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An RKHS Approach to Robust Functional Linear Regression

Hyejin Shin, Seokho Lee∗

Bell Labs and Hankuk University of Foreign Studies

Abstract: We investigate the theoretical properties of robust estimators for the regression coefficient

function in the functional linear regression. Robust procedure is provided where we use outlier-resistant

loss functions in the functional linear regression problem, including non-convex loss functions. These

robust estimates are computed using an iteratively reweighted penalized least-squares algorithm. Using

pseudo data approach, we are able to show that our robust estimators also achieve the same convergence

rate for both prediction and estimation as the penalized least squares estimator in the classical functional

linear regression. Theoretical developments are demonstrated using numerical studies with various types

of robust loss, illustrating the merit of the robust method.

Key words and phrases: Robust functional linear regression, reproducing kernel Hilbert space, outlier-

resistant loss function, M-type smoothing splines.

1 Introduction

Regression problems with functional predictors are arising more and more often in many applica-

tions. Several recent statistical models and methods have been developed in this direction. It is

frequently the case that a functional predictor is linked to a scalar response variable. In such cases,

the most popular regression model for modeling their relationship is the functional linear model.

The functional linear model assumes that the scalar response Y is linearly dependent on a square

integrable random function X through the relationship

Y = α0 +

∫
T
X(t)β0(t)dt+ σε, (1)

where α0 is the intercept, β0 is a square integrable function on the compact interval T representing

the slope function and ε is a random error with zero mean and unit variance. Recent work on

functional linear regression includes, among others, Cardot et al. (2003), Yao et al. (2005), Cai

and Hall (2006), Hall and Horowitz (2007), Li and Hsing (2007), Crambes et al. (2009), Yuan and

Cai (2010), Cardot and Johannes (2010), and Shin and Hsing (2012).

Since the estimation of the slope function β0 is an infinite dimensional problem, the regular-

ization such as dimension reduction or penalization is necessary. The most popular parameter
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estimation methods are the least squares with the dimension reduction by functional principal

component analysis (e.g., Yao et al., 2005; Cai and Hall, 2006; Hall and Horowitz, 2007) and other

popular methods are the penalized least squares with smoothness-inducing penalty on β0 (e.g.,

see Cardot et al., 2003; Crambes et al., 2009; Yuan and Cai, 2010). However, the majority of

estimation methods in the functional linear regression literature are least-squares type estimators

which are associated with the squared loss function and, as a result, the presence of outliers has a

serious effect on the resulting estimators. There have been some proposals to address robustness

in the functional linear regression by adopting outlier-resistant loss functions. Maronna and Yohai

(2011) proposed a robust version of smoothing spline estimator based on the approach of MM esti-

mation, where biweight loss function is considered. Gervini (2012) proposed a GM estimation for

the FPCA-based functional linear regression, where both the predictor and response variables are

random functions, by considering the outlier-resistant loss function corresponding to t-distribution.

While both of Maronna and Yohai (2011) and Gervini (2012) suggested robust procedures and

demonstrated robust properties under numerical studies, asymptotic properties of their estimators

were not studied. Before these two robust estimation methods were suggested, Yuan and Cai (2010)

studied a general form of the estimator for β0 with any convex loss function by assuming that β0

resides in a reproducing kernel Hilbert space (RKHS). Although their estimator includes M-type

estimators, their theoretical work did not go beyond the least-squares type estimator. Accordingly,

our goal in this paper is to extend the applicability of the RKHS approach to robust functional

linear regression problem by adopting an outlier-resistant loss function.

To begin, suppose that we observe data (xi, yi), 1 ≤ i ≤ n, consisting of n independent copies

of (X,Y ) in the model (1). Suppose that β0 is in a Hilbert space H. For estimating α0 and β0, let

us consider the general problem

min
α∈R,β∈H

[
1

n

n∑
i=1

ρ

(
yi − α−

∫
T xi(t)β(t)dt

σ̂

)
+ λJ(β)

]
, (2)

where ρ is a loss function, σ̂ is a preliminary scale estimate of errors, J(β) is a penalty functional on

β, and λ > 0 is a regularization parameter. Most penalized least-squares approaches to functional

linear regression take H = Wm
2 = {β : β, β(1), . . ., β(m−1) are absolutely continuous and β(m) ∈ L2}

and J(β) =
∫
T [β(m)(t)]2dt. In that case, if ρ(r) = r2, then the solution to the problem (2) is the

smoothing spline estimator for functional linear regression (Crambes et al., 2009). However, the

solution to the minimization problem (2) with the squared-error loss is known to be highly sensitive

to outlying observations. Thus, it is natural to consider an outlier-resistant loss function in order to

robustify the estimators of α0 and β0. In fact, by replacing the squared-error loss by a non-convex

ρ-function, Maronna and Yohai (2011) proposed a robust version of smoothing spline estimator.

Further, Cardot et al. (2005) studied the quantile regression by considering the L1-type loss
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function defining quantiles of the regression. For a convex ρ-function, Yuan and Cai (2010) derived

the explicit form of the minimizer over f of (2) by the representer theorem (Kimeldorf and Wahba,

1971). They then proposed the penalized least squares estimators for α0 and β0 associated with

ρ(r) = r2 and focused on their asymptotic properties. In this paper, we extend the scope of the

approach in Yuan and Cai (2010) practically and theoretically by considering outlier-resistant loss

functions which are not necessarily convex. Specifically, we show that our robust estimators also

achieve the same convergence rate for prediction and estimation of the least-squares type estimators

in the regular functional linear regression. To the best of our knowledge, this is the first work that

provides a theoretical background for robust functional linear regression.

The remainder of the paper is organized as follows. Section 2 introduces M-type smoothing

spline estimators for functional linear regression and its estimating algorithm and Section 3 inves-

tigates the asymptotic properties of the proposed estimator. Sections 4 and 5 then provides sim-

ulation studies and a real data example to demonstrate the performance of the proposed method.

All proofs of the main results in Section 3 are provided in the online supplementary note.

2 Robust Functional Linear Regression

Recall the functional linear regression model (1) where the slope function β0 is assumed to be

in an RKHS H, which is a subspace of the Hilbert space of square integrable functions on T ,

and X satisfies E
(∫
T |X(t)|2dt

)
< ∞. Suppose that J(β) = ‖P1β‖2H, where P1 is the orthogonal

projection of β in H onto a subspace H1, and H has a decomposition H = H0 ⊕ H1, where

H0 = {β ∈ H : J(β) = 0} is a finite dimensional linear subspace of H with dim(H0) = L ≤ n.

Let K be the reproducing kernel of H and K1 the reproducing kernel of H1. Assuming that

K is continuous and square integrable on T × T , it can be shown that ηi(t) :=
∫
T xi(u)K(u, t)du

are in H (Cucker and Smale, 2001). Since β(u) = 〈β(·),K(u, ·)〉H by the reproducing property of

a reproducing kernel K, the penalized least squares (PLS) criterion in (2) becomes

1

n

n∑
i=1

ρ

(
yi − α− 〈ηi, β〉H

σ̂

)
+ λ‖P1β‖2H. (3)

Using the representer theorem, it can be shown that the minimizer over β of (3) has the form

βλ(t) =
L∑
l=1

dlθl(t) +
n∑
i=1

ciξi(t), (4)

where the θl, 1 ≤ l ≤ L, are orthonormal basis of H0 and ξi(t) = P1ηi(t) =
∫
T xi(u)K1(u, t)du.

This is because for β = βλ + % with % an element in H1 perpendicular to ξ1, . . ., ξn, we observe
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〈ηi, β〉H = 〈ηi, βλ〉H and ‖P1β‖2H = ‖P1βλ‖2H + ‖%‖2H. Thus, (3) becomes

1

n

n∑
i=1

ρ

(
yi − α− 〈ηi, βλ〉H

σ̂

)
+ λ(‖P1βλ‖2H + ‖%‖2H),

which is minimized when % = 0 and so its minimizer over β0 is the form of (4). Since (P1βλ)(·) =∑n
i=1 ciξi(·), ‖P1βλ‖2H =

∑n
i=1

∑n
j=1 cicj〈ξi, ξj〉H and the problem of minimizing (3) is reduced to

the optimization problem in finite dimensional space

min
α,d,c

 1

n

n∑
i=1

ρ

(
yi − α−

∑L
l=1 dl

∫
T xi(t)θl(t)dt−

∑n
j=1 cj〈ξi, ξj〉H

σ̂

)
+ λ

n∑
i=1

n∑
j=1

cicj〈ξi, ξj〉H

 (5)

with d = (d1, . . ., dL)T and c = (c1, . . ., cn)T .

For illustration, suppose that H = Wm
2 [0, 1]. If we use the inner product

〈f, g〉H =

m−1∑
k=0

f (k)(0)g(k)(0) +

∫ 1

0
f (m)(t)g(m)(t)dt,

then the reproducing kernel of H is

K(s, t) =
m−1∑
k=0

sktk

(k!)2
+

∫ 1

0

(s− u)m−1
+ (t− u)m−1

+

{(m− 1)!}2
du

with u+ = max(u, 0). If P1 is the orthogonal projection onto the subspace H1 = {f ∈ H : f (k)(0) =

0, 0 ≤ k ≤ m − 1}, then J(f) = ‖P1f‖2H =
∫ 1

0 [f (m)(t)]2dt. Also, the reproducing kernel of H1 is

K1(s, t) = {(m − 1)!}−2
∫ 1

0 (s − u)m−1
+ (t − u)m−1

+ du and θk(t) = tk−1/(k − 1)!, 1 ≤ k ≤ m, are the

orthonormal basis of H0. In the case of m = 2, βλ(t) = d1 + d2t+
∑n

i=1 ci
∫
T xi(s)K1(s, t)ds with

θ1(t) = 1, θ2(t) = t and K1(s, t) =
∫ 1

0 (s− u)+(t− u)+du.

If ρ is differentiable, then the next proposition provides a variational equation for obtaining a

minimizer β̂nλ over β of (3).

Proposition 1 Suppose that ψ = ρ′ exists everywhere. Then, a minimizer β̂nλ of (3) satisfies

− 1

n

n∑
i=1

ηiψ

(
yi − α− 〈ηi, β〉H

σ̂

)
1

σ̂
+ 2λP1β = 0. (6)

We now present the estimation algorithm with details. Taking derivatives (5) with respect to α,

c and d and setting them equal to 0, it can be shown that the solutions to the resulting estimating
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equations are the minimizer of the penalized weighted least-squares criterion

1

n

n∑
i=1

wi

(
yi − α−

L∑
l=1

dl

∫
T
xi(t)θl(t)dt−

n∑
j=1

cj〈ξi, ξj〉H
)2

+ 2λcTΣc, (7)

where Σ = {Σij} is an n× n matrix with Σij = 〈ξi, ξj〉H =
∫
T
∫
T xi(s)K1(s, t)xj(t)dsdt and

wi =
1

σ̂2
w

(
yi − α−

∑L
l=1 dl

∫
T xi(t)θl(t)dt−

∑n
j=1 cj〈ξi, ξj〉H

σ̂

)

with w(r) = ψ(r)/r. Letting y = (y1, . . ., yn)T , T = {Til} an n×L matrix with Til =
∫
T xi(t)θl(t)dt,

and W = diag(w1, . . ., wn), the criterion (7) is written in the matrix form

1

n
(y − α1− Td− Σc)TW (y − α1− Td− Σc) + 2λcTΣc. (8)

Letting Z = [1, T ] and b = (α, d1, . . ., dL)T , the minimizer of (8) is given by

b̂ = (ZTM−1Z)−1ZTM−1y,

ĉ = M−1(In − Z(ZTM−1Z)−1ZTM−1)y
(9)

with M = Σ + 2nλW−1. Remark that the matrix M is not well defined when wi = 0 for some i.

This can happen with a certain loss function (e.g., biweight loss) whose ψ function takes 0 value

for some domain region. In such case we can easily show that the minimizer of (8) is obtained by

b̂ = (ZT2 M
−1
2 Z2)−1ZT2 M

−1
2 y2,

ĉ2 = M−1
2 (In2 − Z2(ZT2 M

−1
2 Z2)−1ZT2 M

−1
2 )y2,

ĉ1 = 0n1

(10)

with M2 = Σ22 + 2nλW−1
2 . Here, n1 = #{i : wi = 0} and n2 = #{i : wi 6= 0} with n = n1 + n2,

y2, c2, W2, Z2, Σ22 are redefined appropriately after removing from y, c, W , Z, Σ the rows and

rows/columns corresponding to {i : wi = 0}, and c1 is the sub-vector of c, having the entries

corresponding {i : wi = 0}.
The minimizer of (7) is obtained by an iteratively reweighted least squares (IRWLS) procedure.

If ρ is a convex loss function having monotone ψ, then (7) has a unique minimum. However, when

non-convex loss functions (e.g., biweight loss or t loss) are used, the objective function (3) is non-

convex and may have multiple local minima. Consequently, when ρ is non-convex, it is important to

start the IRWLS algorithm with a robust, consistent initial fit. In our implementation, we consider

L1 loss function with ρ(r) = |r| for the objective function (3) and use the resulting quantile
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regression fit as an initial fit for the iterative algorithm. L1 estimation does not require the scale

parameter estimation and its estimators have high breakdown point (Maronna et al. 2006).

The optimization problem (2) involves an auxiliary scale estimate σ̂ that is required to make the

estimate β̂nλ scale invariant. The preliminary scale estimate can be computed using the residuals

r0
i from the initial L1 fit. Since the robustness properties of M-type estimators depend on the

robustness of the auxiliary scale estimator, we consider a robust scale estimate. A popular robust

scale estimator is M-estimator. Given the residuals r0
i , an M-scale estimate σ̃ satisfies

1

n

n∑
i=1

ρ0

(
r0
i

σ̃

)
= δ (11)

with δ ∈ (0, 1), where ρ0 is a loss function. A frequently used scale estimate is obtained when ρ0

is the biweight function with k = 1 and δ = 0.5. To get a consistent scale estimate at the normal

distribution, we use the M-scale estimate as σ̂ = σ̃/1.56. Another simple and robust choice of an

M-scale estimate is the normalized median absolute deviation (MAD), σ̂ = medi(|r0
i |)/0.6745. See

Maronna et al. (2006) for more details.

The choice of the smoothing parameter is crucial in performance of the regularized estimators for

most smoothing methods. Commonly used practical strategies of choosing the smoothing parameter

are cross validation (CV) and generalized cross validation (GCV). Since leave-one-out CV or k-fold

CV are computationally burdensome, we propose to use GCV as follows: Based on the fact that

the fitted value is a linear predictor of the response as ŷ = Hλy, we select the smoothing parameter

λ as a minimizer of the weighted version of GCV score:

GCV(λ) =
1

n

(ŷ − y)TW (ŷ − y)

{1− tr(Hλ)/n}2
, (12)

where the hat matrix Hλ has the form of Hλ = {Σ + 2nλW−1M−1Z(ZTM−1Z)−1ZT }M−1. In

the case where some wi = 0 exist with the biweight ρ-function, the hat matrix is modified as

Hλ = {Σ22 + 2nλW−1
2 M−1

2 Z2(ZT2 M
−1
2 Z2)−1ZT2 }M

−1
2 with notations defined as in (10). We tested

CV and GCV under extensive simulations, and found that they showed little difference between

them. Thus, we prefer GCV and use it for the smoothing parameter selection in the following

simulation study.

3 Asymptotic Properties

In this section, we will show that the asymptotic properties of the penalized least squares estimator

for β0, which are well studied in literature (e.g., Crambes et al., 2009; Yuan and Cai, 2010), hold

for penalized M-estimators for β0. For simplicity, we shall assume that EX(·) = 0 and EY = 0.

6
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Then, β0 can be estimated by

β̂nλ = arg min
β∈H

[
1

n

n∑
i=1

ρ

(
yi − 〈ηi, β〉H

σ̂

)
+ λ‖P1β‖2H

]
.

Note that all the results hereafter are applied to the more general setting when EX(·) 6= 0 and

EY 6= 0.

In nonparametric regression, Cox (1983) showed that the asymptotic properties of the least

squares smoothing spline hold for general M-type smoothing splines. He tackled this by approxi-

mating a nonlinear M-type smoothing spline by a linear smoothing spline acting on some unobserv-

able pseudo data. For functional linear regression, we tackle the same claim in a similar manner to

Cox (1983). For this, we define pseudo data

ỹi =

∫
T
xi(t)β0(t)dt+ σ

ψ(εi)

Eψ′
= 〈ηi, β0〉H + σ

ψ(εi)

Eψ′

and let β̃nλ be the minimizer of

1

n

n∑
i=1

(ỹi − 〈ηi, β〉H)2 + 2
λσ2

Eψ′
‖P1β‖2H. (13)

Now define operators on Sn = span{η1, . . ., ηn} by

Φnλ(β, σ) = − 1

n

n∑
i=1

ηiψ

(
yi − 〈ηi, β〉H

σ

)
1

σ
+ 2λP1β

and

Ψnλβ = − 1

n

n∑
i=1

ỹiηi + Gnλβ

with

Gnλβ =
1

n

n∑
i=1

〈ηi, β〉Hηi + 2(λσ2/Eψ′)P1β.

Note that an estimator β̂nλ is a solution of Φnλ(β, σ̂) = 0 from Proposition 1 and β̃nλ is the

solution of Ψnλβ = 0. Since Ψnλβ̃nλ = 0, equivalently, Gnλβ̃nλ = n−1
∑n

i=1 ỹiηi, we can observe

that β̃nλ = G−1
nλ

(
n−1

∑n
i=1 ỹiηi

)
. It can be shown that Gnλ is invertible in a similar way to Cox

(1983). Note that Gnλβ = 0 is the equation for obtaining a least squares smoothing spline for the

regression coefficient function β0 with identically zero ỹi’s and its solution is β = 0 uniquely.

The following assumptions are made for our theoretical development.

(A1) The random errors εi are independent of the covariates xi.
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(A2) ψ = ρ′ satisfies (i) ψ ∈ C2(−∞,∞), (ii) supt |ψ(j)(t)| < ∞, j = 0, 1, 2, (iii) Eψ = 0, Eψ′ 6=
0,Var(ψ(j)) <∞, j = 0, 1.

(A3) σ̂ − σ = Op(n
−1/2).

(A4) The eigenvalues κk of the reproducing kernel K1 of H1 satisfy κk ∼ k−2r for r > 1/2.

(A5) The eigenvalues πk of the covariance operator Γ for X satisfy πk ∼ k−2s for s > 1/2.

(A6) λ ∼ n−(2r+2s)/(2r+2s+1).

(A7) For any square integrable function f , there exists some constant C ≥ 1 such that

E

(∫
T
f(t)X(t)dt

)4

≤ C

{
E

(∫
T
f(t)X(t)dt

)2
}2

.

(A8) γk ∼ πkκk with νk = (1 + γ−1
k )−1 being the kth largest eigenvalue of R1/2ΓR1/2, where Γ is

the covariance operator associated with the covariance function Γ of the process X and R is

the operator associated with the reproducing kernel R of an RKHS with the norm defined by

‖f‖2R =

∫
T

∫
T
f(s)Γ(s, t)f(t)dsdt+ J(f).

Remark that we use the same notation for a nonnegative bivariate function and an integral operator

with kernel having that function as follows: (Rf)(·) =
∫
T R(·, t)f(t)dt.

The assumption (A2) is commonly made in general M-type smoothing splines as in, for example,

Cox (1983) and Cunningham et al. (1991). A special case of the assumption (A4) is when H =

Wm
2 [0, 1] and H1 = {f ∈ H : f (k)(0) = 0, 0 ≤ k ≤ m−1} so K1(s, t) = [(m−1)!]−2

∫ 1
0 (s−u)m−1

+ (t−
u)m−1

+ du. In that case, it is known that κk ∼ k−2m. The assumption (A7) is clearly motivated by

Gaussian processes. Indeed, if X is Gaussian then
∫
T f(t)X(t)dt is a normal random variable so

that (A7) immediately follows. Note that a constant C in (A7) should be greater than or equal to 1

because
{
E
(∫
T f(t)X(t)dt

)2}2
≤ E

(∫
T f(t)X(t)dt

)4
by Lyapunov’s inequality. The assumptions

(A4)-(A8) are required to borrow theoretical results for the least squares smoothing spline fits from

Yuan and Cai (2010). If one uses the theoretical results in Crambes et al. (2009) instead of Yuan

and Cai (2010), the assumptions (A4)-(A8) should be replaced by the corresponding ones.

Let ‖f‖2Γ =
∫
T
∫
T f(s)Γ(s, t)f(t)dsdt with the covariance function Γ of X. Then, the following

theorem shows how M-type smoothing spline estimator β̂nλ behaves similarly to the least squares

smoothing spline estimator β̃nλ, which is obtained based on pseudo data.

8



Theorem 1 Let Cn = E‖β̃nλ − β0‖2Γ. Under the assumptions (A1)-(A8), we have that for any

δ > 0 and some constant M > 0, there is an n0 such that for all n ≥ n0,

P [there is a solution β̂nλ to Φnλ(β, σ̂) = 0 satisfying ‖β̂nλ − β̃nλ‖2Γ ≤ δ−2MCn] ≥ 1− δ.

Theorem 1 implies that with high probability β̂nλ and β̃nλ are much closer than β̃nλ and β0,

so our robust estimator β̂nλ enjoys the same asymptotics as the least squares estimator β̃nλ. Note

that, since the υi = σψ(εi)/Eψ
′ have zero mean and constant variance, it follows from Yuan and

Cai (2010) that

Cn = E‖β̃nλ − β0‖2Γ = O(n−(2r+2s)/(2r+2s+1)) (14)

under the assumptions (A4)-(A8).

If there is a unique solution of Φnλ(f, σ̂) = 0, the following theorem holds immediately from

Theorem 1 and (14) because

‖β̂nλ − β0‖2Γ ≤ 2‖β̂nλ − β̃nλ‖2Γ + 2‖β̃nλ − β0‖2Γ,

and we have ‖β̂nλ − β̃nλ‖2Γ = Op(Cn) from Theorem 1 and ‖β̃nλ − β0‖2Γ = Op(Cn) from (14).

Theorem 2 Suppose in addition to (A2) that ψ′ > 0. Under the assumptions (A1)-(A8), we have

‖β̂nλ − β0‖2Γ = Op(n
−(2r+2s)/(2r+2s+1)).

The condition ψ′ > 0 in Theorem 2 is required to ensure that Φnλ(f, σ̂) = 0 has a unique

solution. Remark that this condition is not necessarily required to ensure the uniqueness of solutions

of (6). For example, Huber’s ψ is not strictly increasing, but the corresponding estimate is unique

unless there is a large gap in the middle of the data. In the case where there is a unique solution to

(6), Theorem 2 holds immediately from Theorem 1. However, when there are multiple solutions to

(6) in the case where, for example, the loss function ρ is non-convex (e.g., biweight loss or Cauchy

loss), Theorem 2 remains valid for some solution of (6) which is close enough to β̃nλ. Thus, the

initial value plays a crucial role in the IRWLS algorithm to get the estimator β̂nλ which shares the

asymptotic properties of the penalized least squares estimator β̃nλ. With a robust and consistent

initial fit, we could get a solution β̂nλ sufficiently close to β̃nλ so that Theorem 2 would hold.

Note that ‖β̂nλ−β0‖2Γ measures the prediction error for any new random function X∗ possessing

the same distribution as X and independent of x1, . . ., xn as follows:

‖β̂nλ − β0‖2Γ = E

[(∫
T
β̂nλ(t)X∗(t)dt−

∫
T
β0(t)X∗(t)dt

)2 ∣∣∣xi, yi, 1 ≤ i ≤ n

]
.
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Remark. Although we derived the convergence rate using the results in Yuan and Cai (2010),

one can obtain a similar rate to the smoothing spline estimators in Crambes et al. (2009) under

slightly different assumptions. If one uses the results in Crambes et al. (2009), Cn = O(λ +

(nλ1/(2m+2q+1))−1), where m is the one for the penalty functional J(β) =
∫
T [β(m)(t)]2dt and q

quantifies the decaying rate of the eigenvalues of the covariance function Γ by
∑∞

r=k+1 πr = O(k−2q)

so q is related to s by 2q = 2s−1. The values q and s explain the structure of the distribution of X.

On the other hand, both m and r explain the smoothness of the regression coefficient function β0.

Thus, the convergence rate for M-type smoothing spline estimators in functional linear regression

model depends on the smoothness of the sample path of X and the regression coefficient function

β0 as the least squares smoothing spline estimator does.

Let ‖f‖2 =
∫
T [f(t)]2dt be a standard norm for L2, the Hilbert space of the square integrable

functions on T . Also, let φk be the eigenfunction of the covariance operator Γ corresponding

to its eigenvalue πk and ϕk the eigenfunction of the reproducing kernel K1 corresponding to its

eigenvalue κk. When the operators Γ and K1 have the same set of eigenfunctions, we can derive

the convergence rate for the estimation error of an estimator for β0 as follows.

Theorem 3 Assume that φk = ϕk for all k ≥ 1. If 2r > 2s + 1, then under the assumptions of

Theorem 2

‖β̂nλ − β0‖2 = Op(n
−2r/(2r+2s+1)).

As mentioned in Yuan and Cai (2010), φk and ϕk differ in general, but they are the same when

the operators Γ and K1 are commutable, i.e., they share a common set of eigenfunctions. The

setting φk = ϕk, k = 1, 2, . . ., is commonly adopted in the FPCA-based functional linear regression

(Cai and Hall, 2006; Hall and Horowitz, 2007). The condition 2r > 2s + 1 indicates that β0 is

smoother than the sample path of X.

Remark. The estimation error behaves differently from the prediction error. Theorem 3 shows

that the estimation error gets larger as the eigenvalues of the covariance operator Γ decay faster. On

the other hand, Theorem 2 demonstrates that the prediction error gets smaller as the eigenvalues

of the covariance operator Γ decay faster.

Finally, we verify the assumption (A3). An initial estimator β̂0 is not
√
n-consistent so that the

residuals r0
i = yi−

∫
T xi(t)β̂

0(t)dt differ from the true errors εi = σεi by more than the order n−1/2.

Nevertheless, we can show that an M-scale estimator based on the residuals is still
√
n-consistent

for σ under appropriate conditions. For this, we consider a leave-one-out estimator for technical

convenience in a similar manner to Müller et al. (2004).

Theorem 4 Suppose that a loss function ρ0 in (11) is twice differentiable and satisfies supt |ρ′′0(t)| <
∞, Eρ′0 = 0 and Var(ρ′0) < ∞. Let β̂−i be a leave-one-out estimator for β and set β̂ij =
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E[β̂−i|(xk, yk), 1 ≤ k ≤ n, k 6= j]. If

E‖β̂−i − β0‖2Γ = o(n−1/2), (15)

1

n

n∑
i=1

n∑
j=1

E‖β̂−i − β̂ij‖2Γ = o(1), (16)

then
√
n(σ̂ − σ) = Op(1).

In our implementation, we use L1 fit for initial fitting. The resulting estimator β̂0 is the

minimizer over β of (3) with ρ(r) = |r|. There are a few studies on quantile regression in functional

linear model. Cardot et al. (2005) derived the convergence rate of the prediction error with spline

estimator, but their rate is derived loosely so that the condition (15) is not achieved with their rate.

Kato (2012) showed that the convergence rate for the prediction error in FPCA-based functional

linear quantile regression is the same as that in FPCA-based functional linear regression (Cai and

Hall, 2006), where the prediction error always satisfies the condition (15). Although the convergence

rate for quantile smoothing spline estimator is not well studied in literature, the convergence rate of

the prediction error with smoothing spline estimator, which is faster than the order n−1/2, can be

derived in parallel with FPCA-based functional linear quantile regression. From (4) and (9), a leave-

one-out estimator β̂−i is given in the form of β̂−i(·) =
∑n

j=1Wij(·)yj with Wii(·) = 0, where Wij(·)
depends only on xk, 1 ≤ k ≤ n, k 6= i. Since (β̂−i − β̂ij)(t) = σWij(t)εj , the sufficient condition for

(16) is n−1
∑n

i=1

∑n
j=1E‖Wij‖2 = o(1). One can show that

∑n
j=1E‖Wij‖2 = O(n−1λ−1) for the

least squares smoothing spline estimator. Analogously, one can derive the same order for quantile

smoothing spline estimator under some conditions so that the condition (16) is met.

4 Simulation Study

In this section, we provide the numerical performance of the proposed estimators. Several outlier-

resistant loss functions are considered including Huber, logistic, biweight, Cauchy loss functions.

Square loss function, which is not outlier-resistant, is also compared in order to comprehend com-

parative improvement from robust estimation. ρ and ψ functions of the above loss functions are

given as follows

• Huber loss

ρH(x) = x2 + (2k|x| − k2 − x2)I(|x| > k), ψH(x) = min(|x|, k) · sign(x)

• logistic loss

ρL(x) = x+ 2 log(1 + exp(−x)), ψL(x) =
1− exp(−x)

1 + exp(−x)
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• biweight loss

ρB(x) = 1− {1− (x/k)2}3I(|x| ≤ k), ψB(x) = x{1− (x/k)2}2I(|x| ≤ k)

• Cauchy loss (t-distribution with 1 degree of freedom)

ρC(x) = log(1 + x2), ψC(x) =
x

1 + x2

• square loss

ρS(x) = x2, ψS(x) = x

Huber and biweight loss functions have an additional tuning parameter, k, which determines the

robustness and efficiency of the resulting estimator. We use k = 1.4 for Huber and k = 4.68 for

biweight, respectively, corresponding to 95% efficiency (Maronna et al. 2006). Note that Huber

and logistic ρ-functions are convex, while biweight and Cauchy ρ-functions are not convex.

To carry out simulation studies, we adopt the simulation setting of Hall and Horowitz (2007)

and Yuan and Cai (2010) with modification for additive error, in order to contain some outliers. The

true slope function β0 defined on T = [0, 1] is given by β0 =
∑50

j=1 4(−1)j+1j−2φj with φ1(t) = 1

and φj+1(t) =
√

2 cos(jπt) for j ≥ 1. The random function X was generated as X =
∑50

j=1 πjZjφj

with independent samples Zj from U(−
√

3,
√

3) and πj = j−2s. We consider s = 0.6, 1, 2, which

regulates the decaying rate of eigenvalues of covariance function of X, resulting that the process

X gets smoother as s gets larger. We take H = W 2
2 [0, 1] with the associated inner product,

reproducing kernel, and penalty term as defined in Section 2.1. Several additive random errors in

the linear model are considered to represent the outlier-prone situations; (1) Gaussian distribution:

ε ∼ N(0, 1) (no outliers), (2) t distribution with 3 degree of freedom: ε ∼ t3, (3) t distribution with

10 degree of freedom: ε ∼ t10, and (4) mixture Gaussian distribution: ε ∼ (1−p)N(0, 1)+pN(10, 1)

with p = 0.1. Scale parameter is set by σ = 1. We consider n = 50, 100, 200, and 500 to see the

effect of sample size. As in Yuan and Cai (2010), we measure the estimation accuracy by integrated

squared error ‖β̂nλ − β0‖2 and prediction error ‖β̂nλ − β0‖2Γ. For each configuration, we repeated

the experiment 1,000 times.

In Figures 1 through 4, we provide the prediction and estimation errors, averaged over 1,000

simulation runs, with λ chosen by GCV criterion. Results in four figures are obtained under

different types of additive errors. Each figure presents the prediction errors in the upper panels and

the estimation errors in the lower panels, and provides the results from 5 types of loss functions. All

panels in figures show that the prediction and estimation errors linearly decrease in the logarithmic

scale as the sample size n increases. Linear decrease of the prediction error in log scale coincides
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with the theoretical results given in Theorem 2. The estimation errors also show the same pattern

of the linear decrease in the logarithmic scale, as shown in Theorem 3. We observe that s affects the

prediction and estimation errors in opposite direction: when X is smoother (larger s), prediction

error gets smaller, but estimation error gets larger. This result was theoretically demonstrated under

the square-loss case in Yuan and Cai (2010), and is also same with all of four outlier-resistant loss

functions under the existence of outliers (see Figures 2 through 4) as shown in Theorems 2 and 3.

While the performance of all loss functions considered here coincides with the theoretical results,

their qualities in prediction are rather different. Table 1 lists the averages and standard deviations of

prediction errors over 1,000 simulation runs. Prediction performance shows no significant difference

across all 5 loss functions under Gaussian additive errors, which is the case of no outliers. However,

prediction from the squared loss case is outperformed by other outlier-resistant loss functions when

additive errors follow mixture Gaussian, t3, and t10. We observe that non-convex loss functions

(biweight and Cauchy) clearly outperform convex loss functions (Huber and logistic) under severe

outlyingness (mixture Gaussian), while all four outlier-resistant loss functions perform comparably

under mild outlyingness (t3 and t10). The same pattern can be observed in estimation, while we

omit the table for estimation errors in this manuscript. This numerical evidence illustrates the

merit of the use of outlier-resistent loss in the functional linear regression and the preference of

non-convex loss in the existence of strong outlying observations.
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Figure 1: Prediction and estimation errors with 5 different loss functions when the additive error was generated
from Gaussian distribution (no outliers). All axes are in log scale.
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Figure 2: Prediction and estimation errors with 5 different loss functions when the additive error was generated
from mixture Gaussian distribution. All axes are in log scale.

Figure 3: Prediction and estimation errors with 5 different loss functions when the additive error was generated
from t-distribution with df = 3. All axes are in log scale.
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Figure 4: Prediction and estimation errors with 5 different loss functions when the additive error was generated
from t-distribution with df = 10. All axes are in log scale.
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Distribution

0.6 50 Square 0.1138 (0.128) 0.8896 (1.144) 0.2751 (0.404) 0.1533 (0.186)
Huber 0.1038 (0.101) 0.1327 (0.092) 0.1370 (0.120) 0.1133 (0.117)
Logistic 0.1017 (0.099) 0.1727 (0.141) 0.1491 (0.130) 0.1161 (0.114)
Biweight 0.0995 (0.086) 0.1097 (0.107) 0.1398 (0.121) 0.1126 (0.097)
Cauchy 0.1096 (0.070) 0.1118 (0.072) 0.1285 (0.093) 0.1155 (0.077)

100 Square 0.0565 (0.050) 0.4144 (0.483) 0.1540 (0.279) 0.0702 (0.069)
Huber 0.0530 (0.038) 0.0747 (0.043) 0.0760 (0.049) 0.0593 (0.047)
Logistic 0.0513 (0.037) 0.0910 (0.055) 0.0811 (0.055) 0.0594 (0.047)
Biweight 0.0526 (0.036) 0.0557 (0.040) 0.0770 (0.055) 0.0613 (0.047)
Cauchy 0.0650 (0.039) 0.0692 (0.040) 0.0752 (0.044) 0.0703 (0.043)

200 Square 0.0278 (0.023) 0.2268 (0.239) 0.0705 (0.063) 0.0347 (0.031)
Huber 0.0271 (0.020) 0.0426 (0.027) 0.0387 (0.026) 0.0291 (0.022)
Logistic 0.0256 (0.018) 0.0522 (0.033) 0.0409 (0.028) 0.0290 (0.022)
Biweight 0.0269 (0.020) 0.0283 (0.020) 0.0391 (0.027) 0.0300 (0.023)
Cauchy 0.0364 (0.025) 0.0383 (0.025) 0.0428 (0.028) 0.0375 (0.026)

500 Square 0.0115 (0.009) 0.0981 (0.093) 0.0313 (0.031) 0.0140 (0.008)
Huber 0.0110 (0.007) 0.0169 (0.011) 0.0150 (0.010) 0.0121 (0.010)
Logistic 0.0106 (0.007) 0.0224 (0.015) 0.0159 (0.011) 0.0119 (0.007)
Biweight 0.0110 (0.007) 0.0119 (0.008) 0.0155 (0.011) 0.0127 (0.008)
Cauchy 0.0143 (0.010) 0.0155 (0.011) 0.0161 (0.012) 0.0154 (0.011)

1 50 Square 0.0976 (0.116) 0.8189 (0.988) 0.2468 (0.359) 0.1287 (0.153)
Huber 0.0854 (0.093) 0.1023 (0.089) 0.1148 (0.113) 0.0942 (0.099)
Logistic 0.0834 (0.088) 0.1384 (0.131) 0.1258 (0.122) 0.0966 (0.097)
Biweight 0.0817 (0.079) 0.0907 (0.090) 0.1189 (0.118) 0.0922 (0.086)
Cauchy 0.0864 (0.071) 0.0859 (0.071) 0.1025 (0.094) 0.0909 (0.075)

100 Square 0.0482 (0.042) 0.3778 (0.439) 0.1254 (0.144) 0.0600 (0.061)
Huber 0.0436 (0.034) 0.0541 (0.035) 0.0620 (0.046) 0.0511 (0.045)
Logistic 0.0424 (0.033) 0.0672 (0.048) 0.0667 (0.052) 0.0501 (0.043)
Biweight 0.0434 (0.032) 0.0463 (0.035) 0.0620 (0.048) 0.0509 (0.041)
Cauchy 0.0496 (0.033) 0.0507 (0.034) 0.0570 (0.039) 0.0550 (0.041)

200 Square 0.0252 (0.021) 0.2086 (0.235) 0.0599 (0.058) 0.0300 (0.026)
Huber 0.0242 (0.018) 0.0330 (0.019) 0.0331 (0.021) 0.0257 (0.019)
Logistic 0.0235 (0.018) 0.0407 (0.025) 0.0348 (0.023) 0.0257 (0.020)
Biweight 0.0245 (0.018) 0.0261 (0.018) 0.0337 (0.022) 0.0269 (0.019)
Cauchy 0.0303 (0.020) 0.0303 (0.018) 0.0345 (0.021) 0.0307 (0.020)

500 Square 0.0102 (0.008) 0.0854 (0.090) 0.0282 (0.028) 0.0126 (0.010)
Huber 0.0098 (0.007) 0.0158 (0.010) 0.0139 (0.010) 0.0110 (0.008)
Logistic 0.0092 (0.007) 0.0197 (0.012) 0.0145 (0.011) 0.0106 (0.008)
Biweight 0.0101 (0.007) 0.0107 (0.008) 0.0140 (0.010) 0.0116 (0.008)
Cauchy 0.0137 (0.010) 0.0146 (0.010) 0.0151 (0.011) 0.0145 (0.010)

2 50 Square 0.0725 (0.083) 0.7203 (0.785) 0.2017 (0.270) 0.0975 (0.106)
Huber 0.0668 (0.077) 0.0816 ( 0.089) 0.0986 (0.110) 0.0756 (0.081)
Logistic 0.0625 (0.069) 0.1177 (0.135) 0.1076 (0.117) 0.0781 (0.083)
Biweight 0.0622 (0.065) 0.0685 (0.070) 0.1003 (0.111) 0.0742 (0.077)
Cauchy 0.0706 (0.074) 0.0679 (0.072) 0.0863 (0.098) 0.0780 (0.082)

100 Square 0.0353 (0.035) 0.3169 (0.330) 0.1025 (0.112) 0.0455 (0.046)
Huber 0.0315 (0.032) 0.0360 (0.034) 0.0468 (0.046) 0.0388 (0.040)
Logistic 0.0304 (0.030) 0.0477 (0.046) 0.0518 (0.052) 0.0374 (0.037)
Biweight 0.0304 (0.029) 0.0333 (0.032) 0.0467 (0.046) 0.0370 (0.036)
Cauchy 0.0357 (0.035) 0.0348 (0.034) 0.0415 (0.041) 0.0402 (0.039)

200 Square 0.0184 (0.018) 0.1704 (0.177) 0.0482 (0.053) 0.0225 (0.022)
Huber 0.0172 (0.017) 0.0193 (0.017) 0.0229 (0.020) 0.0184 (0.018)
Logistic 0.0164 (0.015) 0.0250 (0.023) 0.0243 (0.021) 0.0183 (0.017)
Biweight 0.0162 (0.015) 0.0174 (0.015) 0.0228 (0.020) 0.0189 (0.018)
Cauchy 0.0194 (0.018) 0.0183 (0.017) 0.0224 (0.020) 0.0200 (0.019)

500 Square 0.0076 (0.006) 0.0658 (0.068) 0.0203 (0.021) 0.0091 (0.007)
Huber 0.0073 (0.006) 0.0092 (0.007) 0.0096 (0.008) 0.0078 (0.006)
Logistic 0.0069 (0.005) 0.0115 (0.009) 0.0102 (0.009) 0.0077 (0.006)
Biweight 0.0072 (0.005) 0.0077 (0.006) 0.0097 (0.008) 0.0078 (0.006)
Cauchy 0.0086 (0.007) 0.0087 (0.007) 0.0092 (0.007) 0.0089 (0.007)

Table 1: Average (standard error) of prediction errors over 1,000 simulation runs
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5 Ozone Pollution Data Example

In this section, we applied our methodologies to ozone data. We obtained the data set from Califor-

nia Environmental Protection Agency website (http://www.arb.ca.gov/aqd/aqdcd/aqdcddld.htm),

where many air pollutants, including ozone, observed in California during 1980 and 2011 are

recorded and provided in the several forms of hourly and daily formats, and year summary. We

include hourly ozone levels in the city of Sacramento between June and August of 2005 in our data

set, resulting in a total of 92 days. Entire ozone levels at the time of 4 A.M. were not recorded

during the period and 2 days (June 15 and July 27) of the period contain some missing observations

(7 A.M. ∼ noon for June 15, and 9 A.M. ∼ 10 A.M. for July 27). We focus on the prediction of

the daily maximum ozone level based on the ozone profile observed on the previous day. Thus,

we use hourly profile of ozone level as random covariate function evaluated on discrete time points

and maximum ozone of the next day as response variable. Ozone levels are taken by square-root

transformation.

We first applied functional linear regression with the square loss. And the QQ-plot using the

resulting scaled residuals is presented in Figure 5, which slightly indicates the existence of outliers.

We applied 4 types of robust functional linear regression to the same data, and presented QQ-plot

of the scaled residuals from Huber loss case in Figure 5. Since robust regression is less likely affected

by outliers, outlying observations are more likely highlighted in the resulting residual QQ-plot, as

shown in Figure 5. Other robust regressions using the different robust losses yield the very similar

residual QQ-plots, which are omitted for brevity.
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Figure 5: QQ-plots of scaled residuals for functional linear regression using square loss (left panel) and Huber loss
(right panel).
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To verify the prediction enhancement for independent data set, we set up the test data that has

the same period of the year 2006. Using the model built on the 2005-year data, we predict the daily

maximum ozone level based on the previous hourly ozone profile. In Table 2, root mean squared

error (RMSE) and RMSE with upper 10% trimming (RMSE(0.9)) are presented, demonstrating

that all 4 types of robust functional linear regression have considerable improvement in prediction.

Square Huber Logistic Biweight Cauchy

RMSE 0.0294 0.0256 0.0281 0.0255 0.0261
RMSE (0.9) 0.0224 0.0206 0.0217 0.0207 0.0209

Table 2: RMSE and RMSE(0.9) (RMSE with upper 10% trimming) for test data set.

6 Supplementary Materials

We provide the online supplementary note available on the journal website, which contains the

detailed proofs of Proposition 1, Theorems 1, 3, and 4.
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