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�daptive and minimax optimal estimation

of the tail coefficient

Alexandra Carpentier and Arlene K. H. Kim

University of Cambridge

Abstract: We consider the problem of estimating the tail index α of a distribution satisfying a (α, β) second-order Pareto-

type condition, where β is the second-order coefficient. When β is available, it was previously proved that α can be estimated

with the optimal rate n
�

�
2��1 . On the contrary, when β is not available, estimating α with the optimal rate is challenging;

so additional assumptions that imply the estimability of β are usually made. In this paper, we propose an adaptive estimator

of α, and show that this estimator attains the rate
�
n/ log logn

�
�

�
2��1 without a priori knowledge of β and any additional

assumptions. Moreover, we prove that this
�

log logn
� �

2��1 factor is unavoidable by obtaining the companion lower bound.

Key words and phrases: Adaptive estimation, minimax optimal bounds, extreme value index, Pareto-type distributions.

1. Introduction

We consider the problem of estimating the tail index α of an (α, β) second-order Pareto

distribution F , given n i.i.d. observations X1, . . . , Xn. More precisely, we assume that for some

α, β, C,C � > 0,
�
�1− F (x)− Cx−α

�
� ≤ C �x−α(1+β). (1.1)

We will write S(α, β) := S(α, β, C,C �) for the set of distributions that satisfy this property (see

Definition (2)). Here the tail index α characterizes the heaviness of the tail, and β represents the

proximity between F and an α-Pareto distribution FP
α : x ∈ [C1/α,∞) → 1− Cx−α.

There is an abundant literature on the problem of estimating α. A very popular estimator is

Hill’s estimator (Hill, 1975) (see also Pickands’ estimator (Pickands, 1975)). Hill (1975) considered

α-Pareto distribution for the tail, and suggested an estimator α̂H(r) of the tail index α based on

the order statistics X(1) ≤ . . . ≤ X(n) where r is the fraction of order statistics from the tail,

α̂H(r) =



 1

�rn�

�rn��

i=1

log(X(n−i+1))

log(X(n−�rn�+1))





−1

. (1.2)

For more details, see e.g. de Haan and Ferreira (2006).

Limiting distribution of Hill’s estimator was first proved by Hall (1982) when β is known. Under

a model that is quite similar to (1.1), he proved that if rn1/(2β+1) → 0 as n → ∞,
√
nr(α̂H(r)−α)
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2 Alexandra Carpentier and Arlene K. H. Kim

converges in distribution to N(0, α2). He also considered more restricted condition, say, the exact

Hall condition,
�
�1− F (x)− Cx−α

�
� = C ��x−α(1+β) + o(x−α(1+β)). (1.3)

Under the model (1.3) with the choice of the sample fraction r∗ = Cn
− 1

2β+1 with some constant C,

Theorem 2 of Hall (1982) states that nβ/(2β+1)(α̂H(r
∗) − α) converges to a Gaussian distribution

with finite mean and variance, depending on the parameters of the true distribution.

The companion lower bound n−β/(2β+1) under the assumption (1.1) was proved by Hall and

Welsh (1984). Drees (2001) improved this result by obtaining sharp asymptotic minimax bounds

again when β is available. From these results, we know that the second-order parameter β is crucial

to understand the behaviour of the distribution. Indeed, it determines the rate of estimation of α

as well as the optimal sample fraction.

However, β is unknown in general. To cope with this problem, Hall and Welsh (1985) proved

that under condition (1.3), it is possible to estimate β in a consistent way, and thus also to estimate

the sample fraction r∗ consistently by r̂ (see Theorem 4.2 in their paper). Theorem 4.1 of Hall and

Welsh (1985) deduces from these results that the estimate α̂H(r̂) is asymptotically as efficient as

α̂H(r
∗), that is, nβ/(2β+1)(α̂H(r̂) − α) converges to a Gaussian distribution with the same mean

and variance as the one resulting from the choice r∗. Their result is pointwise, but not uniform

under the model (1.3), as opposed to the uniform convergence when β is known.

This first result on adaptive estimation was extended in several ways. For instance, Gomes, et.

al. (2008) provided more precise ways to reduce the bias of the estimate of α using the estimate

of β by supposing the third order condition. The adaptive estimates of α under the third order

condition was considered in Gomes, et. al. (2012). In addition, several other methods for estimating

r∗ have been proposed, e.g. bootstrap (e.g. Danielsson, et. al. (2001)) or regression (e.g. Beirlant,

et. al. (1996)). In particular, Drees and Kaufmann (1998) considered a method that is related to

Lepski’s method (see Lepski (1992) for more details in a functional estimation setting) by choosing

the sample fraction that balances the squared bias and the variance of the resulting estimate.

They proved that Hill’s estimate computed with this sample fraction is asymptotically as efficient

as the oracle estimate if F satisfies a condition that is slightly more restrictive than the condition

(1.3). Finally, Grama and Spokoiny (2008) consider a more general setting than (1.1). However,

when they apply their results to the exact Hall model (without little o), their estimator obtains

the optimal rate up to a log(n) factor, which is clearly sub-optimal as proven in Hall and Welsh

(1985).

In this paper, we focus on deriving results for the setting (1.1). Indeed, many common dis-
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tributions (in particular some distributions with change points in the tail) belong to it, and the

construction of the lower bound in Hall and Welsh (1984) was proved in this model. However, to

the best of our knowledge, either the existing results that we mentioned previously hold in a more

restrictive setting than the model (1.1), typically in a model that is close to the model (1.3) (see

e.g. Hall and Welsh (1985); Beirlant, et. al. (1996); Drees and Kaufmann (1998); Danielsson, et. al.

(2001); Gomes, et. al. (2008, 2012)), or the convergence rates for the setting (1.1) in the previous

results are worse than one could expect (see e.g. Grama and Spokoiny (2008)). It is important to

note here that the set of distributions described in Equation (1.1) is significantly larger than the set

of distributions that satisfy the restricted condition (1.3). As will be explained later, the adaptive

estimation in our setting (i.e. condition (1.1)) is more involved since the second-order parameter

β is not always estimable (even a consistent estimator does not exist for all distributions in this

model), and the adaptive procedures based on estimating β or the oracle sample fraction r∗ as in

the papers (Hall and Welsh (1985); Gomes, et. al. (2008, 2012)) might not work on all the functions

satisfying (1.1).

The contributions of this paper are the following. We construct an adaptive estimator α̂ of α

in the setting (1.1) and prove that α̂ converges to α with the rate (n/ log log(n))−β/(2β+1). More

precisely, for an arbitrarily small � > 0, and some arbitrarily large range I1 for α and [β1,∞) for

β, there exist large constants D,E > 0 such that for any n > D log(log(n)/�)

sup
α∈I1,β>β1

sup
F∈S(α,β)

PF

�

|α̂− α| ≥ E

�
n

log(log(n)/�)

�− β

2β+1

�

≤ �. (1.4)

There is an additional
�
log log(n)

� β

2β+1 factor in the rate with respect to the oracle rate, which

comes from the fact that we adapt over β on a set of distributions where β is not estimable. Al-

though we obtain worse rates of convergence than the oracle rate, we actually prove the optimality

of our adaptive estimator by obtaining a matching lower bound. Indeed, there exists a small enough

constant E� > 0 such that for any n large enough, and for any estimator α̃,

sup
α∈I1,β>β1

sup
F∈S(α,β)

PF

�

|α̃− α| ≥ E�

�
n

log(log(n))

�− β

2β+1

�

≥
1

4
.

Both lower and upper bounds containing the (log log(n))β/(2β+1) factor are new to the best of our

knowledge (we do not provide a tight scaling factor as in the paper by Novak (2013), but the setting

in this paper is different and their rate does not involve this additional (log log(n))β/(2β+1) factor).

The presence of the log log n factor is not unusual in adaptive estimation (see Spokoiny (1996) in

a signal detection setting). This issue is also discussed in the paper (Drees and Kaufmann, 1998).
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4 Alexandra Carpentier and Arlene K. H. Kim

The adaptive estimator α̂ we propose in this paper is based on a sequence of estimates α̂(k)

defined in (3.1), where the parameter k ∈ N plays a role similar to the sample fraction in Hill’s

estimator (see Subsection 3.1 for more details). These estimates α̂(k) are not based on order

statistics, but on probabilities of tail events. We first prove that for an appropriate choice of this

threshold k (independent of α or β), α̂(k) is consistent. We then prove that for an oracle choice

of k (as a function of β), this estimate is minimax-optimal for distributions satisfying (1.1) with

the rate n− β

2β+1 . Finally an adaptive version of this estimate, where the parameter k is chosen in

a data-driven way without knowing β in advance, is proved to satisfy Equation (1.4).

2. Definitions of distribution classes

In this section, we introduce two sets of distributions of interest, namely the class of ap-

proximately α-Pareto distributions, and the class of approximately (α, β) second-order Pareto

distributions. We let D be the class of distribution functions on [0,∞).

Definition 1. Let α > 0, C > 0. We denote by A(α,C) the class of approximately α-Pareto

distributions:

A(α,C) =
�
F ∈ D : lim

x→∞
(1− F (x))xα = C

�
.

Distributions in A(α,C) converge to Pareto distributions for large x, and these distributions

have been used as a first attempt to understand heavy tail behavior (see Hill (1975); de Haan and

Ferreira (2006)). The first-order parameter α characterizes the tail behavior such that distributions

with smaller α correspond to heavier tails.

In order to provide rates of convergence (of an estimator of α), we define the set of second-order

Pareto distributions.

Definition 2. Let α > 0, C > 0, β > 0 and C � > 0. We denote by S(α, β, C,C �) the class of

approximately (α, β) second-order Pareto distributions:

S(α, β, C,C �) =
�
F ∈ D : ∀x s.t. F (x) ∈ (0, 1],

�
�1− F (x)− Cx−α

�
� ≤ C �x−α(1+β)

�
. (2.1)

From Definition 2, we know that not only are the distributions in S(α, β, C,C �) approximately

α-Pareto, but we additionally have a bound on the rate at which they approximate Pareto distribu-

tions. This rate of approximation is linked to the second-order parameter β—a large β corresponds

to a distribution that is very close to a Pareto distribution (in particular, when β = ∞, it becomes

exactly Pareto), and a small β corresponds to a distribution that is well approximated by a Pareto

distribution only for a very large x. From now, if there is no confusion, we call the distributions in
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S(α, β, C,C �) second-order Pareto distributions, and we use the notation A and S without writing

parameters explicitly.

The condition in (2.1) is related to the condition (1.3), but is weaker. Indeed, the condition

(1.3) implies

lim
x→∞

1− F (x)− Cx−α

x−α(1+β)
= C �,

whereas our condition imposes only an upper bound,

lim sup
x→∞

�
�
�
1− F (x)− Cx−α

x−α(1+β)

�
�
� ≤ C �.

This difference is essential in the estimation problem. For instance, in the setting (1.3), it is possible

to estimate β consistently (see e.g. Hall and Welsh (1985)), whereas in our setting (2.1), it is not

possible to estimate β consistently over the set S of distributions for β ∈ [β1, β2] with 0 < β1 < β2.

Adaptive estimation of α is thus likely to be more involved in our setting than in the more restricted

model (1.3). For instance, many adaptive techniques rely on estimating β or the sample fraction

as a function of β, which is not directly applicable in our setting (see e.g. Hall and Welsh (1985);

Danielsson, et. al. (2001); Gomes, et. al. (2012)).

Remark 1. The difference between the functions satisfying the condition in Definition 2 and

the condition (1.3) is related to the difference between Hölder functions that actually attain their

Hölder exponent and Hölder functions that are in a given Hölder ball but do not attain their Hölder

exponent (see e.g. Giné and Nickl (2010) for a comparison of these two sets, and the problem for

estimation when the second set is considered).

3. Main results

Most estimates in the literature are based on order statistics (as Hill’s estimate or Pickands’

estimate), which causes a difficulty for one to analyse them in a non-asymptotic way. In contrast,

the estimate we will present in Section 3.1 verifies large deviation inequalities in a simple way. This

estimate is based on probabilities of well chosen tail events.

3.1. A new estimate

Let X1, . . . , Xn be an i.i.d. random sample from a distribution F ∈ A. We write, for any k ∈ N,

pk := P(X > ek) = 1− F (ek),

and its empirical estimate

p̂k :=
1

n

n�

i=1

1{Xi > ek}.
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6 Alexandra Carpentier and Arlene K. H. Kim

We define the following estimate of α for any k ∈ N

α̂(k) := log(p̂k)− log(p̂k+1). (3.1)

This estimate gives the following large deviation inequalities, which is crucial for proving consis-

tency and convergence rates of α̂(k).

Lemma 1 (Large deviation inequality). Let X1, . . . , Xn be an i.i.d. sample from F .

A� Suppose F ∈ A and let δ > 0. For any k such that pk+1 ≥ 16 log(2/δ)
n , with probability larger

than 1− 2δ,

�
�α̂(k)− (log(pk)− log(pk+1))

�
� ≤ 6

�
log(2/δ)

npk+1
. (3.2)

B� Assume now that F ∈ S and let δ > 0. For any k such that pk+1 ≥ 16 log(2/δ)
n and e−kαβ ≤

C/(2C �), with probability larger than 1− 2δ,

�
�α̂(k)− α

�
� ≤ 6

�
log(2/δ)

npk+1
+

3C �

C
e−kαβ (3.3)

≤ 6

�
e(k+1)α+1 log(2/δ)

Cn
+

3C �

C
e−kαβ . (3.4)

For this new estimate α̂(k), k plays a similar role as the sample fraction in Hill’s estimate (1.2).

The bias-variance trade-off should be solved by choosing k in an appropriate way as a function

of β (we will explain this more in details later). Choosing a too large k leads to using a small

sample fraction, and the resulting estimate has a large variance and a small bias. On the other

hand, choosing a too small k yields a large bias and a small variance for the estimate. The optimal

k equalises the bias term and the standard deviation.

3.2. Rates of convergence

We first consider the set of approximately Pareto distributions, and prove that the estimate

α̂(kn) is consistent if we choose kn such that it diverges to ∞ but not too fast.

Theorem 1 (Consistency in A). Let F ∈ A. Let kn ∈ N be such that kn→∞ and (log(n)/n)eknα →

0 as n → ∞. Then

α̂(kn) → α a.s.

Choosing (for instance) kn = (log log(n)) ensures almost sure convergence.
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Adaptive and minimax optimal estimation of the tail coefficient 7

The estimate α̂(log log(n)) converges to α almost surely under the rather weak assumption

that F belongs to A. But on such sets, no uniform rate of convergence exists, and this is the reason

why the restricted set S is introduced.

Let α, β, C,C � > 0. Consider now the set S := S(α, β, C,C �) of second-order Pareto distri-

butions. We assume in a first instance that, although we do not have access to α, we know the

parameter α(2β+1). It is not very realistic assumption, but we will explain soon how we can modify

the estimate so that it is minimax optimal on the class of second-order Pareto distributions.

Theorem 2 (Rate of convergence when α(2β+1) is known). Let n be such that (4.7) is satisfied.

Let k∗n = �log(n
1

α�2β+1) ) + 1�. Then for any δ > 0, we have

sup
F∈S

PF

�

|α̂(k∗n)− α| ≥

�

B1 +
3C �

C

�

n
− β

2β+1

�

≤ 2δ,

where B1 = 6

�

e2α+1 log(2/δ)
C .

Theorem 2 states that, uniformly on the class of second-order Pareto distributions, the estimate

α̂(k∗n) converges to α with the minimax optimal rate n
− β

2β+1 (see Hall and Welsh (1984) for the

matching lower bound).

Remark 2. Theorem 2 can be used to prove the convergence rate of our estimator by modifying the

choice of k∗n, when α(2β + 1) is unknown but only β is known. For instance, we can plug a rough

estimate α̃ := α̂((log log(n))2) of α into k∗n. The idea behind this choice is that with sufficiently

large n, we have with high probability,

|α̂((log log(n))2)− α| = O

�
1

log n

�

.

Then k̂1
n is defined as �log(n

1
α̃�2β+1) ) + 1�. Finally, the rate of convergence of α̂(k̂1

n) can be shown

as n−β/(2β+1) by proving exp(k̂1
n) = O(n1/(α(2β+1))) with high probability.

However, the previous optimal choice of k (k∗n or k̂1
n) still depends on β, which is unavailable

in general. To deal with this problem, we construct an adaptive estimate of α that does not depend

on β but still attains a rate that is quite close to the minimax optimal rate n
− β

2β+1 on the class

of β second-order Pareto distributions.

The adaptive estimator is obtained by considering a kind of bias and variance trade-off based

on the large deviation inequality (3.2). Suppose we know the optimal choice of k∗. Then this k∗

will optimize the squared error by making bias and standard error (of the estimate with respect

to its expectation) equal. Since the bias is decreasing while the standard error is increasing as k
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8 Alexandra Carpentier and Arlene K. H. Kim

increases, for all k� larger than this optimal k∗, the bias will be smaller than the standard error.

Based on this heuristic (originally proposed by Lepski (1992)), we pick the smallest k which satisfies

for all k� larger than k, the proxy for the bias is smaller than the proxy for the standard error

O(
�
1/(np̂k�+1)) as in (3.2). For the proxy for the bias, we use |α̂(k�) − α̂(k)| by treating α̂(k) as

the true α based on the idea that α̂(k) would be very close in terms of the rate to the true α (if k

is selected in an optimal way).

More precisely, we choose k as follows, for 1/4 > δ > 0

k̂n = inf
�
k ∈ N : p̂k+1 >

24 log(2/δ)

n
and

∀k� > k s.t. p̂k�+1 >
24 log(2/δ)

n
, |α̂(k�)− α̂(k)| ≤ A(δ)

�
1

np̂k�+1

�
, (3.5)

where A(δ) satisfies the condition (3.6) in the following theorem.

Theorem 3 (Rates of convergence with unknown β). Let 1/4 > δ > 0 and let n be such that (4.9)

is satisfied. Consider the adaptive estimator α̂(kn) where kn is chosen as described in (3.5) where

A(δ) satisfies the following condition

A(δ) ≥ 6
�
2(C + C �) log(2/δ)

�

2

�
e2α+1

C
+

C �

C

�

. (3.6)

Then we have

sup
F∈S

PF

�

|α̂(k̂n)− α| ≥
�
B2 +

3C �

C

��
n

log(2/δ)

�− β

2β+1

�

≤

�

1 +
1

α
log

�
(C + C �)n

16

��

δ.

where B2 =
�
B1 + 2A(δ)

�
e2α

C

�
1√

log(2/δ)
and B1 is defined in Theorem 2.

Theorem 3 holds for any (α, β) provided that n and A(δ) are larger than some constants

depending on α, β, C,C �, and on the probability δ. The advantage of our adaptive estimator is

that since the threshold k̂n is chosen adaptively to the samples, the second-order parameter β does

not need to be known in the procedure in order to obtain the convergence rate of α̂(k̂n). Theorem 3

gives immediately the following corollary.

Corollary 1. Let � ∈ (0, 1) and C � > 0 and let 0 < α1 < α2 and 0 < C1 < C2. We use k̂n as in

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



Adaptive and minimax optimal estimation of the tail coefficient 9

(3.5) where A(δ) = A(δ(�)) =: A(�) is chosen as in Equation (4.19). If n satisfies (4.21), then

sup

α∈[α1,α2],β∈[β1,∞]

C∈[C1,C2]

sup
F∈S(α,β,C,C�)

PF




|α̂(k̂n)− α| ≥ B3



 n

log
�

2
�

�
1 + log((C2+C�)n)

α1

��





− β

2β+1




 ≤ �,

where B3 is a constant explicitly expressed in (4.20), which only depends on α2, C1, C2, and C �.

In other words, if we fix the range of the α and C and a lower bound on β to which we wish to

adapt, we can tune the parameters of the adaptive choice of k̂n so that we adapt to the maximal

β such that F is β second-order Pareto. Moreover, this adaptive procedure works uniformly well

over the set of second-order Pareto distributions satisfying (1.1) (for α ∈ [α1, α2], β ∈ [β1,∞], C ∈

[C1, C2]), which is much larger than the class of distributions that verify the condition (1.3). Then

this gives non-asymptotic guarantees with explicit bounds.

Remark 3. The parameter C � plays a role in the definition of the second order Pareto class

that is slightly different than the one of C or α, β. Unlike α or C, C � is not uniquely defined: if

F ∈ S(α, β, C, C̃ �), then F ∈ S(α, β, C,C �) with C � ≥ C̃ �. This implies in particular that the results

of Corollary 1 could have been rewritten, fixing a constant C � > 0 and writing C̃ � for a constant

that fits more closely F , by taking supremum over F ∈ S(α, β, C, C̃ �) where C̃ � ≤ C �. Being non-

adaptive over C̃ � and choosing a loose constant C � instead of C̃ � will only worsen the bound by a

constant factor, unlike making a mistake on β which will worsen the exponent of the bound.

It seems that we lose a (log log(n))
β

2β+1 factor with respect to the optimal rate, due to adaptivity

to β. However, the lower bound below implies that this (log log(n))
β

2β+1 loss is inevitable; hence

the rate provided in Theorem 3 is sharp.

Theorem 4 (Lower bound). Let α1, β1, C1, C2, C
� > 0 be such that C1 ≤ exp(− 1

2α1(2β1+1)), C2 ≥ 1

and C � ≥ 1
2α1β1

. Let n be sufficiently large. Then for any estimate α̃ of α,

sup

α∈[α1,2α1],β∈[β1,∞)

C∈[C1,C2]

sup
F∈S(α,β,C,C�)

PF

�

|α̃− α| ≥ B4

� n

log
�
log(n)/2

�
�− β

2β+1

�

≥
1

4
,

where B4 is a constant depending on α1 and β1, which is provided in (4.30).

The lower bound result is proved with specific ranges of the parameters (e.g. restrictions on

C1, C2, C
� in the statement of Theorem 4), but it can be modified by considering different ranges
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10 Alexandra Carpentier and Arlene K. H. Kim

(see Remark 4).

3.3. Additional remarks on our estimate

In the definition of our estimate, we use exponential spacings (i.e. we estimate the probability

that the random variable is larger than ek), but we can generalize our estimate by considering the

probability of other tail events. For some parameters u > v ≥ 1, define

q̂u =
1

n

n�

i=1

1{Xi > u}, and q̂v =
1

n

n�

i=1

1{Xi > v}.

We define the following estimate of α as

α̂(u, v) =
log(q̂v)− log(q̂u)

log(u)− log(v)
. (3.7)

If we fix v ∼ O(n1/(α(2β+1)) and u/v ∼ O(1), then we will also obtain the oracle rate for estimating

α with α̂(u, v). However, the choice of u/v will have an impact on the constants. In practice, these

parameters are important to tune well (in particular for the exact Pareto case, or for distributions

satisfying Equation (1.3)). However, a precise analysis of the best choices for u and v (in terms of

constants) is beyond the scope of this paper.

Another point we want to address is the relation between our estimate and usual estimates

based on order statistics. To estimate the tail index α, it is natural to consider the quantiles

associated with the tail probabilities. For the estimates based on order statistics, one fixes some

tail-probabilities and then observes the order statistics in order to estimate the quantiles. On the

other hand, we fix some values corresponding to the quantiles, and estimate the associated tail

probabilities. Based on such a link, one could relate any existing method based on order statistics

to the method based on tail probabilities.

In particular, the estimator based on order statistics corresponding to our estimator would be

of the form, for some parameters 1 ≥ qv > qu ≥ 0,

α̃(qu, qv) =
log(qv)− log(qu)

log(û)− log(v̂)
, (3.8)

where û = X(n−�qun�) and v̂ = X(n−�qvn�). This estimate can be interpreted as the inverse of some

generalized Pickands’ estimate (see Pickands (1975), it is however not Pickands’ estimate). There

is actually a duality between these two estimators: for any couple (qu, qv) in the definition (3.8),

it is possible to find (u, v) in the definition (3.7) such that these two estimates exactly match (see

Figure 3.1 for an illustration). However, there is no analytical transformation from one estimate

to the other since such a transformation will be data dependent.
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q̂v or qv

q̂v or qv

q̂u or qu

v or v̂

v or v̂

u or û

u or û

1− Fn(x) =
1

n

n�

i=1

1{Xi > x} or

Fig 3�1� Duality between the estimate (3.7) and the estimate (3.8)�
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