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Summary

This paper focuses on factor analysis of multivariate time series. We propose statistical meth-

ods that enable analysts to leverage their prior knowledge or substantive information to sharpen

the estimation of common factors. Specifically, we consider a doubly constrained factor model

that enables analysts to specify both row and column constraints of the data matrix to im-

prove the estimation of common factors. The row constraints may represent classifications

of individual subjects whereas the column constraints may show the categories of variables.

We derive both the maximum likelihood and least squares estimates of the proposed doubly

constrained factor model and use simulation to study the performance of the analysis in finite

samples. Akaike information criterion is used for model selection. Monthly U.S. housing starts

of nine geographical divisions are used to demonstrate the application of the proposed model.
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1 Introduction

Big data have become common in statistical applications. In many situations, it is natural

to entertain the data as a 2-dimensional array with row representing subjects and column

denoting variables. See, for instance, the large panel data in the econometric literature and

the multivariate time series analysis in statistics. For a specific example, consider the United

States (U.S.) housing markets. The U.S. Census Bureau publishes monthly housing starts of

nine geographical divisions shown in Figure 1. We employ 10 years of the data from January

1997 to December 2006. Here the data matrix Z is a 120-by-9 matrix with each column

representing a division and each row denoting a particular calendar month. Figure 2 shows the

time plots of the logarithms of monthly housing starts of the nine divisions. From the plots, it

is clear that U.S. housing starts have strong seasonality. Furthermore, the housing starts also

exhibit some common characteristics. It is then natural to consider both the seasonality and

geographical divisions in searching for the common factors driving the U.S. housing markets.

In this particular example, the seasonality leads naturally to row constraints whereas the

geographical considerations give rise to column constraints. The goal of this paper is to consider

such constraints when we search for common factors in a big data set.

Factor models are widely used in econometric and statistical applications, and constrained

factor models have also been studied in the literature. Bai and Ng (2002), Bai (2003), Lam

et al. (2011), Lam and Yao (2012) and Chang et al. (2013) represent multiple time series

using a few common factors defined in various ways. Forni et al. (2000, 2005) generalize

the static approximate factor model of Chamberlain and Rothschild (1983) to the generalized

dynamic-factor model. The generalized dynamic-factor model is a factor model allowing for

infinite dynamics and nonorthogonal idiosyncratic components. Tsai and Tsay (2010) proposed

constrained and partially constrained factor models for multivariate time series analysis. They

show that column constraints can be used effectively to obtain parsimonious factor models for

high-dimensional series. Only column constraints are considered in that paper, however. On

the other hand, as illustrated by the U.S. housing starts data, both row and column constraints

might be informative in some applications. Therefore, we investigate doubly constrained factor

models in this paper. The theoretical framework of the proposed model is the constrained

principal component analysis of Takane and Hunter (2001), and our study focuses on estimation
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and applications of the proposed model. Principal component analysis was proposed originally

for independent data, but it has been widely used in the time series analysis. See, for instance,

Peña and Box (1987) and Tiao, Tsay, and Wang (1993).

Consider a T by N data matrix Z, rows and columns of which represent subjects and

variables, respectively. Let G be a T by m matrix of row constraints of rank m, and H be an

N by s matrix of column constraints of rank s. Both G and H are known a priori based on

some prior knowledge or substantive information of the problem at hand. For instance, Tsai

and Tsay (2010) use H to represent the level, slope, and curvature of interest rates. They

also use H to denote the industrial classification of U.S. stocks. Let ω1 = [ω1(i, j)] (s by r),

ω2 = [ω2(i, j)] (N by p) and ω3 = [ω3(i, j)] (s by q) be the loading matrices of full rank, and

E (T by N) a matrix of residuals, where p < N , max{r, q} ≤ s < N , and q ≤ min{r, p}. The

postulated doubly constrained factor (DCF) model for Z = [Zi,j ] = [Z ′1, · · · , Z ′T ]′ is

Z = F 1ω
′
1H

′
+GF 2ω

′
2 +GF 3ω

′
3H

′
+E, (1)

whereA′ denotes the transpose matrix ofA, F 1 = [F
(1)′

1 , . . . , F
(T )′

1 ]
′
(T by r), F 2 =[F

(1)′

2 , . . . , F
(m)′

2 ]
′

(m by p), F 3 = [F
(1)′

3 , . . . , F
(m)′

3 ]
′

(m by q), and E = [e′1, . . . , e
′
T ]

′
(T by N) with E(ei) = 0

and var(ei) = Ψ = [Ψ(j, k)]. We refer to the model in Equation (1) as a DCF model of order

(r, p, q) with r, p and q denoting the number of common factors in F 1,F 2 and F 3, respec-

tively. For statistical factor models, one further assumes that Ψ is a diagonal matrix. In the

econometric and finance literature, Ψ is not necessarily diagonal and the model becomes an

approximate factor model.

For the DCF model in Equation (1), F i are common factors. Under the model, the first

term pertains to what in Z can be explained by H but not by G, the second term to what

can be explained by G but not by H, the third term to what can be explained jointly by both

G and H, and the last term to what can be explained by neither G nor H. Often the third

term of model (1) denotes the interaction between the constraints G and H. Thus, F 1,F 2

and F 3 can be interpreted as column, row, and interaction factors, respectively. Similar to the

conventional factor models, the scales and orderings of the latent common factors F i are not

identifiable.

The model studied in this paper is not an approximate factor model in the sense of Cham-

berlain and Rothschild (1983) and Bai (2003). In contrast, our model is an extension of the
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traditional orthogonal factor models in the sense that the cross-section size N is fixed and

finite, and E, the covariance matrix of the idiosyncratic errors, is diagonal. In contrast, the

class of approximate factor models allows the idiosyncratic components to be ’poorly’ corre-

lated. An important property of approximate factor models is that as N → ∞, if the factors

are white noises and orthogonal to the idiosyncratic terms, the common components of a factor

model with r factors can be recovered by the first r principal components of the covariance

matrix of the observations. In this sense, the main principal components can approximate the

common components when N is large. In the simulation in Section 3, we deal with N = 6 and

N = 24, and application in Section 4, N = 9. The model studied in this paper also differs

from the dynamic models in Forni et al. (2000) because it does not allow the factors to be

auto-correlated.

The paper is organized as follows. In Section 2 we consider estimation of the proposed DCF

model, including model selection and the common factors. We use simulation in Section 3 to

investigate the efficacy of the estimation methods in finite samples. Section 4 applies the

proposed analysis to the monthly U.S. housing starts, and Section 5 concludes.

2 Estimation

The proposed doubly constrained factor model in Equation (1) can be estimated by either the

least squares (LS) method or the maximum likelihood method. For both methods, we assume,

for simplicity, that the row constraint G satisfies

G′G =
T

m
Im, (2)

where Im is the m×m identity matrix. This is not a strong condition and it can be met easily.

For example, if (i) G = Im ⊗ 1T/m, where 1T/m is the T/m-dimensional vector of 1, or if (ii)

G = 1T/m ⊗ Im, then Assumption (2) holds. Note that the U.S. housing starts data follow

the situation (ii). The LS estimates are less efficient, but easier to obtain. We begin with the

LS method.
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2.1 Least Squares Estimation

Consider the doubly constrained factor model in (1) with the following assumption:

Assumption A:

F ′1F 1 = TIr,F
′
2F 2 = mIp,F

′
3F 3 = mIq,G

′F 1ω
′
1 = O, and F 2ω

′
2H = O. (3)

The least squares estimates (LSE) of ω1, ω2, ω3, F 1, F 2, and F 3 can be obtained by

minimizing the objective function

l(ω1,ω2,ω3,F 1,F 2,F 3)

= tr{(Z − F 1ω
′
1H
′ −GF 2ω

′
2 −GF 3ω

′
3H
′)(Z − F 1ω

′
1H
′ −GF 2ω

′
2 −GF 3ω

′
3H
′)′}

= tr{ZZ ′ + F 1ω
′
1H
′Hω1F

′
1 +GF 2ω

′
2ω2F

′
2G
′ +GF 3ω

′
3H
′Hω3F

′
3G
′

−2Z(Hω1F
′
1 + ω2F

′
2G
′ +Hω3F

′
3G
′)}, (4)

where the second equality follows from the zero constraints of Assumption A. Taking the

partial derivative of l(ω1,ω2,ω3,F 1,F 2,F 3) with respect to ω1, ω2, and ω3, respectively, and

equating the results to zero, we obtain

ω̂1 = (H ′H)−1H ′Z ′F 1(F
′
1F 1)

−1, (5)

ω̂2 = Z ′GF 2(F
′
2G
′GF 2)

−1, (6)

ω̂3 = (H ′H)−1H ′Z ′GF 3(F
′
3G
′GF 3)

−1. (7)

Plugging ω̂1, ω̂2, and ω̂3 into (4), and using the fact that F ′1F 1 = TIr, F
′
2F 2 = mIp,

F ′3F 3 = mIq, G
′G = TIm/m, and tr(AB) = tr(BA), we obtain the concentrated function

l(F 1,F 2,F 3) = tr

{
ZZ ′ − 1

T
F ′1ZH(H ′H)−1H ′Z ′F 1

− 1

T
F ′2G

′ZZ ′GF 2 −
1

T
F ′3G

′ZH(H ′H)−1H ′Z ′GF 3

}
. (8)

The objective function (8) is minimized when the second, the third, and the last term is

maximized with respect to F 1, F 2, and F 3, respectively. Applying Theorem 6 of Magnus

and Neudecker (1999, p. 205) or Proposition A.4 of Lütkepohl (2005, p. 672), we have F̂1 =

[g1
1, · · · ,g1

r ], where g1
i is an eigenvector of the ith largest eigenvalue λ1i of ZH(H′H)−1H′Z′.

Similarly, F̂2 = [g2
1, · · · ,g2

p], where g2
i is an eigenvector of the ith largest eigenvalue λ2i of

5



G′ZZ′G, and F̂3 = [g3
1, · · · ,g3

q ], where g3
i is an eigenvector of the ith largest eigenvalue λ3i

of G′ZH(H ′H)−1H ′Z ′G. Note that the eigenvectors are standardized so that F̂′1F̂1 = T Ir,

F̂′2F̂2 = mIp. F̂′3F̂3 = mIq. The corresponding estimate of ωi, i = 1, 2, 3, are computed

by Equations (5), (6), and (7). Specifically, by the fact that F ′1F 1 = TIr, F
′
2F 2 = mIp,

F ′3F 3 = mIq, and G′G = TIm/m, Equations (5), (6), and (7) become

ω̂1 =
1

T
(H ′H)−1H ′Z ′F̂1, (9)

ω̂2 =
1

T
Z ′GF̂2, (10)

ω̂3 =
1

T
(H ′H)−1H ′Z ′GF̂3. (11)

Finally, the Ψ matrix is estimated by Ψ̂ = Ê
′
Ê/T , where Ê = Z − F̂ 1ω̂

′
1H
′ − GF̂ 2ω̂

′
2 −

GF̂ 3ω̂
′
3H
′. It is understood that Ψ̂ = diag(Ê

′
Ê/T ) if Ψ is diagonal.

2.2 Maximum Likelihood Estimation

For maximum likelihood estimation, we assume that, for 1 ≤ t ≤ T , var(et) = Ψ is a diagonal

N by N matrix. We further assume that E(F
(k)
i ) = 0, and var(F

(k)
i ) = I, the identity matrix,

for 1 ≤ i ≤ 3, and all k. We also assume cov(F
(k)
i , F

(l)
j ) = 0 for k 6= l or i 6= j, cov(ei, ej) = 0

for all i 6= j, cov(F
(k)
i , ej) = 0 for all i, j, and k, and ej is an N -dimensional Gaussian random

vector with mean zero and diagonal covariance matrix Ψ.

For the purpose of identifiability, we adopt the approach of Anderson (2003) by imposing

the restrictions that the matrices Γ1, Γ2, and Γ3 are all diagonal, where

Γ1 = ω′1H
′
Ψ−1Hω1, Γ2 = ω′2Ψ

−1ω2, Γ3 = ω′3H
′
Ψ−1Hω3. (12)

We also assume that the diagonal elements of Γ1, Γ2 and Γ3 are ordered and distinct (γ111 >

γ122 > · · · > γ1rr, γ
2
11 > γ222 > · · · > γ2pp, and γ311 > γ322 > · · · > γ3qq), and the first non-zero

element in each column of the matrices ωi, i = 1, 2, 3, is positive, so ω1, ω2 and ω3 are uniquely

determined; see the Supplementary material for a proof. It can readily be checked that the

covariance matrix of vec(Z ′) is Σ̃ = IT ⊗ A + GG′ ⊗ B, where A = Hω1ω
′
1H
′ + Ψ, and

B = ω2ω
′
2 + Hω3ω

′
3H
′. For the definitions of the matrix operators vec(·) and ⊗, see, for

example, Schott (1997).
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We divide the discussion of maximum likelihood estimation into subsections to better un-

derstand the flexibility of the proposed model. Also, the existence of row constraints requires

an additional condition to simplify the estimation.

2.2.1 Case 1: ω2 = ω3 = 0

In this particular case, the proposed model becomes

Z = F 1ω
′
1H

′
+E, (13)

which is the column constrained factor model of Tsai and Tsay (2010). An iterated procedure

was proposed there to perform estimation.

2.2.2 Case 2: ω1 = ω3 = 0

When ω1 = ω3 = 0, the doubly constrained factor model becomes

Z = GF 2ω
′
2 +E. (14)

Here the model can be estimated by an iterated procedure similar to that of Tsai and Tsay

(2010). Let Y = (G
′
G)−1G

′
Z, and CY = Y ′Y /m. The estimating procedure is as follows:

1. Compute initial estimates of the diagonal matrix Ψ̂ = [Ψ̂(j, k)]. Following Jöreskog

(1975), we set Ψ̂(i, i) = (1 − r/(2N))/sii, i = 1, . . . , N , where sii is the ith diagonal

element of S−1 and S = Z′Z/(T − 1).

2. Construct the symmetric matrix RB = Ψ̂
−1/2

(CY −mΨ̂/T )Ψ̂
−1/2

and perform a spectral

decomposition on RB, say RB = LBWBLB
′, where WB = diag(γ̂j) and γ̂1 > γ̂2 > · · · >

γ̂N are the ordered eigenvalues of RB.

3. Let Γ̂B = WB and Γ̂2 = W2, where W2 is the left-upper r×r submatrix of WB. Obtain

ω̂2 from Ψ̂
−1/2

ω̂2 = L2, where L2 consists of the first r columns of LB. The eigenvectors

are normalized such that ω̂′2Ψ̂
−1
ω̂2 = Γ̂2. More precisely, ω̂2 is a normalized version

of ω̂∗2 = Ψ̂
1/2

L2, where the normalization is to ensure that ω̂′2Ψ̂
−1
ω̂2 = Γ̂2, a diagonal

matrix.
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4. Substitute ω̂2 obtained in Step 3 into the objective function

m

T
ln |Q̂|+ T −m

T
ln |Ψ̂|+ tr(CY Q̂

−1
) + tr((C −CY )Ψ̂

−1
), (15)

where Q̂ = T ω̂2ω̂
′
2/m + Ψ̂, and minimize (15) with respect to Ψ̂(1, 1),. . .,Ψ̂(N,N). A

numerical search routine must be used. The resulting values Ψ̂(1, 1),. . .,Ψ̂(N,N) are

employed at Steps 2 and 3 to create a new ω̂2. Steps 2, 3 and 4 are repeated until

convergence, i.e., until the differences between successive values of ω̂2(i, j) in ω̂2 =

[ω̂2(i, j)] and Ψ̂(i, i) are negligible.

2.2.3 Case 3. The Full Model

In this case, the log-likelihood function of vec(Z ′) is

log f(vec(Z ′)) = −TN
2

log(2π)− 1

2
log |Σ̃| − 1

2
{vec(Z ′)}′Σ̃

−1
vec(Z ′).

Lemma 1. If G′G = T
mIm, then

(a) |Σ̃| = |Q|m|A|T−m, where Q = A+ T
mB,

(b) Σ̃
−1

= IT ⊗A−1 +GG′ ⊗U , where U = m
T (Q−1 −A−1).

(c) {vec(Z ′)}′Σ̃
−1

vec(Z ′) = tr(ZA−1Z ′) + tr(ZUZ ′GG′).

Proof: See the Supplementary material for a proof.

Recall that Y = (G
′
G)−1G

′
Z, and CY = Y ′Y /m, and let C = Z

′
Z/T , then by Equa-

tion (2), Lemma 1 (a) and (c), the log likelihood function of ω1, ω2, ω3 and Ψ given Z

is

lnL(ω1,ω2,ω3,Ψ)

= −TN
2

ln(2π)− m

2
ln |Q| − T −m

2
ln |A| − T 2

2m
tr(CYU)− T

2
tr(CA−1)

= −TN
2

ln(2π)− m

2
ln |Q| − T −m

2
ln |A| − T

2
tr(CYQ

−1)

−T
2

tr[(C −CY )A−1].

Thus the objective function can be written as

−2 lnL(θ) = TN ln(2π) +m ln |Q|+ (T −m) ln |A|+ T tr(CYQ
−1)

+ T tr[(C −CY )A−1], (16)
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where A = Hω1ω
′
1H
′ + Ψ, B = ω2ω

′
2 +Hω3ω

′
3H
′, Q = A+ TB/m, and we minimize (16)

with respect of θ = (ω1,ω2,ω3,Ψ) to obtain the maximum likelihood estimate θ̂.

Note that Equation (15) is a special case of Equation (16).

2.2.4 Case 4. ω3 = 0

In this case, there is no interaction between the row and column constraints, and the model

becomes

Z = F 1ω
′
1H

′
+GF 2ω

′
2 +E. (17)

The associated objective function is

−2 lnL(θ) = TN ln(2π) +m ln |Q|+ (T −m) ln |A|+ T tr(CYQ
−1)

+ T tr((C −CY )A−1), (18)

where θ = (ω1,ω2,Ψ), A = Hω1ω
′
1H
′ + Ψ, and Q = A + Tω2ω

′
2/m. We minimize (18) to

obtain the estimate θ̂.

2.2.5 Initial Estimates for Cases 3 and 4

For Cases 1 and 2, the MLE are computed by iterated procedures. For Cases 3 and 4, no

iterative procedure is available, and the MLE must be obtained by some numerical optimization

method with certain initial estimates. We use the LS estimates of subsection 2.1 as the initial

estimates.

2.3 Estimation of Latent Factors for Maximum Likelihood Approach

Treating the ML estimates of ωi as given, we can estimate the latent factors F i by using the

weighted least squares method. Specifically, given ω1, ω2, and ω3, the weighted least squares

estimates of F 1, F 2, and F 3 can be obtained by minimizing f(F 1,F 2,F 3) = tr(EΨ−1E′) =

tr((Z−F 1ω
′
1H
′−GF 2ω

′
2−GF 3ω

′
3H
′)Ψ−1(Z−F 1ω

′
1H
′−GF 2ω

′
2−GF 3ω

′
3H
′)′). Taking

the partial derivative of f(F 1,F 2,F 3) with respect to F 1, and equating the result to zero, we

9
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obtain

∂f

∂F 1
=

∂

∂F 1
tr(−2F 1ω

′
1H
′Ψ−1(Z −GF 2ω

′
2 −GF 3ω

′
3H
′)′ + F 1ω

′
1H
′Ψ−1Hω1F

′
1)

= −2(Z −GF 2ω
′
2 −GF 3ω

′
3H
′)Ψ−1Hω1 + 2F 1ω

′
1H
′Ψ−1Hω1

= 0. (19)

The second equality follows from the fact that

∂

∂X
tr(AX) = A′,

∂

∂X
tr(XAX ′B) = BXA+B′XA′.

Equation (19) implies that

F 1 = (Z −GF 2ω
′
2 −GF 3ω

′
3H
′)Ψ−1Hω1(ω

′
1H
′Ψ−1Hω1)

−1. (20)

Similarly,

∂f

∂F 2
=

∂

∂F 2
tr(−2GF 2ω

′
2Ψ
−1(Z − F 1ω

′
1H
′ −GF 3ω

′
3H
′)′ +GF 2ω

′
2Ψ
−1ω2F

′
2G
′)

= −2G′(Z − F 1ω
′
1H
′ −GF 3ω

′
3H
′)Ψ−1ω2 + 2G′GF 2ω

′
2Ψ
−1ω2

= 0.

Let G̃ = (G′G)−1G′ and Ḡ = G(G′G)−1G′, then

F 2 = G̃(Z − F 1ω
′
1H
′ −GF 3ω

′
3H
′)Ψ−1ω2(ω

′
2Ψ
−1ω2)

−1. (21)

Thirdly,

∂F

∂F 3
=

∂

∂F 3
tr(−GF 3ω

′
3H
′Ψ−1(Z − F 1ω

′
1H
′ −GF 2ω

′
2)
′ +GF 3ω

′
3H
′Ψ−1Hω3F

′
3G
′)

= −2G′(Z − F 1ω
′
1H
′ −GF 2ω

′
2)Ψ

−1Hω3 + 2G′GF 3ω
′
3H
′Ψ−1Hω3

= 0.

Therefore,

F 3 = G̃(Z − F 1ω
′
1H
′ −GF 2ω

′
2)Ψ

−1Hω3(ω
′
3H
′Ψ−1Hω3)

−1. (22)
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Using (12) and letting Γ12 = Γ′21 = ω′1H
′Ψ−1ω2, Γ13 = Γ′31 = ω′1H

′Ψ−1Hω3, Γ23 =

Γ′32 = ω′2Ψ
−1Hω3, Γ01 = ZΨ−1Hω1, Γ02 = ZΨ−1ω2, and Γ03 = ZΨ−1Hω3, then Equa-

tions (20), (21), and (22) become

F 1 = (Γ01 −GF 2Γ21 −GF 3Γ31)Γ
−1
1 , (23)

F 2 = (G̃Γ02 − G̃F 1Γ12 − F 3Γ32)Γ
−1
2 , (24)

F 3 = (G̃Γ03 − G̃F 1Γ13 − F 2Γ23)Γ
−1
3 , (25)

Multiplying both sides of (25) by Γ3 we obtain

F 3Γ3 = G̃Γ03 − G̃F 1Γ13 − F 2Γ23, (26)

Plugging (24) into (26) we have

F 3Γ3 = G̃Γ03 − G̃F 1Γ13 − (G̃Γ02 − G̃F 1Γ12 − F 3Γ32)Γ
−1
2 Γ23

= G̃{F 1(Γ12Γ
−1
2 Γ23 − Γ13) + Γ03 − Γ02Γ

−1
2 Γ23}+ F 3Γ32Γ

−1
2 Γ23.

Subtracting both sides by F 3Γ32Γ
−1
2 Γ23, and then post-multiplying by ∆32 = (Γ3−Γ32Γ

−1
2 Γ23)

−1

we obtain

F 3 = G̃{F 1(Γ12Γ
−1
2 Γ23 − Γ13) + Γ03 − Γ02Γ

−1
2 Γ23}∆32. (27)

Similarly, multiplying both sides of (24) by Γ2 we get

F 2Γ2 = G̃Γ02 − G̃F 1Γ12 − F 3Γ32. (28)

Plugging (25) into (28) we have

F 2Γ2 = G̃Γ02 − G̃F 1Γ12 − (G̃Γ03 − G̃F 1Γ13 − F 2Γ23)Γ
−1
3 Γ32

= G̃{F 1(Γ13Γ
−1
3 Γ32 − Γ12) + Γ02 − Γ03Γ

−1
3 Γ32}+ F 2Γ23Γ

−1
3 Γ32.

Subtracting both sides by F 2Γ23Γ
−1
3 Γ32, and then post-multiplying by ∆23 = (Γ2−Γ23Γ

−1
3 Γ32)

−1

we obtain

F 2 = G̃{F 1(Γ13Γ
−1
3 Γ32 − Γ12) + Γ02 − Γ03Γ

−1
3 Γ32}∆23. (29)

Now, multiplying both sides of (23) by Γ1, we have

F 1Γ1 = Γ01 −GF 2Γ21 −GF 3Γ31. (30)

11



Plugging (27) and (29) into (30), we obtain

F 1Γ1 = Γ01 − Ḡ{F 1(Γ13Γ
−1
3 Γ32 − Γ12) + Γ02 − Γ03Γ

−1
3 Γ32}∆23Γ21

−Ḡ{F 1(Γ12Γ
−1
2 Γ23 − Γ13) + Γ03 − Γ02Γ

−1
2 Γ23}∆32Γ31. (31)

Pre-multiplying both sides of (31) by G′, and noting that G′Ḡ = G′, we have

G′F 1Γ1 = G′Γ01 −G′{F 1(Γ13Γ
−1
3 Γ32 − Γ12) + Γ02 − Γ03Γ

−1
3 Γ32}∆23Γ21

−G′{F 1(Γ12Γ
−1
2 Γ23 − Γ13) + Γ03 − Γ02Γ

−1
2 Γ23}∆32Γ31. (32)

One solution to equation (32) is

F 1Γ1 = Γ01 − {F 1(Γ13Γ
−1
3 Γ32 − Γ12) + Γ02 − Γ03Γ

−1
3 Γ32}∆23Γ21

−{F 1(Γ12Γ
−1
2 Γ23 − Γ13) + Γ03 − Γ02Γ

−1
2 Γ23}∆32Γ31. (33)

From equation (33), we obtain

F 1 =
{
Γ01 − (Γ02 − Γ03Γ

−1
3 Γ32)∆23Γ21 − (Γ03 − Γ02Γ

−1
2 Γ23)∆32Γ31

}
{
Γ1 + (Γ13Γ

−1
3 Γ32 − Γ12)∆23Γ21 + (Γ12Γ

−1
2 Γ23 − Γ13)∆32Γ31

}−1
. (34)

Therefore, we use Equation (34) to compute F 1 first, then we use Equation (29) to compute

F 2, and Equation (27) to compute F 3.

2.4 Model Selection

In applications, the data generating process is unknown and one needs to select a proper

constrained factor model based on the available data. In particular, the validity of row and/or

column constraints must be verified. To this end, we consider the Akaike information criterion

(AIC) (Akaike, 1974) for each of the fitted model,

AIC = −2 lnL(θ̂) + 2λ,

where λ is the number of parameters of the model, and θ̂ is the MLE. Our simulation study

and empirical example show that AIC works well in model selection.

Tsai and Tsay (2010) used hypothesis testing to check the validity of column constraints.

The testing procedure becomes complicated for doubly constrained factor models because

it would involve non-nested hypothesis testing. For instance, the model with only column

constraints is not a sub-model of the one with only row constraints.
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3 Simulation Study

In this section, we report some finite-sample performance of the MLE and the AIC of Sub-

sections 3.1 and 3.3, respectively. All computations were performed using some Fortran code

with IMSL subroutines.

3.1 Finite Sample Properties of the MLE and the LSE

To evaluate the performance of the numerical optimization in finding the MLE discussed in

Subsection 2.2.3 for the full model (Case 3), we consider the following data generating process:

MHG∩1: N = 24, r = 2, p = 2, q = 1, s = 3, m = 12, G = 1T/m ⊗ Im, where 1m

denotes the m × 1 vector of ones, H = [h1,h2,h3], h1 = 124, h2 = [−1(6),0(12),1(6)]′,

h3 = [−1(6),0(3),2(6),0(3),−1(6)]′, and r(j) denotes a j-dimensional row-vector of

integer r, ω1 = Ψ
1/2
0 Λ1diag{1.2, 0.6}, ω2 = Ψ1/2Λ2diag{0.6, 0.3}, ω3 = 0.3Ψ

1/2
0 Λ3,

vec(Λ1), vec(Λ2), and vec(Λ3) are independent random vectors fromN (0, I6), N (0, I48),

and N (0, I3), respectively, Ψ = diag(Ψ(j, j)), Ψ(j, j) = 0.1 + 0.2 × ui, and ui are i.i.d.

uniform on [0,1]. Adding 0.1 to the variance avoids near-zero values (see also page 453

of Bai and Li, 2012), and Ψ0 = diag(ψ0(j, j)), where {Ψ0(1, 1)}−1 =
∑N

j=1{Ψ(j, j)}−1,

{Ψ0(2, 2)}−1 =
∑6

j=1{Ψ(j, j)}−1+
∑24

j=19{Ψ(j, j)}−1, and {Ψ0(3, 3)}−1 = {Ψ0(2, 2)}−1+

4
∑15

j=10{Ψ(j, j)}−1.

We compute MLE by minimizing the objective function (16) using the optimizing subroutine

DNCONF from FORTRAN’s IMSL library. The least squares estimates of Subsection 2.1

are used as the initial values of the subroutine DNCONF. We consider sample sizes T =

24, 36, 60, 120, 240, 480, and 960. To measure the accuracy between ω̂i and ωi, for i = 1, 2, 3,

we compute the smallest nonzero canonical correlation between them. Canonical correlation is

widely used as a measure of goodness-of-fit in factor analysis; see, for example, Doz, Giannone,

and Reichlin (2006), Goyal, Perignon, and Villa (2008), and Bai and Li (2012). For the

estimated variances of ei, we calculate the squared correlation between diag(Ψ̂) and diag(Ψ).

Table 1 reports the average canonical correlations based on 1,000 repetitions for each sample

size T . For comparison purpose, we also report the results for LSE in Table 1. From Table 1,

both the MLEs and the LSEs show convergence to their corresponding true values as the
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sample size increases. In general, the MLE performs better than the LSE, except for T = 24.

Table 1: Finite Sample Performance of the Maximum Likelihood Estimates (MLE) and the

Least Square Estimates (LSE)

MLE LSE

N T ω1 ω2 ω3 Ψ ω1 ω2 ω3 Ψ

24 24 0.6549 0.4055 0.5494 0.2293 0.7079 0.5399 0.5498 0.4636

24 36 0.8212 0.7646 0.6133 0.5362 0.7586 0.6458 0.5511 0.5640

24 60 0.8569 0.8626 0.6554 0.6661 0.8180 0.7549 0.5813 0.6745

24 120 0.8848 0.9238 0.7569 0.7996 0.8530 0.8332 0.5925 0.7837

24 240 0.9075 0.9601 0.8350 0.8925 0.8814 0.8644 0.6024 0.8508

24 480 0.9340 0.9762 0.8974 0.9440 0.9012 0.8782 0.6043 0.8866

24 960 0.9429 0.9834 0.9362 0.9706 0.9032 0.8854 0.6031 0.9069

3.2 Performance of AIC

As mentioned in Subsection 2.4, to avoid the complications of non-nested hypothesis testing,

this paper uses AIC to check the adequacy of the column and/or row constraints. In this sub-

section, we consider the finite sample performance of the AIC in selecting the data generating

model among Cases 1-4 below. The data generating models considered are

MH1: ω2 = ω3 = 0, and ω1 is the same as that of model MHG∩1 (corresponding to Case 1

of Subsection 2.2.1).

MG1: ω1 = ω3 = 0, and ω2 is the same as that of model MHG∩1 (corresponding to Case 2

of Subsection 2.2.2).

MHG1: ω3 = 0, and ω1 and ω2 are the same as those of model MHG∩1 (corresponding to

Case 4 of Subsection 2.2.4).

MHG∩1: N = 6, r = 2, p = 2, q = 1, s = 2, m = 12, G = 1T/m ⊗ Im, and H =

I2 ⊗ 13, ω1 = Ψ
1/2
0 Λ1diag{0.8, 0.6}, ω2 = Ψ1/2Λ2diag{0.5, 0.3}, ω3 = 0.2Ψ

1/2
0 Λ3,

Λ1 = [Λa,Λb], Λa = [1, 3]′, Λb = [3,−1]′, Λ2 = [Λc,Λd], Λc = [2, 1, 2, 1, 2, 1]′, Λd =

14

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



[1, 2, 1,−2,−1,−2]′, Λ1 = [4, 3]′, Ψ = diag(0.2), and Ψ0 = diag(0.2) (corresponding to

Case 3 of Subsection 2.2.3).

The values of Ψ and the matrices H and G are all the same as those of Model MHG∩1 of Sub-

section 3.1. For singly constrained factor models (Cases 1 and 2), we implement the estimation

procedures described in Subsections 2.2.1 and 2.2.2, respectively. The sample sizes employed

are T = 480, 960, and 1,920. The experiment runs as follows. First, we generate data from

the above data generating process. Then, we estimate the parameters of a constrained factor

model for different orders (r, p, q), where 0 ≤ r, p, q ≤ 3. Recall that a proper order (r, p, q) of a

DCF model must satisfy the conditions of Section 1. For example, p < N , max{r, q} ≤ s < N ,

and q ≤ min{r, p}. For each simulated series, we compute the AIC, and choose the order that

corresponds to the smallest AIC. The percentages of the orders determined by the AIC based

on 1,000 repetitions are reported in Table 2. The results show that the AIC works well in

selecting a proper doubly constrained factor model. The performance of AIC also improves

with the sample size.

3.3 A Comparison with Unconstrained Factor Model

To evaluate if there is, as postulated, an advantage in using prior knowledge of the constraints

in data analysis, we conduct the following experiment. Consider the data generating process

being the Model MHG∩1 of Table 5 of Section 4. First, we generate T + km data points from

the true model. For this particular G defined by G = 1T/m ⊗ Im, let GT+im+j = Gj , for

i = 0, ..., k − 1, and j = 1, ...,m, where Gj denotes the j-th row of the matrix G. Second,

use the first T data points to estimate the doubly constrained factor model to get F̂i and ω̂i,

i = 1, 2, 3. Third, for h = 1, ..., km, compute ẐT+h, the prediction of ZT+h,

ẐT+h = F̂
(T+h)
1 ω̂′1H

′ +GT+hF̂ 2ω̂
′
2 +GT+hF̂ 3ω̂

′
3H
′,

where F̂
(T+h)
1 =

∑T
j=1 F̂

(j)
1 /T , for h = 1, ..., km. Fourth, compute the forecast errors êT+h =

ZT+h − ẐT+h, h = 1, ..., km. Fifth, compute the root mean square error (RMSE) of the fore-

casts, namely RMSE=
[
tr
(
Ê′predictÊpredict

)
/kmN

]1/2
, where Êpredict = [ê′T+1, · · · , ê′T+km]′.

For the same data generated, repeat the above steps by fitting an unconstrained factor (UCF)

model Z = F 1ω
′
1 to get the corresponding RMSE. Repeat the above exercise 1,000 times to
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Table 2: The frequencies of the order (r,p,q) selected by AIC The true model considered are
models MH1, MG1, MHG1, and MHG∩1.

true model MH1 MG1 MHG1 MHG∩1

true order (2,0,0) (0,2,0) (2,2,0) (2,2,1)

(r,p,q)\ T 480 960 1,920 480 960 1,920 480 960 1,920 480 960 1,920

(0,1,0) .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
(0,2,0) .000 .000 .000 .877 .880 .882 .000 .000 .000 .000 .000 .000
(0,3,0) .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
(1,0,0) .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
(1,1,0) .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
(1,1,1) .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
(1,2,0) .000 .000 .000 .116 .108 .108 .000 .000 .000 .000 .000 .000
(1,2,1) .000 .000 .000 .004 .008 .005 .000 .000 .000 .000 .000 .000
(1,3,0) .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
(1,3,1) .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
(2,0,0) .964 .967 .968 .000 .000 .000 .000 .000 .000 .000 .000 .000
(2,1,0) .036 .031 .032 .000 .000 .000 .012 .000 .000 .000 .000 .000
(2,1,1) .000 .002 .000 .000 .000 .000 .013 .000 .000 .007 .000 .000
(2,2,0) .000 .000 .000 .003 .004 .005 .763 .771 .782 .071 .010 .000
(2,2,1) .000 .000 .000 .000 .000 .000 .180 .229 .218 .810 .878 .891
(2,2,2) .000 .000 .000 .000 .000 .000 .000 .000 .000 .010 .005 .007
(2,3,0) .000 .000 .000 .000 .000 .000 .032 .000 .000 .099 .098 .092
(2,3,1) .000 .000 .000 .000 .000 .000 .000 .000 .000 .003 .009 .010
(2,3,2) .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

get 1,000 RMSE’s for each model. For the DCF model, m = 12, k = 1, 2, and r = p = q = 2

are used. For the UCF model, the results for r = 3 are reported. The sample sizes used in

the simulation are T = 480, 960, and 1,920. The average and standard deviation of the 1,000

RMSE’s for these two models are summarized in Table 3. The results show that the DCF

model outperforms the UCF model if the data generating process is indeed a DCF model.

Note that the forecasting results of UCF models are almost identical for r = 1, 2, and 3. For

r = 4 or r = 5, we often encounter some numerical difficulties. Therefore, we report the results

for the UCF model with r = 3.

4 Application

To demonstrate the application of the proposed doubly constrained factor model, we consider

the total housing starts of the United States, obtained from the U.S. Census Bureau website.
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Table 3: Averages (standard errors) of 1,000 repetitions of the root mean
square errors of the forecasts of the DCF (doubly constrained factor) and
the UCF (unconstrained factor) models.

T 480 960 1,920

model DCF UCF DCF UCF DCF UCF

k = 1 0.9457 1.0007 0.9440 0.9936 0.9358 0.9930
(0.1243) (0.1087) (0.1190) (0.1066) (0.1218) (0.1065)

k = 2 0.9800 1.0005 0.9773 0.9960 0.9710 0.9922
(0.1092) (0.0874) (0.1018) (0.0863) (0.1025) (0.0882)

The data period is from January 1997 to December 2006, so that we have 120 monthly data

for the nine geographical divisions of the U.S. shown in Figure 1. The LOESS regression is

applied to the log transformed data before fitting the doubly constrained factor model. This

step is taken to remove the trend of the series.

To specify the constraint matrix H, prior experience or geographical clustering may be

helpful. In this particular instance, we apply the hierarchical clustering to the variables to

specifyH. It turns out that the result is consistent with the geographical clustering. Therefore,

we employ three groups for the variables (divisions) and they are as follows:

Group 1: “New England”, “Middle Atlantic”, “East North Central”, “West North Central”;

Group 2: “South Atlantic”, “East South Central”, “West South Central”;

Group 3: “Mountain”, “Pacific”.

The H matrix simply consists of the indicator variables for the 3 groups. From Figure 1,

Group 1 consists of the Northeast and Midwest of the U.S., Group 2 denotes the South,

whereas Group 3 is the West.

The time plots of Figure 2 show that the housing starts exhibit strong seasonality of period

12. Therefore, we let G = 110 ⊗ I12. Consequently, for this particular instance, we have

m = 12, T = 120, N = 9, and s = 3. We consider the DCF models of order (r, p, q) with

0 ≤ r, p, q ≤ 3, and q ≤ min{r, p}. Therefore, a total of 30 models were entertained. Table

4 shows the ranking of the entertained DCF models based on the AIC criterion, where the

model of order (0,0,0) means an unrestricted model. Based on the AIC criterion, the doubly

constrained factor model of order (2,2,1) is selected with the model of order (2,2,2) as a close
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Figure 1: The census regions and divisions of the United States

second. Model checking shows that the residuals of the fitted DCF model of order (2,2,1) have

some minor serial correlations, but those of the model of order (2,2,2) are close to being white

noises. Therefore, we adopt the DCF model of order (2,2,2).

Figure 3 shows the time plots of the residuals, Ê, of the entertained DCF(2,2,2) model.

The left panel consists of the residuals of least square estimation whereas the right panel those

of the maximum likelihood estimates. The two sets of residuals show similar pattern, but

also contain certain differences. However, their sample autocorrelation functions confirm that

the residuals have no significant serial dependence; see Figure 4. Table 5 gives the maximum

likelihood estimates and the bootstrap standard errors of the ωi for the selected DCF model

of order (2,2,2). The standard errors of ω2 tend to be larger as shown in the prior simulation

study. The corresponding LSE of ωi are given in Table 6. These estimates are different from

those of MLE of Table 5 because different normalizations are used. Figure 5 shows the time

plots of the fitted common factors. The upper three panels show the common factors obtained

by the least squares method whereas the lower three panels give the corresponding results for
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Figure 2: Time plots of monthly housing starts (in logarithms) of nine U.S. divisions: 1997-
2006.

the maximum likelihood estimation. Care must be exercised in comparing the fitted common

factors because their scales and orderings are not identifiable. For instance, consider the

fitted common factors F̂ 3. The orderings seem to be interchanged between the two estimation

methods. Overall, the common factors F̂ 1 of the maximum likelihood estimation appear to

have some seasonality. We shall return to this point in our discussion later.

4.1 Discussion

To gain insight into the decomposition of the housing starts implied by the fitted DCF model

of order (2,2,2), we consider in details the results of maximum likelihood estimation. Figures

6 to 8 show the time plots of the decompositions of the housing starts series. The plots

in Figure 6 consist of GF̂ 2ω̂
′
2 of Equation(1). Since the row constraints used are monthly

indicator variables, these plots signify the deterministic seasonal pattern of each housing starts

series that is orthogonal to the geographical divisions. From the plots, the deterministic

seasonality varies from series to series, but those of the East North Central and West North

Central are similar. This seems reasonable as these two divisions are the Midwest and share

close weather characteristics. New England and Middle Atlantic divisions have their own

deterministic seasonal patterns. Finally, the Mountain and West South Central also share
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Table 4: The rankings of AIC for the proposed constrained factor models.

Model AIC ranks Model AIC ranks
(r,p,q) (r,p,q)

(0,0,0) -163.331 24 (3,3,0) -366.857 10
(0,1,0) 114.146 30 (1,1,1) -329.666 17
(0,2,0) -18.905 28 (2,1,1) -339.405 15
(0,3,0) -28.427 27 (3,1,1) -333.443 16
(1,0,0) 89.389 29 (1,2,1) -374.615 4
(2,0,0) -68.600 25 (2,3,1) -373.696 6
(3,0,0) -65.067 26 (2,3,2) -367.696 9
(1,1,0) -254.315 23 (1,3,1) -363.954 11
(2,1,0) -267.479 21 (3,2,1) -375.021 3
(3,1,0) -261.680 22 (3,2,2) -374.513 5
(1,2,0) -321.989 20 (2,2,1) -383.749 1
(2,3,0) -372.528 7 (2,2,2) -380.342 2
(1,3,0) -363.340 12 (3,3,1) -367.881 8
(3,2,0) -323.400 19 (3,3,2) -361.881 13
(2,2,0) -329.321 18 (3,3,3) -355.881 14

Table 5: Maximum likelihood estimates of the doubly constrained factor model of order (2,2,2)
for the U.S. housing starts data from 1997 to 2006.

(a) MLE of ω̂1

ω1[, 1] 0.3051 0.4518 0.4015
(std. error) (0.0197) (0.0316) (0.0423)
ω1[, 2] 0.0844 -0.0729 -0.1945
(std. error) (0.0164) (0.0418) (0.0465)

(b) MLE of ω̂2

ω2[, 1] 0.1317 0.1713 0.3943 0.3437 0.1214 0.3529 0.1641 0.1125 0.1132
(std. error) (0.2490) (0.2277) (0.2685) (0.2540) (0.2265) (0.2741) (0.2568) (0.2280) (0.2086)
ω2[, 2] 0.2151 0.1183 0.0127 0.0123 -0.0846 -0.1398 -0.1906 -0.1661 -0.0347
(std. error) (0.1120) (0.0856) (0.0969) (0.0762) (0.1501) (0.1527) (0.1517) (0.1379) (0.1238)

(c) MLE of ω̂3

ω3[, 1] 0.8218 0.5770 0.7214
(std. error) (0.1860) (0.1891) (0.1605)
ω3[, 2] 0.1118 -0.3868 -0.1905
(std. error) (0.0465) (0.1316) (0.0906)

similar deterministic seasonal pattern.

The plots in Figure 7 consist of F̂ 1ω̂
′
1H
′ of Equation (1), which denotes housing variations

due to the geographical locations, but is orthogonal to the deterministic seasonality. The

column constraints essentially pool information within each group to obtain the geographical
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Table 6: Least squares estimates of the doubly constrained factor model of order (2,2,2) for
the U.S. housing data from 1997 to 2006.

LSE of ω̂1

ω1[, 1] 0.0620 0.0547 0.0652
ω1[, 2] 0.0292 0.0186 -0.0434

LSE of ω̂2

ω2[, 1] 0.0419 0.0435 -0.0424 -0.0342 0.0149 -0.0225 -0.0007 -0.0056 0.0061
ω2[, 2] 0.0236 -0.0242 0.0025 -0.0012 0.0011 -0.0018 0.0001 -0.0063 0.0063

LSE of ω̂3

ω3[, 1] 0.1840 0.0841 0.1097
ω3[, 2] 0.0403 -0.0497 -0.0295

housing variations. The series in Figure 7 also contain certain seasonality and we believe that

they describe the stochastic seasonality of the three geographical groups. These stochastic

seasonalities differ from group to group.

Figure 8 shows the interactionsGF̂ 3ω̂
′
3H
′ between geographical grouping and deterministic

seasonality of Equation (1). The plots show marked differences between the three interactions.

For this particular example, the proposed DCF model is capable of describing the seasonal and

geographical patterns of U.S. housing starts. The example also demonstrates that the row and

column constraints can be used to gain insight into the common structure of a multivariate

time series.

5 Concluding Remarks

In this paper, we considered both the least squares and maximum likelihood estimations of a

doubly constrained factor model, and demonstrated the proposed methods by analyzing nine

U.S. monthly housing starts series. The decomposition of the housing starts series shows that

the proposed model is capable of describing the characteristics of the data. Much work of the

constrained factor models, however, remains open. For instance, the maximum likelihood esti-

mation is obtained under the normality assumption. In real applications, such an assumption

might not be valid and the innovations of Equation (1) may contain conditional heteroscedas-

ticity. In addition, we only consider deterministic constraints in the paper. It is of interest

to investigate the proposed analysis when the constraints are stochastic. Finally, it is also

important to study the DCF models when the number of series N goes to infinity.
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[13] Jöreskog, K.G. (1975),. Factor analysis by least squares and maximum likelihood, in Sta-

tistical Methods for Digital Computers, eds. K. Enslein, A. Ralston, and H. S. Wilf, New

York: John Wiley.

[14] Lam, C., Yao, Q. and Bathia, N.(2011). Estimation of latent factors for high-dimensional

time series, Biometrika, 98, 901-918.

[15] Lam, C. and Yao, Q.W. (2012). Factor modeling for high-dimensional time series: infer-

ence for the number of factor. The Annals of Statistics 40, 694-726.

[16] Lütkepohl, H. (2005). New Introduction to Multiple Time Series Analysis, Berlin:

Springer-Verlag.

[17] Magnus, J. R. and Neudecker, H. (1999). Matrix Differential Calculus with Applications

in Statistics and Econometrics. Revised Edition, Wiley, New York.

[18] Peña, D. and Box, G. E. P. (1987). Identifying a simplifying structure in time series.

Journal of the American Statistical Association 82, 836-843.

[19] Schott, James R. (1997). Matrix Analysis for Statistics. New York : Wiley.

[20] Takane, Y. and Hunter, M. A. (2001). Constrained principal component analysis: a com-

prehensive theory. Applicable Algebra in Engineering, Communication and Computing 12,

391-419.

[21] Tiao, G. C., Tsay, R. S., and Wang, T. C. (1993). Usefulness of linear transformations in

multiple time series analysis. Empirical Econometrics, 18, 567-593.

23



[22] Tsai, H. and Tsay, R. S. (2010). Constrained factor models. Journal of the American

Statistical Association 105, 1593-1605.

24

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



−
0.

2
−

0.
1

0.
0

0.
1

N
ew

 E
ng

la
nd

−
0.

15
−

0.
05

0.
05

M
id

dl
e 

A
tla

nt
ic

−
0.

15
−

0.
05

0.
05

0.
15

E
as

t N
or

th
 C

en
tr

al

−
0.

1
0.

0
0.

1
0.

2

W
es

t N
or

th
 C

en
tr

al

−
0.

15
−

0.
05

0.
05

S
ou

th
 A

tla
nt

ic

−
0.

1
0.

0
0.

1
0.

2

E
as

t S
ou

th
 C

en
tr

al

−
0.

15
−

0.
05

0.
05

0.
15

W
es

t S
ou

th
 C

en
tr

al

−
0.

10
0.

00
0.

10

M
ou

nt
ai

n

−
0.

10
0.

00
0.

10

0 20 40 60 80 100 120

P
ac

ifi
c

Index

ts(E)

(a) residuals for LSE
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(b) residuals for MLE

Figure 3: Time series plots for (a) the least squares residuals and (b) the maximum likelihood

residuals of the DCF model order (r,p,q) = (2,2,2).
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Figure 4: ACF for the residuals of DCF model with order (r,p,q) = (2,2,2). Results of the

least squares estimation and the maximum likelihood estimation are shown.
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Figure 5: Time series plots of common factors for a DCF model of order (r,p,q) = (2,2,2) via

least squares estimation and maximum likelihood estimation.
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Figure 6: Time series plots for GF̂ 2ω̂
′
2 of a fitted DCF model of order (2,2,2). Maximum

likelihood estimation is used.

28



−
0

.4
−

0
.2

0
.0

0
.2

N
e
w

 E
n

g
la

n
d

−
0

.4
−

0
.2

0
.0

0
.2

M
id

d
le

 A
tla

n
tic

−
0

.4
−

0
.2

0
.0

0
.2

E
a

st
 N

o
rt

h
 C

e
n

tr
a

l

−
0

.4
−

0
.2

0
.0

0
.2

W
e

st
 N

o
rt

h
 C

e
n

tr
a

l

−
0

.4
−

0
.2

0
.0

0
.2

0
.4

S
o

u
th

 A
tla

n
tic

−
0

.4
−

0
.2

0
.0

0
.2

0
.4

E
a

st
 S

o
u

th
 C

e
n

tr
a

l

−
0

.4
−

0
.2

0
.0

0
.2

0
.4

W
e

st
 S

o
u

th
 C

e
n

tr
a

l

−
0

.4
−

0
.2

0
.0

0
.2

0
.4

M
o

u
n

ta
in

−
0

.4
−

0
.2

0
.0

0
.2

0
.4

0 20 40 60 80 100 120

P
a

ci
fic

Index

ts(Hterm)

Figure 7: Time series plots for F̂ 1ω̂
′
1H
′ of a fitted DCF model of order (2,2,2). Maximum

likelihood estimation is used.
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Figure 8: Time series plots for GF̂ 3ω̂
′
3H
′ of a fitted DCF model of order (2,2,2). Maximum

likelihood estimation is used.
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