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with Qualitative and Quantitative Factors

Xinwei Deng, Ying Hung and C. Devon Lin

Virginia Tech, Rutgers University and Queen’s University

Abstract: We introduce a new class of designs, called marginally coupled designs, for computer

experiments with both qualitative and quantitative variables. The proposed design maintains

an economic run size with attractive space-filling properties. The design points for quantitative

factors forms a Latin hypercube design. In addition, for each level of any qualitative factor of

a marginally coupled design, the corresponding design points for quantitative factors form a

small Latin hypercube design. Existence of the proposed designs is studied. Constructions are

provided for various types of designs with qualitative factors.

Key words and phrases: Difference scheme; Fold-over design; Latin square; Mixed level; Or-

thogonal array; Resolvable orthogonal array.

1. Introduction

Computer experiments refer to the study of real systems using complex simulation models.

They have been widely used as alternatives to physical experiments, especially for studying

complex systems. Computational expense of computer experiments often prohibits the naive

approach of running the experiment over a dense grid of input configurations. Therefore, an

efficient design of experiments is important in the study of computer experiments.

A widely used design in computer experiments is a Latin hypercube design (McKay et

al., 1979; Santner et al., 2003; Fang et al., 2010). The popularity of this class of designs

is due to their appealing feature that when projected onto any one dimension, the equally

spaced design points ensure that each of the factors has all portions of its range represented.

Different variants of Latin hypercube designs have been developed in the literature, includ-

ing orthogonal Latin hypercube designs (Owen, 1994; Ye, 1998; Steinberg and Lin, 2006;

Bingham et al., 2009; Lin et al., 2009; Pang et al., 2009; Sun et al., 2009; Lin et al., 2010),

maximin Latin hypercube designs (Morris and Mitchell, 1995; Joseph and Hung, 2008; Moon
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et al., 2011), nested Latin hypercube designs (Qian, 2009; He and Qian, 2011), sliced Latin

hypercube designs (Qian and Wu, 2009; Qian, 2012), among many others. These designs are

primarily used for computer experiments with only quantitative factors. However, in many

scientific problems, qualitative factors occur frequently and play important roles in the stud-

ies (Qian et al., 2008; Han et al., 2009; Hung et al., 2009). Particularly, in some applications,

a large number or proportion of factors can be qualitative factors. How to efficiently design

experiments with quantitative and qualitative factors is an important but unresolved issue in

computer experiments. The objective of this research is to propose and construct a new class

of designs, marginally coupled designs, for computer experiments involving both quantitative

and qualitative factors.

Throughout, let D = (D1, D2) be a design with q qualitative factors and p quantitative

factors, where D1 and D2 are sub-designs for qualitative and quantitative factors, respectively.

A design D is called a marginally coupled design if D2 is a Latin hypercube design and the

rows in D2 corresponding to each level of any factor in D1 form a small Latin hypercube

design. In this work, we focus on the situation of D1 being orthogonal arrays (Hedayat et

al., 1999).

For constructing designs of computer experiments with quantitative and qualitative fac-

tors, one alternative method can be using the sliced Latin hypercube designs (Qian, 2012)

for D2, where the design points in every slice of D2 corresponds to one level combination of

the qualitative factors. The run size of such designs increases dramatically with the number

of qualitative factors in that there are a large number of level combinations. Thus, they are

only suitable for experiments with a very small number of qualitative factors. In contrast,

the proposed design can accommodate a large number of qualitative factors with an eco-

nomic run size. In addition, it has the following attractive space-filling properties: (1) for

each level of any qualitative factor, the corresponding design points of quantitative factors

achieve maximum uniformity in any one-dimensional projection, and (2) the design points of

quantitative factors possess maximum uniformity in any one-dimensional projection.

The remainder of the paper is organized as follows. Section 2 presents notation, definitions

and an example of marginally coupled designs. Section 3 provides some existence results on
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the proposed designs. Several construction methods for such designs are given in Section 4.

Section 5 concludes the paper with a discussion.

2. Notation, Definitions and an Example

An orthogonal array A of strength t, denoted by OA(n, s1 · · · sq, t), is an n × q matrix

of which the ith column has si levels 0, . . . , si − 1 and for every n × t submatrix of A, each

of all possible level combinations appears equally often (Hedayat et al., 1999). If not all

si’s are equal, an orthogonal array is mixed. We use OA(n, sq11 · · · s
qk
k , t) to represent an

orthogonal array in which the first q1 columns have s1 levels, the next q2 columns have s2

levels, and so on, and the last qk columns have sk levels. An OA(n, sq11 · · · s
qk
k , 2) is said

to be (α1 × α2 × · · · × αk)-resolvable if for 1 ≤ j ≤ k, its rows can be partitioned into

n/(αjsj) subarrays A1, . . . , An/(αjsj) of αjsj rows each such that each of A1, . . . , An/(αjsj) is

an OA(αjsj , s
q1
1 · · · s

qk
k , 1). Note that αjsj ’s are identical for all j’s. If all sj ’s are equal and

α1 = · · · = αk = α then an (α1 × α2 × · · · × αk)-resolvable orthogonal array reduces to an

α-resolvable orthogonal array. If α = 1, the orthogonal array is called completely resolvable.

A Latin hypercube of n runs for p factors is represented by an n×p matrix of which each

column is a random permutation of n equally-spaced levels. For convenience, throughout we

assume that the n levels are taken to be−(n−1)/2,−(n−3)/2, . . . , (n−3)/2, (n−1)/2. In Qian

(2012), a Latin hypercube L of n = rm runs is called a sliced Latin hypercube of r slices if L

can be expressed as L = (LT
1 , . . . , L

T
r )T where m levels in each column of Li have exactly one

level from each of the m equally-spaced intervals {[−n/2 + (j− 1)r,−n/2 + jr] : 1 ≤ j ≤ m}.

Given an n× p Latin hypercube L = (lij), a Latin hypercube design X = (xij) is generated

via

xij =
lij + (n− 1)/2 + uij

n
, 1 ≤ i ≤ n, 1 ≤ j ≤ p, (1)

where uij ’s are independent random numbers from [0, 1). We say L is a Latin hypercube

corresponding to X. Note that a D2 in a marginally coupled design D = (D1, D2) is a sliced

Latin hypercube design with respect to each column of D1. An example of a marginally

coupled design of 9 runs for two quantitative factors and two qualitative factors is given in

Example 1.
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Figure 1: Scatter plots of x1 versus x2 in Example 1, where rows of D2 corresponding

to levels 0,1,2 of zi are marked by ×, ◦, and +: (a) the levels of z1; (b) the levels of z2.

Example 1. Design D = (D1, D2) in Table 1 is a marginally coupled design of 9 runs for

two quantitative variables (x1, x2) and two qualitative factors (z1, z2) each at three levels.

Figure 1 displays the scatter plots of x1 versus x2. Rows of D2 corresponding to levels 0,1,2

of z1 or z2 are represented by ×, ◦, and +. Projected onto x1 or x2, three points represented

by × or ◦ or + are exactly located in each of three intervals [0,1/3), [1/3,2/3), [2/3,1).

Table 1. A marginally coupled design D = (D1, D2)

D1 D2

0 0 0.311 0.301

0 1 0.415 0.975

0 2 0.878 0.363

1 0 0.481 0.630

1 1 0.752 0.220

1 2 0.212 0.689

2 0 0.950 0.786

2 1 0.078 0.463

2 2 0.601 0.100

3. Existence of Marginally Coupled Designs

This section provides some results on the existence of marginally coupled designs. Recall

the definition of marginally coupled designs. A marginally coupled design of n runs has
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two sub-designs, D1 and D2, which are for q qualitative factors and p quantitative factors,

respectively, where q > 0 and p > 0. For a given n × q design D1, we say a marginally

coupled design exists if there exists an n × p design D2 with p > 0 such that D = (D1, D2)

is a marginally coupled design. Propositions 1 and 2 establish the necessary and sufficient

condition of the existence of marginally coupled designs when D1 is an OA(n, sq, 2) and an

OA(n, sq11 s
q2
2 , 2) with s1 = α2s2, respectively.

Proposition 1. Given D1 = OA(n, sq, 2), a marginally coupled design exists if and only if

D1 is a completely resolvable orthogonal array.

Proof. We first show if D1 is a completely resolvable orthogonal array, a marginally cou-

pled design exists. A completely resolvable orthogonal array can be expressed as D1 =

(AT1 , . . . , A
T
m)T such that each Ai is an OA(s, sq, 1) for 1 ≤ i ≤ m = n/s. Let d = (dj) be

the column vector of length n with dj = (j − 1 + uj)/n where uj ’s are independent numbers

from [0, 1), 1 ≤ j ≤ n. Now construct an n × p design D2 in the following way. Write

d = (bT1 , . . . , b
T
m)T where bi is the {(i − 1)s + 1, . . . , is}th entries of d, 1 ≤ i ≤ m = n/s.

Obtain each column of D2 by randomly permuting bi’s of d and/or randomly permuting the

entries in one or more of bi’s. Then (D1, D2) forms a marginally coupled design by definition.

Next, we show that if a marginally coupled design exists, D1 must be a completely resolvable

orthogonal array. Suppose that D2 has p columns and the jth column is denoted by D
(j)
2 .

Then for each D
(j)
2 , 1 ≤ j ≤ p, and for 0 ≤ i ≤ m− 1, the rows of D1 corresponding to the s

elements of D
(j)
2 in the interval [i/m, (i+ 1)/m) must form an OA(s, sq, 1). This is because,

otherwise there will be a level, say k, in a column w of D1 such that the entries in D
(j)
2

corresponding to the level k contain more than one element from [i/m, (i+ 1)/m). In other

words, for the column w of D1, D2 is not a sliced Latin hypercube design. This completes

the proof.

Proposition 2. Given D1 = OA(n, sq11 s
q2
2 , 2) with s1 = α2s2, a marginally coupled design

exists if and only if D1 is a (1× α2)-resolvable orthogonal array that can be expressed as
A11 A12

...
...

Am1 Am2

 (2)
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such that (Ai1, Ai2) is an OA(s1, s
q1
1 s

q2
2 , 1), where m = n/s1, and for 1 ≤ i ≤ m, the Ai2 is

completely resolvable.

Proof. We first show the necessary part, that is, for a D1 in the proposition, a marginally

coupled design exists. Let d = (dj) be the column vector of length n with dj = (j−1 +uj)/n

where uj ’s are independent numbers from [0, 1), 1 ≤ j ≤ n. Now construct an n×p design D2

in the following way. Write d = (bT1 , . . . , b
T
m)T where bi is the {(i− 1)s+ 1, . . . , is}th entries

of d, 1 ≤ i ≤ m = n/s. Set each column of D2 to a column obtained by randomly permuting

bi’s of d and/or randomly permuting the entries in one or more of bi’s. Then (D1, D2) forms

a marginally coupled design by definition. Now we show the sufficient part. That is, we

shall show that (a) the first q1 columns in D1 are a completely resolvable orthogonal array,

and (b) the rows of each Ai2 in (2) can be partitioned into α2 subarrays B1, . . . , Bα2 of s2

rows each such that each of B1, . . . , Bα2 is an OA(s2, s
q2
2 , 1). Part (a) uses the arguments

from the proof of Proposition 1 with q = q1 and s = s1. To complete the proof, we now

validate part (b). Suppose D2 has p columns and the jth column is denoted by D
(j)
2 . Then

for each D
(j)
2 , 1 ≤ j ≤ p, and 0 ≤ i ≤ m− 1, the rows of D1 corresponding to the s1 elements

of D
(j)
2 in the interval [i/m, (i + 1)/m) must be Ah1 for an h in {1, . . . ,m}. Now for the

given i and h and for g = 0, . . . , α2 − 1, the rows of Ah2 corresponding to the s2 elements

of D
(j)
2 in the interval [i/m + g/(mα2), i/m + (g + 1)/(mα2)) must form an OA(s2, s

q2
2 , 1).

This is because, otherwise there will be a level, say k, in a column w of (AT12, . . . , A
T
m2)

T such

that the entries in D
(j)
2 corresponding to the level k contain more than one element from

[i/m+ g/(mα2), i/m+ (g+ 1)/(mα2)). In other words, for the column w in (AT12, . . . , A
T
m2)

T ,

D2 is not a sliced Latin hypercube design. We thus show part (b). This completes the proof.

The following lemma from Suen (1989) shows that the maximum number of columns in

an n/(sr)-resolvable s-level orthogonal array of n runs is (n − r)/(s − 1). For a completely

resolvable s-level orthogonal array, we have r = n/s, and thus the maximum number of

columns in a completely resolvable s-level orthogonal array is n/s, which leads to Corollary 1.

Lemma 1. If a resolvable OA(n, sq, 2) can be partitioned into r OA(n/r, sq, 1)’s, then q ≤

(n− r)/(s− 1).
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Corollary 1. Let q∗ be the maximum value of q such that a marginally coupled design

D = (D1, D2) with D1 = OA(n, sq, 2) exists. We have q∗ ≤ n/s.

Corollary 2 provides a result on the maximum number of columns in a two-level orthogonal

array of n runs where n is a multiple of 4 for which a marginally coupled design exists.

Corollary 2. Let q∗ be the maximum value of q such that a marginally coupled design

D = (D1, D2) with D1 = OA(4λ, 2q, 2) exists, where λ is an integer such that a Hadamard

matrix of order 2λ exists. We have q∗ = 2λ.

Proof. By Proposition 1, D1 = OA(4λ, 2q, 2) is completely resolvable. Such D1’s are fold-

over designs. When the two levels are represented by 1 and -1, a fold-over design can be

represented by (AT ,−AT )T for some matrix A. Let A be a Hadamard matrix of order 2λ

(Hedayat et al., 1999). Then the maximum number of columns in a fold-over orthogonal

array of 4λ runs is 2λ. This completes the proof.

4. Construction of Marginally Coupled Designs

We develop several procedures to construct marginally coupled designs D = (D1, D2)

when D1’s are s-level orthogonal arrays of s2 and λs2 runs, mixed orthogonal arrays, and

two-level orthogonal arrays, respectively.

4.1 Construction for D1 being s-level orthogonal arrays of s2 runs

Suppose an OA(s2, sk, 2), say A, is available and D1 for qualitative factors is obtained

by randomly taking q columns from A. Let A\D1 be the complement of D1 within A.

Construction 1 below is based on the idea in Tang (1993), which is originally proposed for

constructing orthogonal array-based Latin hypercubes.

Construction 1. Obtain a design, B, by randomly taking p columns from A\D1, where

q + p ≤ k. For each column of B, replace the s positions having level i − 1 by a random

permutation of {(i − 1)s + 1} − (s2 + 1)/2, . . . , {(i − 1)s + s} − (s2 + 1)/2, for 1 ≤ i ≤ s.

Denote the resulting design by L and obtain a Latin hypercube design D2 based on L via

(1).
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Proposition 3. Let D1 = OA(s2, sq, 2). Design D = (D1, D2) is a marginally coupled design,

where D2 is obtained by Construction 1.

Proposition 3 can be readily verified by noting the two-dimensional projection property

of an orthogonal array. This property implies that for each column in D2, the s points

corresponding to each level of each column in D1 are evenly distributed in the s equally-

spaced intervals.

Example 2. Taking s in Construction 1 to be 3, 4, 5, 7, 8, 9, we have OA(9, 34, 2), OA(16, 45, 2),

OA(25, 56, 2),OA(49, 78, 2),OA(64, 89, 2) and OA(81, 910, 2), which provide designs of com-

puter experiments of s2 runs for q qualitative variables and p quantitative variables, where

p+ q ≤ s+ 1.

4.2 Constructions for D1 being s-level orthogonal arrays of λs2 runs

This section introduces a method for constructing marginally coupled designs with D1

being s-level orthogonal arrays of n = λs2 runs. The approach, Construction 2 below, uses

mixed orthogonal arrays OA(λs2, sk(λs), 2). Suppose an OA(λs2, sk(λs), 2), denoted by A, is

available and D1 for qualitative factors is obtained by randomly taking q columns from the

first k columns of A, where λ is a positive integer and q ≤ k.

Construction 2. Denote the last column of A by a. For 1 ≤ j ≤ p, let πj be a random

permutation of {0, . . . , λs−1} and πj(i) be the ith entry of πj . Replace the s positions having

level πj(i) in a by a random permutation of {(i− 1)s+ 1}− (λs2 + 1)/2, . . . , {(i− 1)s+ s}−

(λs2 + 1)/2, for 1 ≤ i ≤ λs. Denote the resulting design by L and obtain a Latin hypercube

design D2 based on L via (1).

Proposition 4. Let D1 = OA(λs2, sq, 2). Design D = (D1, D2) with D2 in Construction 2

is a marginally coupled design.

Analogous to Proposition 3, Proposition 4 is the consequence of the two-dimensional

projection property of an orthogonal array. The website Sloane (2014) lists OA(λs2, sk(λs), 2)

with λs2 ≤ 100. For these orthogonal arrays, we have k = λs for s being a prime or prime

power except the cases in Table 2 and the cases having (s = 2, odd λ, k = 2).

8

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



Table 2. The s, λ and k such that an OA(λs2, sk(λs), 2) exists

and k 6= λs, s ≥ 3, λs2 ≤ 100

s 3 3 5 4 4 3

λ 5 7 3 5 6 11

k 9 11 7 8 16 11

4.3 Construction for D1 being mixed orthogonal arrays

Mixed orthogonal arrays were constructed via small mixed orthogonal arrays and differ-

ence schemes in Wang and Wu (1991), Hedayat et al. (1992), and Dey and Midha (1996),

among others. A general formulation is provided in Theorem 9.15 in Hedayat et al. (1999).

A slightly different version of this formulation is stated in Lemma 2.

Lemma 2. Let B = (B1 · · ·Bv) be an OA(n, sk11 · · · skvv , 2) where Bj is the orthogonal array

for kj factors with sj levels. If, for some u, there are difference schemes D(u, cj , sj) (of

strength 2), denoted by D(j), for 1 ≤ j ≤ v, then the design

A =
(
D(1)�B1, · · · , D(v)�Bv

)
, (3)

is an OA(nu, sk1c11 · · · skvcvv , 2), where X � Y = (xij ∗ Y ) stands for the Kronecker product of

a u× c matrix X = (xij) and an n× k matrix Y = (yrs) with xij ∗ Y being the matrix with

entries xij ∗ yrs and the binary operation ∗ representing addition.

Let M be the Latin hypercube corresponding to D2 in a marginally coupled design D =

(D1, D2). For convenience and notational simplicity, hereafter we call M a marginally sliced

Latin hypercube for D1. The following method is proposed to construct marginally coupled

designs when D1 = A in (3).

Construction 3. Let C = (cij) be a u × f matrix with cij = ±1, H be a u × (pf) Latin

hypercube and M be a marginally sliced Latin hypercube for B = OA(n, sk11 · · · skvv , 2) in

Lemma 2. Obtain an (nu) × (pf) matrix L = C ⊗M + nH ⊗ 1n, where ⊗ represents the

Kronecker product and 1n is a column of all 1’s, and further obtain a Latin hypercube design

D2 based on L via (1).

Construction 3 provides a way to construct marginally coupled designs for mixed orthog-

onal arrays of the form (3). A precise result is given in Proposition 5. Lemmas 3 and 4 are
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used to show Proposition 5. The proof of both lemmas are straightforward and thus omitted.

Lemma 3. If M is a marginally sliced Latin hypercube for an OA(n, sk11 · · · skvv , 2), so is −M .

Lemma 4. If M is a marginally sliced Latin hypercube for B = (B1, · · · , Bv) in Lemma 2,

M is a marginally sliced Latin hypercube for (a1�B1, · · · , av�Bv) for all ai ∈ {0, . . . , si−1}

and 1 ≤ i ≤ v.

Proposition 5. Let D1 be A in (3). Design D = (D1, D2) with D2 in Construction 3 is a

marginally coupled design.

Proof. To prove Proposition 5, we need to show that L in Construction 3 is a marginally

sliced Latin hypercube for A in (3). First, L is a Latin hypercube by verifying that each

column of L has levels −(nu − 1)/2, . . . , (nu − 1)/2. Second, we show that for each column

of L, the entries corresponding to a level in any column of A with si levels have exactly one

value from each of the nu/si intervals

Φi = [{−nu/2 + (j − 1)si,−nu/2 + jsi} : 1 ≤ j ≤ nu/si]. (4)

Without loss of generality, consider the first column l1 of L. Note that l1 = c1⊗m1+nh1⊗1n,

where c1, m1 and h1 are the first column of C, M and H, respectively. Now consider any

column a of A and suppose a = d� b where d is a column from D(i) in (3) and b is a column

from Bi in (3). Let c1j and dj be the jth entry of c1 and d, respectively. By Lemmas 3 and

4, for the column c1j ⊗m1, the entries corresponding to a level in dj � b with si levels have

exactly one value from each of the n/si intervals φi = [{−n/2 + (j − 1)si,−n/2 + jsi} : 1 ≤

j ≤ n/si]. Let ω = {−(u−1)/2,−(u−3)/2, . . . , (u−3)/2, (u−1)/2}. Then for l1, the entries

corresponding to a level in a with si levels have exactly one value from each of the intervals

{nωjφi : 1 ≤ j ≤ u}, (5)

where nωjφi represents the intervals whose lower bounds and upper bounds are obtained by

multiplying the lower bound and upper bound of each interval in φi by nωj . It is straight-

forward to verify that the intervals in (5) are identical to Φi in (4) and thus we complete the

proof.
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Example 3. Consider a design A = OA(32, 2842, 2) constructed as in Lemma 2 using

B =



0 0 0
1 1 0
0 0 1
1 1 1
0 1 2
1 0 2
0 1 3
1 0 3


, D(1) =

 0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0

 , and D(2) =

 0 0
0 1
0 2
0 3

 .

A marginally sliced Latin hypercube for B is

M =
1

2



−5 1 −7 −1 3
3 −3 7 7 −3
1 −1 5 5 −1
−7 3 −5 −3 1
−1 5 −1 −5 5

7 −7 1 1 −7
5 −5 3 3 −5
−3 7 −3 −7 7


. By choosing C =

 1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ,

and any 4×20 Latin hypercube H, the proposed procedure above provides a 32×20 marginally

sliced Latin hypercube for D1 = A.

4.4 Construction for D1 being unreplicated or replicated s-level orthogonal arrays

We now introduce a construction for marginally coupled designs of n runs when D1’s are

unreplicated or replicated s-level orthogonal arrays and D2’s have s slices with respect to

each column of D1, where n is a multiple of s2. The advantage of this construction method

over Construction 1 in Section 4.1 is, Construction 1 works for p ≤ s + 1 − q while this

method works for any value of p. The gain from Construction 1 is that columns in D2 have

two-dimensional stratification. This method is different from those in Section 4.2 in that D1’s

provided by the latter are not replicated.

Let W1, . . . ,Wq be mutually orthogonal Latin squares (Hedayat et al., 1999) of order s

with symbols 0, . . . , s − 1. Two Latin squares are called orthogonal if the following holds:

when one Latin square is superimposed upon the other, every ordered pair of variables occurs

exactly once in the resulting square. Suppose we wish to have p columns in D2, the following

procedure is proposed.

I. For 1 ≤ i ≤ q, let Wi(j, k) be the (j, k)th entry of Wi. For 1 ≤ r ≤ s, let (ζ(r−1)s+1, . . . , ζrs)

be the (j, k)’s such that W1(j, k) = r−1, and let ζ = (ζ1, . . . , ζs2). Obtain an s2×q orthogonal
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array H by letting its (t, i)th entry being Wi(ζt). If n/s2 is greater than 1, for each row of

H, add n/s2 − 1 replications of that row and denote the resulting design by D1. Otherwise,

let D1 = H.

II. For 1 ≤ i, j ≤ s, define ξij = {(t − 1)s2 + (i − 1)s + j − (n + 1)/2 : 1 ≤ t ≤ n/s2}.

Obtain an n × p array L whose kth column is constructed in the following manner. Let

α = (α1, . . . , αs) and β = (β1, . . . , βs) be two independent random permutations of {1, . . . , s},

and ξ̃αiβj be a random permutation of the elements in ξαiβj . For 1 ≤ k ≤ p, the kth column

of L is obtained by stacking ξ̃αiβj ’s row by row where αiβj ’s are in the following order

α1β1, . . . , αsβ1, α1β2, . . . , αsβ2, . . . , α1βs, . . . , αsβs. Obtain D2 based on L via (1).

Proposition 6. Let q be the integer such that there exist q mutually orthogonal Latin squares

of order s. For D1 and D2 constructed above, we have that

(i) design D1 is an unreplicated OA(s2, sq, 2) when n = s2 or a replicated OA(s2, sq, 2) of

λ replicates when n = λs2 for an integer λ > 1, and

(ii) D = (D1, D2) is a marginally coupled design.

We sketch a proof. Part (i) of Proposition 6 follows from the definition of mutually

orthogonal Latin squares. For part (ii), note that for 1 ≤ j ≤ s, ξ1j , . . . , ξsj forms a slice of

a Latin hypercube of n runs and s slices. Part (ii) follows because for each column of L, the

row entries corresponding to each level in each column of D1 are ξ1j , . . . , ξsj for certain j.

Example 4. Consider n = 16, s = 4, p = 9. There are three mutually orthogonal Latin

squares. A marginally coupled design given by the above procedure for D1 being an unreplicated

OA(16, 43, 2) is given in Table 3. Note that we choose p = 9 in this example. However, the

approach works for any value of p.

4.5 Construction for D1 being two-level orthogonal arrays

This section presents a method for constructing marginally coupled designs for D1 being

two-level orthogonal arrays. It extends the method in Lin et al. (2010) which introduced

a general approach for constructing designs for computer experiments. For convenience, we

use −1, 1 to represent two levels in an orthogonal array in this section. Let A = (aij) be an

n1 ×m1 matrix with aij = ±1, B = (bij) be an n2 ×m2 Latin hypercube, C = (cij) be an
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Table 3. Designs D1 and D2 in Example 4

D1 D2

0 0 0 0.684 0.422 0.854 0.940 0.483 0.822 0.123 0.379 0.035

0 3 2 0.913 0.682 0.316 0.226 0.698 0.624 0.851 0.671 0.274

0 1 3 0.384 0.914 0.602 0.710 0.224 0.371 0.576 0.876 0.768

0 2 1 0.164 0.125 0.109 0.466 0.977 0.099 0.363 0.161 0.527

1 1 1 0.617 0.349 0.906 0.903 0.397 0.807 0.149 0.316 0.113

1 2 3 0.831 0.620 0.433 0.183 0.687 0.519 0.910 0.608 0.341

1 0 2 0.327 0.824 0.658 0.641 0.136 0.310 0.670 0.823 0.851

1 3 0 0.083 0.079 0.158 0.425 0.892 0.019 0.418 0.116 0.573

2 2 2 0.550 0.481 0.990 0.796 0.290 0.889 0.026 0.310 0.167

2 1 0 0.784 0.701 0.470 0.006 0.503 0.663 0.796 0.503 0.399

2 3 1 0.307 0.962 0.700 0.556 0.041 0.403 0.557 0.793 0.896

2 0 3 0.004 0.191 0.189 0.270 0.765 0.166 0.267 0.032 0.646

3 3 3 0.703 0.294 0.767 0.863 0.322 0.997 0.210 0.454 0.238

3 0 1 0.999 0.539 0.304 0.101 0.620 0.741 0.997 0.699 0.465

3 2 0 0.445 0.791 0.556 0.616 0.104 0.473 0.705 0.996 0.976

3 1 2 0.196 0.040 0.035 0.325 0.854 0.244 0.473 0.204 0.713

.

n1 ×m1 Latin hypercube, and H = (hij) be an n2 ×m2 matrix with hij = ±1. Lin et al.

(2010) consider the design

L = A⊗B + n2C ⊗H. (6)

Lemma 5 from Lin et al. (2010) provides the conditions for L in (6) to be a Latin hypercube.

Lemma 5. Design L in (6) is a Latin hypercube if at least one of the following two conditions

is true:

(a) A and C satisfy that for any i, if p and p′ are such that cpi = −cp′i, then api = ap′i;

(b) B and H satisfy that for any j, if q and q′ are such that bqj = −bq′j, then hqj = hq′j.

Proposition 7. Suppose that D0 = (E,F ) is a marginally coupled design and B is the

corresponding Latin hypercube of F , where E is an n2× q0 array and F is an n2×m2 array.

In addition, A, B, C and H are chosen to satisfy conditions in Lemma 5. Let D1 = A⊗ E

and D2 be the Latin hypercube design based on L in (6) via (1). Then we have that design

D = (D1, D2) is a marginally coupled design, where D1 is an (n1n2)× (q0m1) array and D2

is an (n1n2)× (m1m2) array.

Proof. Because D0 = (E,F ) is a marginally coupled design, for each column of E, B forms a

sliced Latin hypercube of two slices. That is, let ωk1 = {i : eik = 1} and ωk2 = {i : eik = −1},
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where eik is the (i, k)th element of E, 1 ≤ k ≤ q0. Then for 1 ≤ j ≤ m2, both {d[bij + (n2 +

1)/2]/2e : i ∈ ωk1} and {d[−bij +(n2 +1)/2]/2e : i ∈ ωk1} are a permutation of {1, . . . , n2/2},

where dxe is the smallest integer not less than x . Similarly, both {d[bij + (n2 + 1)/2]/2e : i ∈

ωk2} and {d[−bij + (n2 + 1)/2]/2e : i ∈ ωk2} are a permutation of {1, . . . , n2/2}. It is easy to

verify that for 1 ≤ j′ ≤ m1 and 1 ≤ j ≤ m2, {d(ai′j′bij + n2ci′j′hij + (n1n2 + 1)/2)/2e : i ∈

ωk1, 1 ≤ i′ ≤ n1} is a permutation of {[ci′j′+(n1+1)/2−1]n2/2+1, . . . , [ci′j′+(n1+1)/2]n2/2}.

Let aj′ and cj′ be the j′th column of A and C, respectively. Because cj′ is a permutation

of {−(n1 − 1)/2, . . . , (n1 − 1)/2}, {d[aj′bij + n2cj′hij + (n1n2 + 1)1n1/2]/2e : i ∈ ωk1} is a

permutation of {1, . . . , (n1n2 + 1)/2} where 1n1 is a column of n1 1’s. Likewise, {d[aj′bij +

n2cj′hij + (n1n2 + 1)1n1/2]/2e : i ∈ ωk2} is a permutation of {1, . . . , (n1n2 + 1)/2}. Thus we

show for each column of D1 = A ⊗ E, L forms a sliced Latin hypercube of two slices. This

completes the proof.

Analogous to Theorem 1 in Lin, Bingham, Sitter and Tang (2010), an orthogonal D2 in

Proposition 7 can be obtained by letting (1) A, B, C and H are orthogonal, (2) ATC = 0 or

BTH = 0, and (3) uij ’s in (1) are a constant between 0 and 1.

Example 5. Let

A =

 1 1
1 −1
1 1
1 −1

 , B =
1

2

 −3 −1 1 3
3 1 −3 −1
−1 −3 3 1

1 3 −1 −3

 ,

C =
1

2

 1 −3
3 1
−1 3
−3 −1

 , and H =

 1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

Design B is a marginally sliced Latin hypercube for

E =

 1 1
−1 1
−1 −1

1 −1

 .

By Proposition 7, design D = (D1, D2) with D1 = A ⊗ E and D2 based on L in (6) via (1)

is a marginally coupled design. If instead we choose both B and H to be orthogonal and let

uij in (1) be a constant between 0 and 1, then the resulting D2 is orthogonal.
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Proposition 7 provides a way to construct marginally coupled designs when D1 is a fold-

over orthogonal array of 2k runs and 2k−1 columns. To explain this, let D(k) = (D
(k)
1 , D

(k)
2 )

be such a marginally coupled design for a given k. For k = 2, the design with D
(2)
1 and D

(2)
2

being E and B in Example 5 is a marginally coupled design. For k ≥ 3, the design with

D
(k)
1 = A⊗D(k−1)

1 and D
(k)
2 = A⊗D(k−1)

2 + 2k−1C⊗H, where A = ((1, 1)T , (1,−1)T ), C is a

2×2 Latin hypercube, and H is a matrix of all 1’s of the same size as D
(k−1)
2 , is a marginally

coupled design. The design D
(k)
1 is a fold-over orthogonal array of 2k runs and 2k−1 factors.

5. Conclusions and Discussion

We introduce a new class of designs, marginally coupled designs, to accommodate a large

number of qualitative factors in computer experiments with both qualitative and quantitative

factors. Construction methods are given for various types of designs for qualitative factors.

The existence of such designs is studied when design D1 for qualitative factors are s-level

orthogonal arrays and OA(n, sq11 (λs1)
q2 , 2). Although completely solving the existence issue

for general orthogonal arrays is likely to be quite nontrivial, it would be possible to obtain

some useful general results. We will not dwell on this but conclude the paper with a couple

of the future research. One important future research direction is the extension of marginally

coupled designs with certain optimal criteria. This is because the proposed designs are

space-filling in one-dimension, but it is not guaranteed that the designs are space-filling in

higher dimensions. Therefore, additional criteria such as orthogonality or maximin distance

( Johnson et al., 1990; Yang et al., 2013; Huang et al., 2014; Ba et al., 2014) can be used to

further enhance the space-filling properties. Another direction is the extension of marginally

coupled designs to allow the design for quantitative factors to possess space-filling property

with respect to any two columns of the design for qualitative factors. One possibility is

that, for each level combination of any two columns of the design for qualitative factors, the

corresponding design points for quantitative factors form a Latin hypercube design.
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