)(\hat{\theta} - X_{n,n-k})^{-\hat{\alpha}} \) is consistent for \(c \), which can be used to construct confidence intervals for \(\theta \) in the regular case.

(c) Note that \(n^{-\gamma_0}k^{1/2+\gamma_0} = (n/k)^{1/\alpha_0}k^{1/2} \to \infty \) in (2.18).

2.3 Selection of the sample fraction

Theorems 2.2 and 2.3 provide theoretical justifications on how one can select the sample fraction \(k \) so as to achieve the desired asymptotic distributions for estimators of the tail index and the endpoint. It is easy to check that condition (2.5) implies conditions (2.6) and (2.7) since both \((\log k_n)^{-1/2} \) and \(k_n^{\gamma_0} = k_n^{-1/\alpha_0} \) go to zero as \(n \to \infty \). Therefore a choice of \(k_n \) satisfying (2.5) can be employed for Theorems 2.2 and 2.3.

First, we show that there always exists a sequence of integers \(\{\bar{k}_n\} \) satisfying (2.5), i.e.,

\[\bar{k}_n \to \infty, \quad \bar{k}_n/n \to 0 \quad \text{and} \quad \sqrt{k_n}A(n/\bar{k}_n) \to 0 \quad \text{as} \quad n \to \infty. \]

Furthermore, we have \(\max_{1 \leq k \leq k_n} \sqrt{k} |A(n/k)| \to 0 \) as \(n \to \infty \). To see these, we define \(B(t) = \sup_{s \geq t} |A(s)| \). Since \(A(t) \to 0 \) as \(t \to \infty \) regardless of value of \(\rho \), we have \(B(t) \) is non-increasing and vanishes at infinity. Now we can define \(k_n \) as the integer part of \(\min(\sqrt{n}, B^{-1}(\sqrt{n})) \). Then \(\bar{k}_n \to \infty \) and \(\bar{k}_n/n \to 0 \) as \(n \to \infty \), and \(\sqrt{k_n}A(n/\bar{k}_n) \leq (B(\sqrt{n}))^{1/2} \to 0 \) as \(n \to \infty \). We also have that

\[\max_{1 \leq k \leq k_n} \sqrt{k}|A(n/k)| \leq \max_{1 \leq k \leq k_n} \sqrt{k}|B(n/k)| \leq (B(\sqrt{n}))^{1/2} \to 0 \quad \text{as} \quad n \to \infty. \]

Secondly, a choice of \(k \) satisfying (2.5) can be obtained via estimating the second order regular variation parameter \(\rho \) when the second order regular variation condition (2.4) holds with some \(\rho < 0 \). In fact, since \(|A(t)| \) is regularly varying with exponent \(\rho \), we can apply Potter’s bound and prove that (2.5) holds for any sequence of positive integers \(k = k_n \) with \(k_n \sim cn^\beta \) for \(c > 0 \) and \(\beta \in (0, \frac{-2\rho}{1-2\rho}) \). For estimating \(\rho \), we refer to Gomes, de Haan and Peng (2002).

In practice, a plot of the estimator against the sample fraction can be very helpful in determining a sample fraction that can be used for inference. If our objective is to construct confidence intervals or test some hypotheses, we are actually looking for a sample fraction that results in an estimator with a negligible bias. Now we denote the estimators of \(\alpha \) and
When the second order regular variation condition (2.4) holds, both estimators may fluctuate wildly when the values of \(k \) are very small, and then these estimators are relatively stable in a range of the sample fraction \(k \) from small to relatively large. The existence of such relatively stable ranges is implied by the asymptotic bias of the estimators. Hence for each estimator, one can observe a turning point for \(k \) which is followed by an upward or a downward trend. We will examine several examples and see how the plot of \((k, \hat{\alpha}(k))\) and the plot of \((k, \hat{\theta}(k))\) can help identify these turning points which are recommended to serve as the sample fraction in the estimation.

We consider some distribution functions given in (3.5) with two parameters \(\tau_1, \tau_2 > 0 \). These distributions are related to the Burr distributions. The exponent of such a distribution with parameters \(\tau_1 \) and \(\tau_2 \) is \(\alpha = \tau_1 / \tau_2 \), and its endpoint is \(\theta = 0 \). We generate a random sample of size 1000 each from a distribution with \((\tau_1, \tau_2) = (1, 2)\) or \((1, 1)\) or \((1, 0.5)\). The corresponding plots are given in Figure 1. The dashed lines in these plots are the true values of \(\alpha \) and \(\theta \). From these plots we have the following brief conclusions:

- For the distribution with \((\tau_1, \tau_2) = (1, 2)\), both plots suggest the use of \(k = 63 \), and the corresponding estimates for \(\alpha \) and \(\theta \) are 1.8344 and 0.014626, respectively;
- For the distribution with \((\tau_1, \tau_2) = (1, 1)\), both plots suggest the use of \(k = 183 \), and the corresponding estimates for \(\alpha \) and \(\theta \) are 0.9731 and 0.0004992, respectively;
- For the distribution with \((\tau_1, \tau_2) = (1, 0.5)\), the plot for the estimates of \(\alpha \) suggests the use of \(k = 183 \) with an estimate 0.5212 for \(\alpha \). The estimates for \(\theta \) have no significant difference in the full range \(1 \leq k \leq 999 \), and all estimates are between \(-1.944 \times 10^{-07}\) and \(1.747 \times 10^{-07}\). Therefore, choosing any large \(k \) will result in a satisfactory estimate.

3 Simulation study and further discussions

Our comparison study consists of three parts. In the first part, we compare the performance of our new likelihood method with Hall’s conventional likelihood method. We consider the biases and mean squared errors for estimators for both the endpoint and the exponent of the distribution. In the second part, we compare the performance of the
Figure 1: Plots of estimates for α and θ based a random sample of size 1000 from distribution (3.5) with parameters with $(\tau_1, \tau_2) = (1, 2), (1, 1), (1, 0.5)$, respectively.

endpoint estimators based on our likelihood method with the high order moments method proposed in Girard, Guillou and Stupfler (2012b). In the third part, we further compare the new estimators with the estimators in Fraga Alves and Neves (2014) and Dekkers, Einmahl and de Haan (1989).

In this section, we will use $\tilde{\theta}_N$ and $\tilde{\alpha}_{-1}^N$ to denote our new estimators $\tilde{\theta}$ and $\tilde{\alpha}^{-1}$ defined in Section 2.2.
3.1 Comparisons with the conventional likelihood method

In this subsection we report some results on comparing the performance of the proposed maximum penalized likelihood estimators with the conventional ML estimators proposed in Hall (1982) and the negative Hill estimator (see, e.g., Falk (1995) or section 3.6.2 in de Haan and Ferreira (2006)).

When $\alpha = \alpha_0 \geq 2$ is known, Hall’s ML estimator for θ is defined as the unique solution of the following equation

$$
\sum_{j=1}^{k} \frac{\theta - X_{n,n-k+j}}{\theta - X_{n,n-k+j}} - 1 - \frac{k+1}{\alpha_0 - 1} = 0.
$$

(3.1)

Denote this estimator by $\hat{\theta}_H$. When $\alpha = \alpha_0 \in (1, 2)$, Hall (1982) defined the estimator of θ by using a linear combination of a fixed number of largest order statistics. Theoretically, Hall’s ML method can be extended to the case $\alpha_0 \in (1, 2)$, that is, θ can be solved for from (3.1) when $\alpha_0 \in (1, 2)$. Note that this works only when $\alpha_0 > 1$. When $\alpha_0 \leq 1$, the conventional ML estimator for θ is simply the maximum observation $X_{n,n}$, which we call the maximum value estimator for convenience.

If $\alpha \geq 2$ is unknown, it follows from Hall (1982) that the Hall’s estimator for θ, denoted as $\hat{\theta}_H$, is the smallest solution of the equation

$$
m(\theta) := \frac{k+1}{\sum_{j=1}^{k} \log \frac{\theta - X_{n,n-k+j}}{\theta - X_{n,n-k+j}}} - \frac{k+1}{\sum_{j=1}^{k} \frac{X_{n,n-k+j} - X_{n,n-k}}{\theta - X_{n,n-k+j}}} - 1 = 0
$$

(3.2)

and the estimator for α^{-1} is given by

$$
\hat{\alpha}^{-1}_H = \frac{1}{k+1} \sum_{j=1}^{k} \log \frac{\hat{\theta}_H - X_{n,n-k}}{\theta_H - X_{n,n-k+j}}.
$$

(3.3)

In order to make a fair comparison, we pick up the solution of (3.2) which is the closest to the true value of θ here, and if there is no root at all, we define $\hat{\theta}_H = X_{n,n}$ as Hall (1982) suggested and define the estimator for α as negative Hill estimator in (3.4) below.

When $\alpha \leq 1$, the conventional ML estimator for θ is $X_{n,n}$, but the conventional ML estimator for α doesn’t exist. In this case, the negative Hill estimator, defined by

$$
\hat{\alpha}^{-1}_{NH} = \frac{1}{k} \sum_{j=1}^{k-1} \log \frac{X_{n,n} - X_{n,n-k}}{X_{n,n} - X_{n,n-k+j}}
$$

(3.4)
can serve as an estimator of α^{-1}. In fact, if $\alpha \in (0, 2)$, this estimator behaves asymptotically like the UMVU estimator of α^{-1} in some ideal model as if θ were known (see, e.g., Falk (1995)), that is, (2.19) holds for the estimator $\tilde{\alpha}_{NH}^{-1}$.

We conducted a simulation study on several distribution functions, including reverse Gamma distributions with density function

$$f(x, \alpha, \theta) = \frac{(\theta - x)^{\alpha-1}}{\Gamma(\alpha)} \exp(-(\theta - x)), \quad x < \theta,$$

and reverse Weibull distributions with density function

$$f(x, \alpha, \theta) = \alpha(\theta - x)^{\alpha-1} \exp(-(\theta - x)^{\alpha}), \quad x < \theta.$$

We only present the results for the reverse Gamma distributions since results are similar for others.

In the simulation we always set the true value of θ to be zero and select different values of $\alpha = 0.5, 1, 2, \text{and} 3$.

First, we generated $N = 1000$ random samples of size n each time, where n is set to be 100, 200, 500 and 1000, and the values of k are selected accordingly. For each combination of n and k, we calculate the estimates for θ and α from different methods and then compute the biases (averages of the estimates minus the true values of the parameters) and root mean squared errors of estimators for θ and α^{-1} based on the $N = 1000$ random samples.

Table 1 contains the simulation results for the cases $\alpha = 0.5$ and 1. Since Hall’s ML method is not applicable in these cases, we only compare our new estimators ($\tilde{\theta}_N$ and $\tilde{\alpha}_{NH}^{-1}$) with the negative Hill estimator $\tilde{\alpha}_{NH}^{-1}$ given by (3.4) and the endpoint estimator given by $\tilde{\theta}_M = X_{n,n}$. Note that in the column for $\tilde{\theta}_M$ both the biases and root mean squared errors for different values of k are the same since the estimators $\tilde{\theta}_M$ do not depend on k. It is easily observed that the new estimators for both θ and α^{-1} are less biased than the estimators $\tilde{\theta}_M$ and $\tilde{\alpha}_{NH}^{-1}$ with comparable root mean squared errors.

Table 2 presents the simulation results for the cases $\alpha = 2$ and 3. We report simulation results for both the estimators $\tilde{\theta}_N$ and $\tilde{\alpha}_{NH}^{-1}$ proposed in this paper and the estimators $\tilde{\theta}_H$ and $\tilde{\alpha}_{NH}^{-1}$ in Hall (1982). Theoretically, the estimators $\tilde{\theta}_M$ and $\tilde{\alpha}_{NH}^{-1}$ are seriously biased when k is large but we still include them in the table for comparison purpose. Based on the results in Table 2, it is obvious that the new method is superior to the conventional ML method for both estimators of θ and α^{-1} in the sense that the new method in this paper
generates less biased estimators with smaller root mean squared errors. First, for both estimators of θ and α^{-1}, the new estimators proposed in this paper have smallest biases; second, the root mean squared errors for the new estimators for θ are smaller in most cases and the root mean squared errors for the new estimators for α^{-1} are the smallest among the three estimators for all cases reported in the table; third, the performance of the Hall estimators for α^{-1} is much worse than that of the negative Hill estimators especially when k is small. This third phenomenon occurs due to the following two facts: one is that the conventional likelihood method tends to select an estimate of θ which is too close to the maximum observation $X_{n,n}$ and thus results in a poor estimate for α^{-1}, and the other one is that for smaller k, Hall’s estimator for θ may not exist with a significant probability and thus Hall’s estimator for α^{-1} is actually defined as the negative Hill estimator.

It is worth mentioning that the new method works for all $\alpha > 0$ unlike Hall’s method. Choosing an optimal k is always challenging in extreme value theory and needs more complicated justifications. Note that the rate of convergence of the new endpoint estimator is independent of k for the irregular case. Therefore, one could simply employ a k obtained by any existing data driven method for estimating an endpoint. Here instead of choosing an optimal k, we conduct a simulation study for a special case with the sample size $n = 1000$ and different values for α by allowing a large range of values of k. More specifically, we run the simulation for all k from 10 to 100 and plot averages of these $N = 1000$ estimates and their root mean squared errors for both α^{-1} and θ in Figures 3 and 4, respectively. In these two figures the true value for α is 3. We observe that our new estimators are superior to Hall’s estimators over the range of values selected for k in terms of biases and root mean squared errors.

In conclusion, the new estimators proposed in the paper are very competitive in that they can be applied directly without requiring any prior information on the parameters and they have satisfactory large sample properties as well as very good small sample performance. Since the asymptotic distribution for the estimator of the endpoint is nonnormal for certain values of α, a simple unified interval estimate would be provided by a subsample bootstrap method. Without doubt, more future research is needed for constructing an efficient unified interval estimation procedure for the endpoint.
Figure 2: Functions $m(\theta)$ in (3.2) and $g(\theta)$ in (2.15) are plotted against θ from $X_{n,n} + 0.01$ to 0.1 by step 0.01 for a particular sample drawn from the reverse Gamma distribution in Section 3 with true $\theta = 0$ and $n = 200$. Note that we truncate y-axis by min($m(\theta), -0.1$) and max($m(\theta), 0.1$). Clearly $g(\theta) = 0$ has a root for all six cases above, while $m(\theta) = 0$ has no root in the range $\theta > X_{n,n}$ for five of the six cases, which indicates that the estimates of θ from Hall’s method don’t exist for those cases.
Table 1: Biases (upper values) and root mean-squared errors (lower values in the parentheses) of estimators of both θ and α^{-1} when unknown $\alpha = 0.5$ and 1: $\hat{\theta}_N$ and $\tilde{\alpha}^{-1}_N$ are new estimators for θ and α^{-1} proposed in this paper, $\hat{\theta}_M = X_{n,n}$ is the largest observation, and $\tilde{\alpha}^{-1}_{NH}$ is the negative Hill estimator as was defined in (3.4).

α	n	k	estimators of θ	estimators of α^{-1}		
----------	------	------	-------------------------	----------------------------		
			$\hat{\theta}_N$	$\hat{\theta}_M$	$\tilde{\alpha}^{-1}_N$	$\tilde{\alpha}^{-1}_{NH}$
0.5	100	20	6.34×10^{-5}	-1.63×10^{-4}	-0.0431	-0.2779
			(4.45 $\times 10^{-4}$)	(3.84 $\times 10^{-4}$)	(0.4849)	(0.4728)
	30		1.82×10^{-5}	-1.63×10^{-4}	-0.0001	-0.1881
			(3.81 $\times 10^{-4}$)	(3.84 $\times 10^{-4}$)	(0.3862)	(0.3769)
0.5	200	20	2.29×10^{-5}	-4.24×10^{-5}	-0.0763	-0.3051
			(1.29 $\times 10^{-4}$)	(9.66 $\times 10^{-5}$)	(0.4976)	(0.4930)
	40		2.33×10^{-6}	-4.24×10^{-5}	-0.0171	-0.1701
			(8.50 $\times 10^{-5}$)	(9.66 $\times 10^{-5}$)	(0.3328)	(0.3370)
0.5	500	30	1.64×10^{-6}	-6.82×10^{-6}	-0.0710	-0.2492
			(1.80 $\times 10^{-5}$)	(1.69 $\times 10^{-5}$)	(0.3759)	(0.3980)
			-3.83×10^{-7}	-6.82×10^{-6}	-0.0258	-0.1399
			(1.54 $\times 10^{-5}$)	(1.69 $\times 10^{-5}$)	(0.2639)	(0.2769)
0.5	1000	50	-2.66×10^{-8}	-1.76×10^{-6}	-0.0397	-0.1689
			(4.42 $\times 10^{-6}$)	(4.77 $\times 10^{-6}$)	(0.2854)	(0.3043)
			-3.20×10^{-7}	-1.76×10^{-6}	-0.0087	-0.0884
			(4.35 $\times 10^{-6}$)	(4.77 $\times 10^{-6}$)	(0.2024)	(0.2101)
1.0	100	20	5.08×10^{-3}	-1.02×10^{-2}	0.0253	0.0088
			(2.12 $\times 10^{-2}$)	(1.48 $\times 10^{-2}$)	(0.2990)	(0.2189)
	30		2.04×10^{-3}	-1.02×10^{-2}	0.0767	0.0533
			(1.62 $\times 10^{-2}$)	(1.48 $\times 10^{-2}$)	(0.2446)	(0.1893)
1.0	200	20	3.12×10^{-3}	-5.03×10^{-3}	0.0191	0.0246
			(1.05 $\times 10^{-2}$)	(7.01 $\times 10^{-3}$)	(0.2900)	(0.2153)
	40		9.95×10^{-4}	-5.03×10^{-3}	0.0467	0.0335
			(6.97 $\times 10^{-3}$)	(7.01 $\times 10^{-3}$)	(0.2015)	(0.1627)
1.0	500	30	9.80×10^{-4}	-2.01×10^{-3}	0.0126	0.0128
			(3.94 $\times 10^{-3}$)	(2.83 $\times 10^{-3}$)	(0.2362)	(0.1834)
			2.91×10^{-4}	-2.01×10^{-3}	0.0250	0.0193
			(2.51 $\times 10^{-3}$)	(2.83 $\times 10^{-3}$)	(0.1539)	(0.1304)
1.0	1000	50	2.47×10^{-4}	-1.02×10^{-3}	0.0016	0.0040
			(1.41 $\times 10^{-3}$)	(1.45 $\times 10^{-3}$)	(0.1694)	(0.1400)
			6.55×10^{-5}	-1.02×10^{-3}	0.0195	0.0157
			(1.18 $\times 10^{-3}$)	(1.45 $\times 10^{-3}$)	(0.1121)	(0.0989)
Table 2: Biases (upper values) and root mean-squared errors (lower values in the parentheses) of estimators of both θ and α^{-1} when unknown $\alpha = 2$ and 3: $\tilde{\theta}_N$ and $\tilde{\alpha}_{N}^{-1}$ are the new estimators for θ and α^{-1} proposed in this paper, $\tilde{\theta}_H$ and $\tilde{\alpha}_{H}^{-1}$ are Hall’s ML estimators for θ and α^{-1}.

<table>
<thead>
<tr>
<th>α</th>
<th>n</th>
<th>k</th>
<th>$\tilde{\theta}_N$</th>
<th>$\tilde{\alpha}_{N}^{-1}$</th>
<th>$\tilde{\theta}_H$</th>
<th>$\tilde{\alpha}_{H}^{-1}$</th>
<th>$\tilde{\alpha}_{N}^{-1}$</th>
<th>$\tilde{\alpha}_{H}^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>100</td>
<td>20</td>
<td>0.0240</td>
<td>-0.0856</td>
<td>-0.1312</td>
<td>0.1292</td>
<td>1.0329</td>
<td>0.2124</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.1690)</td>
<td>(0.1741)</td>
<td>(0.1495)</td>
<td>(0.2696)</td>
<td>(1.3986)</td>
<td>(0.2797)</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>20</td>
<td>-0.0047</td>
<td>-0.1031</td>
<td>-0.1312</td>
<td>0.1757</td>
<td>0.6758</td>
<td>0.2404</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.1348)</td>
<td>(0.1462)</td>
<td>(0.1495)</td>
<td>(0.2601)</td>
<td>(0.9265)</td>
<td>(0.2835)</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>20</td>
<td>0.0257</td>
<td>-0.0497</td>
<td>-0.0918</td>
<td>0.0783</td>
<td>0.8839</td>
<td>0.1824</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.1257)</td>
<td>(0.1526)</td>
<td>(0.1042)</td>
<td>(0.2380)</td>
<td>(1.2884)</td>
<td>(0.2524)</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>20</td>
<td>0.0011</td>
<td>-0.0650</td>
<td>0.0918</td>
<td>0.1242</td>
<td>0.3547</td>
<td>0.1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.0945)</td>
<td>(0.0973)</td>
<td>(0.1042)</td>
<td>(0.1998)</td>
<td>(0.5332)</td>
<td>(0.2359)</td>
</tr>
<tr>
<td>2</td>
<td>500</td>
<td>30</td>
<td>0.0158</td>
<td>-0.0300</td>
<td>-0.0567</td>
<td>0.0505</td>
<td>0.3784</td>
<td>0.1605</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.0739)</td>
<td>(0.0733)</td>
<td>(0.0640)</td>
<td>(0.1827)</td>
<td>(0.6703)</td>
<td>(0.2083)</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>30</td>
<td>0.0007</td>
<td>-0.0368</td>
<td>-0.0567</td>
<td>0.0868</td>
<td>0.1783</td>
<td>0.1605</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.0528)</td>
<td>(0.0551)</td>
<td>(0.0640)</td>
<td>(0.1482)</td>
<td>(0.2480)</td>
<td>(0.1884)</td>
</tr>
<tr>
<td>2</td>
<td>1000</td>
<td>50</td>
<td>0.0070</td>
<td>-0.0218</td>
<td>-0.0405</td>
<td>0.0460</td>
<td>0.1589</td>
<td>0.1380</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.0465)</td>
<td>(0.0452)</td>
<td>(0.0458)</td>
<td>(0.1435)</td>
<td>(0.2781)</td>
<td>(0.1760)</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>50</td>
<td>-0.0024</td>
<td>-0.0250</td>
<td>-0.0405</td>
<td>0.0773</td>
<td>0.1296</td>
<td>0.1382</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.0336)</td>
<td>(0.0374)</td>
<td>(0.0458)</td>
<td>(0.1206)</td>
<td>(0.1629)</td>
<td>(0.1589)</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>20</td>
<td>-0.0236</td>
<td>-0.2450</td>
<td>-0.3883</td>
<td>0.1934</td>
<td>0.7759</td>
<td>0.3047</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.3827)</td>
<td>(0.4208)</td>
<td>(0.4182)</td>
<td>(0.2955)</td>
<td>(1.1699)</td>
<td>(0.3543)</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>20</td>
<td>-0.0724</td>
<td>-0.2768</td>
<td>0.3883</td>
<td>0.2281</td>
<td>0.5350</td>
<td>0.3220</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.3556)</td>
<td>(0.3915)</td>
<td>(0.4182)</td>
<td>(0.2954)</td>
<td>(0.7622)</td>
<td>(0.3557)</td>
</tr>
<tr>
<td>3</td>
<td>200</td>
<td>20</td>
<td>-0.0056</td>
<td>-0.1660</td>
<td>-0.3036</td>
<td>0.1499</td>
<td>0.6478</td>
<td>0.2734</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.3099)</td>
<td>(0.3588)</td>
<td>(0.3263)</td>
<td>(0.2621)</td>
<td>(1.0532)</td>
<td>(0.3255)</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>20</td>
<td>-0.0526</td>
<td>-0.2018</td>
<td>-0.3036</td>
<td>0.1748</td>
<td>0.3157</td>
<td>0.2775</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.2654)</td>
<td>(0.2900)</td>
<td>(0.3263)</td>
<td>(0.2306)</td>
<td>(0.4342)</td>
<td>(0.3051)</td>
</tr>
<tr>
<td>3</td>
<td>500</td>
<td>30</td>
<td>0.0077</td>
<td>-0.1052</td>
<td>-0.2196</td>
<td>0.1049</td>
<td>0.2946</td>
<td>0.2375</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.2239)</td>
<td>(0.2409)</td>
<td>(0.2347)</td>
<td>(0.2012)</td>
<td>(0.5224)</td>
<td>(0.2771)</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>30</td>
<td>-0.0336</td>
<td>-0.1287</td>
<td>-0.2196</td>
<td>0.1270</td>
<td>0.1954</td>
<td>0.2298</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.1703)</td>
<td>(0.1911)</td>
<td>(0.2347)</td>
<td>(0.1727)</td>
<td>(0.2387)</td>
<td>(0.2502)</td>
</tr>
<tr>
<td>3</td>
<td>1000</td>
<td>50</td>
<td>0.0034</td>
<td>-0.0685</td>
<td>-0.1719</td>
<td>0.0855</td>
<td>0.1598</td>
<td>0.2079</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.1649)</td>
<td>(0.1907)</td>
<td>0.1833</td>
<td>(0.1562)</td>
<td>(0.2384)</td>
<td>(0.2347)</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>50</td>
<td>-0.0321</td>
<td>-0.0955</td>
<td>-0.1719</td>
<td>0.1123</td>
<td>0.1570</td>
<td>0.1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.1277)</td>
<td>(0.1437)</td>
<td>0.1833</td>
<td>(0.1448)</td>
<td>(0.1849)</td>
<td>(0.2147)</td>
</tr>
</tbody>
</table>
Figure 3: Estimated biases (left) and root mean-squared errors (right) of the new estimator and Hall’s estimator for α^{-1} with sample size $n = 1000$.

Figure 4: Estimated biases (left) and root mean-squared errors (right) of the new estimator and Hall’s estimator for θ with sample size $n = 1000$.
3.2 Comparisons with high order moments method

Girard, Guillou and Stupfler (2012b) proposed a high order moments estimator for endpoint \(\theta \) which is based on empirical moment-generating function

\[
\mu(p) = \frac{1}{n} \sum_{j=1}^{n} e^{pX_j}, \quad p > 0.
\]

The high order moments estimator for \(\theta \) is defined as

\[
\Theta_n = \frac{1}{a} \left(\log \frac{\mu(p_n)}{\mu(p_n + 1)} - \log \frac{\mu((a + 1)p_n)}{\mu((a + 1)(p_n + 1))} \right)
\]

where \(a > 0 \) is a fixed constant and \(p_n \) is a sequence of constants such that \(p_n \to \infty \) as \(n \to \infty \). Under certain technical conditions involving both the underlying distribution \(F \) and \(p_n \), it is proved in Girard, Guillou and Stupfler (2012b) that \(\Theta_n \) is asymptotically normal. For our likelihood estimators as well as many other estimators such as moment estimators (see, Aarssen and de Haan (1994)), the parameter \(k \) represents the proportion of the sample that is used in the estimation. The high order moments estimator uses all data points, and parameters \(p \) and \(a \) may be related to weights of the data points used in the estimation. In general, it seems not easy to compare the performance of different estimation methods at specific levels of their tuning parameters when the tuning parameters in different methods have a different role.

Girard, Guillou and Stupfler (2012b) compared the performance of their estimator with the maximum value estimator \(X_{n,n} \) and the moment estimator in terms of the optimal mean absolute errors, and selected two types of distributions given below. The first one is

\[
1 - F(x) = (1 + (-x)^{-\tau_1})^{-\tau_2}, \quad x < 0 \tag{3.5}
\]

with \(\tau_1, \tau_2 > 0 \). A random variable \(X \) with distribution (3.5) can be written as \(X = -1/Y \), where \(Y \) has a Burr(1, \(\tau_1 \), \(\tau_2 \)) type III distribution.

The second distribution is

\[
1 - F(x) = \int_{\log(1-1/x)}^{\infty} \lambda^2 t e^{-\lambda t} dt, \quad x < 0 \tag{3.6}
\]

with \(\lambda > 0 \). A random variable \(X \) with distribution (3.6) can be written as \(X = -1/(e^Y - 1) \), where \(Y \) has a Gamma(2, \(\lambda \)) distribution.
Both models (3.5) and (3.6) have a right endpoint $\theta = 0$. Choose one distribution from (3.5) or (3.6). For each random sample of size 500, compute the high order moments estimates across the selections $p \in \mathcal{P} = \{5, 10, 15, \ldots, 300\}$ and $a \in \mathcal{A} = \{0.01, 0.04, 0.07, \ldots, 25.00\}$. Repeat the experiment $N = 1000$ times, and denote the high order moments estimates as $\hat{\theta}(j, p, a)$ based on the j-th sample, with each combination $p \in \mathcal{P}$ and $a \in \mathcal{A}$ for $1 \leq j \leq N$. The estimated mean absolute errors are

$$E(p, a) = \frac{1}{N} \sum_{j=1}^{N} |\hat{\theta}(j, p, a)|, \quad p \in \mathcal{P}, \quad a \in \mathcal{A}.$$

The minimum of $E(p, a)$ over $p \in \mathcal{P}$, $a \in \mathcal{A}$ is served as the estimated optimal absolute error for the high order moments estimate. Table 1 in Girard, Guillou and Stupfler (2012b) contains some comparison results for the high order moments estimator, the maximum value estimator and the moment estimator for θ. From that table, Girard, Guillou and Stupfler (2012b) claimed that the high order moments estimator outperforms other two estimators in all cases.

We compare our new likelihood estimator with the high order moments estimator under exactly the same setups as in Girard, Guillou and Stupfler (2012b), that is, we select distributions from (3.5) and (3.6), generate $N = 1000$ replicates of random samples of size $n = 500$ each, pick up the same values for p and a, and use the same choices for parameters in the two distributions. For our new likelihood method, we compute our estimate for θ with choices $k \in \mathcal{P}$ and then estimate the corresponding optimal mean absolute error. Our simulation results are reported in Table 3, which shows that the estimated optimal mean absolute errors for the new likelihood estimator are smaller than those for the high order moments estimator.

4 Real Data Applications

In this section we will analyze two data sets in athletics: the fastest personal times of 100-meters for men and women recorded from January 1, 1991 to June 19, 2008. Our aim is to predict the ultimate world records for these two events. The current Men’s 100 meters world record is 9.58 seconds by Usain Bolt at the 2009 World Championships. Women’s 100 meters world record is 10.49 seconds by Florence Griffith-Joyner at the 1988 Olympic
Trials. Both records are not included in the data sets because they are not set in the time period from January 1, 1991 to June 19, 2008.

The two datasets have been studied in Einmahl and Smeets (2011) by using the moment estimators proposed in Dekkers, Einmahl and de Haan (1989). The dataset for men’s 100 meters consists of 762 best personal times ranging from 9.72 to 10.30 (seconds) while the dataset for women’s 100 meters has 479 data points ranging from 10.65 to 11.38 (seconds).

Times for the two events are available in hundredths of seconds and thus there are many ties in the data sets. A smoothed method will be used as in Einmahl and Magnus (2008) and Einmahl and Smeets (2011), that is, if there are \(m \) (\(m \geq 2 \)) athletes have equal personal best time \(y \) (in seconds), smooth them equally in the interval \((y - 0.005, y + 0.005)\) and replace them by the \(m \) data points \(y - 0.005 + 0.01(2j - 1)/(2m), j = 1, \cdots, m \). Next, transform the times \((t \text{ seconds})\) to speeds \((s \text{ kilometers per hour})\) by formula \(s = 360/t \) and analyze the speed data.

Einmahl and Smeets (2011) tested extreme-value conditions for the two data sets. They applied the moment estimators for both the tail index \(\gamma = -1/\alpha \) and the endpoint \(\theta \). It is important to decide the sample fraction or threshold \(k \) in the estimation, and this can be done by minimizing the so-called asymptotic mean squared errors (AMSE). They estimated \(\gamma \) by identifying some \(k \)-regions over which the AMSEs are relative small and stable and then used the average of all estimates of \(\gamma \) in these regions as the final estimate for the tail index for each event. Next, they estimated the endpoint for speed for each event by identifying \(k \)-regions and using the average of estimates for the endpoints over the regions. The two \(k \)-regions for men’s 100 meters and women’s 100 meters are 110 – 200

<table>
<thead>
<tr>
<th>Distribution</th>
<th>(-1/\text{Burr}(1, \tau_1, \tau_2))</th>
<th>Parameters</th>
<th>HOM</th>
<th>MPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\tau_1, \tau_2) = (1, 1))</td>
<td>1.48 \cdot 10^{-3}</td>
<td>(\lambda = 1)</td>
<td>1.68 \cdot 10^{-4}</td>
<td>1.57 \cdot 10^{-4}</td>
</tr>
<tr>
<td>((\tau_1, \tau_2) = (5/6, 6/5))</td>
<td>1.50 \cdot 10^{-3}</td>
<td>(\lambda = 5/4)</td>
<td>7.94 \cdot 10^{-4}</td>
<td>7.47 \cdot 10^{-4}</td>
</tr>
<tr>
<td>((\tau_1, \tau_2) = (2/3, 3/2))</td>
<td>1.55 \cdot 10^{-3}</td>
<td>(\lambda = 5/3)</td>
<td>3.87 \cdot 10^{-3}</td>
<td>3.60 \cdot 10^{-3}</td>
</tr>
<tr>
<td>((\tau_1, \tau_2) = (1/2, 2))</td>
<td>1.72 \cdot 10^{-3}</td>
<td>(\lambda = 5/2)</td>
<td>2.03 \cdot 10^{-2}</td>
<td>1.83 \cdot 10^{-2}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distribution</th>
<th>(-1/\exp(\text{Gamma}(2, \lambda)) - 1)</th>
<th>Parameters</th>
<th>HOM</th>
<th>MPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda = 1)</td>
<td>1.68 \cdot 10^{-4}</td>
<td>(\lambda = 5/4)</td>
<td>7.94 \cdot 10^{-4}</td>
<td>7.47 \cdot 10^{-4}</td>
</tr>
<tr>
<td>(\lambda = 5/3)</td>
<td>3.87 \cdot 10^{-3}</td>
<td>(\lambda = 5/3)</td>
<td>3.60 \cdot 10^{-3}</td>
<td>3.60 \cdot 10^{-3}</td>
</tr>
<tr>
<td>(\lambda = 5/2)</td>
<td>2.03 \cdot 10^{-2}</td>
<td>(\lambda = 5/2)</td>
<td>1.83 \cdot 10^{-2}</td>
<td>1.83 \cdot 10^{-2}</td>
</tr>
</tbody>
</table>
and 80 – 210, respectively.

First, we compare the performance of our likelihood method with the moment method. We estimate the speed endpoint and tail index for each of the two events and plot the estimates based on the likelihood method and the moment method in Figures 5 and 6, respectively. Note that the estimates for the endpoints in the moment method in Einmahl and Smeets (2011) use the same (fixed) estimates for tail index while in our study the estimates of γ depend on the sample fraction k. Therefore, our plots for moment estimates and the endpoints are different from those in Einmahl and Smeets (2011). We notice that there are similar patterns or trends for two types of estimation methods. But our likelihood estimators are more stable than the moment estimators in general.

Second, we decide a single value of sample fraction k for our likelihood estimates in the k-regions as the moment methods by Einmahl and Smeets (2011) so that we don’t have to worry about violation of the extreme-value condition. For men’s 100 meters, we check the k-region 110-200 and find out that both estimates for the tail index and the endpoint are highly stable when k changes from 140 to 160. We select $k = 160$ and the resulting estimates for γ and θ are -0.18 and 37.96. Based on Theorem 2.3, the standard error for the endpoint estimate is 0.6837, and thus a 95% upper confidence limit is $37.95 + 1.645 \times 0.6937 = 39.09$. From formula $t = 36/s$, the estimates for the time endpoint and its 95% lower confidence limit are 9.48 and 9.21, respectively. Similarly, for women’s 100 meters, we find out that both our estimates for the tail index and the endpoint are highly stable when k changes from 100 to 200 which is within the k-region 80 – 210, and thus we are able to decide the sample fraction $k = 200$. The corresponding estimates are listed in Table 4. The results for the moment method from Einmahl and Smeets (2011) are also listed in Table 4 for comparison. The standard error of the likelihood estimate for the speed endpoint is 0.5606 for women’s 100 meters.

Now it is interesting to compare results from the two different estimation methods. For men’s 100 meters, the new likelihood estimate gives an estimated ultimate world record 9.48 seconds, 0.10 seconds lower than the current world record 9.58 seconds, while the moment method provides an estimate 9.51 seconds. Both methods yield the same 95% lower confidence limit 9.21 seconds. At this point, the two methods provide quite similar results. For women’s 100 meters, the new likelihood method gives an estimate 10.40 seconds, 0.09 seconds lower than the current world record. The moment method, however,
yields a much lower estimate 10.33 seconds, 0.16 seconds lower than the current world record, a much bigger room for improvement. If we consider the 95% lower confidence limit for women’s 100 meters, the new likelihood method gives 10.12 seconds, while the moment method has a much smaller estimate 9.88 seconds. Using the likelihood method, we can further calculate a 99% upper confidence limit for the speed endpoint which is equal to $10.40 + 0.5606 \times 2.326 = 35.92$ (kilometers per hour) and thus we have the 99% lower confidence limit $360/35.92 = 10.02$ seconds for the time endpoint. If we think the 99% lower confidence limit as a possible true endpoint, then by comparing it with the current world record 10.49 seconds established almost thirty years ago, we may well expect that it will be a very long way for female athletes to achieve a personal best time within 10.00 seconds, a time shorter than the 99% lower confidence limit for women’s 100 meters ultimate world record.

Figure 5: Our new likelihood estimates and the moment estimates for tail index $\gamma = -1/\alpha$ and the endpoint θ for speed (in km/h) for men’s 100 meters.
Figure 6: Our new likelihood estimates and the moment estimates for tail index $\gamma = -1/\alpha$ and the endpoint θ for speed (in km/h) for women’s 100 meters.

Table 4: Ultimate World Records in speed (km/h) and time (seconds)

<table>
<thead>
<tr>
<th>Events</th>
<th>Current World Record</th>
<th>Estimation Method</th>
<th>Tail Index</th>
<th>Endpoint Speed (km/h)</th>
<th>Endpoint Time (seconds)</th>
<th>95% Lower Limit (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-m men</td>
<td>9.58</td>
<td>Moment</td>
<td>-0.19</td>
<td>37.85</td>
<td>9.51</td>
<td>9.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Likelihood</td>
<td>-0.18</td>
<td>37.95</td>
<td>9.48</td>
<td>9.21</td>
</tr>
<tr>
<td>100-m women</td>
<td>10.49</td>
<td>Moment</td>
<td>-0.18</td>
<td>34.85</td>
<td>10.33</td>
<td>9.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Likelihood</td>
<td>-0.20</td>
<td>34.62</td>
<td>10.40</td>
<td>10.13</td>
</tr>
</tbody>
</table>
5 Conclusions

Under condition (1.1), the maximum as a natural estimator for the endpoint has a slower rate of convergence for a larger tail index \(\alpha \). Hence many existing endpoint estimators based on \(k \) upper order statistics are designed to improve the convergence rate for the regular case, which unfortunately have a slower rate of convergence than the maximum for the irregular case \(\alpha \in (0, 2) \). Likelihood based estimators in Hall (1982) for both \(\alpha \) and the endpoint only exist for \(\alpha > 1 \) with probability tending to one although the corresponding endpoint estimator has the same rate of convergence as the maximum for the irregular case. This paper proposes a maximum penalized likelihood method to improve existing methods, where the resulting endpoint estimator is always larger than the maximum for both regular case and irregular case and has the same rate of convergence as the maximum for the irregular case, and the corresponding score equations exist a solution for all \(\alpha > 0 \) and any given sample as long as the largest two observations are distinct and the sample fraction \(k \geq 2 \) is used in the estimation. Therefore, in comparison with existing endpoint estimators which work for all \(\alpha > 0 \), the new endpoint estimator achieves the same rate of convergence as the maximum for the irregular case; in comparison with the likelihood based inference in Hall (1982) which only works for \(\alpha > 1 \) and may not exist for some given samples, the new estimators work for all \(\alpha > 0 \) and are well defined for any given sample such that the largest two observations are distinct and \(k \geq 2 \).

6 Supplementary materials

We have conducted some further simulation study to compare our new estimators with the endpoint estimator proposed in Fraga Alves and Neves (2014) and with the moment estimator for the tail index proposed by Dekkers, Einmahl and de Haan (1989). The comparison results can be found in Section A of the Supplement in Wang et al. (2017). The proofs of the theorems in Section 2 are available in Section B of the Supplement by Wang et al. (2017).

Acknowledgments. We thank two reviewers and an associate editor for their helpful comments. Peng’s research was supported by the Simons Foundation, Qi’s research was supported by NSF grant DMS-1005345, and Wang’s research was supported by NSFC.
Grant No. 11671021, NSFC Grant No. 11471222 and Foundation of Beijing Education Bureau Grant No. 201510028002.

References

29

Supplement to “Maximum Penalized Likelihood Estimation for the Endpoint and Exponent of A Distribution”

Fang Wang¹, Liang Peng², Yongcheng Qi³ and Meiping Xu⁴

¹School of Mathematical Sciences, Capital Normal University, Beijing 100037, PR China. Email: fang72_wang@cnu.edu.cn
²Department of Risk Management and Insurance, Georgia State University, Atlanta, GA 30303, USA. Email: lpeng@gsu.edu
³Department of Mathematics and Statistics, University of Minnesota - Duluth, 1117 University Drive, Duluth, MN 55812, USA. Email: yqi@d.umn.edu
⁴School of Science, Beijing Technology and Business University, Beijing 100048, P.R. China. Email: xumeiping2006@163.com
A Further comparisons on estimators for endpoint and tail index

Per the request of an anonymous referee, we carry out the following two comparison studies: (A) comparison between our new estimator for the endpoint and the endpoint estimator proposed in Fraga Alves and Neves (2014) and (B) comparison between our new estimator for the tail index and the moment estimator in Dekkers, Einmahl and de Haan (1989). Throughout the referred equation and theorem numbers without a letter are those in the original paper.

The endpoint estimator in Fraga Alves and Neves (2014) is defined as

\[\hat{\theta}_{FAN}(2k - 1) = X_{n,n} + \sum_{i=0}^{k-1} a_{ki}(X_{n,n-k} - X_{n,n-k-i}), \]

(A.1)

where \(a_{ki} = (\log 2)^{-1}(\log(k + i + 1) - \log(k + i)) \) for \(0 \leq i \leq k - 1 \). We will call it FAN estimator. This estimator was originally proposed to estimate the endpoint for distributions in the Gumbel max-domain of attraction. Fraga Alves, Neves and Rosário (2017) have extended the setting to (1.1).

The moment estimator for the tail index \(\gamma = -1/\alpha \) proposed by Dekkers, Einmahl and de Haan (1989) is given by

\[\hat{\gamma}_M(k) = M^{(1)}_{n,k} + 1 - \frac{1}{2} \left(1 - \frac{(M^{(1)}_{n,k})^2}{M^{(2)}_{n,k}} \right)^{-1}, \]

(A.2)

where \(M^{(j)}_{n,k} = \frac{1}{k} \sum_{i=1}^{k} (\log(X_{n,n-k+i}) - \log(X_{n,n-k}))^j \) for \(j = 1, 2 \). A natural requirement for the moment estimator \(\hat{\gamma}_M(k) \) is that all the data involved in the estimation must be positive, which implies that the endpoint \(\theta \) must be positive. Otherwise, one can add a positive constant to all observations to fulfill this requirement.

For empirical comparison, we will use the same setting as in Section 3.2, that is, we use both distributions defined in (3.5) and (3.6), choose the sample size \(n = 500 \), and repeat the experiment 1000 times. We calculate the averages and estimate the mean absolute errors (\(L_1 \) errors) of the two aforementioned estimators. The simulation results for distribution (3.6) are somewhat similar to those for distribution (3.5), and so we will report simulation results for distribution (3.5) only.
In Figures 7 and 8, we plot the averages of the estimates and their L_1 errors for the endpoint based on our new penalized likelihood method (New Estimator) and Fraga Alves and Neves’s (2014) method (FAN Estimator) against the sample fraction k. We note that the FAN Estimator $\hat{\theta}_{FAN}(2k - 1)$ in (A.1) employs $2k$ upper order statistics while the New Estimator $\tilde{\theta}_N(k) = \tilde{\theta}$ given in Theorem 2.3 is based on $k + 1$ upper order statistics. To make a fair comparison, two types of estimators are compared when the same number of observations are involved in the estimation. More precisely, we will compare $\hat{\theta}_{FAN}(k)$ and $\tilde{\theta}_N(k)$ for $k = 2p - 1$, $p = 3, 4, \cdots, 102$.

We have repeated our simulation study for distribution (3.5) by selecting various values for (τ_1, τ_2). We choose $(\tau_1, \tau_2) = (0.5, 1.0), (1.0, 0.5), (0.5, 2.0), (1.0, 2.0), (0.5, 3.0), (1.0, 3.0)$. For distribution (3.5), $\theta = 0$ and $\alpha = \tau_1\tau_2$. Therefore, our study covers cases of $\alpha = 0.5, 1, 1.5, 2$ and 3.

In Figures 9 and 10, we plot the averages of the estimates and their L_1 errors for the index $1/\alpha$ based on our new penalized likelihood method (New Estimator) and the moment estimator (Moment Estimator) against the sample fraction k. Since the moment estimator $\hat{\gamma}_M(k)$ defined in (A.2) is used to estimate $\gamma = -1/\alpha$, we actually plot the estimated means and L_1 errors for $\tilde{\alpha}^{-1}_N$ given in (2.14) and $-\hat{\gamma}_M(k)$. Since the moment estimator can only be applied to positive observations, all our samples in the study are drawn from the population $20 + X$, where X is a random variable having distribution (3.5). The values of (τ_1, τ_2) selected in this study are the same as in the simulation for the endpoint. The sample fraction k is taken from 5 to 200 with an increment 5.

In conclusion, we observe from Figures 7 and 8 that the maximum penalized likelihood estimator for endpoint is very stable against the sample fraction in terms of the bias and the mean absolute error, and the FAN estimator can perform better when the upper order statistics employed in the estimation are relatively dense near the endpoint. Also we observe from Figures 9 and 10 that the maximum penalized likelihood estimator is superior to the moment estimator.
Figure 7: Estimated means (left) and estimated L_1 errors (right) for two endpoint estimators: New Estimator as the smallest solution to (2.15) and FAN Estimator defined in (A.1). The samples are taken from distribution (3.5), where $\theta = 0$ and $\alpha = \tau_1\tau_2$
Figure 8: Estimated means (left) and estimated L_1 errors (right) for two endpoint estimators: New Estimator as the smallest solution to (2.15) and FAN Estimator defined in (A.1). The samples are taken from distribution (3.5), where $\theta = 0$ and $\alpha = \tau_1 \tau_2$.
Figure 9: Estimated means (left) and estimated L_1 errors (right) for two estimators for α^{-1}: New Estimator $\hat{\alpha}_N^{-1}$ defined in (2.14) and minus Moment Estimator $-\hat{\gamma}_M(k)$, where $\hat{\gamma}_M(k)$ is defined in (A.2). The samples are taken from population $20 + X$, where X has distribution (3.5) and $\alpha = \tau_1 \tau_2$.
Figure 10: Estimated means (left) and estimated L_1 errors (right) for two estimators for α^{-1}: New Estimator $\tilde{\alpha}_N^{-1}$ defined in (2.14) and minus Moment Estimator $-\hat{\gamma}_M(k)$, where $\hat{\gamma}_M(k)$ is defined in (A.2). The samples are taken from population $20 + X$, where X has distribution (3.5) and $\alpha = \tau_1 \tau_2$
B Proofs of Theorems 2.1 to 2.3 in Wang, Peng, Qi and Xu (2017)

B.1 Some notation and lemmas

Let V_1, \cdots, V_n be i.i.d. random variables with distribution function $1 - 1/x$ for $x \geq 1$ and $V_{n,1} \leq \cdots \leq V_{n,n}$ denote the order statistics of V_1, \cdots, V_n. Since $U(V_1), \cdots, U(V_n)$ are iid random variables with the distribution F, for convenience we assume $X_i = U(V_i)$ for $1 \leq i \leq n$ and hence $X_{n,i} = U(V_{n,i})$ for $1 \leq i \leq n$.

Consider another independent sequence of i.i.d. random variables $V_1^* \cdots, V_k^*$ with distribution function $1 - 1/x$ for $x \geq 1$. Denote $V_{k,1}^* \leq \cdots \leq V_{k,k}^*$ as their order statistics. It is well known that

$$\{V_n, n-k+j/V_n, n-k\}_{j=1}^k \overset{d}{=} \{V_{k,j}^*\}_{j=1}^k,$$ \hspace{1cm} (B.1)

see Page 71 of de Haan and Ferreira (2006). That is, $\{V_n, n-k+j/V_n, n-k\}_{j=1}^k$ are distributed the same as the order statistics of a sample of size k from the distribution function $1 - 1/x$ for $x \geq 1$. In the sequel, we will simply denote $V_n, n-k+j/V_n, n-k$ by $V_{k,j}^*$ for $1 \leq j \leq k$.

Set $S_k(\lambda) = \sum_{j=1}^k (V_{k,j}^*)^\lambda = \sum_{j=1}^k (V_{j}^*)^\lambda$ for $\lambda > 0$ and define for $x \in \mathbb{R}$,

$$Q_k = \sqrt{k} \left(\frac{1}{k} \sum_{j=1}^k \log V_{k,j}^* - 1 \right),$$

$$T_{\lambda,x}^{(k)} = \sum_{j=1}^{k-1} \frac{(V_{k,j}^*)^\lambda}{1 + (V_{k,j}^*/k)^\lambda x}$$

for $\lambda > 1/2$ and

$$P_{\lambda,x}^{(k)} = \begin{cases} \frac{1}{k x} \left(\frac{(V_{k,j}^*)^\lambda}{1 + (V_{k,j}^*/k)^\lambda x} + (1 - \lambda) T_{\lambda,x}^{(k)} \frac{k - 1}{1 - \lambda} \right) & \text{if } \lambda \in (1/2, 1), \\ \frac{1}{k x} \left(\frac{(V_{k,j}^*)^\lambda}{1 + (V_{k,j}^*/k)^\lambda x} + (1 - \lambda) T_{\lambda,x}^{(k)} \right) & \text{if } \lambda > 1. \end{cases}$$

Let $\{Y_n\}$ be a sequence of random variables and $\{a_n\}$ be a sequence of positive constants. Assume $\{A_n\}$ is a sequence of measurable sets. If $P(\{|Y_n/a_n| > \varepsilon\} \cap A_n) \to 0$ for every $\varepsilon > 0$, then we say Y_n/a_n converges in probability to zero on A_n and denote it by $Y_n = o_p(a_n)$ on A_n. If $\lim_{\varepsilon \to \infty} \limsup_{n \to \infty} P(\{|Y_n/a_n| > \varepsilon\} \cap A_n) = 0$, then we say Y_n/a_n is bounded on A_n and denote it by $Y_n = O_p(a_n)$ on A_n.

The following two lemmas are very helpful and easy to prove, and the details of the proofs are omitted here.
Lemma B.1. \(Y_n = o_p(a_n) \) if and only if for every \(\delta \in (0, 1) \) there exists a sequence of measurable sets \(\{A_n\} \) with \(P(A_n) \geq \delta \) for all large \(n \) such that \(Y_n = o_p(a_n) \) on \(A_n \). The same conclusion is true if \(o_p(a_n) \) is replaced by \(O_p(a_n) \).

Lemma B.2. Let \(\{Y_n\} \) and \(\{Z_n\} \) be two sequences of random variables such that \(Y_n - Z_n = o_p(1) \). If the limiting distribution of \(Z_n \) exists and is continuous at \(x \), then \(\lim_{n \to \infty} P(Y_n \leq x) = \lim_{n \to \infty} P(Z_n \leq x) \).

The following lemma deals with limits of \(V_{k,k}^* \), \(S_k(\lambda) \) and \(Q_k \).

Lemma B.3. (i) \(V_{k,k}/k \xrightarrow{d} \exp(-x^{-1}) (x > 0) \).
(ii) If \(\lambda \in (0, 1) \), then \(\frac{1}{k} S_k(\lambda) \xrightarrow{p} \frac{1}{1-\lambda} \).
(iii) If \(\lambda \in (0, 1/2) \), then \(\frac{1}{k} S_k(\lambda) \xrightarrow{d} N(0, \frac{\lambda^2}{(1-\lambda)^2(1-2\lambda)}) \).
(iv) If \(\lambda = 1/2 \), then \(\frac{1}{k} S_k(1/2 - 2k) \xrightarrow{d} N(0, 1) \).
(v) If \(\lambda = 1 \), then \(\frac{S_k(\lambda)}{k} \xrightarrow{p} 1 \).
(vi) If \(\lambda > 1 \), then \(\frac{S_k(\lambda)}{k} \xrightarrow{d} 0 \).
(vii) \(Q_k \xrightarrow{d} N(0, \Sigma_1) \) as \(k \to \infty \). If \(\lambda \in (0, 1/2) \), then \(\frac{1}{\sqrt{k \log k}} (S_k(\lambda) - \frac{k}{1-\lambda}) \xrightarrow{d} N(0, \Sigma_1) \), where

\[
\Sigma_1 = \begin{pmatrix}
\lambda^2(1-\lambda)^{-2}(1-2\lambda)^{-1} & \lambda(1-\lambda)^{-2} \\
\lambda(1-\lambda)^{-2} & 1
\end{pmatrix};
\]

if \(\lambda = 1/2 \), then \(\frac{1}{\sqrt{k \log k}} (S_k(1/2) - 2k) \) and \(Q_k \) are asymptotically independent.

Proof. (i) follows from a direct calculation that for \(x > 0 \), \(P(V_{k,k}/k \leq x) = \left(1 - \frac{1}{k^2}\right)^k \) for large \(k \) such that \(kx > 1 \), which has a limit \(\exp(-x^{-1}) \) as \(k \to \infty \). See, also, de Haan and Ferreira (2006). Parts (ii) to (vii) follow from the classic theory of probability (see, eg, Loève (1977)) since \(S_k(\lambda) = \sum_{j=1}^k (V_j^*)^\lambda \) is the sum of \(k \) i.i.d. random variables for each \(\lambda > 0 \). Note that the mean \(E((V_j^*)^\lambda) = \frac{1}{1-\lambda} \) is finite only if \(\lambda \in (0, 1) \) and the variance \(\text{Var}((V_j^*)^\lambda) = \frac{\lambda^2}{(1-\lambda)^2(1-2\lambda)} \) is finite if \(\lambda \in (0, 1/2) \). Therefore, part (ii) is a consequence of the classic law of large numbers and part (iii) follows from the standard central limit theorem. When \(\lambda > 1/2 \), the distribution of \((V_j^*)^\lambda \) is in the domain of attraction of a \(1/\lambda \)-stable law. If \(\lambda = 1/2 \), the stable law is normal and part (iv) follows from Loève (1977), page 364. If \(\lambda > 1 \), \(S_k(\lambda)/k^\lambda \) converges in distribution to a \(1/\lambda \)-stable law and part (vi) follows immediately. If \(\lambda = 1 \), \((S_k(1) - k \log k)/k \) converges in distribution to a 1-stable law, which implies part (v). The first part of (vi) follows from the standard central limit
theorem, and the second part follows from the multivariate central limit theorem since

\[
\left(\frac{1}{\sqrt{k}} (S_k(\lambda) - \frac{k}{1-\lambda}), Q_k \right) = \frac{1}{\sqrt{k}} \sum_{j=1}^{k} \left((V_j^*)^\lambda - \frac{1}{1-\lambda}, \log V_j^* - 1 \right)
\]

and \(\Sigma_1 \) is the covariance matrix of \((V_1^*)^\lambda\) and \(\log V_1^* \).

Lemma B.4. Under condition (2.4) there exists a regularly varying function \(A_1(t) \sim A(t) \) such that

\[
\theta_0 - U(t) = bt^\gamma_0 \left(-\frac{1}{\gamma_0} - \frac{1}{\gamma_0 + \rho} A_1(t) \right)
\]

for all large \(t \) where \(b = \lim_{t \to \infty} t^{-\gamma_0} a(t) = c^\gamma_0 (-\gamma_0) \), and \(c \) is given in (1.1).

Proof. From Theorem 2.3.6 of de Haan and Ferria (2006) there exists a function \(A_1(t) \sim A(t) \) such that for any \(\epsilon > 0 \) and \(\delta > 0 \)

\[
\left| \frac{U(tx) - U(t)}{A_1(t)} - \frac{x^{\gamma_0+1}}{\gamma_0} - \frac{1}{\gamma_0 + \rho} \right| \leq c' x^{\gamma_0+\rho} \max(x^\delta, x^{-\delta})
\]

for all \(t \) as \(tx \geq t_0 \) for some \(t_0 > 0 \). Since \(\lim_{x \to \infty} U(x) = \theta_0 \), we get the desired result by selecting \(\delta < -\gamma_0 \) and letting \(x \to \infty \). \(\square \)

In Lemmas B.5, B.6 and B.7 below and their proofs we use \(e^{ix} \) to denote the complex number \(\cos x + i \sin x \).

Lemma B.5. Let \(x \in \mathbb{R} \) and \(v > 0 \) be any constants such that \(1 + v^\lambda x > 0 \).

(i) Conditional on \(V_{k,k}^* = kv \),

\[
\hat{T}_{\lambda,x} := \frac{1}{1-\lambda} \left(T_{\lambda,x}^{(k)} - k \right) \xrightarrow{d} G_{\lambda,v,x} \quad \text{if } \lambda \in \left(\frac{1}{2}, 1 \right)
\]

and

\[
\hat{T}_{\lambda,x} := \frac{1}{1-\lambda} T_{\lambda,x}^{(k)} \xrightarrow{d} G_{\lambda,v,x} \quad \text{if } \lambda \in (1, \infty).
\]

(ii) Conditional on \(V_{k,k}^* = kv \), \(Q_k \) converges in distribution to the standard normal, and \(Q_k \) and \(\hat{T}_{\lambda,x} \) are asymptotically independent for \(\lambda \in \left(\frac{1}{2}, 1 \right) \) and \(\lambda \in (1, \infty) \).

Proof. (i) Conditional on \(V_{k,k}^* = kv \), the vector \((V_{k,1}^*, \ldots, V_{k,k-1}^*)\) has the same joint distribution as that of the order statistics from \(k-1 \) iid random variables \(Y_1(v), \ldots, Y_{k-1}(v) \) with a distribution function \(F_{k,v} \) given by

\[
F_{k,v}(y) = \frac{1 - y^{-1}}{1 - (kv)^{-1}} \quad \text{for } 1 < y < kv.
\]
Therefore, for each fixed $x \in \mathbb{R}$ and $v > 0$ such that $1 + v^\lambda x > 0$ we have that

$$P(T_{\lambda,x}^{(k)} \leq s|V_{k,k}^* = kv) = P\left(\sum_{j=1}^{k-1} \frac{Y_j^\lambda(v)}{1 + (Y_j(v)/k)^\lambda x} \leq s\right) \quad \text{for } s \in \mathbb{R}. $$

Set $Z_j = k^{-\lambda}(\frac{Y_j^\lambda(v)}{1 + (Y_j(v)/k)^\lambda x} - \frac{1}{1 - x})$. Then we have

$$G_{\lambda,v,x}^{(k)}(s) := P\left(\frac{1}{k^\lambda}(T_{\lambda,x}^{(k)} - \frac{k-1}{1-\lambda}) \leq s|V_{k,k}^* = kv\right) = P\left(\sum_{j=1}^{k-1} Z_j \leq s\right).$$

We can check that

$$\delta_n(t) = E(e^{itZ_1}) - 1$$

$$= \frac{1}{1 - (kv)^{-1}} \int_1^{kv} \left(\exp\{it\left(\frac{y/k^\lambda}{1 + (y/k)^\lambda x} - k^{-\lambda}(1-\lambda)^{-1}\right)\} - 1\right) y^{-2} dy$$

$$= \frac{1}{k(1 - (kv)^{-1})} \int_{1/k}^{v} \left(\exp\{it\frac{y^\lambda}{1 + y^\lambda x} - k^{-\lambda}(1-\lambda)^{-1}\} - 1\right) y^{-2} dy$$

$$= \frac{1}{k(1 - (kv)^{-1})} \int_{1/k}^{v} \left(\exp\{it\frac{y^\lambda}{1 + y^\lambda x}\} \exp\{-itk^{-\lambda}(1-\lambda)^{-1}\} - 1\right) y^{-2} dy + o(\frac{1}{k})$$

$$= \frac{1}{k(1 - (kv)^{-1})} \int_{1/k}^{v} \left(\exp\{it\frac{y^\lambda}{1 + y^\lambda x}\} \exp\{-itk^{-\lambda}(1-\lambda)^{-1}\} - 1\right) y^{-2} dy + o(\frac{1}{k})$$

$$= \frac{1}{k(1 - (kv)^{-1})} \int_{1/k}^{v} \left(\exp\{it\frac{y^\lambda}{1 + y^\lambda x}\} - 1 - it\frac{y^\lambda}{1 + y^\lambda x}\right) (1 - itk^{-\lambda}(1-\lambda)^{-1}) y^{-2} dy$$

$$+ \frac{1}{k(1 - (kv)^{-1})} \int_{1/k}^{v} \left((1 + it\frac{y^\lambda}{1 + y^\lambda x}) (1 - itk^{-\lambda}(1-\lambda)^{-1}) - 1\right) y^{-2} dy + o(\frac{1}{k}).$$

Some further manipulations show that

$$\delta_n(t) = \frac{1}{k} \int_0^v \left(\exp\{it\frac{y^\lambda}{1 + y^\lambda x}\} - 1 - it\frac{y^\lambda}{1 + y^\lambda x}\right) y^{-2} dy$$

$$- \frac{it}{k} \left(\int_0^v \frac{y^{2\lambda-2}x}{1 + y^\lambda x} dy + \frac{y^{\lambda-1}}{1 - \lambda}\right) + o(\frac{1}{k}).$$

Note that the conditional characteristic function of $\sum_{j=1}^{k-1} Z_j$ is $(1 + \delta_n(t))^k$. Thus

$$(1 + \delta_n(t))^k \rightarrow f_{\lambda,v,x}(t).$$
Similarly, the case for \(\lambda > 1 \) can be verified.

(ii) The proof is standard by showing the convergence of the characteristic functions
\[
E(e^{itQ_k} | V_{k,k}^* = kv) \to e^{-t_1^2/2} \quad \text{and} \quad E(e^{it_1Q_k e^{it_2\hat{T}_{\lambda,x}} | V_{k,k}^* = kv) \to e^{-t_2^2/2} f_{\lambda,v,x}(t_2)}
\]
for \((t_1, t_2)\) in a neighborhood of \((0, 0)\). The details are omitted here. \(\square\)

The following two lemmas consider the limiting distributions of \(R_{\lambda,x}^{(k)} \) and \(Q_k \).

Lemma B.6. Let \(\lambda \in (\frac{1}{2}, 1) \) or \(\lambda \in (1, \infty) \).

(i) If \(x \geq 0 \), then
\[
R_{\lambda,x}^{(k)} \overset{d}{\rightarrow} H_{\lambda,x};
\]
(ii) If \(x < 0 \), then conditional on \(1 + (V_{k,k}^*/k)^\lambda x > 0 \),
\[
R_{\lambda,x}^{(k)} \overset{d}{\rightarrow} \exp\{(-x)^{1/\lambda}\} H_{\lambda,x}.
\]

Proof. Note that
\[
R_{\lambda,x}^{(k)} = \frac{(V_{k,k}^*/k)^\lambda}{1 + (V_{k,k}^*/k)^\lambda x} + (1 - \lambda) \hat{T}_{\lambda,x},
\]
where \(\hat{T}_{\lambda,x} \) is defined in Lemma B.5. We have shown in Lemma B.5 that for any \(x \in \mathbb{R} \) and \(v > 0 \) such that \(1 + v^\lambda x > 0 \)
\[
f_{\lambda,v,x}^{(k)}(t) := E(e^{it\hat{T}_{\lambda,x}} | V_{k,k}^* = kv) \rightarrow f_{\lambda,v,x}(t) \quad \text{(B.2)}
\]
where \(f_{\lambda,v,x} \) is the characteristic function of \(G_{\lambda,v,x} \). Since \(f_{\lambda,v,x}^{(k)}(t) \) is not defined when \(kv \in (0, 1] \), for convenience, we set \(f_{\lambda,v,x}^{(k)}(t) = f_{\lambda,v,x}(t) \) when \(kv \in (0, 1] \).

Denote \(\ell_k(v) := v^{-2} \left(1 - (kv)^{-1}\right)^k I(kv > 1) \), i.e., the density function of \(V_{k,k}^* \). Set \(\ell(v) = v^{-2} \exp(-v^{-1}) I(v > 0) \), which is the density function of the distribution function \(\exp(1-v^{-1}), v > 0 \). We can easily verify that \(\int_0^\infty |\ell_k(v) - \ell(v)|dv \to 0 \) as \(k \to \infty \). In view of the dominated convergence theorem and (B.2) we have
\[
\int_0^\infty |f_{\lambda,v,x}^{(k)}((1 - \lambda)t) - f_{\lambda,v,x}((1 - \lambda)t)|\ell(v)dv \to 0.
\]
When \(x > 0 \), the constraint \(1 + v^\lambda x > 0 \) is trivial and thus
\[
E(e^{itR_{\lambda,x}^{(k)}}) = E\left(E(e^{itR_{\lambda,x}^{(k)}} | V_{k,k}^*/k)\right) = \int_0^\infty \exp(it\frac{v^\lambda}{1 + v^\lambda}) f_{\lambda,v,x}^{(k)}((1 - \lambda)t)\ell_k(v)dv,
\]
from which we have as $k \to \infty$
\[
|E(e^{itR_{\lambda,x}^{(k)}}) - \int_0^\infty \exp(it\left(\frac{v^\lambda}{1 + v^\lambda}\right))f_{\lambda,v,x}((1 - \lambda)t)\ell(v)dv| \\
\leq \left| \int_0^\infty \exp(it\left(\frac{v^\lambda}{1 + v^\lambda}\right))f_{\lambda,x,v}^{(k)}((1 - \lambda)t)\ell_k(v)dv - \int_0^\infty \exp(it\left(\frac{v^\lambda}{1 + v^\lambda}\right))f_{\lambda,v,x}^{(k)}((1 - \lambda)t)\ell(v)dv \right| \\
+ \int_0^\infty \exp(it\left(\frac{v^\lambda}{1 + v^\lambda}\right))f_{\lambda,v,x}^{(k)}((1 - \lambda)t)\ell(v)dv - \int_0^\infty \exp(it\left(\frac{v^\lambda}{1 + v^\lambda}\right))f_{\lambda,v,x}((1 - \lambda)t)\ell(v)dv \\
\leq \int_0^\infty |\ell_k(v) - \ell(v)|dv + \int_0^\infty |f_{\lambda,v,x}^{(k)}((1 - \lambda)t) - f_{\lambda,v,x}((1 - \lambda)t)|\ell(v)dv \\
\to 0.
\]

It is easily seen that $\int_0^\infty \exp(it\left(\frac{v^\lambda}{1 + v^\lambda}\right))f_{\lambda,v,x}((1 - \lambda)t)\ell(v)dv$ is the characteristic function of the distribution $H_{\lambda,x}$. This proves part (i) of the lemma.

When $x < 0$, the natural constraint $1 + (V_{k,k}^*/k)^\lambda x > 0$ is equivalent to $V_{k,k}^*/k \in (0, \varphi_x)$. Therefore, we have
\[
E(e^{itR_{\lambda,x}^{(k)}}|1 + (V_{k,k}^*/k)^\lambda x > 0) = \frac{1}{P(1 + (V_{k,k}^*/k)^\lambda x > 0)} \int_0^\varphi_x \exp(it\left(\frac{v^\lambda}{1 + v^\lambda}\right))f_{\lambda,v,x}((1 - \lambda)t)\ell_k(v)dv.
\]

From Lemma B.3 (i) we get $P(1 + (V_{k,k}^*/k)^\lambda x > 0) = P(V_{k,k}^*/k < \varphi_x) \to \exp(-x)^{1/\lambda}$. Similar to the proof for part (i), we have as $k \to \infty$
\[
\int_0^\varphi_x \exp(it\left(\frac{v^\lambda}{1 + v^\lambda}\right))f_{\lambda,v,x}((1 - \lambda)t)\ell_k(v)dv \to \int_0^\varphi_x \exp(it\left(\frac{v^\lambda}{1 + v^\lambda}\right))f_{\lambda,v,x}((1 - \lambda)t)\ell(v)dv.
\]

Hence, we get
\[
E(e^{itR_{\lambda,x}^{(k)}}|1 + (V_{k,k}^*/k)^\lambda x > 0) \to \exp(-x)^{1/\lambda} \int_0^\varphi_x \exp(it\left(\frac{v^\lambda}{1 + v^\lambda}\right))f_{\lambda,v,x}((1 - \lambda)t)\ell(v)dv.
\]
The limiting function is the characteristic function of the distribution $\exp\{-x^{1/\lambda}\}H_{\lambda,x}(y)$ which is the conditional distribution of $V^\lambda(1 + V^\lambda x) + (1 - \lambda)Z_{\lambda,x}$ given $V < \varphi_x^{1/\lambda}$, where $Z_{\lambda,x}$ and V are two random variables such that V has a distribution $\exp(-v^{-1})$, $v > 0$ and the conditional distribution of $Z_{\lambda,x}$ given $V = v$ is $G_{\lambda,v,x}$ defined in Section 2. This completes the proof of the lemma. □

Lemma B.7. Let $\lambda \in (\frac{1}{2}, 1)$ or $\lambda \in (1, \infty)$.

(i) If $x \geq 0$, then $R_{\lambda,x}^{(k)}$ and Q_k are asymptotically independent.

(ii) If $x < 0$, then conditional on $1 + (V_{k,k}^*/k)^\lambda x > 0$, $R_{\lambda,x}^{(k)}$ and Q_k are asymptotically independent.
Proof. We will sketch the proof for part (i) only. The proof for part (ii) is similar. From Lemma B.5 we have

\[f^{(k)}_{\lambda,v,x}(t,s) := E(e^{it\hat{T}_{\lambda,x}+isQ_k}|V^*_k,k = kv) \to f_{\lambda,v,x}(t) \exp(-\frac{s^2}{2}), \]

which is parallel to (B.2) in the proof of Lemma B.6. Note that \(\exp(-\frac{s^2}{2}) \) is the characteristic function of the standard normal and is free of \(v \). The rest of the proof follows the exactly same lines as those in the proof of Lemma B.6. We then obtain that

\[|E(e^{it\hat{T}_{\lambda,x}+isQ_k}) - (\int_0^\infty \exp(it(\frac{v}{\lambda}))f_{\lambda,v,x}((1-\lambda)t)\ell(v)dv) \exp(-\frac{s^2}{2})| \to 0 \]

as \(k \to \infty \), which implies the asymptotic independence in part (i).

Before proving our theorems, we derive some useful inequalities. It follows from Lemma B.4 that there exists a \(C > 0 \) such that for all large \(t \)

\[\left| \frac{\theta_0 - U(tx)}{\theta_0 - U(t)} - x^{\gamma_0} \right| \leq Cx^{\gamma_0}A_1(t) \quad \text{for all } x \geq 1. \]

Write

\[\delta(t,x) = \left(\frac{\theta_0 - U(tx)}{\theta_0 - U(t)} - x^{\gamma_0} \right)/x^{\gamma_0}. \]

Then \(|\delta(t,x)| \leq CA_1(t) \) uniformly in \(x \geq 1 \) for all large \(t \), and

\[\frac{U(tx) - U(t)}{\theta_0 - U(t)} = 1 - x^{\gamma_0}(1 + \delta(t,x)). \]

Now for each \(j, 1 \leq j \leq k \), plug in \(t = V_{n,n-k} \) and \(x = \frac{V_{n,n-k+j}}{V_{n,n-k}} \) in the above equation we have

\[\frac{X_{n,n-k+j} - X_{n,n-k}}{\theta_0 - X_{n,n-k}} = 1 - \left(\frac{V_{n,n-k+j}}{V_{n,n-k}} \right)^{\gamma_0}(1 + \varepsilon_{n,j}) = 1 - (V_{k,j})^{\gamma_0}(1 + \varepsilon_{n,j}), \]

where \(\varepsilon_{n,j} = \delta(V_{n,n-k}, \frac{V_{n,n-k+j}}{V_{n,n-k}}) \). Since \(A_1(t) \) is regularly varying with exponent \(\rho \) and \(kV_{n,n-k}/n \to 1 \) in probability, we get \(A_1(V_{n,n-k})/A_1(n/k) \to 1 \) in probability, and thus we have

\[\varepsilon_n := \max_{1 \leq j \leq k} |\varepsilon_{n,j}| = O_p(A(n/k)). \]

For every \(\theta > X_{n,n} \), define

\[\tau = \frac{\theta - X_{n,n-k}}{\theta_0 - X_{n,n-k}} \]

(B.4)
and thus $\theta = X_{n,n-k} + \tau (\theta_0 - X_{n,n-k})$ for $\tau > \frac{X_{n,n-k} - X_{n,n-k}}{\theta_0 - X_{n,n-k}}$. Then we can write

$$\frac{\theta - X_{n,n-k+j}}{\theta - X_{n,n-k}} = 1 - \frac{X_{n,n-k+j} - X_{n,n-k}}{\theta - X_{n,n-k}} = 1 - \frac{X_{n,n-k+j} - X_{n,n-k}}{\tau (\theta_0 - X_{n,n-k})} = \frac{(V_{k,j}^*)^{-\gamma_0}(1 + (\tau - 1)(V_{k,j}^*)^{-\gamma_0} + \varepsilon_{n,j})}{\tau}. \quad (B.5)$$

For each given $\delta \in (0, 1)$ define

$$A_n = \{1 + (\tau - 1)(V_{k,k}^*)^{-\gamma_0} > \delta\} \cap \{\varepsilon_n < \delta/2\}$$

and

$$B_n = \{1 + (\tau - 1)(V_{k,k}^*)^{-\gamma_0} > \delta\} \cap \{(\tau - 1)(V_{k,k}^*)^{-\gamma_0} < \frac{1}{\delta}\} \cap \{\varepsilon_n < \delta/3\}.$$

Define $\beta_{n,j}$ and $\xi_{n,j}$ such that

$$\frac{\theta - X_{n,n-k}}{\theta - X_{n,n-k+j}} = \tau (V_{k,j}^*)^{-\gamma_0} - (\tau - 1)(V_{k,j}^*)^{-2\gamma_0} + \beta_{n,j} \quad (B.6)$$

and

$$\frac{\theta - X_{n,n-k}}{\theta - X_{n,n-k+j}} = \frac{\tau (V_{k,j}^*)^{-\gamma_0}}{1 + (\tau - 1)(V_{k,j}^*)^{-\gamma_0}}(1 + \xi_{n,j}). \quad (B.7)$$

Then, from (B.5) we can show for all large n,

$$|\beta_{n,j}| \leq (\tau - 1)^2(V_{k,j}^*)^{-2\gamma_0} + \frac{5\tau}{\delta} \{(\tau - 1)^2(V_{k,j}^*)^{-3\gamma_0} + (V_{k,j}^*)^{-\gamma_0} \varepsilon_n\} \quad (B.8)$$

uniformly in $1 \leq j \leq k$ and τ on A_n and

$$\max_{1 \leq j \leq n} |\xi_{n,j}| \leq \frac{2}{\delta} \varepsilon_n \quad \text{uniformly in } \tau \text{ on } B_n.$$

B.2 Proof of Theorem 2.1.

As we have known, there exists a unique solution to $h(\theta) = 0$ as defined in (2.1) on $\{X_n > X_{n,n-1}\}$. Since F is continuous in a neighborhood of θ and $X_{n,n-k} \to \theta$ almost surely, with probability one, $X_{n,n} = X_{n,n-1}$ can occur only finitely many times (in n). Set $A = \{X_n > X_{n,n-1} \text{ ultimately}\}$. Then $P(A) = 1$. Set $B = \{\hat{\theta} > \theta + \varepsilon \text{ infinitely often}\}$.

15
If the statement in the theorem is false, then $P(B) > 0$ for some $\varepsilon > 0$, and hence $P(A \cap B) > 0$. We have from (2.3) that infinitely often in $A \cap B$

$$1 \leq \frac{\alpha_0}{k + 1} \frac{X_{n,n} - X_{n,n-k}}{\hat{\theta} - X_{n,n}} + \frac{|\alpha_0 - 1|}{k + 1} \sum_{j=1}^{k-1} \frac{X_{n,n-k+j} - X_{n,n-k}}{\hat{\theta} - X_{n,n-k+j}}$$

$$\leq \frac{\alpha_0}{k + 1} \frac{X_{n,n} - X_{n,n-k}}{\varepsilon} + \frac{|\alpha_0 - 1|}{k + 1} \sum_{j=1}^{k-1} \frac{X_{n,n-k+j} - X_{n,n-k}}{\varepsilon}$$

$$\leq \frac{2\alpha_0 + 1}{\varepsilon} (\theta - X_{n,n-k})$$

$$< 1,$$

which yields a contradiction. This completes the proof.

\[\Box\]

B.3 Proof of Theorem 2.2

Define

$$h_1(\tau) = h(X_{n,n-k + \tau(\theta_0 - X_{n,n-k}))}$$

and denote $\hat{\tau}$ as the solution to equation $h_1(\tau) = 0$. Then it is readily seen that

$$\hat{\theta} = X_{n,n-k} + \hat{\tau}(\theta_0 - X_{n,n-k}), \quad (B.9)$$

or equivalently,

$$\hat{\theta} - \theta_0 = (\hat{\tau} - 1)(\theta_0 - X_{n,n-k}). \quad (B.10)$$

Since $k = k_n \to \infty$, we have under condition (2.4) that $P(X_{n,n} > X_{n,n-k}) \to 1$ as $n \to \infty$. Thus, with probability tending to one, the ML estimator $\hat{\theta}$ is unique, and hence $\hat{\tau}$ is also the unique solution to $h_1(\tau) = 0$. It follows from Lemma B.4 that

$$(\theta_0 - X_{n,n-k})/(n/k)^{\gamma_0} \overset{p}{\to} b/(-\gamma_0) = c^{\gamma_0}. \quad (B.11)$$

We will aim at the limiting distribution of $\hat{\tau} - 1$ since the limiting distribution for $\hat{\theta} - \theta_0$ follows immediately from (B.10) and (B.11).

It is easy to see that for any sequence $\{\tau_n\}$, on $\{X_{n,n} > X_{n,n-k}\}$, $\hat{\tau} \leq \tau_n$ if and only if $h_1(\tau_n) \leq 0$ and $\tau_n > \frac{X_{n,n} - X_{n,n-k}}{\theta_0 - X_{n,n-k}}$, which implies

$$P(\hat{\tau} \leq \tau_n) = P(h_1(\tau_n) \leq 0, \frac{X_{n,n} - X_{n,n-k}}{\theta_0 - X_{n,n-k}} < \tau_n) + o(1). \quad (B.12)$$
It follows from Lemma B.3 and equation (B.3) that
\[
 k^{-\gamma_0}(X_{n,n} - \frac{X_{n,n-k}}{\theta_0} - 1) = -\left(\frac{\nu_{k,k}^*}{k}\right)^{\gamma_0}(1 + o_p(1)) \xrightarrow{d} 1 - \exp(-\max(0,-x))^{-\frac{1}{\gamma_0}}. \tag{B.13}
\]

Equations (B.12) and (B.13) play very important role in getting the limiting distributions of \(\tilde{\tau} \).

We will consider four cases: \(\alpha_0 > 2, \alpha_0 = 2, \alpha_0 \in (0,2), \alpha_0 \neq 1, \) and \(\alpha_0 = 1 \).

Case 1: \(\alpha_0 > 2 \). For \(x \in \mathbb{R} \) define \(\tau_n = \tau_n(x) = 1 + \frac{x}{\sqrt{k}} \). For any \(\delta > 0 \), we have that \(P(A_n) \to 1 \) as \(n \to \infty \). It follows from (B.6) and Lemma B.3 that on \(A_n \)
\[
|h_1(\tau_n)| + \frac{1}{\gamma_0} + \gamma_0 \left((S_k(-\gamma_0) - \frac{k}{1 + \gamma_0}) - (S_k(-\gamma_0) - S_k(-2\gamma_0)) \frac{x}{\sqrt{k}} \right) \leq O \left(\frac{1}{k} \right) (S_k(-2\gamma_0) + S_k(-3\gamma_0)) + O(1) S_k(-\gamma_0) \varepsilon_n + O_p(1)(V_{k,k}^*)^{-\gamma_0} + \frac{(V_{k,k}^*)^{-3\gamma_0}}{k}
\]
\[
\leq O_p(kA(n/k) + k^{-\gamma_0}).
\]

We have used the fact that \(S_n(-3\gamma_0) \leq (V_{k,k}^*)^{-\gamma_0} S_k(-2\gamma_0) \). Set \(Y_n = h_1(\tau_n)/\sqrt{k} \) and \(Z_n = \frac{1 + \gamma_0}{\gamma_0} (\frac{1}{\sqrt{k}} (S_k(-\gamma_0) - \frac{k}{1 + \gamma_0}) + (S_k(-\gamma_0) - S_k(-2\gamma_0)) \frac{x}{\sqrt{k}}) \). It follows that \(Y_n - Z_n = o_p(1) \) under condition (2.5) and
\[
Z_n \xrightarrow{d} N \left(\frac{-x}{1 + 2\gamma_0}, \frac{1}{1 + 2\gamma_0} \right)
\]
from Lemma B.3. Then we obtain from Lemma B.2 that
\[
\lim_{n \to \infty} P(h_1(\tau_n) \leq 0) = \Phi \left(\frac{x}{\sqrt{1 + 2\gamma_0}} \right).
\]
Since (B.13) implies \(P \left(\frac{X_{n,n} - X_{n,n-k}}{\theta_0} < \tau_n \right) \to 1 \), we get from (B.12) that \(P(\tilde{\tau} \leq \tau_n(x)) \to \Phi \left(\frac{x}{\sqrt{1 + 2\gamma_0}} \right) \) for all \(x \in \mathbb{R} \), that is,
\[
\sqrt{k}(\tilde{\tau} - 1) \xrightarrow{d} N(0,1 + 2\gamma_0),
\]
which together with (B.10) and (B.11) yields (2.9).

Case 2: \(\alpha_0 = 2 \). We can show (2.10) similarly to **Case 1** by setting \(\tau_n = \tau_n(x) = 1 + \frac{x}{\sqrt{k \log k}} \). The details are omitted here.

Case 3: \(\alpha_0 \in (0,2), \alpha_0 \neq 1 \). Set \(\tau_n = \tau_n(x) = 1 + k^{\gamma_0} x \). We consider two cases: \(x \geq 0 \) and \(x < 0 \).

Case 3.1: \(x \geq 0 \). It follows from Lemma B.3 (i) that for any \(\varepsilon > 0 \), there exists a \(\delta > 0 \) such that \(P(B_n) > 1 - \varepsilon \) for all large \(n \). We have from Lemma B.5 that \(T_{\gamma_0,x}^{(k)} = O_p(k) \)
if \(\alpha_0 \in (1, 2) \) and \(T_{-\gamma_0, x}^{(k)} = O_p(k^{-\gamma_0}) \) if \(\alpha_0 \in (0, 1) \). Therefore, it follows from Lemma B.1 and equation (B.7) that for \(\alpha_0 \in (1, 2) \)

\[
k^{\gamma_0} h_1(\tau_n) = k^{\gamma_0} \left(\frac{(V_{*, k, k}^{*})^{-\gamma_0}}{1 + (V_{*, k, k}^{*})^{-\gamma_0} x} + (1 + \gamma_0)(T_{-\gamma_0, x}^{(k)} - \frac{k - 1}{1 + \gamma_0}) \right) + O_p(k^{1+\gamma_0}) \varepsilon_n
\]

\[
= k^{\gamma_0} \left(\frac{(V_{*, k, k}^{*})^{-\gamma_0}}{1 + (V_{*, k, k}^{*})^{-\gamma_0} x} + (1 + \gamma_0)(T_{-\gamma_0, x}^{(k)} - \frac{k - 1}{1 + \gamma_0}) \right) + O_p(k^{1+\gamma_0} A(n/k)), \quad (B.14)
\]

which converges in distribution to \(H_{-\gamma_0, x} \) in view of Lemma B.5. Since \(G_{-\gamma_0, v, x}(y) \) is continuous in \(y \), it can be verified that \(H_{-\gamma_0, x}(y) \) is continuous in \(y \) as well. The constraint \(\frac{X_{n,n} - X_{n,n-k}}{\theta_0 - X_{n,n-k}} < \tau_n \) is fulfilled automatically since \(\frac{X_{n,n} - X_{n,n-k}}{\theta_0 - X_{n,n-k}} < 1 \). Therefore, we have from Lemma B.2 and (B.12) that

\[
\lim_{n \to \infty} P(\hat{\tau} \leq \tau_n) = \lim_{n \to \infty} P(k^{\gamma_0} h_1(\tau_n) \leq 0) = H_{-\gamma_0, x}(0) = \Lambda_{-\gamma_0}(x) \quad (B.15)
\]

when \(\alpha_0 \in (1, 2) \). For \(\alpha_0 \in (0, 1) \) we have

\[
k^{\gamma_0} h_1(\tau_n) = k^{\gamma_0} \left(\frac{(V_{*, k, k}^{*})^{-\gamma_0}}{1 + (V_{*, k, k}^{*})^{-\gamma_0} x} + (1 + \gamma_0) T_{-\gamma_0, x}^{(k)} \right) + O_p(\varepsilon_n)
\]

\[
= k^{\gamma_0} \left(\frac{(V_{*, k, k}^{*})^{-\gamma_0}}{1 + (V_{*, k, k}^{*})^{-\gamma_0} x} + (1 + \gamma_0) T_{-\gamma_0, x}^{(k)} \right) + O_p(A(n/k)).
\]

Similarly, by using Lemma B.5 we obtain (B.15) for \(x \geq 0 \).

Case 3.2: \(x < 0 \). The proof for \(x < 0 \) with \(\alpha_0 \in (0, 2) \) and \(\alpha_0 \neq 1 \) is a little bit complicated since we have to take into account of the constraint \(\frac{X_{n,n} - X_{n,n-k}}{\theta_0 - X_{n,n-k}} < \tau_n \). We only consider the case \(x < 0 \) and \(\alpha_0 \in (1, 2) \) since proof for \(\alpha_0 \in (0, 1) \) is similar.

From (B.3) with \(j = k \) and Lemma B.3 (i) we have for \(y < 0 \)

\[
\lim_{n \to \infty} P(\frac{X_{n,n} - X_{n,n-k}}{\theta_0 - X_{n,n-k}} < \tau_n(y)) = \lim_{n \to \infty} P(k^{\gamma_0} (V_{*, k, k}^{*})^{-\gamma_0} < (-y)^{-1}) = \exp(-(-y)^{-1/\gamma_0}), \quad (B.16)
\]

which is a continuous distribution function. Moreover, it follows from (B.13) that

\[
\lim_{n \to \infty} E[I(\frac{X_{n,n} - X_{n,n-k}}{\theta_0 - X_{n,n-k}} < \tau_n(y)) - I(k^{\gamma_0} (V_{*, k, k}^{*})^{-\gamma_0} < (-y)^{-1})] = 0, \quad (B.17)
\]
where \(I(A) \) denotes the indicator function of the event \(A \). For any given small \(\varepsilon > 0 \), if \(\delta > 0 \) is small enough, we have that
\[
E|I(k^{\gamma_0}(V_{k,k}^{*})^{-\gamma_0} < (-x)^{-1}) - I(k^{\gamma_0}(V_{k,k}^{*})^{-\gamma_0} < (-x/(1 - \delta))^{-1})| \\
= P(k^{\gamma_0}(V_{k,k}^{*})^{-\gamma_0} < (-x)^{-1}) - P(k^{\gamma_0}(V_{k,k}^{*})^{-\gamma_0} < (-x/(1 - \delta))^{-1}) \\
\rightarrow \exp((-x)^{-1/\gamma_0}) - \exp((-x/(1 - \delta))^{-1/\gamma_0}) \\
< \varepsilon/2,
\]
which implies that for all large \(k \),
\[
E|I(k^{\gamma_0}(V_{k,k}^{*})^{-\gamma_0} < (-x)^{-1}) - I(k^{\gamma_0}(V_{k,k}^{*})^{-\gamma_0} < (-x/(1 - \delta))^{-1})| < \varepsilon.
\]
Since \(\{(V_{k,k}^{*})^{-\gamma_0} < (-x/(1 - \delta))^{-1}\} = \{1 + (\tau_n(x) - 1)V_{k,k}^{*} > \delta\} \), we have
\[
E|I((V_{k,k}^{*})^{-\gamma_0} < (-x/(1 - \delta))^{-1}) - I(B_n)| \rightarrow 0 \quad \text{as } n \rightarrow \infty.
\]
Then it follows from approximation (B.7) that (B.14) holds on \(B_n \). Since \(\delta > 0 \) can be arbitrarily small, by using (B.17) with \(y = x \), (B.18) and (B.19) we can show that
\[
\lim_{n \rightarrow \infty} P(h_1(\tau_n) \leq 0|X_{n,n} - X_{n,n-k} < \tau_n) \\
= \lim_{n \rightarrow \infty} P(k^{\gamma_0}(1 + (V_{k,k}^{*})^{-\gamma_0} + (1 + \gamma_0)(T^{(k)}_{\gamma_0,x} - \frac{k - 1}{1 + \gamma_0}) \leq 0|1 + (V_{k,k}^{*})^{-\gamma_0}x > 0) \\
= \exp((-x)^{-1/\gamma_0})H_{\gamma_0,x}(0),
\]
where the last step follows from Lemma B.6(ii). Once again we have (B.15) by using (B.12) and (B.16) with \(y = x \). Hence (2.11) follows from (B.15) and (B.11).

Case 4: \(\alpha_0 = 1 \). The case \(\alpha_0 = 1 \) can be verified directly since there is a close form solution \(\hat{\theta} = X_{n,n} + (k + 1)^{-1}(X_{n,n} - X_{n,n-k}) \) as in Remark 1 in Section 2. Then, it follows from (B.11) and (B.13) that
\[
\frac{n}{\hat{\theta} - \theta_0} = k\left(\frac{X_{n,n} - X_{n,n-k}}{\theta_0 - X_{n,n-k}} - 1\right) + \left(1 + \frac{1}{k + 1}\right)\frac{c(\theta_0 - X_{n,n-k})}{(n/k)^{-1}} + \frac{k}{k + 1}\left(\frac{\theta_0 - X_{n,n-k}}{n/k} - 1\right)
\]
\[
\rightarrow 1 - Z
\]
since the distribution function on the right-hand side of (B.13) is the same as that of \(-Z\), where \(Z \) is the standard exponential random variable. This completes the proof of Theorem 2.2. \(\Box \)
B.4 Proof of Theorem 2.3

Our approach in the proof is first to identify that the estimator $\tilde{\theta}$ falls within a small neighborhood of θ_0 and then to use some expansions to get the asymptotic distributions for both $\tilde{\theta}$ and $\tilde{\alpha}^{-1}$. The proof is very lengthy. We will consider three cases: $\alpha_0 > 2$, $\alpha_0 = 2$, and $\alpha_0 \in (0, 2)$.

Case 1: $\alpha_0 > 2$. The idea for the proof is somewhat similar to that of Theorem 6 in Hall (1982). We will split the proof into several steps.

Step 1. Some preparations.

Let $\{\theta_n\}$ be any sequence of random variables such that

$$n^{-\gamma_0}(\theta_n - \theta_0) = o_p(1).$$ \hfill (B.20)

Define

$$\tau_n = \frac{\theta_n - X_{n,n-k}}{\theta_0 - X_{n,n-k}}.$$

Then it follows from (B.11) that

$$k^{-\gamma_0}(\tau_n - 1) = \frac{n^{-\gamma_0}(\theta_n - \theta_0)}{(n/k)^{-\gamma_0}(\theta_0 - X_{n,n-k})} = \frac{n^{-\gamma_0}}{c^{\gamma_0}} (\theta_n - \theta_0)(1 + o_p(1)) = o_p(1).$$ \hfill (B.21)

Since $n^{-\gamma_0}(\theta_0 - X_{n,n})$ converges in distribution to a positive and continuous random variable, we conclude that $P(\theta_n > X_{n,n}) \to 1$.

For any $\delta \in (0, 1)$, $P(A_n) \to 1$ as $n \to \infty$. By virtue of (B.6) we have

$$\frac{\theta_n - X_{n,n-k}}{\theta_n - X_{n,n-k + j}} = (V_{k,j}^*)^{-\gamma_0} (1 + (\tau_n - 1)(1 - (V_{k,j}^*)^{-\gamma_0}) + (V_{k,j}^*)^{\gamma_0} \beta_{n,j})$$

for $1 \leq j \leq k$.

From (B.8) we have

$$\max_{1 \leq j \leq k} (V_{k,j}^*)^{\gamma_0} \beta_{n,j} = o_p(1)$$

and thus

$$\log \frac{\theta_n - X_{n,n-k}}{\theta_n - X_{n,n-k + j}} = -\gamma_0 \log V_{k,j}^* + (\tau_n - 1)(1 - (V_{k,j}^*)^{-\gamma_0}) + ((V_{k,j}^*)^{\gamma_0} \beta_{n,j} + (\tau_n - 1)^2(V_{k,j}^*)^{-2\gamma_0})O_p(1),$$

20
where $O_p(1)$ terms are uniform in j. Therefore we get that

$$
\frac{1}{k} \sum_{j=1}^{k} \log \frac{\theta_n - X_{n,n-k}}{\theta_n - X_{n,n-k+j}}
$$

$$
= -\gamma_0 \frac{1}{k} \sum_{j=1}^{k} \log V_{k,j}^* + (\tau_n - 1)(1 - \frac{1}{k} S_k(-\gamma_0)) + O_p(1) \frac{1}{k} \sum_{j=1}^{k} \log V_{k,j}^* + (\tau_n - 1)(1 - \frac{1}{k} S_k(-\gamma_0)) + O_p((\tau_n - 1)^2 + A(n/k)),
$$

where the last step follows from Lemma B.3 and (B.8). Hence we conclude that

$$
\frac{1}{k} \sum_{j=1}^{k} \log \frac{\theta_n - X_{n,n-k}}{\theta_n - X_{n,n-k+j}}
$$

$$
= -\gamma_0 \frac{1}{k} \sum_{j=1}^{k} \log V_{k,j}^* + (\tau_n - 1)(1 - \frac{1}{k} S_k(-\gamma_0)) + O_p((\tau_n - 1)^2 + A(n/k) + \frac{1}{k}).
$$

In a similar manner we obtain that

$$
\sum_{j=1}^{k} \frac{\theta_n - X_{n,n-k}}{\theta_n - X_{n,n-k+j}}
$$

$$
= S_k(-\gamma_0) + (\tau_n - 1)(S_n(-\gamma_0) - S_k(-2\gamma_0)) + O_p((\tau_n - 1)^2 k^{1-\gamma_0} + kA(n/k)).
$$

Since $\frac{\theta_n - X_{n,n-k}}{\theta_n - X_{n,n}} = O_p(k^{-\gamma_0})$, we have

$$
\sum_{j=1}^{k-1} \frac{\theta_n - X_{n,n-k}}{\theta_n - X_{n,n-k+j}} = \sum_{j=1}^{k} \frac{\theta_n - X_{n,n-k}}{\theta_n - X_{n,n-k+j}} + O_p(k^{-\gamma_0}).
$$

With some tedious calculations we obtain

$$
g(\theta_n) = (S_k(-\gamma_0) - \frac{k}{1 + \gamma_0})(1 + \gamma_0) + \frac{k^2}{1 + \gamma_0} \left(\frac{1}{k} \sum_{j=1}^{k} \log V_{k,j}^* - 1 \right) + \gamma_0^3 \left(\frac{1}{1 + \gamma_0} \frac{1}{2(1 + 2\gamma_0)} k(\tau_n - 1)(1 + o_p(1)) \right) + (\tau_n - 1)^2 O_p(k^{1-\gamma_0}) + O_p(kA(n/k) + k^{-\gamma_0}).
$$
From Lemma B.3 we get
\[g(\theta_n) = \frac{\gamma_0^3}{(1 + \gamma_0)^2(1 + 2\gamma_0)}\sqrt{k}(\tau - 1)(1 + o_p(1)) + o_p(1). \] (B.24)

Step 2. We show \(n^{-\gamma_0}(\tilde{\theta} - \theta_0) \xrightarrow{P} 0 \) as \(n \to \infty \), that is,
\[P(n^{-\gamma_0}(\tilde{\theta} - \theta_0) > v) \to 0 \quad \text{for all } v > 0 \] (B.25)

and
\[P(n^{-\gamma_0}(\tilde{\theta} - \theta_0) < -v) \to 0 \quad \text{for all } v > 0. \] (B.26)

We will show (B.25) here. The proof for (B.26) is tedious and will be given in **Step 4**.

By setting \(\theta_n = \theta_0 + n^{\gamma_0}/\log \log k \) in (B.24) we have from (B.21) that \(g(\theta_n)/\sqrt{k} \xrightarrow{P} \mp \infty \), which implies that with probability tending to one, there exists a root \(\theta \in (\theta_0 - n^{\gamma_0}/\log \log k, \theta_0 + n^{\gamma_0}/\log \log k) \) to the equation \(g(\theta) = 0 \). Since \(\tilde{\theta} \) is defined to be the smallest solution to \(g(\theta) = 0 \) we have \(P(n^{-\gamma_0}(\tilde{\theta} - \theta_0) > v) \to 0 \) for all \(v > 0 \).

Step 3. Proof of (2.18).

Note that (B.20) holds with \(\theta_n = \tilde{\theta} \). Then it follows from (B.23) and (B.22) that
\[\sqrt{k}(\tau - 1) = \frac{(1 + \gamma_0)^2(1 + 2\gamma_0)\gamma_0^3}{\sqrt{k}} \left((S_k(-\gamma_0) - \frac{k}{1 + \gamma_0}) + \gamma_0 \left(\sum_{j=1}^{k} \log V_{k,j}^* - k \right) \right) + o_p(1) \]

and
\[\sqrt{k}(\tilde{\alpha}^{-1} - \alpha_0^{-1}) = -\gamma_0 \sqrt{k}(\tau - 1) - \gamma_0 \sqrt{k} \left(\sum_{j=1}^{k} \log V_{k,j}^* - k \right) + o_p(1). \]

Hence (2.18) follows from Lemma B.3 (vii), (B.10) and (B.11).

Step 4: Proof of (B.26).

We will expand \(g(\theta) \) uniformly for \(X_{n,n} < \theta < \theta_0 \) or equivalently for \(\frac{X_{n,n} - X_{n,n-k}}{b_0 - X_{n,n-k}} < \tau < 1 \) via (B.4). From (B.3), this latter constraint is equivalent to \(\{ -1 - \varepsilon_{n,n} < (\tau - 1)(V_{k,k}^*)^{-\gamma_0} < 0 \} =: C_n \).

Since \(P(V_{k,k}^*/V_{k,k-1}^* > x) = 1/x \) for \(x > 1 \), by setting \(\delta_1 = (2/(2 - \varepsilon))^{-\gamma_0} \) (\(> 1 \)) we have \(P((V_{k,k}^*)^{-\gamma_0}/(V_{k,k-1}^*)^{-\gamma_0} > \delta_1) = 1 - \varepsilon/2 \) for every \(\varepsilon \in (0,1) \). Hence, on \(\{(V_{k,k}^*)^{-\gamma_0}/(V_{k,k-1}^*)^{-\gamma_0} > \delta_1 \} \cap \{ \varepsilon_n < (\delta_1 - 1)/2 \} \),
\[\frac{\delta_1 + 1}{2\delta_1} < (\tau - 1)(V_{k,k}^*)^{-\gamma_0} < 0 \]

22
holds uniformly for all $\tau \in C_n$, that is, $1 + (\tau - 1)(V_{k,k-1}^*)^{-\gamma_0} > \delta$ holds uniformly on $\tau \in C_n$, where $\delta = (\delta_1 - 1)/(2\delta_1)$. Therefore, on $D_n = \{(V_{k,k}^*)^{-\gamma_0}/(V_{k,k-1}^*)^{-\gamma_0} > \delta_1\} \cap \{\varepsilon_n < \delta/3\}$, we have $1 + (\tau - 1)(V_{k,k-1}^*)^{-\gamma_0} > \delta$, and thus by redefining B_n as $\{1 + (\tau - 1)(V_{k,k-1}^*)^{-\gamma_0} > \delta\} \cap \{\varepsilon_n < \delta/3\}$ we have expansion (B.7) for $1 \leq j \leq k - 1$ with $\max_{\tau \in C_n} \max_{1 \leq j \leq k - 1} |\xi_{n,j}| \leq \frac{\delta}{2} \varepsilon_n$ uniformly on B_n. So we have on $D_n \subseteq B_n$

$$g(\theta) = K_n + J_{k,\tau}(1 + O_p(\varepsilon_n))(1 - W_{k,\tau} + O_p(\varepsilon_n))$$

uniformly on $\tau \in C_n$, where

$$J_{k,\tau} = 2 + \sum_{j=1}^{k-1} \frac{\tau(V_{k,j}^*)^{-\gamma_0}}{1 + (\tau - 1)(V_{k,j}^*)^{-\gamma_0}}, \quad W_{k,\tau} = \frac{1}{k} \sum_{j=1}^{k-1} \log \frac{\tau(V_{k,j}^*)^{-\gamma_0}}{1 + (\tau - 1)(V_{k,j}^*)^{-\gamma_0}}$$

and

$$K_n = \frac{\theta - X_{n,n-k}}{\theta - X_{n,n}} - \frac{J_{k,\tau} \log(\theta - X_{n,n-k})}{k} (1 + O_p(\varepsilon_n)).$$

Note that for all $\tau \in C_n$

$$J_{k,\tau} = 2 + \sum_{j=1}^{k-1} (V_{k,j}^*)^{-\gamma_0} + (1 - \tau) \sum_{j=1}^{k-1} \frac{(V_{k,j}^*)^{-2\gamma_0} - (V_{k,j}^*)^{-\gamma_0}}{1 + (\tau - 1)(V_{k,j}^*)^{-\gamma_0}} \geq \sum_{j=1}^{k-1} (V_{k,j}^*)^{-\gamma_0} + (1 - \tau) \sum_{j=1}^{k-1} ((V_{k,j}^*)^{-2\gamma_0} - (V_{k,j}^*)^{-\gamma_0}) = \frac{k}{1 + \gamma_0} + O_p(\sqrt{k}) + (1 - \tau) k \left(\frac{1}{1 + 2\gamma_0} - \frac{1}{1 + \gamma_0} + o_p(1) \right)$$

from Lemma B.3. Meanwhile, we have

$$W_{k,\tau} = \frac{-\gamma_0}{k} \sum_{j=1}^{k-1} \log V_{k,j}^* + \frac{1}{k} \sum_{j=1}^{k-1} \log(1 - \tau) \frac{(V_{k,j}^*)^{-\gamma_0} - 1}{1 + (\tau - 1)(V_{k,j}^*)^{-\gamma_0}} \leq \frac{-\gamma_0}{k} \sum_{j=1}^{k-1} \log V_{k,j}^* + \frac{1 - \tau}{k} \sum_{j=1}^{k-1} \frac{(V_{k,j}^*)^{-\gamma_0} - 1}{1 + (\tau - 1)(V_{k,j}^*)^{-\gamma_0}} \leq \frac{-\gamma_0}{k} \sum_{j=1}^{k} \log V_{k,j}^* + \frac{1 - \tau}{k} \sum_{j=1}^{k-1} \frac{(V_{k,j}^*)^{-\gamma_0} - 1}{1 - (1 + \delta/3)V_{k,k}^*(V_{k,j}^*)^{-\gamma_0}}.$$

It follows from Lemma B.3 (vii) that

$$\sum_{j=1}^{k} \log V_{k,j}^* = k + O_p(\sqrt{k}).$$
Following those arguments in the proof of Lemma B.5 and considering the conditional distribution given on $V_{k,k}^*$ we can show that on D_n

$$\frac{1}{k} \sum_{j=1}^{k-1} \frac{(V_{k,j}^*)^{-\gamma_0} - 1}{1 - (1 + \delta/3)V_{k,k}^*(V_{k,j}^*)^{-\gamma_0}} = (\frac{1}{1 + \gamma_0} - 1)(1 + o_p(1)),$$

which coupled with the above estimates implies that

$$J_{k,r}(1 - W_{k,r}) - k \geq |\gamma_0|^3 \frac{\gamma_0}{(1 + \gamma_0)^2(1 + 2\gamma_0)} (1 - \tau)k(1 + o_p(1)) + O_p(k^{1/2}).$$

We also notice that on D_n

$$J_{k,\tau} = 2 + O_p(\sum_{j=1}^{k-1} (V_{k,j}^*)^{-\gamma_0}) = O_p(k)$$

holds uniformly on $\tau \in C_n$, which implies $K_n \overset{p}{\to} \infty$ uniformly on $\tau \in C_n$. Therefore, we have from the above equations that on D_n

$$\frac{g(\theta)}{\sqrt{k}} \geq \frac{|\gamma_0|^3}{(1 + \gamma_0)^2(1 + 2\gamma_0)} (1 - \tau)\sqrt{k}(1 + o_p(1)) + O_p(1) \quad (B.27)$$

holds uniformly for $\tau \in C_n$. Since $P(D_n) > 1 - \varepsilon$ for all large n and any given $\varepsilon > 0$, we conclude from Lemma B.1 that (B.27) holds uniformly on C_n, and thus for every $v > 0$

$$\min_{X_{n,n} < \theta < X_{n,n} - n^{-\gamma_0} v} \frac{g(\theta)}{\sqrt{k}} \geq O_p(1) + \frac{|\gamma_0|^3}{(1 + \gamma_0)^2(1 + 2\gamma_0)} n^{-\gamma_0} v k^{1/2} (1 + o_p(1))$$

$$= O_p(1) + \frac{|\gamma_0|^3}{\gamma_0} e^{-\gamma_0} v k^{1/2 + \gamma_0} (1 + o_p(1))$$

$$\overset{p}{\to} \infty$$

from (B.11), which implies (B.26).

Case 2: $\alpha_0 = 2$. The proof is similar to **Case 1**, and the details are omitted here.

Case 3: $\alpha_0 \in (0, 2)$. A different approach from the case $\alpha_0 \geq 2$ is needed in this case.

We will approximate the function g defined in (2.15) by the function h defined in (2.1). Define the lower bound

$$h_L(\theta) = h(\theta) - a_n$$

and the upper bound

$$h_U(\theta) = h(\theta) + a_n.$$
where \(\{a_n\} \) is a sequence of constants given by

\[
a_n = \begin{cases}
 k^{1/2}(\log k)^2, & \text{if } \alpha_0 \in [1, 2), \\
 k^{-\gamma_0 - 1/2}(\log k)^2, & \text{if } \alpha_0 \in (0, 1).
\end{cases}
\]

Then \(a_n/k^{-\gamma_0} \to 0 \) as \(n \to \infty \).

Let \(\theta_L \) and \(\theta_U \) be the solutions to \(h_L(\theta) = 0 \) and \(h_U(\theta) = 0 \), respectively. If such solutions are not unique, \(\theta_L \) and \(\theta_U \) should be interpreted as the smallest ones.

For \(\alpha_0 \in [1, 2) \), we have \(a_n/n \to 0 \) as \(n \to \infty \), and both \(h_L \) and \(h_U \) are decreasing functions of \(\theta \) for \(\theta > X_{n,n} \). Therefore, the solutions to \(h_L(\theta) = 0 \) and \(h_U(\theta) = 0 \) exist and are unique.

We continue to use the notation in the proof of Theorem 2.2. For \(\alpha_0 \in (0, 1) \), let \(\tau_n = \tau_n(x) = 1 + k^{\gamma_0}x \), and define \(\theta_n = \theta_n(x) = X_{n,n-k} + \tau_n(x)(\theta_0 - X_{n,n-k}) \). Note that \(h(\theta_n) = h_1(\tau_n) \), where \(h_1 \) is defined in the beginning of Section B.3. It is readily seen that \(k^{\gamma_0}h_U(\theta_n) \), \(k^{\gamma_0}h_L(\theta_n) \), and \(k^{\gamma_0}h(\theta_n) \) have the same limiting distribution function. From (B.15), for every \(\varepsilon > 0 \), we can choose an \(x > 0 \) such that \(P(k^{\gamma_0}h_U(\theta_n(x)) < 0) > 1 - \varepsilon \) and \(P(k^{\gamma_0}h_U(\theta_n(x)) < 0) > 1 - \varepsilon \) for all large \(n \). This ensures that \(P(k^{\gamma_0}h_U(\theta_n(x_n)) < 0) \to 1 \) and \(P(k^{\gamma_0}h_U(\theta_n(x_n)) < 0) \to 1 \) for some sequence of constants \(\{x_n\} \) with \(\lim_{n \to \infty} x_n = \infty \).

Since \(h'_L(\theta) = h'_U(\theta) = h'(\theta) \), we conclude, by using the same arguments in Section 2.1, that with probability tending to one, the solutions to \(h_L(\theta) = 0 \) and \(h_U(\theta) = 0 \) exist and are unique in the interval \((X_{n,n}, \theta_n(x_n)) \).

From the proof of Theorem 2.2 we conclude that the limiting distributions for \(\theta_L \), \(\theta_U \) and \(\theta \) are the same. Note that \(\theta_L < \theta_U \). By using (B.7) we can show that

\[
\frac{1}{k} \sum_{j=1}^{k} \log \frac{\theta - X_{n,n-k}}{\theta - X_{n,n-k} + j} = -\gamma_0 \sum_{j=1}^{k} \log V_{k,j}^* + O_p(|\tau - 1|) = -\gamma_0 + O_p(k^{-1/2}) \tag{B.28}
\]

uniformly on \(\theta \in [\theta_L, \theta_U] \). Similarly, from (B.6) and Lemma B.3 we have

\[
\sum_{j=1}^{k-1} \frac{\theta - X_{n,n-k}}{\theta - X_{n,n-k} + j} = \begin{cases}
 O_p(k), & \text{if } \alpha_0 \in (1, 2); \\
 O_p(k \log k), & \text{if } \alpha_0 = 1; \\
 O_p(k^{-\gamma_0}), & \text{if } \alpha_0 \in (0, 1)
\end{cases}
\]

uniformly on \(\theta \in [\theta_L, \theta_U] \). It is easily seen that with probability tending to one,

\[
h_L(\theta) \leq g(\theta) \leq h_U(\theta)
\]
holds uniformly for $\theta \in [\theta_L, \theta_U]$. Therefore, there exists a root to the equation $g(\theta) = 0$ in the interval $[\theta_L, \theta_U]$ with probability tending to one, and we conclude that $P(n^{-\gamma_0}(\bar{\theta} - \hat{\theta}) > v) \to 0$ for $v > 0$. Similar to the proof of (B.26) we can show $P(n^{-\gamma_0}(\bar{\theta} - \hat{\theta}) < -v) \to 0$ for $v > 0$. As a result we obtain that

$$n^{-\gamma_0}(\bar{\theta} - \hat{\theta}) \xrightarrow{P} 0,$$

which implies that $\bar{\theta}$ and $\hat{\theta}$ have the same limiting distributions.

For $\bar{\alpha}^{-1}$, using a similar expansion to (B.28) we have

$$\bar{\alpha}^{-1} = \frac{-\gamma_0}{k} \sum_{j=1}^{k} \log V_{k,j}^* + o(k^{-1/2}),$$

which together with Lemma B.7 yields (2.19). The asymptotic independence of $\bar{\theta}$ and $\bar{\alpha}^{-1}$ follows from the asymptotic independence of $\hat{\theta}$ and Q_k, which can be verified from Lemma B.7 and the proof of Theorem 2.2. This completes the proof. □

References

