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Abstract In this paper, we extend the popular principal component analysis

(PCA) to the investigation of nonlinear dependence among variables, called most

informative component analysis (MICA). The most informative components are

a few linear combinations of the variables that capture both linear and nonlinear

dependence among the variables. Compared with the existing extensions such

as the principal curve and the kernel PCA, MICA is more interpretable and thus

more meaningful in statistical analysis. Properties of MICA are investigated;

estimation method is developed; and asymptotics of the estimators are obtained.

Real data sets are analyzed to illustrate the usefulness of MICA.

Key words: dimension reduction; most predictable component; principal com-

ponent analysis; projection pursuit; unsupervised learning.

1 Introduction

The principal component analysis (also known as empirical orthogonal function analysis)

developed by Pearson (1901) is one of the most fundamental methods in data analysis. It

explores the linear dependence in a set of variables X = (x1, ...,xp)
>, and is commonly

used for two purposes: (i) to reduce the dimensionality of the dataset by retaining only a

few linear combinations of the variables, called the principal components (PC), and (ii) to
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extract features from X for better understanding and analysis of the data, such as clustering

and pattern recognition. While much has been learned through the use of PCA, the fact that

it is a linear method implies a potential oversimplification of the datasets being analyzed.

Some extensions of PCA in a linear framework that focus on different statistical aspects

of the data include the independent component analysis (Comon, 1994) and the common

factor analysis of Pan and Yao (2008).

Extensions of PCA to the investigation of nonlinear dependence amongst the variables

have also been considered in the literature. Hastie and Stuetzle (1989) proposed the prin-

cipal curve. Kramer (1991) proposed an autoassociative neural network (ANN) structure

that defines mapping and demapping stages by neural network layers. Schölkopf et al

(1998) proposed the kernel PCA that first maps the original variable set X on to a higher

dimensional feature space and then applies PCA to reduce the dimension. By doing so,

the nonlinear dependence in X can be detected. However, the “principal components” in

those methods are not easy to interpret because they are neither linear combination nor

other simple functions of the original variables. Cook (2007) did a comprehensive review on

PCA and proposed an analysis method called principal fitted components (PFC). PFC is

calculated “under the supervision” of a response variable Y , and is thus different from PCA

as the latter is an unsupervised learning approach. It is known that dimension reduction

problems with and without a response variable are quite different.

2 Definition of the most informative component

There are two ways to calculate PCs. One is based on the covariance matrix of X, and

the other the correlation coefficient matrix of X. For simplicity, we here only consider the

latter which is equivalent to assuming Var(xi) = 1 for i = 1, ..., p. Let Σ = Var(X) with

eigenvalue-eigenvector decomposition Σ = Γdiag(λ1, ..., λp)Γ
>, where Γ = (θ1, ..., θp) is an

orthogonal matrix and λ1 ≥ ... ≥ λp ≥ 0. Then, θ>d X is the dth PC, d = 1, 2, ..., p.

To extend PCA, let us give another interpretation of the PCs. For any random vectors

V : p× 1 and U : q × 1, define linear conditional expectation as

L(V |U)
def
= a0 + b>0 U
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with

(a0, b0) = arg min
a:p×1,b:q×p

E‖V − a0 − b>0 U‖2,

where ‖A‖ = {tr(A>A)}1/2 denotes the Euclidian norm for any matrix A. For any fixed

d < p, the linear combinations β>1 X, ..., β
>
d X, or B>X where B = (β1, ..., βd), that best

predict X linearly is

Bd = arg min
B

E‖X − L(X|B>X)‖2. (1)

In other words, B>d X is most informative in explaining or predicting X linearly. We call

B>d X the first d linearly most informative components (LMIC) of X. We have the following

connection between LMICs and the conventional principal components.

Proposition 2.1 For any 1 ≤ d < p, if λd > λd+1 then the first d principal components

and the first d LMICs are in the same space, i.e. S(Bd) = S(θ1, ..., θd), where S(B) denotes

the space spanned by the column vectors of B.

Based on this connection, PCA actually looks for d (< p) linear combinations of X that are

most informative in explaining or predicting linearly X. We can thus extend PCA to include

nonlinear dependence in X by changing the linear conditional expectation L(V |U) to the

general conditional expectation E(V |U). Define the first d most informative components

(MIC) of X, denoted by B>X, such that they minimize

E‖X − E(X|B>X)‖2.

If X can be adequately predicted by B>X, we only need to consider B>X in the data

analysis under the nonparametric setting. In other words, the information contained in X

can be fully described by B>X.

Note that when d is bigger than 1, nonparametric estimation of E(X|B>X) is not so

efficient and thus the definition above is not so useful in practice. To simplify the above

definition, we investigate an alternative approach by considering one component at a time,

which is similar to the idea of projection pursuit (see for example Huber, 1985). For that

purpose, let us consider again the traditional PCA. For ease of exposition, let R0 = X.

Define the first linear most informative component (LMIC), say β>1 X, in such a way that

it minimizes

E‖R0 − L(R0|β>X)‖2, (2)
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with respect to β : ‖β‖ = 1. Let R1 = R0 − L(R0|β>1 X) be the remainder. After the first

d LMICs, β>1 X, ..., β
>
d X, and the remainder Rd are calculated, the (d + 1)th component

β>d+1X is defined to minimize

E‖Rd − L(Rd|β>X)‖2 (3)

with respect to β : ‖β‖ = 1. Let Rd+1 = Rd−L(Rd|β>d+1X). By continuing this procedure,

we can obtain a sequence of components.

Proposition 2.2 The components defined by (3) satisfy S(θ1, ..., θd) = S(β1, ..., βd) for any

1 ≤ d ≤ p providing λd > λd+1, and that Rd is p − d dimensional, i.e. cov(β>k X,Rd) = 0

for all 1 ≤ k ≤ d. On the other hand, we have

E‖L(Rk|β>k+1X)‖2 = E‖β>k+1X‖2

for all k = 1, ..., p−1. In other words, LMIC only contains the information of itself linearly.

Motivated by (2) and (3), we shall make another extension of PCA. More precisely, the

first most informative component (MIC), say β>1 X, is selected to minimize

E‖R0 − E(R0|β>X)‖2 (4)

with respect to β : ‖β‖ = 1. Let R1 = R0 − E(R0|β>1 X). After the first d MICs,

β>1 X, ..., β
>
d X, and thus Rd are defined, we define the (d+ 1)th MIC as β>d+1X such that it

minimizes

E‖Rd − E(Rd|β>X)‖2 (5)

with respect to β : ‖β‖ = 1. Let Rd+1 = Rd − E(Rd|β>d+1X). By repeating this procedure,

we can get a sequence of MICs. For convenience, we call E‖E(Rd−1|β>d X)‖2 the information

contained in MIC β>d X for d = 1, 2, ..., which is also the variation or information in Rd−1

that can be explained by β>d X.

Proposition 2.3 Suppose the first d PCs are θ>1 X, ..., θ
>
q X respectively. If there is no

nonlinear dependence in X, i.e. for any linear combinations `>X, there exist vectors a and

b such that E(X|`>X) = a+b`>X, then the first d MICs β>1 X, ..., β
>
d X satisfy S(θ1, ..., θd) =

S(β1, ..., βd) for any 1 ≤ d ≤ p providing λd > λd+1. If the eigenvalues of V ar(X) are

different from one another, then βk and θk are the same up to a sign difference.
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Proposition 2.3 indicates that our definition of MIC is indeed an extension of the PC.

Some examples are discussed in Section 5. If X is jointly elliptically distributed, then the

conditions in Proposition 2.3 are satisfied; see Cook (2008).

3 Connection with other approaches

In terms of approximation of elements in X using some common factors, which is relevant

to the principal curve of Hastie and Stuetzle (1989) as explained in (2), a PC θ>d X actually

minimizes

E‖Rd−1 − ad − cdθ>d X‖2

with respect to p× 1 vectors ad, cd and θd. The approximation functions, ad + cdθ
>
d X, are

linear in X. MIC changes the linear functions to nonlinear, i.e.

E‖Rd − gd(θ>d X)‖2,

where gd(v) = (gd1(v), ..., gdp(v))> are unknown link functions. In this sense, MIC is also an

extension of the principal curve of Hastie and Stuetzle (1989) where they only considered

the case when d = 1, i.e. they only considered the approximation to the original X by

one component. Instead, our approach is in a manner of projection pursuit: if the first ap-

proximation is not satisfactory, we consider the second approximation to the remainders of

the first approximation by the second component, and continue this procedure till satisfac-

tion. On the other hand, the principal curve does not care about the interpretability of the

component, because their “component” can be a very complicated function of X without

a closed form, while MIC is a linear combination of the original variables and has practical

meaning in statistical analysis. The auto-associative model of Girard and Iovleff (2011) has

a very similar spirit, but it approximates X by linear combinations of the residuals which

again may not be interpretable statistically.

Wang, Sha and Jordan (2010, WSJ hereafter) considered a similar approach in order to

find a few linear combinations of X that can capture most information of X in nonlinear

sense. The main difference between MIC and WSJ is the motivation and estimation of the

components. WSJ is more close to the sufficient dimension reduction of Li (1991) in its

motivation, while MIC is more in functional approximation. WSJ uses the kernel expansion
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approach which is very popular in engineering to handle the nonlinearity. Statistical prop-

erties of their method might be very complicated to investigate. Another difference is that

we search for MICs of X one by one, which makes the estimation more stable and easier to

visualize. Also because of this difference, our estimated components are not necessarily the

same as WSJ.

Next, we give a short discussion about the difference between our most informative

component (MIC) and the most predictable component of Hotelling (1935), where he in-

vestigated two sets of variables. The linear combination of variables in one set that can be

most predicted by the variables in the other set is called the most predictable component.

Thus, the most predictable component is predicted by the other variables, while our MIC

is the component that is most powerful in predicting all the variables in the same set. Note

that any linear combination can perfectly predict itself linearly. Thus, for any MIC, β>d X,

we first consider the linear most predictable components, `>d X, such that it minimizes

‖`>Rd−1 − L(`>Rd−1|β>d X)‖

with respect to ` : ‖`‖ = 1. If β>d X is a PC, then `d = βd. However, if β>d X is a MIC, `d

might differ from βd. Let R̃d−1 = Rd−1−L(Rd−1|β>d X). We then define the nonlinear most

predictable component γ>d X such that it minimizes

E‖γ>R̃d−1 − E(γ>R̃d−1|β>d X)‖2

with respect to γ : ‖γ‖ = 1. In other words, β>d X can best predict γ>d X nonlinearly. See

also Li (1997).

4 Estimation of the most informative components

The estimation of MICs is related to the single-index model for which there are many

efficient estimation methods. See for example, Härdle et al (1993), Härdle and Stocker

(1993), Hristache et al (2001), Yu and Ruppert (2002), Yin and Cox (2005) and Xia (2006).

Because the problem here is “unsupervised”, the main difficulty is to find an appropriate

initial value in implementing the estimation, for which the existing methods such as (Härdle

and Stocker, 1989) or the outer product of gradients method (Samarov, 1993; Xia et al,
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2002) cannot be used directly. In this section, we first state our main estimation idea and

then discuss how to find an initial value for the estimation.

Based on the definition of MIC, we need to estimate βd, d = 1, 2, ..., consecutively that

minimizes

E‖Rd−1 − E(Rd−1|β>d X)‖2,

where Rd−1 is defined above. Theoretically, this minimization can be implemented as

follows. First, we employ a nonparametric smoothing regression method such as splines

or kernel smoothing method to estimate function g
[k]
β (u) = E(Rk|β>X = u) for any β.

With sample X1, ..., Xn, let R01 = X1, ..., R0n = Xn. If we use the local linear kernel

smoothing method, gβ(u) can be estimated by

ĝ
[1]
β (u) =

∑n
i=1w

β
n,i(u)R0i∑n

i=1w
β
n,i(u)

, (6)

where wβn,i(u) = s
(2)
n Kb(β

>Xi−u)− s(1)n Kb(β
>Xi−u){(β>Xi−u)/b} and s

(k)
n = n−1

∑n
i=1

Kb(β
>Xi − u){(β>Xi − u)/b}k, where K(.) is a kernel function, b is the bandwidth and

Kb(.) = K(./b)/b. See Fan and Gijbel (1996). The first MIC is the minimizer of the

following minimization problem

β̂1 = arg min
β:‖β‖=1

n−1
n∑
j=1

‖R0j − ĝ[1]β (β>Xj)‖2. (7)

More calculation details for the above minimization can be found in Xia (2007) where an

iterative algorithm is provided with closed form for each iteration.

After the first MIC is obtained, denoted by β̂1, we can calculate ĝβ̂1(.) according to (6)

and define the residuals as

R1i = R0i − ĝ[1]
β̂1

(Xi), i = 1, 2, ..., n.

Then, replacing R0i in (6) and (7) by R1i, the minimizer of β for (7) is the second MIC,

denoted by β̂2. Continuing this procedure, we can get the estimators for MICs, denoted by

β̂1, β̂2, ... respectively.

Note that the above estimation is based on the local linear kernel estimator. When the

bandwidth is sufficiently big, the estimator become the linear regression. By Proposition

2.1 and the properties of local linear kernel smoothing, we have the following fact.
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Theorem 4.1 For any fixed sample, when bandwidth b → ∞, then β̂d will tend to the dth

PC of the sample.

Next, we propose a new method to obtain an appropriate initial estimator for the above

minimization. Let us consider the linear PCA again. Suppose the probability density

function of X is f(x). Denote by Of(x) = ∂f(x)/∂x the partial derivative vector or

gradient of f(x). If X ∼ N(µ,Σ), then we have the gradient of its probability density

function as

Of(x) = −(2π)−p/2Det(Σ)−1/2 exp{−1

2
(x− µ)>Σ−1(x− µ)}Σ−1(x− µ).

Thus

E{Of(X)O>f(X)} = cΣ−1,

where c =
√

3(2π)−pDet(Σ)−1. Therefore, the PCs can be obtained by the eigenvectors of

E{Of(X)O>f(X)}. We show below that this fact can be extended to MICA.

Lemma 4.2 Suppose EX = 0 and Cov(X) = Σ and that there are vectors θ1, θ2, ..., θp of

full rank such that θ>k X = gk(θ
>
1 X) + εk, and that the joint distribution of (ε2, ..., εp) and

θ>1 X is normal. Suppose further that there is at least one gk that is neither a linear function

nor a constant. Then θ1 is one of the eigenvectors of E{Of(X)O>f(X)}.

Note that the above justification is for the case that the variables are normally dis-

tributed. The justification under general framework needs to be investigated further. Based

on this lemma, we can obtain an initial estimator using the kernel density estimation as

follows. Suppose H(.) is a p-dimensional kernel function, Gaussian or Epanechnikov kernel

or higher order kernel functions, and h is the bandwidth. Then the density function f(x)

can be estimated by

f̂(x) = n−1
n∑
i=1

Hh(Xi − x),

where Hh(.) = h−pH(./h). The sample version of the gradient of the density function is

thus

Of̂(x) = n−1
n∑
i=1

OHh(Xi − x),
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where OHh(Xi − x) = h−p−1∂H((Xi − x)/h)/∂x. We can estimate Σ by

Sn = n−1
n∑
i=1

Of̂(Xi)O
>f̂(Xi)

and have the following asymptotic result.

Lemma 4.3 Suppose assumptions (A1)-(A3) in the appendix hold. If h→ 0 and nhp+1 →

∞, when the kth order kernel is used we have

‖Sn − E{Of(X)O>f(X)}‖ = Op(h
k+1 + n−1/2).

Denote the eigenvectors of Sn by θ̂1, ..., θ̂p. We check the approximation errors

n−1
n∑
j=1

‖R0j − ĝ[1]
θ̂k

(θ̂>k Xj)‖2, k = 1, ..., p.

The eigenvector corresponding to the smallest approximation error is the direction used as

the initial estimator β̂1. Under the assumptions of Lemma 4.2, this initial estimator has

a decent convergence rate theoretically. When k is big such that
√
nhk+1 → 0 and other

conditions for h above are satisfied, then β̂1 is root-n consistent. After the initial value is

obtained, we can then refine the estimator by minimizing (7).

Remark 4.4 Like PCA, the asymptotic distribution of MIC is not easy to investigate.

One of the reasons is that the structure of the component is not clear as shown in Example

6.2. However, we are able to investigate the problem in some special cases. For example,

suppose there is a matrix B such that

B>X = (g2(θ
>
1 X), ..., gp(θ

>
1 X))> + (ε2, ..., εp)

>

and that (B, θ1) is of full rank and orthogonal. If ε2, ..., εp and θ>1 X are independent and

normally distributed, and if θ1 is the first MIC, then following exactly the proofs of Härdle

et al (1993) or Xia (2007), we can prove that

√
n(β̂1 − θ1)→ N(0,W+

0 W1W
+
0 ),

in distribution, where W0 =
∑p

k=2E{(g
′
k(θ
>
1 X))2(X−E(X|θ>1 X))(X−E(X|θ>1 X))>} and

W1 =
∑p

k=2E{(g
′
k(θ
>
1 X))2(X − E(X|θ>1 X))(X − E(X|θ>1 X))>}V ar(εk).
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In the above estimation, two bandwidths h and b are involved. Although higher order

kernel function H(.) is theoretically used, but practical calculation seems to suggest that a

symmetric density function is more stable as the kernel function, for which the commonly

used bandwidth is h = 2.34n−1/(p+4) after the data is standardized and the Epanechnikov

kernel is used. See Scott (1993) for more details. Similarly, for bandwidth b, after standard-

izing all the variables, we can use the rule-of-thumb bandwidth and take h = 2.34n−1/5 in

the calculation. Of course, we can also use the leave-one-out cross-validation to select the

bandwidths; see Silverman (1986).

5 Identification of the nonlinear components

Since MIC is an extension of PCA, it is interesting to identify whether a MIC is indeed

nonlinear or not. More precisely, a MIC β>d X is linear if there are vectors c and D, such

that

E(Rd−1|β>d X) = c+Dβ>d X.

If β>d X is linear, it is easy to see that

E(Rd−1|β>d X) = L(Rd−1|β>d X)

and thus generally

E‖Rd−1 − E(Rd−1|β>d X)‖2 ≤ E‖Rd−1 − L(Rd−1|β>d X)‖2.

Lemma 5.1 For a MIC, β>d X, it is linear if and only if

E‖Rd−1 − E(Rd−1|β>d X)‖2 = E‖Rd−1 − L(Rd−1|β>d X)‖2. (8)

Based on Lemma 5.1, we can identify linear MICs as follows. Suppose β̂d is the estimator

of βd. Let R̃d−1,i = Rd−1,i − L̂(Rd−1,i|β̂>d Xi), where L̂(Rd−1,i|β̂>d Xi) = {
∑n

i=1(β̂
>
d Xi)

2}−1∑n
i=1 β̂

>
d XiRd−1,i. The local linear leave-one-out estimate of E(R̃d−1|β̂>d X = u) is

V̂−j(u) =
∑
i6=j

wn,−j,i(u)R̃d−1,i/
∑
i6=j

wn,−j,i(u),

where

wn,−j,i(u) = s
(2)
n,−jKb(β̂

>
d Xi − u)− s(1)n,−jKb(β̂

>
d Xi − u){(β̂>d Xi − u)/b}
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and

s
(k)
n,−j = n−1

∑
`6=j

Kb(β̂
>
d X` − u){(β̂>d X` − u)/b}k.

We define CV (d) as follows

CV (d) = n−1
n∑
j=1

‖R̃d−1,j‖2 − n−1
n∑
j=1

‖R̃d−1,j − V̂−j(β̂>d Xj)‖2.

If β̂>d X is linear, R̃d−1 has nothing be predicted further, i.e. E(R̃d−1|β̂>d X) = 0. We thus

identify β̂>d X as follows. If CV (d) ≥ 0, then β̂>d X is linear; otherwise nonlinear.

Following Theorem 5.2 of Xia (2007), we can show that the above procedure is consistent

in identifying whether the first MIC is linear or nonlinear. However, theoretical justification

of consistency for the other MICs is very complicated. When a MIC is identified as linear,

based on Theorem 4.1 we can make its estimator more efficient by setting the bandwidth b

very big.

6 Proportions of variation explained by the components

In PCA, it is common to use the cumulative percentage of variation of X explained by the

components in order to select the number of main PCs. Note that after standardization,

the total variation of X = (x1, ...,xp)
> is exactly p. The variation of X explained linearly

by the dth PC is its variance λd = V ar(θ>d X), d = 1, 2, ..., p. It is easy to see that this

variation is the variation explained in the following factor model

Rd = c+ bβ>X + ε,

where Rd is defined by (3), c and b are two vectors. The variation V ar(θ>d X) can also be

written as

λd = V ar(θ>d X) = E‖L(Rd|β>d+1X)‖2.

The cumulative percentage of variation explained by the first d PCs is

CL(d) = (λ1 + ...+ λd)/(λ1 + ...+ λp).

It is common in practice to use a threshold, say 85%, to select the number of important PCs

as follows. If CL(d− 1) < 85% but CL(d) ≥ 85%, then principal components θ>1 X, ..., θ
>
d X

contains the major information in X and are used as reduced space of X.
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Similarly, for the dth MIC we have

E‖Rd−1‖2 = E‖E(Rd−1|β>d X)‖2 + E‖Rd‖2.

In terms of variance analysis of regression, some of the variation in Rd−1 is explained by

MIC β>d X, i.e. E‖E(Rd−1|β>d X)‖2. We thus define

c(d) = E‖E(Rd−1|β>d X)‖2

as the variation of Rd−1 explained by β>d X, or the information contained in β>d X. The

cumulative variation explained by β>1 X, ..., β
>
d X is then c(1)+...+c(d) = E‖X‖2−E‖Rd‖2.

We define the cumulative variation of X explained by the first d MICs as

CN (d) = {c(1) + ...+ c(d)}/(λ1 + ...+ λp).

It is easy to see from Propositions 2.2 and 2.3 that cN (d) = cL(d) if all the components are

linear.

Different from PCA where all the PCs explain exhaustively the variation of X, MICs

may not be able to explain the variation exhaustedly, i.e. CN (p) may be less than 1 due to

the projection pursuit approach. This is acceptable because in practice we only care about

the first few MICs that can explain the most part, for example 85%, of the total variation

of X. Therefore, this drawback for MIC is not a big concern.

Example 6.1 Consider X = (x1,x2,x3)
> where x1,x2

IID∼ N(0, 1) and x3 = {(x1 + x2)
2 +

cε}/
√

8 + c2. It is easy to see that Cov(X) = diag(1, 1, 1). Thus, variables x1,x2, x3 are

linearly uncorrelated and the dimension cannot be reduced by PCA. Instead, the functional

relationship between x3 and (x1,x2) indicates that the actual dimension of X can be further

reduced. The first MIC is F1 = (x1 + x2)/
√

2 and the second F2 = (x1 − x2)/
√

2. Let

R0 = X, R1 = R0 − E(R0|F1) and R2 = R1 − E(R1|F2). Then we have

E‖R0‖2 = 3, E‖R1‖ = 1 + c2/(8 + c2), E‖R2‖2 = c2/(8 + c2).

The total variation or information of X contained in F1 and F2 is 3 − c2/(8 + c2) =

E‖E(R0|F1)‖2 + E‖E(R1|F2)‖2, while those that cannot be explained by F1 and F2 is

c2/(8 + c2). Thus, these two MICs are enough for the data analysis when c is very small.
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Example 6.2 It is worth noticing that the MIC compromises the nonlinear structure and

linear structure in the data. Even there is nonlinear structure, it may not be of interest

according to the above definition if the nonlinear dependence is not so strong as the linear

dependence. Here is one example. Suppose ξ and ε are IID N(0, 1) and X = (x1,x2)
> =

(ξ2 − 1 + ξ + cε, ξ2 − 1− ξ + cε)>/
√

3 + c2. We have

Cov(X) =

(
1, (1 + c2)/(3 + c2)

(1 + c2)/(3 + c2), 1

)
.

Both PCs and MICs are Fa = 2(ξ2 − 1 + cε)/
√

2(3 + c2) and Fb = 2ξ/
√

2(3 + c2) but with

possibly different order. Component Fa has linear relation with X, but Fb nonlinearly.

Under the PC framework, the information contained in Fa and Fb are respectively

V ar(Fa) = 2(2 + c2)/(3 + c2) and V ar(Fb) = 2/(3 + c2).

Because V ar(Fa) > V ar(Fb), Fa is the first PC and Fb the second.

The variation of X explained nonlinearly by Fb alone is 6/(3 + c2). If c < 1, then

2(2 + c2)/(3 + c2) < 6/(3 + c2) and thus Fb is the first MIC and is nonlinear; Fa is the

second MIC and is used only to predict R1 = (cε, cε)>/
√

3 + c2. However, if c > 1, then Fa

will be the first MIC, which is linear. After Fa’s information about X is removed, Fb only

contains information about itself. In other words, Fb’s contribution is only 2/(3 + c2) after

Fa is used. In that case, no nonlinear MIC is used.

7 Numerical Studies

In this section, we use simulated data to check the efficiency of the proposed estimation

method and the identification method. We use 4 real data sets to illustrate the application

of MIC in clustering, in understanding the data structure, and in dimension reduction of X

for regression analysis. Comparison is also made between MIC and PC in the applications.

In the following, all variables in the data are standardized separately before the methods

are used.

Example 7.1 (simulations) Suppose (ξ1, ..., ξp)
> ∼ N(0,Σ) with Σ = (0.5|i−j|)1≤i,j≤p, and

that z1 = ξ1, z2 = ξ2, z3 = c3(cos(2ξ1) + 0.2ε1), z4 = c4(|ξ5| + 0.2ε2), zk = ξk, k ≥ 5, where

c3 and c4 are selected such that V ar(z3) = V ar(z4) = 1. Let Z = (z1, ..., zp)
>. What we
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observed is X with

X = V0Z, with V0 =


1
2

1
2 0 −

√
2
2 0

−1
2

1
2

√
2
2 0 0

−1
2

1
2 0

√
2
2 0

−1
2

1
2 −

√
2
2 0 0

0 0 0 0 Ip−4

 ,

where Ip−4 is the identity matrix of (p− 4)× (p− 4). We define the estimation error of an

estimator β̂k for the true parameter βk : ‖βk‖ = 1 as

e(β̂k) =

√
1− (β̂>k βk)

2.

For p = 5, the first three MICs are β>1 X,β
>
2 X and β>3 X with β1 = (0.5, 0.5, 0,

√
2/2, 0, ...,

0)>, β2 = (0, 0, 0, 0, 0, 1, 0, ..., 0)>, and β3 = (−0.67, 0.23, 0.63, 0.31, −0.11)> respectively.

The first 2 components are nonlinear and the third linear. These three components together

explain about 85% of variation of X. For p = 10, the first 6 MICs are respectively β1 = (0,

0,0,0,0, 0.36, 0.48, 0.52, 0.48, 0.36)>, β2 = (0, 0, 0, 0, 0, 1, 0, ...,0)>, β3 = (0.5, 0.5, 0,
√

2/2,

0, ...,0)>, β4 = (0, 0,0,0,0, -0.56 -0.44, 0.00, 0.44, 0.56)>. β5 = (−0.67, 0.23, 0.63, 0.31,

-0.11, 0,0,0,0,0)>, β6 = (0, 0, 0, 0, 0, 0.56, -0.10, -0.59, -0.10, 0.56)>. The second and third

components are nonlinear and the others linear. These 6 components explains more than

85% of the variation of X. Based on 100 replications, the average estimation errors and the

frequencies of identifying components as nonlinear are listed in Tables 1 and 2 respectively

for p = 5 and p = 10.

Table 1: Simulation results for Example 7.1 with p = 5
nonlinearity of MICs

p n e(β̂1) e(β̂2) e(β̂3) 1st 2nd 3rd

100 0.1750 0.3534 0.3286 1.00 0.99 0.12
5 200 0.1648 0.2003 0.1630 1.00 1.00 0.08

500 0.1169 0.1191 0.0951 1.00 1.00 0.06

Table 2: Simulation results for Example 7.1 with p = 10
nonlinearity of MICs

n e(β̂1) e(β̂2) e(β̂3) e(β̂4) e(β̂5) e(β̂6) 1st 2nd 3rd 4th 5th 6th

100 0.30 0.85 0.90 0.82 0.92 0.82 0.00 0.25 0.15 0.06 0.01 0.00
200 0.20 0.31 0.43 0.35 0.57 0.53 0.00 0.92 0.84 0.02 0.00 0.00
500 0.14 0.14 0.19 0.16 0.39 0.42 0.00 1.00 1.00 0.00 0.00 0.00
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Tables 1 and 2 suggest that both our estimation and identification methods have sat-

isfactory performance. As sample size n increases, the estimation errors decrease; and the

frequencies of identifying nonlinear components (1st and 2nd for p=5, and 2nd and 3rd for

p=10) correctly tend to 1; and the frequencies of identifying linear components as nonlinear

tend to 0.

As for the computational burden, with p = 5 the average CPU times are 18, 50 and 170

seconds respectively for n = 100, 200 and 500; with p = 10, the corresponding time are 47,

138 and 504 seconds respectively when the Intel Quad Q9650 3.0GHz processor is used.

Example 7.2 (Clustering) In PCA, it is common to use the scatter plots of the first few

PCs to cluster samples. Similarly, MICs can be used for the same purpose. Since MIC

is more efficient in detecting the nonlinear patterns, it might be also more powerful in

clustering complicated data sets. In the following, we consider a data provided by Cook

et al (1995) for clustering, and is believed to be difficult to cluster by the data providers

(http://www.ggobi.org/book/).

Applying PCA, the variation explained by the PCs are respectively 1.31, 1.24, 1.01,

0.98 and 0.46. It seems that there is no principal component that contributes a domi-

nant portion of the variation. If we use the first two PCs, the scatter plot is shown in

the first panel of Figure 1, where the data are not clearly clustered. When we apply

MIC, the variation explained by the MICs are respectively 1.99, 1.00, 0.96, 0.74 and 0.15.

The first MIC, with β1 = (0.03,−0.02, 0.72,−0.69, 0.03)>, has much bigger explanation

ability than the others. If we plot the first MIC against its most predictable direction

`1 = (0.07,−0.02,−0.70,−0.70, 0.15)>, we obtain the second panel in Figure 1. It clearly

shows a nonlinear structure in the data, and that there are three clusters. By removing the

linear part of the most predictable direction, we obtain panel 3 of Figure 1, where the data

are clearly separated into three clusters labeled as A, B and C respectively.

In a personal communication with Professor Dianne Cook who provided the data, she

kindly pointed out that the 3 groups we clustered are correct but there is another group

hidden in one of them, and that a hierarchical cluster approach is needed. Following her

suggestion, we applied the same method to the 3 groups separately, and found that group

A can be further clustered into 2 subgroups as labeled by A1 and A2 respectively in the last

15

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing) 



panel of Figure 1, while groups B and C cannot be further clustered.
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Figure 1: Clustering results for the data provided by Cook et al (1995). The first panel is the
scatter plot of the first PC against the second PC. The second panel is the plot of the first MIC
against its most predicable direction. After removing the linear part in Panel 2, the third panel is
obtained.

Example 7.3 (Cars data) This data was used by the American Statistical Association in its

second exposition of statistical graphics technology in 1983. The data set is available at

http://lib.stat.cmu.edu/datasets/cars.data. There are 406 observations on 8 variables: miles

per gallon (X1), number of cylinders (X2), engine displacement (X3), horsepower (X4),

vehicle weight (X5), time to accelerate from 0 to 60 mph (X6), model year (X7), and origin

of a car ( (X8, X9): (1,0) indicates American, (0, 1) European and (0,0) Japanese).

We first carry out the PCA analysis. The eigenvalues are 5.55, 1.28, 0.77, 0.69, 0.31, 0.18,

0.11, 0.05, and 0.03 respectively, and their cumulative contribution of PCAs are 61.82%,

76.09%, 84.70%, 92.33%, 95.82%, 97.84%, 99.07%, 99.66% and 100%. Applying MICA,
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the contribution of the components are respectively 7.36, 0.59, 0.48 0.16, 0.15, 0.08 0.04

0.03 and 0.03, and the cumulative contribution of the MICs are 81.80%, 88.34%, 93.65%,

95.46%, 97.08%, 97.91%, 98.39%, 98.73% and 99.08% respectively.
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2

first 2 PCs

Figure 2: The four panels on the left hand side show the MIC analysis of the cars data. The panel
on the right shows the plot of the first two PCs. In each panel, ‘•’, ‘◦’ and ‘�’ represent cars from
the USA, Europe and Japan respectively.

A possible reason for the first MIC to make such a big difference with PCA is as follows.

Note that the first MIC is nonlinear as shown in the first panel of Figure 2. There is a

common linear dependence among variables of cars from the same origin but with shift

differences betweens cars from different origins. As a comparison, we also plotted the first 2

PCs as shown in the panel on the right of Figure 2. The three clusters can also be identified

but not so clearly as MIC.

Example 7.4 Another application of PCA is in linear regression when the covariates have

collinearity, which is also called the principal component regression. Similarly, MIC can also

be used in nonparametric regression when the covariates have strong functional dependence.

In this example, we apply MICA to the Boston Housing data, which has been analyzed by

Harrison and Rubinfeld (1978), Doksum and Samarov (1995) and Fan and Huang (2005),

and then check how MICs can help in nonparametric modelling. The data is available at

http://cran.r-project.org/. For each house, 13 variables are measured, including x1: per
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capita crime rate by town, x2: proportion of residential land zoned for lots over 25,000

square feet, x3: proportion of non-retail business acres per town, a proxy for externalities

associated with industry—noise, heavy traffic and unpleasant visual effects, x4: Charles

River dummy variable, 1 if tract bounds river; 0 otherwise, x5: nitric oxides concentration

in parts per 10 million, x6: average number of rooms per dwelling, x7: proportion of

owner-occupied units built prior to 1940, x8: weighted distances to five Boston employment

centers, x9: index of accessibility to radial highways, x10: full-value property-tax rate per

$10,000, x11: pupil-teacher ratio by town, x12: (1000(Bk−0.63)2 where Bk is the proportion

of blacks by town, and x13: percentage of lower status of the population.
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Figure 3: The nonlinear structure of each variable against the first MIC.

We first apply PCA and MICA to the data. The variation explained by the PCs and

MICs are listed in Table 3. The first two MICs have obvious nonlinear contribution to

X.Figure 3 further shows how the first MIC explains the variables nonlinearly.

To illustrate how MICs can help in nonparametric regression, consider the following

nonparametric model for the median value of owner-occupied homes in $1000’s, denoted by
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Y ,

Y = gD(C1, ..., CD) + ε, (9)

where Ck, k = 1, 2, ... are the PCs or MICs with D = 1, 2, .... To compare the prediction

ability of the model with different number of components, we partition the data into training

set and testing set with the ratio of their sample sizes being fixed as 2:1 or 1:1. Based on

the training set, we estimate the model using the k-nearest neighbor method with number

of neighbors k = 10. We then apply the estimated model to predict the testing set. The

prediction error is defined as the mean of absolute differences between the true responses

and predicted values. With 1000 random partitions, the average of prediction errors are

calculated and are shown in Figure 4. We also tried other choices of k from 5 to 20, all the

prediction errors have similar patterns.

Table 3: the variation and comulative variantion explained by the components

PC MIC PC MIC
comp. var. cum. var. cum. comp. var. cum. var. cum.

1 6.13 47.13% 7.70 59.23% 8 0.40 92.95% 0.11 96.69%
2 1.43 58.15% 2.67 79.77% 9 0.27 95.08% 0.07 97.23%
3 1.24 67.71% 0.74 85.46% 10 0.22 96.78% 0.05 97.63%
4 0.86 74.31% 0.42 88.69% 11 0.19 98.21% 0.04 97.92%
5 0.83 80.73% 0.39 91.69% 12 0.17 98.51% 0.03 98.15%
6 0.65 85.79% 0.37 94.54% 13 0.06 100% 0.02 98.31%
7 0.54 89.91% 0.17 95.85%
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Figure 4: Prediction errors of the models based on the different ratio of training sets to testing sets.
In each panel, the dashed line is the prediction error of model (9) based on the PCs; and the solid
line is that based on the MICs.

Figure 4 shows that the model based on PCs can improve the prediction ability. However,

MICs make even better prediction than the PCs, and achieves the smallest error when 3
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MICs are used. This example seems to suggest that when there is functional structure in

the variables, MIC is more powerful than PC in reducing the dimension of variables for

further investigation of the data. Of course, as it is debatable for the principal component

regression, we need to bear in mind the fact that MICA is unsupervised learning. Thus,

its better prediction for nonparametric regression may not be expected always, and that its

main contribution is to make model estimation more stable.

8 Conclusion

This paper has extended PCA to a more general framework in order to make it applicable

to nonlinear structures in the variables. Similar to PCA, MICA is useful for unsupervised

dimension reduction in order to (i) reduce the dimensionality nonlinearly of the dataset

by retaining only a few MICs, and (ii) to extract nonlinear features from X for better

understanding and analysis of the data, such as clustering and pattern recognition. Some

properties have been investigated.

However, many problems of MICA need to be investigated further. For example, what

is structure of nonlinear MICs. In which case, the nonlinearity can be and should be

detected. The asymptotic theory under general distribution assumptions has also not been

investigated yet. Extension of MICA to the time series data and “big p small n” problem

are important areas to be investigated.

Appendix: Assumptions and proofs

Proof of 2.1 Recall the definition that for any p× d matrix B, the best linear prediction

of X based on B is L(X|B>X) = b+ C>(B>X) which minimizes

min
β,C

E‖X − b− C>B>X‖2.

It is easy to see that if EX = 0 then b = 0 and

C = {B>E(XX>)B}−1E(B>XX>).
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Note that

E‖X − E(XX>)B{B>E(XX>)B}−1B>X‖2

= E‖[I − E(XX>)B{B>E(XX>)B}−1B>]X‖2

= tr[{I − ΣB(B>ΣB)−1B>}Σ{I − ΣB(B>ΣB)−1B>}>]

= tr[Σ− ΣB(B>ΣB)−1B>Σ]

= λ1 + ...+ λp − tr[B>Σ2B{B>ΣB}−1].

Let D = Σ1/2B and Γ = D(D>D)−1/2. Then Γ>Γ = Id and

tr[B>Σ2B{B>ΣB}−1] = tr[D>ΣD{D>D}−1] = tr[D>ΣD{D>D}−1] = tr[Γ>ΣΓ]

≤ λ1 + ...+ λd.

The last equality holds only when Γ is the first d eigenvectors of Σ. As a consequence, the

best predictors are B>X with B = Σ−1/2Γ, which is the same base as Γ since Σ−1/2Γ =

diag(λ
−1/2
1 , ..., λ

−1/2
d )Γ. 2

Proof of Proposition 2.2. By Proposition 2.1 and letting d = 1, we have β1 = θ1 and

R1 = (I − θ1θ>1 )X.

By induction, suppose for 1 ≤ d < p, we have

β1 = θ1, ..., βd = θd, (a.1)

then

Rd = Rd−1 − L(Rd−1|θ>d X) = {I − θdθ>d }Rd−1 = {I −BdB>d }X,

where Bd = (θ1, ..., θd). Let B̃d = (θd+1, ..., θp) and β̃ = (Bd, B̃d)β. It follows from B>d Rd =

0 that

E‖Rd − L(Rd|β>X)‖2 = E‖B̃>d X − L(B̃>d X|β̃>(Bd, B̃d)
>X)‖2.

Note that B̃>d X is perpendicular to B>d X. Thus,

L(B̃>d X|β̃>(Bd, B̃d)
>X) = L(B̃>d X|β̃(d)B̃>d X),

where β̃(d) is the last p− d elements of β̃. Let X̃ = B̃>d X, then

E‖Rd − L(Rd|β>X)‖2 = E‖X̃ − L(X̃|β̃>d+1X̃)‖2.

21

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing) 



By Proposition 2.1 again, β̃d+1 = (1, 0, ..., 0)> minimizes E‖X̃ − L(X̃|β̃>d X̃)‖2. Thus

βd+1 = B̃dβ̃d+1 = θd+1,

i.e. (a.1) holds for d+ 1. We thus complete the proof. 2

Proof of Proposition 2.3 It follows immediately from Proposition 2.2. 2

Proof of Lemma 4.2. Let Σ1 = Cov[(ε2, ..., εp)
>] and redefine (θ2, ..., θp)

> :=

Σ
−1/2
1 (θ2, ..., θp)

>, (g2, ..., gp)
> := Σ

−1/2
1 (g2, ..., gp)

> and (ε2, ..., εp)
> := Σ

−1/2
1 (ε2, ..., εp)

>.

Then θ>k X = gk(θ
>
1 X) + εk, where (ε2, ..., εp)

> ∼ N(0, Ip−1). Define X̃ = Σ−1/2X, θ̃k =

Σ1/2θk/ck, ε̃k = εk/ck where ck = ‖Σ1/2θk‖k = 2, ..., p, and θ̃1 = θ1/c1 with c1 = var(θ>1 X)

and g̃k(u) = gk(c1u)/c2. Then we have EX̃ = 0, Cov(X̃) = I, V ar(θ̃>k X̃) = 1, θ>k X̃ =

g̃k(θ̃
>
1 X̃) + ε̃k, and that (ε̃2, ..., ε̃p) and θ̃>1 X̃ are independent. Without loss of generality,

we assume

θ̃>1 θ̃k = 0, k = 2, ..., p. (a.2)

Otherwise, we redefine g̃k(θ
>
1 X) := g̃k(θ̃

>
1 X) − θ̃>1 Xθ̃

>
1 θ̃k, θ̃k := θ̃k − θ̃1θ̃

>
1 θ̃k and θ̃k :=

θ̃k/(θ̃
>
k θ̃k)

1/2.

Let Z = (z1, z2, ..., zp)
> = (θ̃1, θ̃2, ..., θ̃p)

>X̃. By the assumption, we have E{Z} = 0

and Cov(Z) = diag(1, ..., 1). Thus,

E{z1(z2, ..., zp)>} = 0, V ar(z1) = 1

and

V ar(zk) = E[{g̃k(z1)}2] + V ar(ε̃k) = 1, k = 2, ..., p.

Let σ2k = V ar(ε̃k).

Because cov(z1, zk) = 0, it follows that

E{z1g̃k(z1)} = 0, k = 2, ..., p.

Note that the density function of z1 is fξ(v) = (2π)−1/2 exp{−v2/2}. It follows immediately

that f ′ξ(v) = −vfξ(v) and that

E{g̃′k(z1)} =

∫ ∞
−∞

g̃′k(v)fξ(v)dv = −
∫ ∞
−∞

f ′ξ(v)g(v)dv

=

∫ ∞
−∞

vg̃k(v)fξ(v)dv = E{ξg̃k(ξ)} = 0.
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Thus

Eg̃′k(z1) = 0. (a.3)

The joint probability density function of Z is

fZ(z1, ..., zp) = {2π}−p/2(
p∏

k=2

σk)
−1 exp{−z

2
1

2
−

p∑
k=2

(zk − g̃k(z1))2

2σ2k
}.

Therefore, we have
∂fZ(z)

∂z
= fZ(z1, ..., zp)Ψ

where

Ψ = {−z1 +

p∑
k=2

(zk − g̃k(z1))g̃′k(z1)
σ2k

,−(z2 − g̃2(z1))
σ22

, ...,−(zp − g̃p(z1))
σ2p

}>.

Let

Λ0 = E
{∂fZ(Z)

∂z

(∂fZ(Z)

∂z

)>}
=

∫ ∞
−∞

...

∫ ∞
−∞

f3Z(z1, ..., zp)ΨΨ>dz1...dzp.

Based on the assumptions and (a.3), by simple calculation we have Λ0 is a diagonal matrix

and

Λ0 =
1

3

√
3
p
(2π)−p(

p∏
k=2

σk)
−2diag

(
1 +

p∑
k=2

E[{g̃′k(
√

3ξ)}2]
σ2k

,
1

σ22
, ...,

1

σ2p

)
.

Because Z = (θ̃1, θ̃2, ..., θ̃p)
>X̃ with (θ̃1, θ̃2, ..., θ̃p)

>(θ̃1, θ̃2, ..., θ̃p) = Ip, we have immediately,

E{Of(X̃)O>f(X̃)} = (θ̃1, θ̃2, ..., θ̃p)E
{∂fZ(Z)

∂z

(∂fZ(Z)

∂z

)>}
(θ̃1, θ̃2, ..., θ̃p)

>

= (θ̃1, θ̃2, ..., θ̃p)Λ0(θ̃1, θ̃2, ..., θ̃p)
>.

Therefore, θ̃1 is one of the eigenvectors of E{Of(X̃)O>f(X̃)}, and thus θ1 = c1θ̃1. 2

To prove Lemma 4.2, we make the following assumptions.

(A1) Random variable X is bounded.

(A2) The density function of X has (d+ 2)th order bounded derivatives.

(A3) The kernel function H(x) has bounded support and satisfies
∫
H(v)dv1...dvp = 1 and

that ∫
vd11 ...v

dp
p H(x) = 0, for andy d1 + ...+ dp ≤ k

and
∫
‖u‖2kH(u)du <∞.
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Proof of Lemma 4.2 Write the estimator as

Of̂(x) = Of(x) +M(x)hk+1 + ∆n(x) + δn(x),

where

∆n =
1

nhp+1

n∑
i=1

(
OH{(Xi − x)/h} − E[OH{(Xi − x)/h}]

)
,

with OH(v) = ∂H(v)/∂v, and

δn(x) = EOf̂(x)− Of(x)−M(x)hk+1.

By Masry (1996), we have

δn(x) = op(h
k+1).

It follows that

n−1
n∑
j=1

Of̂(Xj)O
>f̂(Xj) = n−1

n∑
j=1

Of(Xj)O
>f(Xj)

+n−1
n∑
j=1

{M(Xj)O
>f(Xj) + Of(Xj)M

>(Xj)}hd+1

+n−1
n∑
j=1

{∆n(Xj)O
>f(Xj) + Of(Xj)∆

>
n (Xj)}

+op(n
−1/2 + hk+1).

We consider each element of in the third term on the right hand side above, we have

V ar(n−1
n∑
j=1

{∆n(Xj)O
>f(Xj) + Of(Xj)∆

>
n (Xj)}) = O(n−1).

Thus, the third term is of Op(n
−1/2).

Proof of 5.1. Obviously, if β>d X is linear, then (8) holds. Let R̃d−1 = Rd−1 −

L(Rd−1|β>d X). It is easy to see that E(R̃d−1|β>d X) = E(Rd−1|β>d X) − L(Rd−1|β>d X).

Note that

R̃d−1 = E(R̃d−1|β>d X) + {R̃d−1 − E(R̃d−1|β>d X)}.

Thus

E‖R̃d−1‖2 = E‖E(R̃d−1|β>d X)‖2 + E‖{R̃d−1 − E(R̃d−1|β>d X)}‖2.

By (8), we have E‖E(R̃d−1|β>d X)‖2 = 0, i.e.

E‖E(Rd−1|β>d X)− L(Rd−1|β>d X)‖2 = 0.
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Thus, we have E(Rd−1|β>d X) = L(Rd−1|β>d X). 2
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Park, B., E. Mammen, W. Härdle, and S. Borak (2009) Modelling dynamic semiparametric

factor models. J. Amer. Statist. Assoc. forthcoming.

Pearson, K. (1901) On lines and planes of closest fit to systems of points in space. Philo-

sophical Magazine 2, 559-572.

Samarov, A. M. (1993) Exploring regression structure using nonparametric functional

estimation. J. Amer. Statist. Ass. 88, 836-847.

Schölkopf, B. and Smola, A. J., and Müller, K. (1998) Nonlinear component analysis as a

kernel eigenvalue problem. Neural Computation, 10, 1299-1319.

Scott, D. W. (1992) Multivariate Density Estimation: Theory, Practice and Visualization.

Wiley, New York.

Silverman, B. W. (1986) Density Estimation for Statistics and Data Analysis. Chapman

and Hall, London.

Wang, M, Sha, F., and Jordan, M.I. (2010) Unsupervised kernel dimension reduction.

Proceedings of Neural Information Processing Systems. Vancouver, CA.

Xia, Y. (2006) Asymptotic distributions for two estimators of the single-index model.

Econometric Theory, 22, 1112-1137.

Yin, X. and Cook, R. D. (2005) Direction estimation in single-index regressions. Biometrika,

92, 371-384.

Yu, Y. and Ruppert, D. (2002) Penalized spline estimation for partially linear single index

models. Journal of the American Statistical Association 97, 1042-1054.

26

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing) 


	Introduction
	Definition of the most informative component
	Connection with other approaches
	Estimation of the most informative components
	Identification of the nonlinear components
	Proportions of variation explained by the components
	Numerical Studies
	Conclusion



