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Abstract: A new nonparametric approach for statistical calibration with functional

data is studied. The practical motivation comes from calibration problems in

chemometrics in which a scalar random variable Y needs to be predicted from a

functional random variable X. The proposed predictor takes the form of a weighted

average of the observed values of Y in the training data set, where the weights are

determined by the conditional probability density of X given Y . This functional

density, which represents the data generation mechanism in the context of calibra-

tion, is so incorporated as a key information into the estimator. The new proposal is

computationally simple and easy to implement. Its statistical consistency is proved,

and its relevance is shown through its application to both simulated and real data.

Key words and phrases: Calibration, Functional data, Chemometrics, Inverse re-

gression, Gaussian process.

1. Introduction

Statistical calibration plays a crucial role in many areas of technology such

as pharmacology, neuroscience and chemometrics (Osborne, 1991; Martens and

Naes, 1989; Brown, 1993; Massart et al., 1997; Lavine and Workman, 2002; Wal-

ters and Rizzuto, 1988). The calibration problem can be described as follows.

An observable random variable X is related to a variable of interest Y according

to a statistical model specified by a conditional probability density f (X|Y ). The

density of Y may be imposed by the researcher (controlled or designed experi-

ments) or given by nature (observational or natural experiments). A sample D
of independent observations (x1, y1), ..., (xn, yn) of (X,Y ) is available (training

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)
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sample). Given a new (future) observation x0 of X that corresponds to an un-

known value y0 of Y , the problem is to make statistical inferences about y0 on

the basis of the given statistical model, the data D and x0.

The practical motivation that leads us to study the above problem comes

from chemometrics, specifically from spectroscopy, where some chemical variable

Y (e.g., concentration of a substance) needs to be predicted from a digitized

function X (e.g., an absorbance spectrum). In this setting, such conditional

density f (X|Y ) represents the physical data generation mechanism in which the

output spectrum X is determined by the input chemical concentration Y , plus

some random perturbation mainly due to the measurement procedure. Then,

given an observed spectrum x0, that corresponds to a new substance, it is desired

to obtain an estimate of its concentration y0, based on (past) observations of pairs

of spectra and concentrations (xi, yi).

Hereafter, we restrict ourselves to cases where the variable of interest Y

takes real values (e.g., only the concentration of one substance is considered).

In this framework, different calibration setups arise, depending on a) the space

in which the random variable X takes values: it can be the real line (univariate

calibration), a finite-dimensional space (multivariate calibration) or a functional

space (functional calibration); b) the kind of experimental design: fixed design

(the Y values are not random but set by the researcher) or random design (Y

is a random variable as well as X); and c) the linear or nonlinear nature of the

assumed statistical model f (X|Y ). A review of the literature on this subject, for

both univariate and multivariate calibration, can be found in Osborne (1991).

Furthermore, this paper is concerned with the setting of functional calibra-

tion, which is useful for dealing with X measurements corresponding to spectra.

In this context, the fact that the spectra are digitized measurements of a contin-

uous phenomenon, is directly included in the model by the assumption that X

lies in a functional space, such as L2. Also, the focus is put on the case of random

design and nonlinear, in general nonparametric models (we refer the reader to

Cuevas et al. (2002) and Hernández et al. (2012) for approaches on functional

calibration for linear models under fixed design).

A widely used criterion for calibration in case of random design is the mean

squared error, which is minimized by the conditional mean E(Y |X = x0). This
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FUNCTIONAL DENSITY-BASED INVERSE CALIBRATION 3

can be estimated by means of functional regression methods in which the response

Y is a real random variable and the explanatory variable X has functional na-

ture, i.e., prediction methods that consider the conditional density f(Y |X) as

the regression model. A number of such methods have been proposed. Seminal

works focused on linear regression models (Ramsay and Dalzell, 1991; Cardot

et al., 1999; James and Hastie, 2001) (see also Ramsay and Silverman (2005);

Ferraty and Vieu (2006)). More recently, nonlinear functional models have been

extensively developed and include nonparametric kernel regression (Ferraty and

Vieu, 2006), Functional Inverse Regression (Ferré and Yao, 2003, 2005), neural

networks (Rossi and Conan-Guez, 2005; Rossi et al., 2005), k-nearest neigh-

bors (Biau et al., 2010; Laloë, 2008), Support Vector Regression (Preda, 2007;

Hernández et al., 2007), among others.

However, none of these approaches for predicting Y makes use of the specific

structure of the density f(X|Y ), which in the calibration context plays the basic

role of a physically justified regression model X vs Y . On the contrary, their

probabilistic assumptions are made about the densities f(Y |X) and f(X). Notice

that, in the calibration framework which is the focus of our interest, it is natural

that the probabilistic assumptions refer to this model, since the model f(X|Y )

represents the data generation mechanism. In this, the actual response variable

is X, and Y is the explanatory variable. Hence, contrary to standard prediction

in regression problems, in the calibration setup the variable to be predicted, Y ,

is not the response variable of the assumed data generation model, f(X|Y ), but

its explanatory variable. This is a major specificity of statistical calibration,

in contrast with standard prediction problems in regression analysis (Osborne,

1991).

In Hernández et al. (2010, 2011) a new functional calibration approach, which

we call Functional Density-Based Inverse Calibration (DBIC), was introduced.

This method makes it possible to incorporate knowledge on the density of the re-

gression model f(X|Y ) for the prediction of a scalar variable Y , on the basis of a

functional data X, so taking into consideration the aforementioned specificities of

the prediction problem in the calibration setting. As is common in spectroscopy,

this data generation model is assumed conditionally Gaussian. No parametric

assumption is required about its mean and covariance functions, which provides
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4 N. HERNÁNDEZ, R. J. BISCAY, N. VILLA-VIALANEIX AND I. TALAVERA

remarkable flexibility in applications to capture nonlinear dependencies of X vs

Y . Since the introduced predictor is an estimate of the conditional expectation

E(Y |X), we regarded it as an inverse calibration method, following custom-

ary terminology in the literature on statistical calibration (Osborne, 1991). In

Hernández et al. (2010, 2011), preliminary results illustrated the computational

feasibility and good behavior of the DBIC method in numerical simulations.

However, no theoretical support to such findings has been published so far.

The main aim of the present paper is to provide a theoretical study of consis-

tency of the DBIC method, as well as to further assess its numerical performance

in a more elaborate simulation setting. The paper is organized as follows. Sec-

tion 2 elaborates the method and proves its consistency. The proofs require to

bring together theoretic results from nonparametric statistics, Functional Data

Analysis (FDA) and equivalence of Gaussian measures, whose details are deferred

to the Appendixes. Section 3 shows the performance of the functional DBIC ap-

proach and provides comparison with functional kernel regression on a simulation

study. Section 4 illustrates the method on a real-world benchmark data set.

2. Functional Density-Based Inverse Calibration

Presentation of the method

Let (X,Y ) be a pair of random variables taking values in X × R, where

(X , 〈., .〉) is the space of square integrable functions from [a, b] to R (i.e., X =

L2([a, b])). Suppose also that n independent and identically distributed (i.i.d.)

realizations of (X,Y ) are given, denoted by (xi, yi)i=1,...,n. The goal is to build,

from (xi, yi)i, a predictor of the value of Y corresponding to a future observed

value of X. This problem is usually addressed through the estimation of the

regression function γ(x) = E(Y |X = x).

In this paper, a new functional calibration method to estimate γ(X) is in-

troduced, which relies on assuming the following regression model:

X = r(Y ) + e, (2.1)

where e is a random process (perturbation or noise), independent of Y , and r

is a function from R into X . Its main practical motivation arises from calibra-

tion problems in chemometrics, specifically in spectroscopy, where some chemical

variable Y needs to be predicted from a digitized function X. In this setting, the

conditional mean r(y) of said model (2.1) represents the physical data generation
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mechanism. In this model, according to the physics of molecular spectroscopy,

the spectrum X (recorded by an spectrometer) is determined by the input chemi-

cal concentration Y , and e is a functional random perturbation mainly due to the

measurement procedure (Osborne, 1991). That is why this model, characterized

by the conditional density f(X|Y ), is frequently referred to as the hard model or

the physical model in spectroscopy (Kriesten et al., 2008b,a; Zhou and Cao, 2013;

Boulet and Roger, 2010). Hence, stating assumptions for this model is more nat-

ural than for the inverse distribution f(Y |X), in this specific applied setting. In

particular, a simple instance of such hard model in spectroscopy arises in case of

an ideal mixture spectrum of pure components that includes a certain quantity of

the component of interest Y , all obeying to what is known as the Lambert-Beer

law. In this case, as a consequence of this law, r(y) is simply a linear function of

the concentration y (Naes et al., 2002). The model assumptions in the present

work will allow to cover the remarkable more general hard-type model in which

r(y) involves unknown nonlinearities (see Chen and Morris (2009); Geladi et al.

(1985); Melgaard and Haaland (2004) for the importance of nonlinear effects in

spectroscopy data).

We will assume here that the perturbation e in model (2.1) follows a Gaussian

distribution P0 with zero mean and covariance Γ. This is a common assump-

tion in the context of calibration in several applications such as spectroscopy

(as explained above). In these applications, y → r(y) represents an underlying

input-output physical system and the perturbation e is interpreted as due to

instrumental noise and possible uncontrolled factors. Popular methods in spec-

troscopy calibration that are based on multivariate hard models f(X|Y ) usually

have underlying Gaussian assumptions, which result in statistical procedures that

involve only the first two moments of the variables (i.e., means and covariances,

see, e.g., Martens and Naes (1989); Kriesten et al. (2008a)). Also note that hard

models of Gaussian type for f(X|Y ) lead to more complex, non Gaussian inverse

models for f(Y |X) if nonlinearities are involved in the conditional mean r(y).

This further supports that stating probability assumptions in terms of the hard

model f(X|Y ) is not only physically more meaningful but also easier than for

the inverse model f(Y |X) in this peculiar applied settings.

Under this Gaussian distribution assumption, the conditional distribution
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P (·|y) is also a Gaussian distribution and is fully determined by its corresponding

mean function r(·) = E(X|Y = ·), and its covariance operator Γ (not depending

on y), which is a symmetric and positive Hilbert-Schmidt operator on the space

X . Thus, there exists an eigenvalue decomposition of Γ, (ϕj , λj)j≥1 such that

(λj)j is a decreasing sequence of positive real numbers, (ϕj)j are orthonormal

functions on X and Γ =
∑

j λjϕj ⊗ ϕj where ϕj ⊗ ϕj : h ∈ X → 〈ϕj , h〉ϕj .
Suppose that the following usual regularity condition holds (Grenander,

1981, p. 271): for each y ∈ R,
∑∞

j=1

r2
j (y)

λj
< ∞, where rj (y) = 〈r (y) , ϕj〉

for all j ≥ 1. Then, P (·|y) and P0 are equivalent Gaussian measures, and the

density f (·|y) of P (·|y) with respect to P0 has the explicit form: f (x|y) =

exp
{∑∞

j=1
rj(y)
λj

(
xj − rj(y)

2

)}
, where xj = 〈x, ϕj〉 for all j ≥ 1.

Under these assumptions, and the one that the distribution of Y has a density

fY (y) (with respect to the Lebesgue measure on R), the regression function can

be written as γ (x) =
∫
R f(x|y)fY (y)ydy

fX(x) , where fX (x) =
∫
R f (x|y) fY (y) dy.

Hence, given an estimate f̂ (x|y) of f (x|y), this suggests the following (plug-

in) estimate of γ (x):

γ̂ (x) =
1
n

∑n
i=1 f̂ (x|yi) yi
f̂X (x)

, (2.2)

where f̂ (x|y) is an estimate of the density f (x|y) of P (·|y) with respect to the

measure P0 and f̂X (x) is defined by f̂X(x) = 1
n

∑n
i=1 f̂(x|yi) and used to estimate

the density fX(x) of X.

An estimate f̂ (x|y) of f (x|y) can be obtained through the following steps:

1. For each t ∈ [0, 1], compute an estimate r̂ (·) (t) of the function r : y 7→
r(y)(t). This may be carried out through any standard nonparametric

method for univariate regression based on the data set (yi, xi (t))i=1,...,n.

Here a smoothing kernel method, specifically the Nadaraya-Watson kernel

estimate of r,

r̂(y) =

∑n
i=1K

(yi−y
h

)
xi∑n

i=1K
(yi−y

h

) =
m̂(y)

f̂Y (y)
, (2.3)

is used, where h is the bandwidth parameter, K an order k kernel,

m̂(y) = 1
n

∑n
i=1K

(yi−y
h

)
xi and f̂Y (y) = 1

n

∑n
i=1K

(yi−y
h

)
. In this case,

the bandwidth h has a common value for all t.
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2. Obtain estimates (ϕ̂j , λ̂j)j of the eigenfunctions and eigenvalues (ϕj , λj)j of

the covariance Γ on the basis of the empirical covariance Γ̂ of the residuals

êi = xi− r̂ (yi), that is, Γ̂ = 1
n

∑n
i=1 êi⊗ êi. Only the first p eigenvalues and

eigenfunctions are incorporated, where p = p(n) is an integer smaller than

n. Note that this is a standard functional PCA problem.

3. Estimate f (x|y) by

f̂ (x|y) = exp


p∑
j=1

r̂j (y)

λ̂j

(
x̂j −

r̂j (y)

2

) , (2.4)

where r̂j (y) = 〈r̂(y), ϕ̂j〉 and x̂j = 〈x, ϕ̂j〉 for all j ≥ 1.

Once having f̂ (x|y), substituting (2.4) into (2.2) leads to an estimate γ̂ (x)

of γ (x), which will be referred to as functional Density-Based Inverse Calibration

(DBIC) because the conditional density f̂(X|Y ) plays a key role in its construc-

tion. If X had been a scalar variable, the proposal would have reduced to the

approach for univariate calibration described in Lwin and Maritz (1980).

Beyond Gaussianity

The DBIC estimate has been explicitly elaborated under the assumption

that f(X|Y ) is a Gaussian distribution with covariance not depending on y.

However, note that this approach is general enough to allows for the exten-

sion of DBIC to non-Gaussian distributions. For instance, the method can

be extended straightforwardly to the more general setting in which the data

x is a diffusion process generated by a stochastic differential equation dx (t) =
·
r (y) (t) dt+ b (x (t) , t) dW (t), where W (t) is a Brownian motion,

·
r denotes the

derivative of r with respect to t, and b : R× [0, 1] → R+ is a given function.

Indeed, under mild conditions (e.g., if the function b is bounded away from zero

and infinite, see Liptser and Shiryaev (1977)) the measure P (·|y) of the solu-

tion x has a density with respect to the measure P0 = P (·|0), which is given

by f (x|y) = exp

{∫ 1
0

·
r(y)(t)
b2(x(t),t)

dx (t)− 1
2

∫ 1
0

∣∣∣∣ ·r(y)(t)
b(x(t),t)

∣∣∣∣2 dt
}

. Here, the integral with

differential dx (t) is thought of as an Ito integral. If b (u, t) does not reduce to a

function depending only on t (i.e., in case of equations driven by multiplicative

noise) then the resulting random function x is not Gaussian.
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Another wide class of non Gaussian random functions for which their dis-

tributions have explicitly known densities f(x|y) with respect to some reference

measure is constituted by those generated by stochastic differential equations

driven by an additive fractional Brownian motion WH (t). More specifically, ran-

dom functions satisfying equations of the type x (t) = r (y) (t) +
∫ t

0 b (s) dWH (s)

have distributions P (·|y) with explicitly known densities f (x|y) with respect to

the measure P0 = P (·|0) (see,. e.g., Rao (2010), chapter 2, for details).

For these kinds of non Gaussian functional data, DBIC estimators may be

carried out through the steps 1)-3). They would only differ in their specific im-

plementation of the approximation f̂ (x|y) that depends on the numerical com-

putation of the stochastic integrals involved. Such straightforward extensions of

the DBIC approach are beyond the scope of the present work, which focuses on

Gaussian models motivated by spectroscopy data. However, they are worth of

future studies and could be of interest in other applied fields.

Consistency

Hereafter, asymptotic properties for the estimators proposed on steps (1)-

(3) are given as well as a consistency result for the DBIC estimator γ̂(x). Their

proofs are given in the Appendixes (Section 6). To obtain the consistency of γ̂(x)

to γ(x), the same steps as the ones used for the DBIC estimation are followed:

• The first step of the DBIC method is the estimation of the conditional mean

r(y) by a Nadaraya-Watson kernel estimate r̂(y) as in (2.3). A consistency

result as well as a rate of convergence for r̂(y) can be obtained under the

following assumptions:

(A1) fY has support ΩY ⊂ R, and fY and r are Ck, for a k ≥ 2, on ΩY ;

(A2) K is an order k kernel with compact support;

(A3) there exists d1 and d2 such that supy∈ΩY

∣∣∣f (k)
Y (y)

∣∣∣ < d1 and

supy∈ΩY

∥∥r(k)(y)
∥∥ < d2;

(A4) h = O (n−c1), where 1
4+2k < c1 <

1
4 ;

(A5) there exists b1 > 0 such that infy∈ΩY fY (y) ≥ b1;

(A6) there exists b2 > 0 such that supy∈ΩY ‖r(y)‖ ≤ b2.
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FUNCTIONAL DENSITY-BASED INVERSE CALIBRATION 9

Proposition 1. Under assumptions (A1)-(A6) we have:

supy∈ΩY ‖r̂(y)− r(y)‖ = OP

(
n−c1k +

(
logn
n1−2c1

)1/2
)
.

Several remarks about this proposition and its underlying assumptions can

be done. First, note that (A1)-(A3) are standard regularity assumptions in

the framework of kernel-based density estimation (Rao, 1983). Second, (A5)

is satisfied in most calibration settings that are the motivation of the present

work; but it can be shown that, with minor technical modifications of the

DBIC estimator, it can be replaced by the weaker assumption that, for any

δ > 0, supy∈ΩY ,fY (y)<δ ‖r(y)‖ goes to zero when δ does so. Third, also note

that the estimation of r(y) by a Nadaraya-Watson kernel estimate is not

mandatory and that this step (and the corresponding assumptions) could

be replaced by any other (1-dimensional nonparametric) method leading to

the same kind of convergence rate.

• The second step of the DBIC method is the estimation of the covariance op-

erator of the error, Γ, based on the estimated residuals. The consistency of

this estimate with
√
n-rate will ensure the consistency of the corresponding

eigen-decomposition using a result given in Bosq (1991). This convergence

is needed in the last step of the DBIC method. To obtain the consistency

of the covariance operator estimator, the following additional assumption is

required:

(A7) e in model (2.1) is a Gaussian process.

Note that this assumption, which serves as a basis for the DBIC method,

implies the condition usually assumed on moments: E
(
‖e‖4

)
< +∞. The

following proposition can then be proved.

Proposition 2. Under assumptions (A1)-(A7) we have:
∥∥∥Γ̂− Γ

∥∥∥ =

OP

(
1

n1/2−2c1

)
, where ‖.‖ denotes the operator norm.

• The last step of the DBIC method is to estimate the conditional density

f(X|Y ) from the eigen-decomposition of Γ̂. As previously explained, this

result is derived from a Theorem given in Bosq (1991), and the correspond-

ing technical assumptions made therein are thus required: if (aj)j is the
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sequence defined by a1 = 2
√

2/(λ1−λ2) and aj = 2
√

2/min(λj−1−λj , λj−
λj+1), it is assumed that

(A8)
∑∞

j=1 supy∈ΩY
|rj(y)|√

λj
<∞;

(A9) The (λj)j are all distinct;

(A10) limn→+∞ p = +∞;

(A11) limn→+∞

∑p
j=1 aj

λpn1/2−2c1
= 0;

(A12) p
λ2
p

= O (nq) for some 0 < q < min(c1k,
1
2 − c1).

Note that since (λj)j is a sequence of positive real number decreasing to 0

when j tends to +∞, Assumption (A8) implies that
∑∞

j=1 supy∈ΩY |rj(y)| <
∞ and, consequently,

∑∞
j=1 supy∈ΩY r

2
j (y) < ∞. Since supy∈ΩY ‖r(y)‖2 =

supy∈ΩY

∑∞
j=1 r

2
j (y) ≤

∑∞
j=1 supy∈ΩY r

2
j (y) < ∞, Assumption (A8) implies

that supy∈ΩY ‖r(y)‖ <∞, which is the Assumption (A6) required in Propo-

sitions 1 and 2. Also, (A8) implies that
∑∞

j=1

r2
j (y)

λj
=
∑∞

j=1

(
rj(y)√
λj

)2

<∞,

which is the regularity assumption needed for the existence of the condi-

tional density (see Section 2). Due to the previous remark, Assumption (A6)

is no longer required in this proposition.

Proposition 3. Under Assumptions (A1)-(A5) and (A7)-(A12), for any

x ∈ X we have: supy∈ΩY

∣∣∣f̂(x|y)− f(x|y)
∣∣∣ = oP (1) .

From the last proposition, the consistency of γ̂(x), defined as in Equa-

tion (2.2), can be proved. The final Theorem is demonstrated in Appendix :

Theorem 1. Under Assumptions (A1)-(A5) and (A7)-(A12), for all x ∈ X such

that fX(x) > 0, we have: limn→+∞ γ̂(x) =P γ(x).

From Theorem 1 and the Lebesgue’s dominated convergence theorem, prov-

ing that E (γ̂(x)− γ(x))2 →n 0 is straightforward. That is, the DBIC estimator

also converges in the sense of the quadratic Bayesian risk.

3. A simulation study

In this section, the feasibility and the performance of the nonparametric

functional calibration method described in Section 2 is discussed through a sim-
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ulation study. In the calibration setting, which is the motivation of the present

work as discussed in previous sections, the physical data generation mechanism

is specified by the density f(X|Y ). Here, training data are generated under vari-

ous statistical models for this density. Based on this training data set, the DBIC

estimator is computed to predict Y values corresponding to new values of the

variable X (test data set).

The data were simulated in the following way: values for the real random

variable Y were drawn from a uniform distribution in the interval [0, 10]. e is a

Gaussian process independent of Y with zero mean and covariance operator Γ =∑
j≥1

1
j(1+0.1) vj⊗vj , where (vi)i≥1 is the trigonometric basis of X = L2([0, 1]) (i.e.,

v2k−1 =
√

2 cos(2πkt), and v2k =
√

2 sin(2πkt)). More precisely, for all models,

e was simulated by using a truncation of Γ, Γ(s, t) '
∑q

j=1
1

j(1+0.1) vj(t)vj(s) by

setting q = 500. Then, X was generated by four different models or settings

including linear and nonlinear ones.

M1 a model where E(X|Y ) is a linear function of Y expressed on the error

eigenfunction basis: X = Y v1 + Y v2 + Y v5 + Y v10 + e;

M2 a model where E(X|Y ) is a nonlinear function of Y expressed on the error

eigenfunction basis: X = sin(Y )v1 + log(Y + 1)v5 + e;

M3 a model where E(X|Y ) is a linear function of Y expressed not on the error

eigenfunction basis but on polynomials: X = Y q1+5Y q2+e, where q1 = 2t3

and q2 = t4. Note that such polynomials have coefficients in the Fourier

basis that decay faster than 1
j3

, and so assumption (A8) is fulfilled;

M4 a model where E(X|Y ) is a nonlinear function of Y expressed using the

aforementioned polynomials: X = sin(Y )q1 + 20 log(Y + 1)q2 + e.

From these 4 models, a training and a test samples with sizes nL = 300

and nT = 200, respectively, were generated. To apply the DBIC method, sim-

ulated discretized functions were approximated by continuous functions using a

functional basis expansion. Specifically, the discrete data were converted into

All the simulations were done using Matlab c© and the DBIC method was also implemented for

Matlab c©. Parts of the implementation use the Matlab c© FDA functions developed by Jim Ramsay

and freely available at http://www.psych.mcgill.ca/faculty/ramsay/software.html. The DBIC code is

available upon request.
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continuous data (or functional predictors) X by approximation through 128 B-

spline basis functions of order 4.

The DBIC method was used according to the 3 steps described in Section 2.

For the first step, the conditional mean r(y) was estimated from the training

sample by kernel smoothing (such as in Equation (2.3)). For this, it was necessary

to tune the bandwidth parameter h. This was done through a 10-fold cross-

validation for minimizing the L2-norm between the data and the estimated mean

curves in the training sample. That is, the training sample (x1, y1), ..., (xnL , ynL)

was randomly partitioned into 10 blocks or folds of approximately the same size,

and hopt = arg minh∈H
1
nL

∑nL
i=1 ‖x̂

(h)
i − xi‖2L2

where H is the search interval for

possible values of h, and x̂
(h)
i is the estimate of the mean r(yi) using a kernel

smoothing with parameter h and the data not belonging to the fold in which

(xi, yi) is.

Another hyperparameter involved in the estimation of the regression func-

tion γ̂(x) is the number p of eigenfunctions (Equation (2.4)) used to estimate

f(x|y). This hyperparameter was selected also by a 10-fold cross-validation

for minimizing the root mean squared error (RMSE) criterion on the training

sample. Specifically, popt = arg minp

√
1
n

∑n
i=1

(
ŷ

(p)
i − yi

)2
, where ŷ

(p)
i is DBIC

prediction of yi using the conditional density f̂ (p) calculated with p eigenfunc-

tions and the data not belonging to the fold in which yi is, fold(i). That is,

ŷ
(p)
i =

∑
j /∈fold(i) f̂

(p)(xi|yj)yj∑
j /∈fold(i) f̂

(p)(xi|yj)
.

For model M1 the cross-validation gives the value p = 15, which is close to

the true one (p = 10) according to the model. For model M4 the resulting value

was p = 47, which is larger. Unlike M1, M4 was not built by using the first

eigenfunctions of the covariance operator Γ in the expression of E(X|Y ), hence

the need for more eigenfunctions.

Once the estimate γ̂(x) is obtained on the basis of the training set, the

performance of the DBIC approach was assessed by predicting the y values

on the test sample. More precisely, the RMSE was computed: RMSE =√
1
nT

∑nT
i=1 (yi − ŷi)2, where yi denotes the observed value of Y in the test sam-

ple and ŷi the corresponding prediction γ̂(xi). In order to have a reference to

compare with, the standard functional nonparametric kernel estimate (NWK)
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Model DBIC NWK DBIC

(parametric est. of the mean)

M1 0.23 0.28 0.22

M2 1.71 1.91 X

M3 0.07 0.19 0.02

M4 0.35 0.47 X

Table 3.1: RMSE achieved by DBIC and NWK for the four simulated models

(Ferraty and Vieu, 2006) was computed from the training sample (using a Gaus-

sian kernel and also tuning the bandwidth parameter by 10-fold cross-validation

on the training sample) and its predictions on the test set were calculated. Table

3.1 presents the DBIC RMSE and the NWK RMSE for each of the simulated

models. It can be observed that DBIC performs well in all models and out-

performs the NWK estimator. The fourth column in the table is the RMSE

achieved by DBIC but using a parametric estimation of the mean: instead of

estimating the mean using kernel smoothing, the mean was estimated by linear

regression (least squares estimates) for models M1 and M3 in which the means

are linear functions of Y . It can be observed that the RMSE resulting from such

a parametric estimates are smaller that those obtained by kernel smoothing.

This illustrates that the DBIC approach has the flexibility to incorporate prior

knowledge about the mean, if available, and that this additional information can

improve the performance.

A detailed analysis of these experiments (with several graphics showing the

different estimation results) is provided in supplemental material.

4. A study of Tecator dataset

DBIC was also tested on a benchmark functional data set: the Tecator

dataset (Borggaard and Thodberg, 1992). It consists of spectrometric data from

the food industry. Each of the 215 observations is the near infrared absorbency

spectrum of a meat sample recorded on a Tecator Infratec Food and Feed An-

alyzer. Each spectrum is sampled at 100 wavelengths uniformly spaced in the

range 850–1050 nm. The composition of each meat sample is determined by

analytic chemistry, so percentages of moisture, fat and protein are associated in

this way to each spectrum. We will focus on predicting the percentage of fat on
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the basis of the absorbency spectrum. This problem is more challenging than

the ones presented in Section 3 where the data were generated to fulfill exactly

the conditions of the DBIC method. The whole data set was randomly split 100

times into training and test sets having approximately the same size. Table 4.2

reports the mean of the mean square error (MSE), and its standard deviation,

over the 100 splits, both for DBIC and NWK methods.

Model DBIC NWK

MSE 2.41 (0.9) 11.01 (3.09)

Table 4.2: Prediction results on Tecator dataset

The results obtained on Tecator by DBIC are remarkably better than the

ones by NWK in the sense of MSE. In Ferraty and Vieu (2006), results based on

the use of a semi-metric involving the second order derivatives (which is known to

be useful for this data set) were reported. But even incorporating this information

in the model, a MSE of 3.5 is obtained, which is still larger than the one obtained

by using DBIC without derivative information.

5. Conclusion

A new functional nonparametric calibration approach has been introduced

motivated by the calibration problem in spectrometrics. The new method, named

functional Density-Based Inverse Calibration (DBIC), was fully described for the

sample space X = L2([a, b]) under a Gaussian assumption for the conditional law

P (·|Y ) but it can be extended to other sample spaces and distribution families.

Two appealing features of the new method are its rather mild model assumptions

and its computational simplicity. Furthermore, it allows us to incorporate para-

metric information on the conditional mean E(X|Y ) of the “inverse” model if

available. The DBIC method is consistent under quite general assumptions, and

the simulation study has shown that it performs well for both linear and nonlin-

ear models. Thus, DBIC can be considered as a promising functional calibration

method, particularly appealing for calibration problems in which said “inverse”

model X vs. Y represents the actual physical mechanism generating the data.

However it would be interesting to obtain a limit distribution for the estimate in

order to derive confidence bounds.

6. Appendix
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In the following appendixes, the additional notations defined below will be

used:

• m is the function defined on ΩY such that: r(y) = m(y)
fY (y) ;

• g(x) =
∫
R f(x|y)yfY (y)dy and ĝ(x) = 1

n

∑n
i=1 f̂(x|yi)yi;

Proof of Proposition 1

Two lemmas are needed to obtain Proposition 1. Their proofs can be found

in the cited articles.

Lemma 1. [Rao (1983)] Under assumptions (A1)-(A3), we have:

supy∈ΩY

∣∣∣f̂Y (y)− fY (y)
∣∣∣ = OP

(
hk +

√
logn√
nh

)
.

Lemma 2. [Yao (2001)] Under assumptions (A1)-(A3), we have:

supy∈ΩY ‖m(y)− m̂(y)‖ = OP

(
hk +

√
logn√
nh

)
.

Proof of Proposition 1:

For any y ∈ ΩY , we have: ‖r(y)− r̂(y)‖ =∥∥∥ r(y)

f̂Y (y)

(
f̂Y (y)− fY (y)

)
+ 1

f̂Y (y)
(m(y)− m̂(y))

∥∥∥ , which, by Assumptions (A6),

leads to:

sup
y∈ΩY

‖r(y)− r̂(y)‖ ≤ b2

infy∈ΩY |f̂Y (y)|
sup
y∈ΩY

∣∣∣f̂Y (y)− fY (y)
∣∣∣

+
1

infy∈ΩY |f̂Y (y)|
sup
y∈ΩY

‖m(y)− m̂(y)‖ .

From Lemma 1 and Assumption (A5) it follows that 1
infy∈ΩY

|f̂Y (y)|
=

1
infy∈ΩY

fY (y) + oP (1) ≤ 1
b1

+ oP (1) . Finally, from this and Lemma 1,

Lemma 2 and Assumption (A4) we obtain: supy∈ΩY ‖r(y)− r̂(y)‖ =

OP

(
n−c1k +

(
logn
n1−2c1

)1/2
)
.2

Proof of Proposition 2

The proof of Proposition 2 also requires the use of an additional lemma whose

proof can be found in the cited article.

Lemma 3. [Cardot et al. (1999)] If Z is a random variable in a Hilbert space with

covariance operator ΓZ and E
(
‖Z‖4

)
< +∞ then E

(
‖ΓZ − ΓnZ‖

2
)
≤ E(‖Z‖4)

n ,

where ΓnZ = 1
n

∑n
i=1(Zi − Z)⊗ (Zi − Z), and Zi are independent and identically

distributed (i.i.d) like Z.
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16 N. HERNÁNDEZ, R. J. BISCAY, N. VILLA-VIALANEIX AND I. TALAVERA

Proof of Proposition 2:

By definition of the estimator Γ̂, we have:

Γ̂ =
1

n

n∑
i=1

êi ⊗ êi =
1

n

n∑
i=1

(xi − r̂(yi))⊗ (xi − r̂(yi))

=
1

n

n∑
i=1

(xi − r(yi) + r(yi)− r̂(yi))⊗ (xi − r(yi) + r(yi)− r̂(yi)),

which can be expressed as Γ̂ = Γn + T1 + T ∗1 + T2, where

Γn =
1

n

n∑
i=1

ei ⊗ ei =
1

n

n∑
i=1

(xi − r(yi))⊗ (xi − r(yi)),

T1 =
1

n

n∑
i=1

(xi − r(yi))⊗ (r(yi)− r̂(yi)),

T2 =
1

n

n∑
i=1

(r(yi)− r̂(yi))⊗ (r(yi)− r̂(yi)),

and T ∗1 is the self-adjoint operators of T1. Then,∥∥∥Γ− Γ̂
∥∥∥ ≤ ‖Γ− Γn‖+ 2 ‖T1‖+ ‖T2‖ . (6.1)

Each part of the right term of this inequality is addressed separately:

• From Assumption (A7) and Lemma 3 we obtain directly:

‖Γ− Γn‖ = OP
(
1/
√
n
)
. (6.2)

• By definition of T1, we have:

n1/2−2c1 ‖T1‖ ≤
1

n

n∑
i=1

‖ei‖n1/2−2c1 ‖r(yi)− r̂(yi)‖

≤ 1

n

n∑
i=1

‖ei‖ × n1/2−2c1 sup
y∈ΩY

‖r(y)− r̂(y)‖ .

Thus, for any c > 0, using Cauchy-Schwartz and Markov inequalities, we
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have:

P
(
n1/2−2c1 ‖T1‖ > c

)
≤

{
P

(
1

n

n∑
i=1

‖ei‖ >
√
c

)} 1
2

×

{
P

(
n1/2−2c1 sup

y∈ΩY

‖r(y)− r̂(y)‖ >
√
c

)} 1
2

≤
{
E (‖e‖)√

c

} 1
2

{
P

(
n1/2−2c1 sup

y∈ΩY

‖r(y)− r̂(y)‖ >
√
c

)} 1
2

As E ‖e‖2 < +∞ and by Proposition 1, supy∈ΩY ‖r(y)− r̂(y)‖ =

OP

(
n−c1k +

(
logn
n1−2c1

)1/2
)

, we have that n1/2−2c1 supy∈ΩY ‖r(y)− r̂(y)‖ =

OP

(
n1/2−c1(2+k) +

√
logn
nc1

)
which is oP (1) by Assumption (A4). Hence,

limn→+∞ P
(
n1/2−2c1 ‖T1‖ > c

)
= 0 and

‖T1‖ = oP

(
1

n1/2−2c1

)
. (6.3)

• By definition of T2, we have:

√
n ‖T2‖ ≤

√
n

1

n

n∑
i=1

‖r(yi)− r̂(yi)‖2

≤
√
n sup
y∈ΩY

‖r(y)− r̂(y)‖2

which, by Proposition 1, gives
√
n ‖T2‖ =

OP

((
n−c1k+1/4 +

(
logn

n1/2−2c1

)1/2
)2
)
, but by, Assumption (A4),

1/2−2c1 > 0, and also, since k ≥ 2, c1 >
1

4+2k ≥
1
4k , and so −kc1 +1/4 < 0.

Then,
√
n ‖T2‖ = oP (1) and thus

‖T2‖ = oP
(
1/
√
n
)
. (6.4)

Putting the results reached in Equations (6.2), (6.3) and (6.4) into Equa-

tion (6.1), the conclusion holds:
∥∥∥Γ− Γ̂

∥∥∥ = OP

(
1

n1/2−2c1

)
.2

Proof of Proposition 3

The proof of Proposition 3 requires the use of the following lemma whose

proof can be carried out in a similar way to the one given in Bosq (1991) for the
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particular case in which ∆̃ is an empirical covariance operator associated with

the covariance operator ∆.

Lemma 4. Let ∆ and ∆̃ be two linear self-adjoint and compact operators defined

in a Hilbert space, and (νj , φj)j∈N, (ν̃j , φ̃j)j∈N the respective decreasing sequence

of eigenvalues and the sequence of orthonormal eigenvectors. Then, for all j ∈ N,

i) |νj − ν̃j | ≤
∥∥∥∆− ∆̃

∥∥∥;

ii)
∥∥∥φj − φ̃j∥∥∥ ≤ aj ∥∥∥∆− ∆̃

∥∥∥ where aj =

{
2
√

2
ν1−ν2

if j = 1
2
√

2
min(νj−1−νj ,νj−νj+1) if j ≥ 2

.

Proof of Proposition 3:

For any y ∈ ΩY , denote E(y) the difference

E(y) =
∣∣∣ln f̂(x|y)− ln f(x|y)

∣∣∣
=

∣∣∣∣∣∣
p∑
j=1

r̂j(y)

λ̂j

(
x̂j −

r̂j(y)

2

)
−
∑
j≥1

rj(y)

λj

(
xj −

rj(y)

2

)∣∣∣∣∣∣ .
Then, E(y) ≤ E1(y) + E2(y) where E1(y) =

∣∣∣∑+∞
j=p+1

rj(y)
λj

(
xj − rj(y)

2

)∣∣∣ and

E2(y) =
∣∣∣∑p

j=1

[
r̂j(y)

λ̂j

(
x̂j − r̂j(y)

2

)
− rj(y)

λj

(
xj − rj(y)

2

)]∣∣∣ .
Convergence of E1:

The Karhunen-Loeve expansion of x has coordinates xj = rj(y) +√
λjξj , where ξj ∼ N (0, 1) and independent. Then,

sup
y∈ΩY

E1(y) = sup
y∈ΩY

∣∣∣∣∣∣
+∞∑
j=p+1

rj(y)

λj

√
λjξj +

+∞∑
j=p+1

r2
j (y)

2λj

∣∣∣∣∣∣
≤

+∞∑
j=p+1

sup
y∈ΩY

|rj(y)|√
λj
|ξj |+

+∞∑
j=p+1

sup
y∈ΩY

|rj(y)|2

2λj
. (6.5)

Assumption (A8) implies that
∑+∞

j=1 supy∈ΩY

(
|rj(y)|√

λj

)2

< +∞, hence,

+∞∑
j=p+1

sup
y∈ΩY

|rj(y)|2

λj

p→+∞−−−−→ 0. (6.6)
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We also have that E

(∑+∞
j=1 supy∈ΩY

|rj(y)|√
λj
|ξj |
)

=∑+∞
j=1 supy∈ΩY

|rj(y)|√
λj

< +∞ by Assumption (A8), which implies that

P0 − a.s.,
∑+∞

j=1 supy∈ΩY
|rj(y)|√

λj
|ξj | < +∞ and then

P0 − a.s.,
+∞∑
j=p+1

sup
y∈ΩY

|rj(y)|√
λj
|ξj |

p→+∞−−−−→ 0. (6.7)

Finally, putting Equations (6.6) and (6.7) into (6.5) leads to P0 −
a.s., supy∈ΩY E1(y)

p→+∞−−−−→ 0.

Convergence of E2:

E2 can be divided into 4 parts: E2(y) ≤ A(y) +B(y) + C(y) +D(y) where

• A(y) =
∣∣∣∑p

j=1
rj(y)
λj

(xj − x̂j)
∣∣∣;

• B(y) =
∣∣∣∑p

j=1
rj(y)
2λj

(rj(y)− r̂j(y))
∣∣∣;

• C(y) =
∣∣∣∑p

j=1
x̂j−r̂j(y)/2

λj
(rj(y)− r̂j(y))

∣∣∣;
• D(y) =

∣∣∣∑p
j=1

(
1
λj
− 1

λ̂j

)
r̂j(y)

(
x̂j − r̂j(y)

2

)∣∣∣.
Convergence of A

From
∑

j r
2
j (y) = ‖r(y)‖2 it follows that |rj(y)| ≤ ‖r(y)‖ for all j. Putting

together this inequality and the facts that λj ≥ λp for j = 1, . . . , p and |xj−x̂j | =
|〈x, ϕj − ϕ̂j〉| ≤ ‖x‖‖ϕj − ϕ̂j‖ we obtain, for any y ∈ ΩY ,

A(y) ≤ ‖r(y)‖
λp

‖x‖
p∑
j=1

‖ϕj − ϕ̂j‖

≤ ‖r(y)‖ ‖x‖n1/2−2c1‖Γ− Γ̂‖
∑p

j=1 aj

n1/2−2c1λp
,

where the last inequality follows from Lemma 4. Since n1/2−2c1‖Γ − Γ̂‖ =

OP (1) by Proposition 2,
∑p
j=1 aj

n1/2−2c1λp

n→+∞−−−−−→ 0 by Assumption (A11) and

supy∈ΩY ‖r(y)‖ <∞ by Assumption (A8), we have that supy∈ΩY A(y) = oP (1).

Convergence of B

By the same arguments as those used for A, we have B(y) ≤
‖r(y)‖

2λp

∑p
j=1 |rj(y)− r̂j(y)| . Moreover, we have that, for any j and any y ∈ ΩY ,
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|rj(y)− r̂j(y)| ≤ ‖r(y)‖‖ϕj − ϕ̂j‖+ ‖ϕ̂j‖‖r(y)− r̂(y)‖, Thus, applying Lemma 4

and Proposition 1 we obtain, for any j,

sup
y∈ΩY

|rj(y)− r̂j(y)| ≤ sup
y∈ΩY

‖r(y)‖aj‖Γ− Γ̂‖

+OP

(
n−c1k +

(
log n

n1−2c1

)1/2
)
.

Then,

sup
y∈ΩY

B(y) ≤ 1

2

(
sup
y∈ΩY

‖r(y)‖

)2

n1/2−2c1‖Γ− Γ̂‖
∑p

j=1 aj

λpn1/2−2c1

+
1

2
sup
y∈ΩY

‖r(y)‖ p
λp
OP

(
n−c1k +

(
log n

n1−2c1

)1/2
)

where the first term is oP (1) due to Assumption (A11) and Proposition 2, and the

second term is OP

(
1

nc1k−q
+ (logn)1/2

n1/2−c1−q

)
by Assumption (A12) (because, taking

into consideration that λj is a decreasing sequence, (A12) implicates that p/λp =

O (nq)). Since by Assumption (A12), c1k−q > 0 and 1/2−c1−q > 0, the second

term in the last inequality is also oP (1). Then, supy∈ΩY B(y) = oP (1).

Convergence of C

From |x̂j | ≤ ‖x‖ and |r̂j(y)| ≤ ‖r̂(y)‖, we have that

C(y) ≤ ‖x‖+‖r̂(y)‖
λp

∑p
j=1 |rj(y)− r̂j(y)| . Thus, supy∈ΩY C(y) ≤(

‖x‖+ supy∈ΩY ‖r̂(y)‖
)

1
λp

supy∈ΩY

∑p
j=1 |rj(y)− r̂j(y)| . As for B, it can

be shown that 1
λp

supy∈ΩY

∑p
j=1 |rj(y)− r̂j(y)| = oP (1). Moreover,

supy∈ΩY ‖r̂(y)‖ ≤ supy∈ΩY ‖r(y)‖ + supy∈ΩY ‖r(y)− r̂(y)‖ = OP (1) by

Proposition 1 and Assumption (A8). Putting all this together leads to

supy∈ΩY C(y) = oP (1).

Convergence of D

From the same arguments as for C and Lemma 4, we have that

D(y) ≤ ‖r̂(y)‖
(
‖x‖+

‖r̂(y)‖
2

) p∑
j=1

∣∣∣∣∣ 1

λj
− 1

λ̂j

∣∣∣∣∣
≤

(
‖r̂(y)‖‖x‖+

‖r̂(y)‖2

2

)
p‖Γ− Γ̂‖
λpλ̂p

.

Now by using λ̂p ≥
∣∣∣λp − |λp − λ̂p|∣∣∣ we have that p‖Γ−Γ̂‖

λpλ̂p
≤ p‖Γ−Γ̂‖
|λ2
p−λp|λp−λ̂p||

=
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p

λ2
p
‖Γ−Γ̂‖∣∣∣∣1− |λp−λ̂p|λp

∣∣∣∣ . Using the expansion 1
1−x =

∑∞
j=0 x

j for all |x| < 1 together with

Lemma 4 we obtain

p
λ2
p
‖Γ− Γ̂‖∣∣∣1− |λp−λ̂p|λp

∣∣∣ =
p

λ2
p

‖Γ− Γ̂‖

(
1 +
|λp − λ̂p|

λp
+ o

(
|λp − λ̂p|

λp

))

=
p

λ2
p

OP

(
1√
n

)
+

p

λ3
p

OP

(
1

n

)
+

p

λ2
p

OP

(
1√
n

)
oP

(
1√
nλp

)
,

in which

• the first term is oP (1) by Assumptions (A4) and (A12) (taking into consid-

eration that the last one implies q − 1/2 < 0);

• the second term and the third terms are equivalent to OP

(
p

λ2
p

√
n
× 1

λp
√
n

)
which is also oP (1) due to Assumptions (A11) and (A12).

Hence, we finally obtain: supy∈ΩY D(y) ≤((
supy∈ΩY ‖r̂(y)‖

)
‖x‖+ 1

2

(
supy∈ΩY ‖r̂(y)‖

)2)
oP (1) . In demonstrating the

convergence of C, we showed that supy∈ΩY ‖r̂(y)‖ = OP (1), so it can be

concluded that supy∈ΩY D(y) = oP (1).

Conclusion

Hence, supy∈ΩY E(y) = oP (1). On the other hand, for any η > 0,

P

(
sup
y∈ΩY

|f(x|y)− f̂(x|y)| > η

)
≤ P

(
sup
y∈ΩY

|f(x|y)− f̂(x|y)| > η, sup
y∈ΩY

E(y) ≤ 1

2

)

+P

(
sup
y∈ΩY

E(y) >
1

2

)

≤ P

(
sup
y∈ΩY

E(y)e1/2 sup
y∈ΩY

f(x|y) > η

)

+P

(
sup
y∈ΩY

E(y) >
1

2

)
,

where supy∈ΩY f(x|y) is finite by Assumption (A8) (see proof of Proposition 3).

The right hand side of the last inequality goes to zero as n increases, which

concludes the proof.2

Proof of Theorem 1
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Before proving Theorem 1, the following proposition is demonstrated:

Proposition 4. Under Assumptions (A1)-(A5) and Assumptions (A7)-

(A12), for any x ∈ X , we have:
∣∣∣fX(x)− f̂X(x)

∣∣∣ = oP (1) , and,∣∣∣ 1
n

∑n
i=1 f̂(x|yi)yi −

∫
R f(x|y)yfY (y)dy

∣∣∣ = oP (1) .

Proof of Proposition 4:

For any x ∈ X ,
∣∣∣f̂X(x)− fX(x)

∣∣∣ ≤
∣∣∣f̂X(x)− 1

n

∑n
i=1 f(x|yi)

∣∣∣ +∣∣ 1
n

∑n
i=1 f(x|yi)− fX(x)

∣∣ . Furthermore,

• by Proposition 3,
∣∣∣f̂X(x)− 1

n

∑n
i=1 f(x|yi)

∣∣∣ ≤ supy∈ΩY

∣∣∣f(x|y)− f̂(x|y)
∣∣∣ =

oP (1) ;

• Assumption (A8) ensures that, for all x ∈ X , fX(x) is finite. Hence, by the

law of large numbers, limn→+∞
1
n

∑n
i=1 f(x|yi) =as EY (f(x|Y )) = fX(x).

These two arguments complete the first part of the proof.

The second part is demonstrated in a similar way: for any x ∈ X ,∣∣∣∣∣ 1n
n∑
i=1

f̂(x|yi)yi −
∫
R
f(x|y)yfY (y)dy

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
i=1

f̂(x|yi)yi −
1

n

n∑
i=1

f(x|yi)yi

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

f(x|yi)yi −
∫
R
f(x|y)yfY (y)dy

∣∣∣∣∣ ,
where

• the first part of the right hand side of this inequality is bounded

by supy∈ΩY

∣∣∣f(x|y)− f̂(x|y)
∣∣∣ × 1

n

∑
i yi. As E(Y ) < ∞, we have that

limn→+∞
1
n

∑
i yi =as E(Y ). By Proposition 3, supy∈ΩY

∣∣∣f(x|y)− f̂(x|y)
∣∣∣ =

oP (1). Thus,
∣∣∣ 1
n

∑n
i=1 f̂(x|yi)yi − 1

n

∑n
i=1 f(x|yi)yi

∣∣∣ = oP (1) .

• the second part of the right hand side of the previous inequality converges to

0 almost surely by the law of large numbers under the fact that E(Y ) <∞.2

Proof of Theorem 1:
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For any x ∈ X such that fX(x) > 0,

|γ̂(x)− γ(x)| =

∣∣∣∣∣ ĝ(x)fX(x)− g(x)f̂X(x)

fX(x)f̂X(x)

∣∣∣∣∣
≤ 1

|fX(x)|
|g(x)− ĝ(x)|+

∣∣∣∣∣ ĝ(x)

fX(x)f̂X(x)

∣∣∣∣∣ ∣∣∣fX(x)− f̂X(x)
∣∣∣ .

Furthermore,

|ĝ(x)| ≤ ||ĝ(x)− g(x)|+ g(x)| ,

f̂X(x) ≥
∣∣∣fX(x)− |f̂X(x)− fX(x)|

∣∣∣ .
Thus,

|γ̂(x)− γ(x)| ≤ |g(x)− ĝ(x)|
fX(x)

+

||ĝ(x)− g(x)|+ |g(x)||∣∣∣fX(x)− |f̂X(x)− fX(x)|
∣∣∣ fX(x)

∣∣∣f̂X(x)− fX(x)
∣∣∣ .

Since fX(x) is finite (Assumption (A8)) and positive, the first term in the right

hand side of the above inequality is oP (1) by Proposition 4. Also by Proposi-

tion 4, the second term is |g(x)|
fX(x)2 oP (1), which is trivially oP (1) since g(x) is finite

for all x. Hence we can conclude that |γ̂(x)− γ(x)| = oP (1), which completes

the proof. 2
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