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Abstract: In longitudinal data analysis, a correct speci�cation of the within-subject

covariance matrix cultivates an e�cient estimation for mean regression coe�cients.

In this article, we consider robust variable selection method in a joint mean and

covariance model. We propose a set of penalized robust generalized estimating

equations to estimate simultaneously the mean regression coe�cients, the general-

ized autoregressive coe�cients and innovation variances introduced by the modi�ed

Cholesky decomposition. The set of estimating equations select important covari-

ate variables in both mean and covariance models together with the estimating

procedure. Under some regularity conditions, we develop the oracle property of

the proposed robust variable selection method. Finally, a simulation study and a

detailed real data analysis are carried out to assess and illustrate the small sample

performance, which show that the proposed method performs favorably by com-

bining the robustifying and penalized estimating techniques together in the joint

mean and covariance model.

Key words and phrases: Covariance matrix, Penalized generalized estimating equa-

tion, Longitudinal data, Modi�ed Cholesky decomposition, Robustness, Variable

selection.

1. Introduction

Longitudinal data arise more and more frequently in a vast of scienti�c do-

mains, which seek for insightful and comprehensive research in a branch of statis-

tical modeling. Di�erent from other types of data, we often assume independence

among distinct subjects but dependence within each subject. Consequently, the

within-subject correlation raises a fundamental challenge for the analysis of lon-

gitudinal data. The work of Liang and Zeger (1986) is a milestone in the de-

velopment of methodology for longitudinal data analysis that they proposed the

generalized estimating equations (GEE) for estimation of generalized linear re-
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gression coe�cients. The main advantage of their method is well-known that

even the within-subject correlation is treated as a nuisance parameter with an

assumed parsimonious structure, GEE still brings about a consistent estimator

for the mean regression model. Following the direction of GEE, Qu et al. (2000)

raised the quadratic inference function (QIF) to enhance the e�ciency by moving

a step forward into considering the structure of the covariance matrix. Taking

robusti�cation into account, He et al. (2005) proposed the robust GEE method

to prevent the unexpected in�uence from outliers in a longitudinal data set.

Ignoring the within-subject correlation is not appropriate since it will prob-

ably result in an ine�cient estimator of a regression model. In practice, the

within-subject covariance structure itself may be of scienti�c interest. Most fre-

quently discussed relevant topics include component analysis and factor analysis

in multivariate statistical problems. Recent important research on estimation of

covariance matrix include, but not limited to, Rothman et al. (2009), El Karoui

(2008) and Bickel and Levina (2008), most of which directly deal with individual

elements of a covariance matrix.

Similar to the mean regression, covariances may be dependent on various

explanatory variables. Following this idea, Pourahmadi (1999, 2000) proposed a

joint mean and covariance regression model by decomposing the covariance matrix

which employed two sets of new parameters, generalized autoregressive coe�cients

and innovation variances. Ye and Pan (2006) extended the joint model under the

framework of generalized estimating equations which required no assumptions

on the distribution of the data. By introducing the generalized autoregressive

coe�cients and innovation variances which have proper statistical interpretation,

their joint model released the constraint of positive de�niteness in estimation for

the covariance matrix. Instead, since the covariance matrix was treated as crucial

as the mean, three generalized estimating equations were proposed to estimate

the covariance matrix and the mean simultaneously.

A number of developments have been observed after the publication of the

joint mean and covariance model, see Fan et al. (2007), Fan and Wu (2008) and

Xu and Mackenzie (2012). Leng et al. (2010) generalized Ye and Pan's model

to the semiparametric joint mean and covariance model. Mao et al. (2011)

extended Leng et al. (2010)'s work further into the generalized partially linear
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varying coe�cient model. Zheng et al. (2013) extended the robust estimating

equation in He et al. (2005) to the joint mean and covariance model by creating

three robust estimating equations to hinder the e�ect of outliers in both mean

and covariance estimation.

Variable selection is a technique of selecting a subset of relevant covariates for

constructing reliable statistical models. Many popular variable selection methods

are based on the penalized likelihood or penalized estimating equations. Com-

monly used penalties include, but not limited to, LASSO, ALASSO (adaptive

lasso in Zou, 2006), SCAD and Hard penalties. In the scope of longitudinal data

analysis, Fu (2003) proposed the penalized generalized estimating equation with

LASSO penalty. Other variable selection criteria include AIC and Cp, which have

been extended by Pan (2001) and Cantoni et al. (2005) respectively, to the case

of longitudinal data under the framework of GEE.

In contrast to the prosperous research on variable selection in the mean mod-

el, limited research work has been found for covariance variable selection or identi-

�cation. Jeng and Daye (2011) noticed that to curve the sparsity in the covariance

matrix can improve the e�ciency on mean estimation, especially in high dimen-

sional problems. They said their method was a marriage between covariance

regularization and variable selection. However, their main objective still focused

on the mean estimation while the positive de�niteness of the covariance matrix

cannot be guaranteed. Within the framework of the joint mean and covariance

model, Huang et al. (2006) proposed covariance selection and estimation via the

penalized normal likelihood, because they were aware that imposing a penalty

would reduce the risk of using too many parameters to capture the dependence.

Kou and Pan (2011) proposed a penalized maximum likelihood method for the

joint model that they employed variable selection in both models simultaneously,

in which the covariance matrix was treated as equal importance as the mean.

In this paper, we aim to develop a penalized robust estimating equations

based method to select important explanatory variables that make a remarkable

contribution to the joint mean and covariance model for longitudinal data analy-

sis. It has been illustrated by simulation studies that both the classical GEE and

the joint mean and covariance model are sensitive to outliers, see details in He et

al. (2005) and Zheng et al. (2013). Nevertheless, the discussion on robust variable
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selection methods is relatively limited. We consider commonly used SCAD and

ALASSO penalty, and show the oracle property of the proposed robust variable

selection method. Simulation studies show that even a tiny contamination results

in a poor performance in both the estimation and variable selection in the non-

robust joint model, which veri�es the necessity of robusti�cation consideration.

In real data analysis, the robust variable selection procedure has smaller standard

errors for the mean coe�cients estimation, for which two possible reasons may be

attributed: sensible covariance matrix modeling plus accommodation of outliers

in both subject and observation levels. Moreover, for outlier detection, we have

found some outliers which have not been identi�ed before.

The remainder of this article is organized as follows. Section 2 describes the

main model and asymptotic properties. Simulation results with illustrations are

given in section 3. In section 4, we implement the proposed method to a hormone

data set.

2. Robust variable selection in joint mean and covariance model

2.1 Joint mean and covariance model

Suppose that we have a sample of m subjects. Let yi = (yi1, . . . , yini)
T be the ni

repeated observations at time point ti = (ti1, . . . , tini)
T of the ith subject. Denote

E(yi) = µi = (µi1, . . . , µini)
T and Cov(yi) = Σi as the ni × 1 mean vector and

ni × ni covariance matrix of yi respectively.

To release the constraint of positive de�niteness in estimation of the covari-

ance matrix Σi, we implement a modi�ed Cholesky decomposition by introducing

a unique lower triangular matrix Φi with 1's being the diagonal entries and a u-

nique diagonal matrix Di with positive diagonals such that

ΦiΣiΦ
T
i = Di.

A valuable feature of this decomposition is that both Φi and Di have clear sta-

tistical interpretation. The lower-diagonal entries of Φi are the negatives of the

autoregressive coe�cients φijk de�ned in

ŷij = µij +

j−1∑
k=1

φijk(yik − µik),
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which is the linear least squares predictor of yij based on its predecessors yi(j−1), . . . , yi1.

The diagonal entries σ2ij of Di can be seen as the innovation variance σ2ij =

var(εij), where εij = yij − ŷij .
We adopt three linear models for the mean, generalized autoregressive pa-

rameters and innovation variances that developed by Ye and Pan (2006):

µij = xTijβ, φijk = gTijkγ, log σ
2
ij = zTijλ, (2.1)

where xij , gijk and zij are p × 1, q × 1 and d × 1 vectors of covariates, and

β, γ and λ are associated parameters. The covariates gijk and zij may contain

baseline covariates, time and associated interactions. The log-linear model of the

innovation variance follows the idea of Cook and Weisberg's (1983) model for the

variance. They proposed that the variance often depended on the values of one

or more of the explanatory variables or on additional relevant quantities such as

time or spatial ordering. Cook and Weisberg therefore developed the log-linear

model that allows for dependence of the variance on an arbitrary set of variables.

In practice, the whole set of the covariates is di�cult to de�ne. An orthogonal

form for the polynomial of the time is recommended as the covariate for the

autoregressive component by Ye and Pan (2006):

gijk = (1, (tij − tik), (tij − tik)2, · · · , (tij − tik)q−1)T .

The linear assumption in (2.1) is not the only choice for the joint modeling.

For this concern, we can introduce quadratic assumptions or use nonparametric

model and semiparametric model after the decomposition, see Mao et al. (2011)

and Leng et al. (2010). Our robust method can also be adopted in those semi-

parametric model behind the covariance matrix parameters. However, this may

further complicate the model that we prefer starting from the linear assumption.

In the models above, estimation for generalized autoregressive coe�cients

and innovation variances are treated as important as the estimation for the mean.

Denote θ = (θ1, · · · , θs)T = (β1, · · · , βp; γ1, · · · , γ1;λq, · · · , λd)T , where s = p +

q+d. To select important subsets of the covariates, we need the assumption that

all interested explanatory variables, together with their interactions are involved

in the initial model. By using the same λ, the proposed method is applicable
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for correlated data as long as the correlated (or longitudinal) measurements have

similar correlation structure between clusters.

2.2 Penalized robust generalized estimating equations

We propose the following penalized robusti�ed generalized estimating equations

U(θ) = ([U1(β)]T , [U2(γ)]T , [U3(λ)]T )T ,

for the mean, generalized autoregressive parameters and innovation variances,

respectively:

U1(β) =
m∑
i=1

XT
i (V β

i )−1hβi (µi(β))−mqτ (1)(|β|)sgn(β) = 0, (2.2)

U2(γ) =
m∑
i=1

T Ti (V γ
i )−1hγi (r̂i(γ))−mqτ (2)(|γ|)sgn(γ) = 0, (2.3)

U3(λ) =
m∑
i=1

ZTi Di(V
λ
i )−1hλi (σ2i (λ))−mqτ (3)(|λ|)sgn(λ) = 0, (2.4)

where hβi (µi(β)) = W β
i [ψβ(µi(β)) − Cβi (µi(β))], hγi (r̂i(γ)) = W γ

i [ψγ(r̂i(γ)) −
Cγi (r̂i(γ))] and hλi (σ2i (λ)) = W λ

i [ψλ(σ2i (λ)) − Cλi (σ2i (λ))] act as the core of the

estimating equations with Xi = (xTi1, . . . , x
T
ini

)T , Zi = (zTi1, . . . , z
T
ini

)T , gij =

(gTij1, . . . , g
T
ij(j−1))

T and Ti = (gTi1, . . . , g
T
ini

)T .

To be clear, we adopt exactly the same style of penalized estimating equations

for mean parameter and the generalized autoregressive coe�cients and innovation

variances generated from the covariance decomposition. In other words, equations

(2.3) and (2.4) are in agreement with that in equation (2.2), in which ri in U2(γ)

and ε2i in U3(λ) play the role similar to that of yi in U1(β) and can be viewed as

working responses. Di�erent from the other joint mean and covariance modeling

procedure, the covariance estimation is treated as crucial as the mean estimation

in the proposed model, which has the same core spirit as the joint model in Ye

and Pan (2006).

We specify items in (2.2)�(2.4) one by one. In U2(γ), ri and r̂i are ni × 1

vectors with jth components rij = yij − µij and r̂ij = E(rij |ri1, . . . , ri(j−1)) =∑j−1
k=1 φijkrik, where

∑0
k=1 as zero when j = 1. In U3(λ), εij = yij − ŷij and ε2i

and σ2i are ni × 1 vectors with jth components ε2ij and σ2ij respectively, where
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in fact E(ε2i ) = σ2i . Moreover, T Ti = ∂r̂Ti /∂γ is the q × ni matrix with the jth

column ∂r̂ij/∂γ =
∑j−1

k=1 rikgijk and Di = diag{σ2i1, . . . , σ2ini
}.

Then we de�ne Vi's in (2.2)�(2.4). V
β
i = A

−1/2
i Σi, Ai is the diagonal elements

of Σi, V
γ
i = D

1/2
i , V λ

i = Ã
−1/2
i Σ̃i and Ãi is the diagonal elements of Σ̃i. The

sandwich working covariance structure Σ̃i = B
1/2
i Ri(δ)B

1/2
i can be used to model

the true Σ̃i = Cov(ε2i ) with Bi = 2diag{σ4i1, . . . , σ4ini
} and Ri(δ) mimics the

correlation between ε2ij and ε2ik by introducing a new parameter δ. This idea

was proposed by Ye and Pan (2006), although they did not provide particular

suggestion on how to choose the structure or the value of δ.

Experience tells us that the parameter δ has little e�ect on the estimation in

practice. Considering AR(1) structure, we can estimate δ by the slope from the

regression of log(ε̂2ij , ε̂
2
ik) on log(|tj − tk|). Details can be found in Example 4 in

Liang and Zegar (1986). In our simulation and real data analysis, the estimate of δ

always falls in the interval [0, 0.3]. Moreover, results in Table 3 for the simulation

study 2 also imply that we can ignore the di�erence between the independent and

AR(1) structure for Ri(δ).

Penalized robust generalized estimating equations are distinguished from

conventional generalized estimating equations in two aspects. First, the unde-

sirable in�uence of outliers is controlled. In the core of the estimating equa-

tions, ψβ(µi) = ψ(A
−1/2
i (yi − µi)), ψ

γ(r̂i) = ψ(D
−1/2
i (ri − r̂i)) and ψλ(σ2i ) =

ψ(Ã
−1/2
i (ε2i − σ2i )). The function ψ(·) is chosen to limit the in�uence of out-

liers in the response variable, and a common choice is Huber's score function

ψc(x) = min{c,max{−c, x}} for some constant c, say c = 2 in our implemen-

tation. To ensure Fisher consistency, we use Cβi (µi) = E[ψ(A
−1/2
i (yi − µi))],

Cγi (r̂i) = E[ψ(D
−1/2
i (ri − r̂i))] and Cλi (σ2i ) = E[ψ(Ã

−1/2
i (ε2i − σ2i ))]. Once as-

sumed that yi's are under the normal distribution, the three expectations de-

pend only on the choice of constant c in Huber's score function. Another im-

portant robust way is through assigning the weights to each subject by diago-

nal weighting matrices W β
i = diag(wβi1, . . . , w

β
ini

), W γ
i = diag(wγi1, . . . , w

γ
ini

) and

W λ
i = diag(wλi1, . . . , w

λ
ini

). Similar to Qin et al. (2009), the weight function wij

is chosen to be the Mahalanobis distance in form of

wij = w(pij) = min
{

1, [
b0

(pij −mp)TS
−1
p (pij −mp)

]ρ/2
}
,
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with ρ ≥ 1, where mp and Sp are some robust estimates of the location and scale

of pij such as the minimum covariance determinant estimators. We introduce

the weight function to bound the in�uence of leverage points, covariate space

only. As indicated in He et al. (2005), we can include certain covariates that

are likely to contribute to the leverage. In the following simulation study, b0

is chosen as the 95th percentile of the chi-squared distribution with degrees of

freedom equal to the dimension of pij and ρ is �xed as 1. For simplicity and

consistency, we choose pij = xij for all three weighting matrices and denote them

as Wi = diag(wi1, . . . , wini).

The second central function of penalized robusti�ed generalized estimating

equations is capable of selecting variables, which is achieved by adding a penalty

term on each estimating equation. Usually, qτ (l)(·) is the �rst derivative for some
penalty pτ (l)(·), where l = 1, 2, 3. For brevity, we replace pτ (1) , pτ (2) and pτ (3)

by pτ and qτ (1) , qτ (2) and qτ (3) by qτ when no misunderstanding arises. In the

following simulation and real data analysis, we only consider SCAD and ALASSO

penalties to show the asymptotic properties we raise. Fan and Li (2001) de�ned

the smoothly clipped absolute deviation (SCAD) penalty function:

pτ (|θ|) = τ(|θ|){I((|θ|) < τ)}+(a− |θ|/2τ)

a− 1
I(τ < (|θ|) < a)+

a2τ

2(a− 1)(|θ|)
I{(|θ|) ≥ aτ},

in which a = 3.7 was suggested by the authors. As it is well-known that being

a compromise between LASSO and Hard penalties, SCAD itself enjoys unbiased-

ness, sparsity and continuity properties simultaneously, while based on which

many oracle procedures have been proved.

As a consistent version of the L1 penalty, ALASSO penalty is de�ned as

pτ = τ |θ|w, for a known data�driven weight w. In this paper, we employ the

weight w = 1/|θ̃|, where θ̃ stands for the regression coe�cient estimates obtained

from solving (2.2)�(2.4) without penalty.

2.3 Asymptotic properties

We denote the m subjects based penalized estimator θ̂m = ((θ̂s1m )T , (θ̂s2m )T )T for

the true value θ0 = ((θs10 )T , (θs20 )T )T , where θs10 and θs20 are the nonzero and zero

components of θ0 respectively. Denote the dimension of θ
s1
0 by s1 and s = s1+s2.

The parameter space is assumed compact and the true value θ0 is in the interior
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of the parameter space Θ.

In what follows we �rst show that the penalized estimator θ̂m exists and

converges to θ0 at the rate Op(m
−1/2), implying that it has the same consistency

rate as the ordinary estimator. We then prove that the
√
m�consistent estimator

θ̂s1m has the asymptotic normal distribution and possesses the oracle property

under certain regularity conditions.

Theorem 1. Under the assumptions in S1 of the supplementary material,

the following results hold:

(a). There exists an approximate zero-crossing solution θ̂ of U(θ) = 0, such

that θ̂ = θ0 +Op(m
−1/2).

(b). For any
√
m consistent approximate zero-crossing solution of U(θ) = 0,

we have

lim
m→∞

P{θ̂j = 0, j > s1} = 1.

The de�nition of zero-crossing estimator θ̂, which is introduced in Johnson

et al. (2008), is given in S1 of the supplementary material. Theorem 1 implies

that when we choose proper τm, our robust penalized GEE approach can simul-

taneously achieve the
√
m consistency of the regularized regression coe�cient

estimation and the consistency of variable selection.

To obtain the asymptotic distribution of θ̂, we denoteB = limm→∞
1
mCov[UR(θ0)]

and assume it to be positive de�nite. The de�nition of UR(θ0) is given in sup-

plement S1. We assume κm(θ) = E[ 1
mU

R(θ)], κm(θ0) = 0, κm(θ) is contin-

uous on Θ and κm(θ) is di�erentiable at θ0 with nonsingular derivative ma-

trix G. De�ne cm = (qτm(|θs101|)sgn(θs101), . . . , qτm(|θs10s1 |)sgn(θs10s1))T and Ω =

diag{−q′τm(|θ0|)sgn(θ0)}, where τm is equal to either τ
(1)
m , τ

(2)
m or τ

(3)
m , depend-

ing on whether θ0j is a component of β0, γ0 or λ0 (1 ≤ j ≤ s). θ0j is the jth

component of θ0, and θ
s1
0j is the jth component of θs10 (1 ≤ j ≤ s1).

Theorem 2. Under the mild conditions as those given in S1 of the supple-

mentary material, for SCAD penalty we have

√
m(Gs1m + Ωs1

m){θ̂s1m − θ
s1
0 + (Gs1m + Ωs1

m)−1cm} → Ns1(0, Bs1)

in distribution, where Bs1 , Gs1m and Ωs1
m are the s1× s1 submatrix of B, G and Ω

corresponding to the nonzero components θs10 .
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As a result, the asymptotic covariance matrix Cov(θ̂s1m ) of θ̂s1m is

1

m
(Gs1m + Ωs1

m)−1B̂s1
m (Gs1m + Ωs1

m)−1.

That is to say, our proposed robust penalized joint model based on SCAD penalty

possesses the oracle property that the true model can be correctly identi�ed if

it has been known in advance. Proofs of Theorems are sketched in S1 of the

supplementary material.

2.4 Implementation

An iterative MM algorithm for estimating β, γ and λ is described in detail in S2

of the supplementary material. Meanwhile, the choice of τ is critical. In practice,

we select τ (1) by minimizing the robusti�ed generalized cross-validation (GCV)

criterion:

GCVβ(τ) =
RSSβ(τ)/m

{1− d(τ)/m}2
,

where RSSβ(τ) is the robusti�ed residual sum of squares

m∑
i=1

[Wiψ(A
−1/2
i (yi − xiβ̂τ ))]2,

and d(τ) is the e�ective number of parameters, that is dβ(τ) = tr([Ĝ(β) +

∆τ (β̂τ )]−1[Ĝ(β)]T ), here β̂τ is the solution of the penalized robust GEE when

τ is �xed. We select τ̂ = argminτGCVβ .

Similar to the choice of τ (1) we select tuning parameters τ (2) and τ (3) by

minimizing the robusti�ed GCV statistics

GCVγ(τ) =
RSSγ(τ)/m

{1− dγ(τ)/m}2
, GCVλ(τ) =

RSSλ(τ)/m

{1− dλ(τ)/m}2
,

where RSSγ and RSSλ are the corresponding robusti�ed residuals, respectively.

Speci�cally, RSSγ(τ) =
∑m

i=1[Wiψ(D
−1/2
i (ri−r̂i))]2 andRSSλ(τ) =

∑m
i=1[Wiψ(Ã

−1/2
i (ε̂2i−

σ̂2i ))]
2. dγ(τ) and dλ(τ) are the e�ective numbers of covariance parameters.

To avoid the computational burden, we recommend selecting parameters se-

quentially. To be speci�c, we choose tuning parameters following the steps:

(1) Fix τ (2) = τ (3) = 0, choose τ̂ (1) = argminτ (1)GCVβ(τ (1));

(2) Fix τ (1) = τ̂ (1) and τ (3) = 0, choose τ̂ (2) = argminτ (2)GCVγ(τ (2));
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(3) Fix τ (1) = τ̂ (1) and τ (2) = τ̂ (2), choose τ̂ (3) = argminτ (3)GCVλ(τ (3));

(4) The �nal choice is (τ̂ (1), τ̂ (2), τ̂ (3)).

The �exible procedure of tuning parameter selection has several merits. First,

it largely reduces the computational burden comparing to minimizing GCVs in

a three-dimensional parameter space. Second, even two similar estimating equa-

tions of covariance parameters as that of the mean parameter have been proposed,

we have to admit that in some cases, pursuing an accurate estimation on covari-

ance structure is not of the same priority as the mean estimation. From a numer-

ical point of view, minimizing GCVγ and GCVλ do not always bene�t for mean

estimation. Moreover, simplifying the procedure of tuning parameters selection

is helpful to stabilize the algorithm under contaminations. As a result, we do not

recommend minimizing GCVβ , GCVγ and GCVλ simultaneously. Sequentially

selecting tuning parameters suggests us to adjust and stabilize selection process

while balancing the importance of estimation for mean and covariance structure.

3. Simulation

In this section, we conduct a simulation study to assess the performance of

the proposed estimators mainly from three aspects: (1) e�ciency of the proposed

robust model compared with the corresponding non-robust version; (2) necessity

of the proposed robust method with the existence of outliers and (3) comparison

with classical GEE method under covariance matrix misspeci�cation.

We compare model errors of di�erent variable selection procedures using me-

dian of model error (MME), where model errors are evaluated following Fan and

Li (2001) as:

MEβ = (β̂ − β0)TXXT (β̂ − β0),

MEγ = (γ̂ − γ0)TTT T (γ̂ − γ0), MEλ = (λ̂− λ0)TZZT (λ̂− λ0),

where X = (XT
1 , . . . , X

T
m)T , T = (T T1 , . . . , T

T
m)T , and Z = (ZT1 , . . . , Z

T
m)T . We

employ average correctly �t percentage (CF%) to measure the accuracy of the

model selection procedure, where correctly �t means that the procedure select

the exact subset model. Moreover, we compare the average numbers of regression

coe�cients that are correctly shrunk (CS) to zeros, which measure the complexity

of the selected model. In sum, MME , CF% and CS are supplementary to each

other for measurement of model accuracy. The replications of each scenario are
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200 times.

In simulation studies, we generate balanced data sets (i.e. ni = n) for conve-

nience. In practice, our method also works well for the nearly balanced data set

(Zhou and Qu, 2012). For example, if we simulate the data set with missing prob-

ability at 0.2 (similar to simulation study 1 in Fan and Li, 2001), the estimates for

both mean and covariance model are still consistent. These results are omitted

for brevity. In the real data example, we can also handle unbalanced data when

the observation time information is available. This is a reasonable assumption

for longitudinal data, as the subjects' measurements are recorded along with the

observation time.

Study 1. We simulate 100 (or 200) subjects, each of which has 5 observa-

tions drawn from the multivariate normal distribution N5(µi,Σi). The true

values of the mean parameter and log-innovation variances are chosen to be

β = (3, 0, 0,−2, 1, 0, 0, 0, 0,−4)T and λ = (0, 1, 0, 0, 0,−2, 0)T , respectively. T-

wo speci�cations are designed for generalized autoregressive parameters: (1)

γ = (0, 0, 0, 0, 0, 0, 0)T and (2) γ = (0.2, 0, 0, 0, 0, 0, 0)T . The mean covariates

xij = (xijt)
10
t=1 are random samples drawn from the multivariate normal dis-

tribution with mean 0 and covariance matrix of AR(1) structure with variance

σ2 = 1 and correlation parameter ρ = 0.5 (i = 1, . . . , 100; j = 1, . . . , 5). Then

gijk = (xijt − xikt)7t=1 and zij = (xijt)
7
t=1 are covariates for the generalized au-

toregressive parameters and the log-innovation variances. Using these values,

the mean µi and covariance matrix Σi are constructed through the modi�ed C-

holesky decomposition from (2.2) � (2.4). The responses yi's are then drawn from

the multivariate normal distribution N(µi,Σi) (i = 1, . . . , 100).

To investigate the robustness of the proposed robust variable selection method

against outliers, we consider two contaminations:

C0: randomly choose 1% of xij1 to be xij1 − 1;

C1: randomly choose 2% of xij1 to be xij1 − 3 and 2% of yij to be yij + 10.

NC represents no contamination situation hereafter. C1 is commonly used

contamination setting in previous research on robust method. For the purpose of

comparing the performance of robust model and non-robust model, we consider

a tiny contamination in C0. The initial value of the mean estimation is obtained

from the robust GEE estimation in He et al. (2005) with independent working
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correlation, which in return guarantees consistency of the autoregressive param-

eters and innovative parameters after the �rst iteration. If the covariance matrix

falls into the spanned space of the covariates, the proposed method converges

quickly under no contamination, usually in a few steps of iterations. However, in

non-robust modeling, traditional MM algorithm has a large probability of non-

convergence under contaminations. Typically, in C1, 90% of the 200 (180) times

of replications cannot obtain a �nal estimation due to divergence of iteration

in covariance estimation, even when the initial value of estimation for the mean

parameter β is close to the true value. Moreover, 10%−20% of the non-robust al-

gorithm fails to converge in C0, where the perturbation is almost negligible. This

fact supports the necessity of developing a robust variable selection procedure

over its non-robust version in joint modeling of longitudinal data.

To check the asymptotic properties, we simulate with sample size of 100 and

200 subjects. In Table 1, we list the median of model error (MME), average

correctly �t percentage (CF%) and average numbers of regression coe�cients

that are correctly shrunk (CS) for both robust and non-robust methods, under

NC (no contamination) and C0 (tiny contamination). Notice that the results for

C0 were obtained based on convergence cases only. Rscad and Ralasso represents

the proposed robust method employing SCAD and ALASSO respectively. NR is

the non-robust method.

First, as the number of subjects m increases, MME of both robust and non-

robust methods decreases, while CF% and CS approach to 1 and the true number

of zero parameters respectively. These are consistent with the oracle property.

Second, Rscad and NR method perform equally well in variable selection under

NC, although acceptable loss of e�ciency in robust method can be detected from

slightly larger MME (in NC Rscad comparing to NC NR). However, under C0,

robust method apparently outperforms non-robust method in both estimation

e�ciency and variable selection. Especially in covariance model identi�cation,

non-robust method fails to correctly identify innovation variance model under

such a tiny contamination in most replications, which indicates that the non-

robust joint model is extremely sensitive to perturbations.

Next we compare the performance of Rscad and Ralasso. We �nd that Rscad

outperforms Ralasso in β and λ estimation and Ralasso performs better in γ es-
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timation. In fact, SCAD allows almost no penalty if the true parameter is far

from 0 and ALASSO penalizes all parameters, which will increase the MME in its

performance, especially in λ. In sum, although both robust methods can resist

the contamination according to the simulation, Rscad is preferred.

Standard errors for SCAD estimators in Study 1 for non-zero parameters

(β1, β4, β5, β10, γ1, λ2 and λ6) are attached in Table S3.1 of the supplementary

material. In fact, the standard errors of the robust method are close to those of

the non-robust method under no contamination and are much smaller under con-

tamination C0. To investigate the in�uence of outliers in covariance estimation,

we list entropy losses and quadratic losses (de�ned in S3 of the supplementary

material) in Table 2. Again, we �nd poor performance of the non-robust method

in C0 comparing to the robust approach in loss comparison. Consequently, we

conclude that our robust joint model is necessary in research of joint modeling

using the modi�ed Cholesky decomposition in longitudinal data analysis.

Study 2. In this study, we aim to look into the e�ect of covariance misspeci�ca-

tion on mean estimation. We compare the performance of the robust penalized

joint model (RPJ, denoted as rpj in Table 3) method with that of robust and

non-robust penalized generalized estimating equations (RPGEE and PGEE, de-

noted as rpgee and pgee) methods that assume a �xed working correlation matrix

and solve (2.2) for the mean. The most salient di�erence of the three methods is

that our joint model builds regression models after decomposing the covariance

matrix, while RPGEE and PGEE treat the covariance matrix as nuisance where

the marginal variance of yi is estimated by the sample. In PGEE, we set the tun-

ing parameter of Huber function c as 1000 and the weight W = I when solving

(2.2) for the mean.

Under the same mean establishment in Study 1, we consider three normal

covariance structures: working independence (IN), auto-regressive (AR) and ex-

changeable (EX) with correlation parameter 0.5. We compare the performance

of eight estimators: rpjar and rpjin are robust joint models with independent

and AR(1) correlation structure assumptions for Cov(ε2i ) in (2.4) respectively;

rpgeeein, rpgeeear and rpgeeeex (or pgeeein, pgeeear and pgeeeex) are robust (or

non-robust) penalized GEE estimations with IN, AR and EX as working correla-

tion matrices. We adopt SCAD penalty in the whole study.
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Table 3 lists the results under NC and C1. In the table, we employ M-

RME (the median of relative model error) to compare the performance of eight

estimators, where the relative model error of the estimator is de�ned as

ME (model error) of the estimator

ME of PGEE estimator with true covariance matrix
.

On one side, in the absence of outliers (NC), in general, pgee estimators perform

slightly better than rpgee estimators which in turn are better than the rpj esti-

mators. Besides, rpjin and rpjar always have similar performance, which suggests

that the choice of the δ in (2.4) would not have much e�ect on the mean and

covariance estimation. As a result, we �x δ = 0 in a later application.

On the other side, under C1, rpj estimators improve substantially over the

rpgee and pgee estimators. Without the bounded score on the mean estimator,

pgee mean estimators collapse in any of IN, AR or EX covariance structure,

as all MRME's for rpj and rpgee are less than 1 in C1. By adopting the robust

estimator for the mean, rpgee estimators has reasonable performance on the mean

estimation. However, rpj estimators further improve the performance of the mean

estimator (variable selector). Standard errors for the mean estimators can be

found in supplementary Table S3.2, which reveals the in�uence of outliers on the

mean estimation again.

Furthermore, Table S3.3 of the supplementary material lists entropy losses

and quadratic losses on covariance matrix estimation. When there is no contam-

ination, rpgee and pgee have comparable performance and are better than rpj.

However, under C1, the estimation of the covariance matrix using GEE (both

robust and non-robust, i.e. rpgee and pgee) can be seriously a�ected by the

contamination.

4. Real data analysis

In this section, we illustrate our method for estimating the robust penalized

joint mean and covariance by analyzing the hormone data, which has been an-

alyzed be Fung et al. (2002), He et al. (2002), Fan et al. (2012) and Qin et

al. (2009). The data set contains 492 observations of progesterone level within

a menstrual cycle, collecting from 34 women clinical participants. In our model,

the response variable yij is the log-transform of progesterone level and the obser-

vation time is tij , apart from which patient's age and body mass index (BMI) are
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recorded. Two objectives are considered when we implement the robust variable

selection method in joint mean and covariance model to this hormone data set:

(1) to accommodate the in�uence of outliers and leverage points, and to detect

outliers in the data set; (2) to identify statistically signi�cant covariates in linear

models of both mean and covariance matrix.

The starting mean model we proposed is given as follows:

yij = β0 + β1Agei + β2BMIi + β3tij + β4t
2
ij

+β5Agei ×BMIi + β6Agei × tij + β7BMIi × tij + eij

= xTijβ + eij .

For the covariance model, we follow the model in (1) and choose the corresponding

covariates as

gijk = (1, (tij − tik), (tij − tik)2, (tij − tik)3)T , zij = xij .

Three estimators are under consideration: rpj represents the robust penalized

joint model; pj represents the penalized joint model proposed by Kou and Pan

(2011); gee is the widely-used GEE estimators. Table 4 summarizes estimators of

the mean parameters with standard errors. We notice that the joint models (rpj

and pj) are parsimony than gee that they choose the time as the only signi�cant

variable. The observation is consistent with the previous research that both Age,

BMI, their interaction and interactions with time are not statistically signi�cant

in the model. Only time is signi�cant. We also observe that the regression

coe�cients for Time obtained by rpj and pj are rather di�erent. It is due to the

fact that the non-robust pj estimator is a�ected by outliers.

Estimates with standard errors for the generalized autoregressive coe�cients

and innovation variances are summarized in Table 5. We �nd that the cubic

polynomial of time is statistically signi�cant for autoregressive coe�cients γ in

all �ts. Standard errors in non-robust method are larger than those in the robust

method, which support the estimation of the robust model again. Unlike estima-

tors of generalized autoregressive coe�cients, signi�cant covariates for innovation

variances are not found in our analysis. Due to the existence of outliers, the

non-robust method fails to select signi�cant covariates for innovation variances.
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Outlier detection has been done carefully through the procedure. By inves-

tigating into the standardized residuals sij (i.e. the jth component of Σ̂
−1/2
i (yi−

µ̂i)) and the weight function wij , we �nd one observation-level outlier (observa-

tion 10) and one subject-level leverage point (subject 18). pij = (AGEi, BMIi)

is contributed to the weight functions wij in our robust method. Subject 18

is a leverage point which has not been identi�ed before. It has an extremely

high BMI of 38 that heavily downweights the cluster of observations from the

patient. A careful inspection on the standardized residual sij tells us that case

10 is the most extreme point with sij = −6.09. The progesterone level of the

10th observation for subject 1 (case 10) is 2.46, which is very di�erent from its

neighborhood observations 9 and 11 measured one day before and one day after,

with the progesterone level being 12.8 and 13.4 respectively. This inconsistency

has not been noticed in the literature. In fact, all other thirteen observations of

subject 1 range from 8.5 to 13.4 except case 10. In particular, this observation

is the lowest progesterone level in the whole data set. Therefore, we conclude

that case 10 of subject 1 is a clear outlier. The in�uence of this outlier on the

parameter estimates can be referred to Table S4.1 of the supplementary material.

Besides, we also notice that some observations have large standardized residuals,

such as cases 117, 334 and 372, due to the fact that they are extreme values of

the progesterone level within a subject. The e�ects on these potential outliers are

downweighted by our robust method in the estimation of mean and covariance

parameters.
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Table 1: Parameter estimation and selection in Study 1
γ = 0 γ 6= 0

n=100 n=200 n=100 n=200
MME CF% CS MME CF% CS MME CF% CS MME CF% CS

NC NRscad

β 0.040 66.0 5.61 0.030 80.5 5.79 0.032 56.5 5.47 0.021 73.5 5.70
γ 0.016 36.5 5.86 0.000 76.0 6.62 0.021 45.0 5.09 0.004 86.0 5.82
λ 0.057 73.5 4.71 0.032 93.5 4.93 0.043 77.5 4.71 0.026 96.0 4.96
NC Rscad

β 0.050 72.0 5.68 0.040 84.0 5.82 0.039 53.0 5.38 0.026 73.0 5.70
γ 0.018 35.5 5.77 0.000 69.5 6.49 0.025 37.5 5.00 0.006 76.0 5.67
λ 0.078 92.5 4.92 0.048 100 5.00 0.060 93.0 4.92 0.040 99.5 5.00
NC Ralasso

β 0.047 54.5 5.41 0.033 75.5 5.73 0.049 52.0 5.38 0.030 69.0 5.65
γ 0.012 44.5 6.01 0.000 72.0 6.50 0.021 47.0 5.00 0.003 85.5 5.85
λ 0.242 51.0 4.28 0.193 73.5 4.71 0.318 67.0 4.57 0.265 86.0 4.84
C0 NRscad

β 0.068 65.0 5.57 0.067 81.5 5.79 0.068 57.5 5.42 0.066 71.5 5.63
γ 0.021 33.0 5.66 0.000 59.5 6.37 0.061 28.0 4.45 0.039 52.5 5.14
λ 0.331 17.5 3.12 0.520 15.0 3.02 0.408 19.0 3.06 0.575 12.0 2.83
C0 Rscad

β 0.053 72.0 5.67 0.043 85.0 5.84 0.052 52.0 5.34 0.065 87.5 5.87
γ 0.018 35.0 5.82 0.000 72.0 6.55 0.040 31.5 4.77 0.000 71.0 6.53
λ 0.068 91.0 4.91 0.052 99.5 5.00 0.088 85.0 4.83 0.069 99.0 4.99
C0 Ralasso

β 0.055 52.5 5.41 0.038 74.0 5.70 0.091 50.5 5.29 0.061 64.5 5.54
γ 0.013 41.5 5.93 0.000 74.5 6.55 0.049 28.5 4.54 0.017 71.5 5.61
λ 0.280 43.5 4.22 0.224 67.5 4.63 0.550 60.0 4.49 0.420 84.0 4.82

Simulation results of median of model error (MME), average correctly �t percentage (CF%) and aver-
age numbers of regression coe�cients that are correctly shrunk (CS) for both robust (Rscad, Ralasso)
and non-robust (NR) method, under NC (no contamination) and C0 (tiny contamination) with 200
replications.

Table 2: Entropy loss (L1) and quadratic loss (L2) in estimating Σ in Study 1
γ = 0 γ 6= 0

n=100 n=200 n=100 n=200
L1 L2 L1 L2 L1 L2 L1 L2

NR 0.097 0.253 0.024 0.091 0.104 0.249 0.038 0.097
NC Rscad 0.117 0.318 0.036 0.129 0.135 0.361 0.054 0.144

Ralasso 0.189 0.756 0.122 0.528 0.251 1.112 0.151 0.698
NR 0.255 1.070 0.289 1.454 0.463 2.318 0.479 2.911

C0 Rscad 0.107 0.272 0.038 0.139 0.190 0.601 0.049 0.187
Ralasso 0.215 0.900 0.134 0.610 0.436 2.289 0.286 1.473
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Table 3: Simulation results for Study 2
IN AR EX

MRME CF% CS MRME CF% CS MRME CF% CS

rpjar 1.09 92.0 5.92 1.33 76.0 5.74 1.87 67.5 5.63
rpjin 1.09 92.0 5.92 1.34 75.5 5.73 1.87 67.5 5.63
rpgeear 1.04 94.5 5.94 1.12 96.0 5.96 1.56 92.0 5.92

NC rpgeeex 1.04 93.5 5.93 1.20 92.0 5.92 1.15 91.0 5.91
rpgeein 1.07 93.0 5.93 1.33 80.0 5.79 1.92 69.0 5.65
pgeear 0.99 91.5 5.91 1.01 94.5 5.95 1.41 89.5 5.90
pgeeex 0.99 90.5 5.90 1.11 86.5 5.87 1.01 83.5 5.83
pgeein 1.00 91.5 5.92 1.26 72.0 5.70 1.83 63.0 5.57

rpjar 0.08 92.0 5.92 0.08 95.5 5.96 0.10 89.0 5.89
rpjin 0.08 92.0 5.92 0.08 95.5 5.96 0.10 89.0 5.89
rpgeear 0.16 90.0 5.90 0.11 88.5 5.88 0.13 83.0 5.83

C1 rpgeeex 0.16 89.5 5.90 0.10 88.5 5.88 0.13 88.0 5.88
rpgeein 0.15 89.0 5.89 0.09 76.5 5.75 0.11 71.0 5.68
pgeear 0.95 30.0 4.94 0.62 67.0 5.63 0.76 62.5 5.59
pgeeex 0.96 30.5 4.93 0.58 65.0 5.58 0.75 67.5 5.62
pgeein 0.92 28.0 4.88 0.52 54.0 5.43 0.63 48.0 5.34

Simulation results of median of relative model error (MRME), average correctly �t percentage (CF%) and
average numbers of regression coe�cients that are correctly shrunk (CS) under NC (no contamination)
and C1 (contamination) with 200 replications. rpjar and rpjin are robust joint models with independent
and AR(1) correlation structure in (2.4) respectively; rpgeeein, rpgeeear and rpgeeeex (or pgeeein,
pgeeear and pgeeeex) are robust (or non-robust) penalized GEE estimations with IN, AR and EX as
working correlation matrices.

Table 4: Estimators of the mean parameters β and standard errors (inside brackets) for progesterone data

Intercept Age BMI Time Time2 Age× BMI Age× Time BMI× Time
rpj 0.837 0 0 0.691 0 0 0 0

(0.074) (-) (-) (0.053) (-) (-) (-) (-)
pj 0.892 0 0 0.562 0 0 0 0

(0.078) (-) (-) (0.056) (-) (-) (-) (-)
gee 0.870 1.684 -2.671 0.709 0.186 -4.829 1.493 0.701

(0.126) (2.180) (2.928) (0.049) (0.085) (50.09) (0.827) (0.857)

In the table, rpj represents the robust penalized joint model; pj represents penalized joint model proposed
by Kou and Pan (2011); gee is the traditional GEE estimator. Working independence is considered.
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Table 5: Estimates of the generalized autoregressive parameters γ and innovation variance
parameters λ for progesterone data

γ1 γ2 γ3 γ4
rpj 0.902 -2.726 2.339 -0.579

(0.056) (0.203) (0.190) (0.050)
pj 0.882 -2.623 2.185 -0.523

(0.063) (0.234) (0.223) (0.060)

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

rpj -1.111 0 0 0 0.180 45.30 0 -1.317
(0.103) (-) (-) (-) (0.120) (34.50) (-) (2.435)

pj -0.882 -1.527 -0.283 0.186 0.029 56.98 0.175 1.313
(0.099) (1.398) (1.761) (0.086) (0.115) (29.03) (1.699) (2.044)
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