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Abstract

In clinical trials, treatment comparisons are often cast in a regression framework that evaluates the

dependence of the relevant clinical outcomes on treatment assignment and possibly other baseline charac-

teristics. This article introduces a reverse regression approach to randomized clinical trials, with focus on

the dependence of treatment assignment on the clinical outcomes of interest. A reverse regression model is

essentially a semiparametric density ratio model for the outcome distributions in the two treatment groups.

The resulting inferences can be expected to be more robust than those based on fully parametric models

for the outcome distributions and more efficient than nonparametric inferences. In the presence of multiple

endpoints, the reverse regression approach leads to a novel procedure for multiplicity adjustment that is

readily available in standard logistic regression routines. The proposed approach is evaluated in simulation

experiments and illustrated with a real example.

Key words: Density ratio, discriminant analysis, efficiency, logistic regression, multiplicity, semiparametric

likelihood.

1 Introduction

Consider a randomized clinical trial for comparing two treatments with respect to relevant clinical outcomes.

For a patient in the target population, write Y for the outcome of interest, which may be a scalar or a

vector, and Z for the assigned treatment, with Z = 1 for the experimental treatment and 0 for the control

treatment, which may be “no treatment”. Denote by F or G the conditional distribution of Y given Z = 0

or 1, respectively. Then the statistical problem is to compare F and G, which usually has two aspects:

hypothesis testing and estimation. The primary objective of a clinical trial is often to confirm a treatment

effect by rejecting the null hypothesis F = G in favor of an alternative hypothesis which may be “one-

sided” with respect to a certain ordering or more inclusive (F ̸= G). It is generally more difficult to test

multiple endpoints simultaneously than a single endpoint, due to the need to control the familywise type I
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error rate. Common approaches for multiplicity adjustment include Bonferronni-type procedures (e.g., Holm,

1979; Simes, 1986; Hochberg, 1988; Hommel, 1988, 1989), which can be unduly conservative, and resampling-

based procedures (e.g., Westfall and Young, 1993; Troendle, 1995; Reitmeir andWassmer, 1999), which can be

computation-intensive. Beyond significance testing, one may also be interested in estimating the distributions

(F,G) or some functionals of these distributions that can be used to summarize the treatment effect. There

is a great variety of statistical methods to address these research questions, including nonparametric and

parametric methods (e.g., Piantadosi, 2005; Cook and DeMets, 2007; Fairclough, 2010). Regardless of the

degree of parametrization, treatment comparison is usually cast into a regression framework that evaluates

the dependence of Y on Z and possibly some important baseline characteristics.

This article proposes a different regression approach that reverses the roles of Z and Y . The proposed

approach, termed reverse regression, attempts to understand the relationship between Z and Y by modeling

the possible dependence of Z on Y . In terms of (F,G), this reverse regression approach corresponds to

a semiparametric modeling strategy that only specifies the density ratio dG/dF (Qin and Zhang, 1997,

2003; Zhang, 2000). The resulting inferences can therefore be expected to be more robust than inferences

based on parametric models for (F,G). On the other hand, with a smooth model for the density ratio, the

reverse regression approach may provide more insights into the treatment effect, and better efficiency in its

estimation, than does a completely nonparametric procedure. From the reverse regression perspective, the

challenging problem of simultaneous testing for multiple clinical endpoints becomes a routine one of testing

several regression coefficients simultaneously in a logistic regression model. This allows multiple endpoints to

be handled easily using standard procedures, without resorting to Bonferroni-type adjustments or resampling

techniques. Under certain conditions, the signs of the regression coefficients in a reverse regression model

have clinically meaningful interpretations. This motivates “one-sided” tests about the regression coefficients,

which can be derived from the intersection-union (I-U) principle (Casella and Berger, 1990) or by extending

the generalized least squares (GLS) procedures of O’Brien (1984) and Pocock, Geller and Tsiatis (1987).

The rest of the article presents the reverse regression methodology in the following order. Section 2

introduces the main idea and discusses model specification. Section 3 describes the estimation procedure

and presents some asymptotic results. Section 4 addresses issues in hypothesis testing. In Section 5, the

proposed method is evaluated and compared with other methods in simulation experiments. The methods

are further illustrated with a real example in Section 6. The article ends with a discussion in Section 7.

Some technical details, including proofs, are given in the Web Appendix.
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2 Reverse Regression

2.1 Main idea

Suppose F and G have the same support Y with respective densities f and g with respect to a common

measure on Y. The idea of reverse regression is motivated by the following Bayes-type identity:

P[Z = 1|Y = y] =
πg(y)

(1− π)f(y) + πg(y)
= logit−1

{
λ+ log

g(y)

f(y)

}
, (1)

where π = P[Z = 1] and λ = logit(π) = log{π/(1− π)}. This identity has been discussed extensively in the

contexts of case-control studies, discriminant analyses and diagnostic tests (e.g., Anderson, 1972; Prentice

and Pyke, 1979; Qin and Zhang, 1997, 2003; Zhang, 2000). Nonetheless, its implications in randomized

clinical trials seem worth noting. It is immediate from the above expression that f = g if and only if

P[Z = 1|Y = y] is free of y, which suggests that any treatment effect on Y will translate into a non-null

effect in the regression of Z on Y .

Since Z is a binary variable, it seems natural to consider the following logistic regression model:

logit(P[Z = 1|Y = y]) = α+ βTt(y), (2)

where t(y) is a vector of known transformations of y and (α, β) consists of the unknown regression parameters.

The linear form of (2) is not really restrictive because t(·) can be arbitrary. In light of (1), model (2) is

equivalent to a model for the log-density ratio:

log{g(y)/f(y)} = α∗ + βTt(y) (3)

with α∗ = α − λ. This can be regarded as a semiparametric modeling strategy for (F,G) with parameters

(α∗, β, F ), subject to the constraint that∫
Y
exp{α∗ + βTt(y)}dF (y) = 1. (4)

This parametrization allows the treatment effect to be summarized succinctly with a finite-dimensional

parameter β without fully specifying the form of (F,G).

2.2 Choice of t(y)

Specification of the reverse regression model (i.e., possible transformations of Y ) can be facilitated by con-

sidering plausible models for (F,G). Obviously, a reverse regression model derived this way will be more
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flexible than the original models for (F,G). In general, if F and G belong to the same exponential family,

then t(y) will consist of sufficient statistics for the family. Consider an exponential family of densities that

can be expressed in full rank as

pθ(y) = q(y) exp

{
c0(θ) +

L∑
l=1

cl(θ)tl(y)

}
, θ ∈ Θ,

and suppose f = pθ0 and g = pθ1 , where θ0 and θ1 range over Θ and may or may not relate to each

other. Then it is convenient to take t(y) = (t1(y), . . . , tL(y))
T in model (2) and the corresponding regression

parameters are given by α = λ+c0(θ1)−c0(θ0) and β = (β1, . . . , βL)
T, with βl = cl(θ1)−cl(θ0), l = 1, . . . , L.

Some of the tl(y) can be omitted from the logistic regression if it is predetermined that βl = 0 for some l.

The Web Appendix gives some specific examples of t(y) motivated by parametric models for (F,G).

Now suppose there are several clinical endpoints of interest, so that Y = (Y[1], . . . , Y[J])
T, where each Y[j]

is an individual endpoint. If the Y[j], j = 1, . . . , J , are conditionally independent given Z, then t(y) in (2)

will take the form (t1(y1)
T, . . . , tJ (yJ )

T)T, where each tj is, up to a linear transformation, the appropriate

form for Y[j] in the reverse regression model for Y[j] alone. Thus independence among the Y[j] implies no

interactions in the reverse regression. The converse is not true. For example, consider the case J = 2 and

write

g(y1, y2)

f(y1, y2)
=

g1(y1)g2|1(y2|y1)
f1(y1)f2|1(y2|y1)

,

where the subscripts to f and g denote the (conditioning) variables concerned. Clearly, y2 will not even appear

in the reverse regression if f2|1 = g2|1, in which case Y[1] might serve as a surrogate for Y[2]. More generally,

there will be no interactions between Y[1] and Y[2] in the reverse regression if the ratio g2|1(y2|y1)/f2|1(y2|y1)

can be expressed as the product of a function of y1 with a function of y2. As a specific example, suppose

F2|1(·|y1) = N(η00 + η01y1, σ
2
0) and G2|1(·|y1) = N(η10 + η11y1, σ

2
1). Then Y[1] and Y[2] will interact (in the

form Y[1]Y[2]) in the reverse regression of Z on Y if and only if η01/σ
2
0 ̸= η11/σ

2
1 . Thus, interactions among

the Y[j] may or may not be necessary, depending on the exact dependence structure.

The foregoing discussion suggests that a reverse regression model can in practice be constructed as follows.

The first step is to specify tj for each individual endpoint, based on a plausible model for (Fj , Gj), where Fj

(or Gj) denotes the distribution of Y[j] given Z = 0 (or 1). If the sample size is large enough, multiple models

may be considered for the same endpoint, and the suggested terms can be combined into tj . In addition to the

sample size, the choice of tj also depends on the main objective of the analysis (estimation versus hypothesis

testing), as will be discussed later. Once the tj have been chosen for all endpoints, possible interactions
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among these terms can be considered in the logistic regression framework, using a model selection criterion

such as the Akaike information criterion (AIC).

3 Parameter Estimation

3.1 Estimands

A commonly used measure of treatment effect is given by

E[h(Y )|Z = 1]− E[h(Y )|Z = 0] =: (G− F )h,

where h is a real-valued function. This includes the usual comparison of means for a continuous outcome

as well as the so-called responder analysis, where h is an indicator function corresponding to some success

criterion for individual patients. The functional (G − F )h can be helpful in simultaneous evaluation of

several endpoints, in which case h will be a many-to-one utility function that defines a composite endpoint.

For example, a composite endpoint can be used to represent the tradeoff between therapeutic benefits and

adverse side effects. Specific forms of composite endpoints include (weighted) averages, sums or maxima over

different scales or time points, measures of change over time, the area under a response curve, and the time to

reach a peak or a prespecified value (Fairclough, 2010, Chapter 14). In addition to the functional (G−F )h,

one may be interested in estimating selected quantiles, the receiver operating characteristic (ROC) curve, or

the area under the ROC curve (AUC). While the ROC curve is typically used in diagnostic medicine, the

AUC may be of interest in studies of therapeutic agents because of the following interpretation: If F and G

are both continuous, then AUC = P[Y1 > Y0] for independent random variables Y0 ∼ F and Y1 ∼ G.

3.2 Estimators

The data consist of (Zi, Yi), i = 1, . . . , n, which we regard as independent copies of (Z, Y ). As usual, the

regression parameters (α, β) will be estimated by solving the score equation
∑n

i=1 s(Zi, Yi;α, β) = 0, where

s(z, y;α, β) = [z − logit−1{α+ βTt(y)}]

 1

t(y)

 .
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Denote the resulting MLE by (α̂, β̂), and let π̂ = n−1
∑n

i=1 Zi, λ̂ = logit(π̂), and α̂∗ = α̂− λ̂. Following Qin

and Zhang (1997) and Qin (1999), (F,G) can be estimated by

F̂ =
1

n

n∑
i=1

δYi

1− π̂ + π̂ exp{α̂∗ + β̂Tt(Yi)}
,

Ĝ =
1

n

n∑
i=1

exp{α̂∗ + β̂Tt(Yi)}δYi

1− π̂ + π̂ exp{α̂∗ + β̂Tt(Yi)}
,

(5)

where δy denotes a point mass of 1 at y. Note that Ĝ is a weighted empirical distribution of the Yi with

weights given by the fitted values from reverse regression. The same can be said about F̂ except that the

weights are one minus the fitted values. It can be shown as in Qin and Zhang (1997) and Qin (1999) that

(π̂, α̂∗, β̂, F̂ ) maximizes the semiparametric likelihood

n∏
i=1

[(1− π)F{Yi}]1−Zi [π exp{α∗ + βTt(Yi)}F{Yi}]Zi

subject to the constraint (4). Substituting (F̂ , Ĝ) into a chosen measure of treatment effect yields an

estimator of the effect measure.

3.3 Asymptotic theory

Under standard regularity conditions (e.g., van der Vaart, 1998, chapter 5),

√
n

α̂− α

β̂ − β

 = I−1
α,β

1√
n

n∑
i=1

s(Zi, Yi;α, β) + op(1), (6)

where Iα,β = var[s(Z, Y ;α, β)] is the Fisher information for (α, β). Qin and Zhang (1997) study the asymp-

totic behavior of (F̂ , Ĝ) as distribution functions, Zhang (2000) analyzes the corresponding quantile functions,

and Qin and Zhang (2003) extend these results to the ROC curve and the associated AUC. For functionals

of the form (G− F )h, the following result gives the asymptotic distribution of the estimator (Ĝ− F̂ )h.

Theorem 1. Suppose (2) and (6) hold, and let h : Y → R be such that E[h(Y )2] < ∞. Then
√
n{(Ĝ− F̂ )−

(G− F )}h converges to a normal distribution with mean 0 and variance var(U1) + var(U2), where

U1 =
E[Z|Y ]{h(Y )−Gh}

π
− (1− E[Z|Y ]){h(Y )− Fh}

1− π
,

U2 =
aTI−1

α,βs(Z, Y ;α, β)

π(1− π)
−
(
Gh

π
+

Fh

1− π

)
(Z − E[Z|Y ]).

In a randomized clinical trial, the true values of π and λ are known, making it possible to substitute

π and replace α̂∗ with α̂ − λ in (5). Denote by (F̂ ∗, Ĝ∗) the result of an arbitrary combination of such

replacements. The next result shows that such replacements will not lead to any efficiency gain.
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Theorem 2. Under the conditions of Theorem 1,
√
n{(Ĝ∗ − F̂ ∗) − (G − F )}h converges to a zero-mean

normal distribution with variance greater than or equal to the asymptotic variance of (Ĝ− F̂ )h.

Without making any parametric assumptions, one could estimate (F,G) with the empirical distributions

in each arm:

F̃ =

∑n
i=1(1− Zi)δYi∑n
i=1(1− Zi)

, G̃ =

∑n
i=1 ZiδYi∑n
i=1 Zi

.

Interestingly, (F̃ , G̃) is equivalent to (F̂ , Ĝ) for estimating the expectations of certain functions h(Y ). Specif-

ically, it follows from the definition of (α̂, β̂) that F̂ h = F̃ h and Ĝh = G̃h if h(Y ) is a linear combination

of 1 and t(Y ). In general, (F̃ , G̃) will be more robust than (F̂ , Ĝ), which relies on model (2). On the other

hand, (F̂ , Ĝ) can be expected to be more efficient under model (2).

Theorem 3. Under the conditions of Theorem 1,
√
n{(G̃− F̃ )−(G−F )}h converges to a zero-mean normal

distribution with variance greater than or equal to the asymptotic variance of (Ĝ− F̂ )h, with equality holding

if and only if h(·) is a linear combination of 1 and t(·).

Both Theorems 2 and 3 can be easily adapted to quantile estimation. An analogue of Theorem 3 for

estimating the ROC curve is given by Qin and Zhang (2003).

4 Hypothesis testing

As noted earlier, the null hypothesis F = G is true if and only if there is no association (i.e., β = 0) in the

reverse regression model (2). For the latter hypothesis, it is straightforward to conduct a Wald test or a

likelihood ratio test using standard procedures for logistic regression. It is important to note that correct

specification of model (2) is not essential for the validity of the test. Indeed, under the null hypothesis,

any form of (2) is correctly specified with β = 0, so the type I error rate is effectively controlled, at least

asymptotically. On the other hand, the test can become less powerful or even inconsistent when model (2)

is misspecified or overparameterized. For simultaneous testing of multiple endpoints, this approach removes

the need to perform a conservative Bonferroni-type adjustment for multiplicity (e.g., Holm, 1979; Simes,

1986; Hochberg, 1988; Hommel, 1988, 1989) or to rely on computation-intensive resampling techniques (e.g.

Westfall and Young, 1993; Troendle, 1995; Reitmeir and Wassmer, 1999).

In clinical trials, one is usually more interested in differences between F and G in certain “favorable”

directions. For a single endpoint, a one-sided test under the reverse regression approach is made possible by

the following observation: A positive effect of Y on Z in the reverse regression, in the sense that P[Z = 1|Y =
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y] increases with y, translates into a monotone density ratio g(y)/f(y), which implies that G is stochastically

larger than F . This corresponds to a trivial test of the sign of β if the reverse regression model contains only

one term which happens to be a monotone function of Y . If the reverse regression model contains several

terms, all of which are increasing functions of Y , then it makes sense to restrict attention to alternatives

where each component of β is positive. A formal test is readily available from the I-U principle (Casella and

Berger, 1990, Section 8.2.4). Denote by pj the p-value for testing the null hypothesis βj ≤ 0 against the

alternative hypothesis βj > 0, where βj denotes the jth component of β. Then p = maxj pj is the p-value

for the I-U test of the overall null hypothesis that βj ≤ 0 for some j. Note that, under the usual “forward

regression” approach, it would not be straightforward to test for stochastic monotonicity without strong

distributional assumptions. Note also that, unlike two-sided tests, the one-sided reverse regression test does

require correct specification of the reverse regression model.

For multiple endpoints, “one-sided” test procedures that are sensitive to treatment differences in favorable

directions have been proposed by O’Brien (1984) and Pocock, Geller and Tsiatis (1987) under the “forward

regression” approach. Under the reverse regression approach, it is natural to consider tests concerning the

signs of the elements of β. These signs can be interpreted in a manner similar to the case of a single endpoint,

under suitable conditions concerning the dependence among the Y[j]. Recall that Fj (or Gj) denotes the

distribution of Y[j] given Z = 0 (or 1).

Theorem 4. For Y = (Y[1], . . . , Y[J])
T, suppose

logit(P[Z = 1|Y ]) = α+

J∑
j=1

βjtj(Y[j]),

where each tj is scalar-valued and strictly increasing. Suppose the Y[j] are positively dependent in the control

arm in the sense that for any x ∈ R and any subset of distinct indices {j1, . . . , jK} ⊂ {1, . . . , J}, the

conditional probability P[Y[j1] > x|Y[j2], . . . , Y[jK ], Z = 0] is increasing in each of the Y[jk], k = 2, . . . ,K. If

βj ≥ 0 for every j, then Gj is stochastically larger than Fj for every j.

In practice, it may be reasonable to expect a positive dependence structure among several clinical end-

points in the same treatment group. Under the conditions of Theorem 4, it makes sense to restrict attention

to alternatives where βj > 0 for all j. An I-U test can then be constructed as before. Alternatively, a GLS

test can be obtained by extending the procedures of O’Brien (1984) and Pocock, Geller and Tsiatis (1987)

as follows. Consider the test statistic T = n1/2eTV̂ −1
β β̂/(eTV̂ −1

β e)1/2, where e = (1, . . . , 1)T and V̂β is a

consistent estimate of the asymptotic variance of β̂. It follows from (6) and Slutzky’s theorem that T is
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asymptotically standard normal if β = 0 (i.e., F = G). The test will reject for large values of T , which are

more likely if the βj are positive.

5 Simulation Results

5.1 Estimation

The reverse regression method is compared with a nonparametric method for estimating (G − F )h in a

simulation study. Specifically, we consider the following two cases:

Case 1. A composite endpoint based on two continuous outcomes is defined by requiring that a patient-level

success criterion be met for each outcome. Specifically, F is the standard bivariate normal distribution

with correlation coefficient ρ, G is a bivariate normal distribution with mean vector µ and the same

variance matrix as F , and h(y1, y2) = 1y1>0,y2>0.

Case 2. A composite endpoint is defined as the maximum of two continuous outcomes, with (F,G) following

the same specification as in Case 1 and h(y1, y2) = y1 ∨ y2, where ∨ denotes maximum.

These cases are chosen to cover some situations of practical relevance and also to avoid the trivialities noted

in Theorem 3. In each case, 10,000 trials are simulated for each combination of parameter values. Each trial

consists of 500 patients allocated according to π = 0.5.

[Table 1 about here.]

Table 1 compares the reverse regression method with the nonparametric method described in Section 3.3.

The reverse regression method is based on a logistic regression model with linear terms (y1, y2). Both methods

are virtually unbiased, so the comparison is focused on efficiency. As expected, the reverse regression method

is generally more efficient than the nonparametric method. An obvious reason for the observed efficiency

gain is the fact that correct modeling assumptions increase the amount of relevant information. In addition,

it is possible that part of the efficiency gain comes from the ability to work with the continuous outcomes

rather than a dichotomized version. In Case 2, the difference between the two methods is clearly larger when

the two continuous variables are uncorrelated then if they are strongly correlated. A heuristic explanation

is that, with ρ approaching 1, the two continuous variables act like one, in which case the reverse regression

method is equivalent to the nonparametric method according to Theorem 3.
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The above observations may help to address a common criticism of responder analysis and the use of

composite endpoints, namely that information is lost when continuous variables are dichotomized or otherwise

summarized prior to analysis (e.g., Senn and Julious, 2009). A possible solution is to utilize all the available

information, as opposed to dichotomized or reduced data, to improve the precision in estimating the quantity

of interest (e.g., proportion of responders, mean value of a composite endpoint). In other words, one can

work with a simplified estimand, which may be easier to interpret by clinicians, without reducing the data

and losing information.

5.2 Hypothesis testing

Extensive simulation experiments are conducted to evaluate the reverse regression method for testing hy-

potheses. We start by considering the bivariate case Y = (Y[1], Y[2])
T where both components are continuous.

A common method for this situation is the multivariate analysis of variance (MANOVA), which assumes

that F and G are both bivariate normal with the same variance matrix and possibly different mean vectors

(Hand and Taylor, 1987). For the same situation, the appropriate reverse regression model would include

Y[1] and Y[2] as the only two linear terms. Of course, this reverse regression model does not require bivariate

normality (only a suitable form of the density ratio), and the resulting test seems more generally applicable

than the MANOVA test. One would expect the MANOVA test to be more powerful than the reverse regres-

sion test under the required assumptions (bivariate normality, equal variance), and to become invalid (in the

sense of exceeding the nominal level) or less powerful when its assumptions are violated. Surprisingly, the

two tests perform almost indistinguishably in a wide range of simulated scenarios including non-normality

(results not shown). This observation suggests a possible connection between the MANOVA test and reverse

regression models of certain forms.

Assuming bivariate normality but not equal variance, the hypothesis F = G can be tested using a

likelihood ratio test based on the bivariate normal model. This corresponds to a reverse regression model

with five terms (Y[1], Y[2], Y
2
[1], Y

2
[2] and Y[1]Y[2]). The two methods are compared in a simulation study that

consists of the following three cases:

Case A. The bivariate normal model is correctly specified. Specifically, F is the standard bivariate normal

distribution with correlation coefficient ρ, and G is a bivariate normal distribution with mean vector

µ, variances (σ2
1 , σ

2
2) and the same correlation coefficient.

Case B. The bivariate normal model is correct under the null but not under the alternative. We first
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generate Y as a bivariate standard normal vector with correlation coefficient ρ, and then generate Z

from a reverse regression model where α is chosen such that P[Z = 1] = 0.5 for given β.

Case C. The bivariate normal model is totally misspecified. Specifically, Y has standard exponential

marginals and a normal copula (Nelsen, 1998) with correlation coefficient ρ, and Z is generated from

a reverse regression model where α is chosen such that P[Z = 1] = 0.5 for given β. The generation of

Y uses the same mechanism as in Case B followed by a monotone transformation of each component

into a standard exponential variable.

In each case, 10,000 trials are simulated for each combination of parameter values. Each trial consists of

500 patients allocated according to π = 0.5. Table 2 presents the results (type I error rate and power) of

likelihood ratio tests at level 0.05 based on the two models (bivariate normal model versus reverse regression).

The two methods perform similarly under the bivariate normal model (Case A) and even when the model

is slightly misspecified (Case B). However, when the bivariate normal model is grossly misspecified (Case

C), the “forward” method fails to control the type I error rate while the reverse regression method remains

valid.

[Table 2 about here.]

Finally, consider the bivariate case Y = (Y[1], Y[2])
T where Y[1] is binary and Y[2] is continuous. The

data are generated as in Case A of the previous simulation study with σ1 = σ2 = 1 except that the first

component of Y is then dichotomized according to its sign (1 if positive, 0 otherwise). A common method for

this type of data is a Bonferroni procedure, which in this case consists of a t-test for the continuous variable

and a z-test for the binary one, both at level 0.025. This will be compared with a likelihood ratio test based

on a reverse regression model with two linear terms (Y[1] and Y[2]). Note that this reverse regression model

is not correctly specified; this is both for simplicity (the true model is not straightforward to derive) and to

reflect the reality that all models are wrong in practice. The results, shown in Table 3, indicate that the two

methods perform similarly when the two variables are independent (ρ = 0) and that the reverse regression

method can be much more powerful (for some alternatives) when the underlying correlation is high (ρ = 0.9).

[Table 3 about here.]
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6 A Data Example

We now illustrate the methods with real data from a randomized, placebo-controlled, double-blinded clinical

trial (Reitmeir and Wassmer, 1999). The main objective of the trial was to demonstrate the efficacy of a new

drug for treating patients with anxiety attacks, tension states or uneasiness of non-psychotic origin. The

evaluation of efficacy was based on changes (from baseline) in the following six measurements: the somatic

and psychic scores (1–2) of the Hamilton Anxiety scale, the anxiety, aggressiveness and tension scores (3–5)

of the “Erlanger Angstskala”, and a summary score of complaints (6). Higher values of these scores represent

undesirable outcomes, and we therefore negated the original values in defining Y . Figure 1 shows boxplots

for the six endpoints (as indicated above) in each treatment group. Available for our analysis were data from

69 patients (32 in the experimental group, 37 in the placebo group). The observed treatment difference was

in the favorable direction for each endpoint, with a standardized mean difference ranging from 0.17 to 2.07.

In univariate analyses using t-tests, three endpoints were marginally significant (0.01 < p < 0.05) and the

other three were not significant (p > 0.1) against one-sided alternatives. With a Bonferroni correction, none

of these endpoints would be significant. Table 1 of Reitmeir and Wassmer (1999) gives more details about

these univariate analyses.

[Figure 1 about here.]

To construct a reverse regression model for all six endpoints, we start by identifying the appropriate

form of tj for each individual endpoint. The empirical distributions shown in Figure 1 suggest that a normal

model may be appropriate for each endpoint in each treatment group. For the second, third and fifth

endpoints, Figure 1 also suggests that a common variance may be assumed for the two treatment groups.

The common variance assumption has less empirical support for the other three endpoints; however, the

data do not provide clear evidence to the contrary, either. For example, in a univariate reverse regression

model that already includes Y[j], the term Y 2
[j], which would be required to account for unequal variances,

is not significant at all (p > 0.5 for all endpoints). Considering the small sample size, it seems appropriate

to start with the parsimonious model where tj(y) = y for every j. Next, we consider possible interactions

between endpoints in the reverse regression model. An AIC-based model selection process indicates that no

interaction terms are needed, and we therefore choose the parsimonious model just described as the final

model. For this model, Theorem 3 indicates that the reverse regression estimates of mean differences are

identical to the nonparametric estimates based on sample means.

[Table 4 about here.]
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Table 4 shows the immediate results of the reverse regression analysis based on the final model. The

regression coefficients in this model are not directly interpretable as treatment effects on individual endpoints;

they are intermediate quantities in a joint analysis of all endpoints. Table 5 presents the results of testing

all endpoints simultaneously using the reverse regression approach and the standard “forward regression”

approach. The table includes global tests for the existence of any difference between F and G as well as

one-sided tests for favorable differences. In the latter case, both the I-U principle and the GLS approach

are used to derive one-sided tests. Under the “forward” approach, the global test is a MANOVA test, the

I-U test is based on univariate t-tests, and the GLS test is from O’Brien (1984). None of these tests are

significant at level 0.05. Under the reverse regression approach, the global test is a likelihood ratio test, the

I-U test is based on univariate Wald tests, and the GLS test is from Section 4. The two approaches yield

similar results, although the most significant result is due to the reverse regression approach.

[Table 5 about here.]

7 Discussion

This article introduces a reverse regression approach to randomized clinical trials which corresponds to a

semiparametric modeling strategy that only specifies the density ratio for the outcome distributions in the

two treatment groups. For estimating treatment effects, the reverse regression approach is more robust than

methods based on fully parametric models for the outcome distributions and generally more efficient than

nonparametric methods. In the presence of multiple endpoints, it provides a simple and novel method of

simultaneous testing that is readily available in standard logistic regression routines.

Application of the proposed approach requires specification of t(y), which is an important practical

question. Our strategy, suggested in Section 2.2 and illustrated with the data example, is to first specify tj

for each individual endpoint based on plausible parametric models for (Fj , Gj) and then consider possible

interactions in a logistic regression framework. The choice of tj clearly depends on the data and the sample

size. In addition, we note here that the objective of the analysis is also important to consider. For estimation,

the reverse regression model must be correct, and one might choose to be conservative by including several

terms suggested by different models for (Fj , Gj), provided the sample size is large enough. For testing the

global alternative F ̸= G, the reverse regression model need not be correct, and choosing a conservative

model can result in a loss of power. For one-sided testing, the reverse regression model must be of certain

forms for the signs of the regression coefficients to be interpretable.
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An important assumption for the proposed approach is that F and G have the same support. For a

single endpoint, this assumption can be evaluated by examining and comparing descriptive statistics and

graphs for F and G, as we did for the data example. A serious violation of the shared support assumption

could be revealed by, for example, a non-negligible proportion of extreme values observed in one treatment

group but not the other. For multiple endpoints, there is the additional complication that a shared support

for each component of Y does not imply a shared support for all of Y (as a random vector), because some

combinations of values may be supported in one treatment group but not the other. When the shared

support assumption is violated, model (2) is guaranteed to be misspecified, regardless of the specification of

t(y). Therefore, it is important in practice to check the model using residual plots and goodness-of-fit tests,

and the power for detecting model misspecification will depend on the sample size and the severity of the

misspecification. It seems reasonable to expect the shared support assumption to hold when the treatment

effect is small or moderate, as is the case in many clinical trials.
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Figure 1: Treatment-specific empirical distributions of the six endpoints in the data example (see Section 6

for details).

Table 1: Efficiency comparison (in terms of standard deviation) of the reverse regression (RR) method

with a nonparametric (NP) method for estimating the treatment effect on some functionals of the outcome

distributions. The cases are described in Section 5.1. Each entry is based on 10,000 replicates.

Case Parameters NP RR

ρ µ

1 0 (0, 0) 0.038 0.025

(0.5, 0) 0.040 0.028

(0.5, 0.5) 0.042 0.030

(0.5,−0.5) 0.037 0.026

0.9 (0, 0) 0.045 0.035

(0.5, 0) 0.044 0.038

(0.5, 0.5) 0.044 0.035

(0.5,−0.5) 0.043 0.039

2 0 (0, 0) 0.072 0.063

(0.5, 0) 0.074 0.066

(0.5, 0.5) 0.074 0.064

(0.5,−0.5) 0.076 0.069

0.9 (0, 0) 0.088 0.087

(0.5, 0) 0.089 0.088

(0.5, 0.5) 0.088 0.087

(0.5,−0.5) 0.090 0.090
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Table 2: Comparison of likelihood ratio tests based on a bivariate normal (BVN) model for F and G and

the corresponding reverse regression (RR) model, in terms of type I error rate and power for detecting

a treatment difference (F ̸= G). The cases are described in Section 5.2. Each entry is based on 10,000

replicates.

Case Parameters BVN RR

A ρ µ (σ1, σ2)

0 (0, 0) (1, 1) 0.05 0.05

(0.2, 0.2) (1, 1) 0.67 0.68

(0, 0) (1.2, 1.2) 0.90 0.90

(0.2, 0.2) (1.2, 1.2) 0.98 0.98

0.9 (0, 0) (1, 1) 0.05 0.05

(0.2, 0.2) (1, 1) 0.38 0.39

(0, 0) (1.2, 1.2) 0.90 0.90

(0.2, 0.2) (1.2, 1.2) 0.96 0.96

B ρ β

0 (0, 0, 0, 0, 0) 0.05 0.06

(0.1, 0.1, 0, 0, 0) 0.19 0.19

(0, 0, 0.1,−0.1, 0) 0.34 0.35

(0.1,−0.1, 0.1,−0.1, 0.1) 0.57 0.58

0.9 (0, 0, 0, 0, 0) 0.05 0.06

(0.1, 0.1, 0, 0, 0) 0.35 0.35

(0, 0, 0.1,−0.1, 0) 0.10 0.10

(0.1,−0.1, 0.1,−0.1, 0.1) 0.24 0.25

C ρ β

0 (0, 0, 0, 0, 0) 0.37 0.05

0.9 (0, 0, 0, 0, 0) 0.44 0.05

Table 3: Comparison of a Bonferroni procedure with a reverse regression (RR) method with two linear terms

(Y[1] and Y[2]), in terms of type I error rate and power for detecting a treatment difference (F ̸= G), when

Y[1] is binary and Y[2] is continuous. The true distributions are described in Section 5.2. Each entry is based

on 10,000 replicates.

ρ µ Bonferroni RR

0 (0, 0) 0.05 0.05

(0.1, 0) 0.12 0.12

(0, 0.1) 0.16 0.15

(0.1, 0.1) 0.21 0.23

(0.1,−0.1) 0.20 0.22

0.9 (0, 0) 0.05 0.05

(0.1, 0) 0.11 0.19

(0, 0.1) 0.15 0.29

(0.1, 0.1) 0.17 0.16

(0.1,−0.1) 0.22 0.67
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Table 4: Estimated reverse regression model for the data example in Section 6: point estimates (β̂j), standard

errors (SE) and 95% confidence intervals (CI) for the regression coefficients.

Endpoint β̂j SE 95% CI

1 0.20 0.14 (−0.07, 0.46)

2 −0.09 0.12 (−0.32, 0.15)

3 −0.29 0.18 (−0.65, 0.06)

4 −0.01 0.17 (−0.36, 0.33)

5 0.23 0.16 (−0.07, 0.54)

6 0.03 0.05 (−0.07, 0.12)

Table 5: Test results for the data example in Section 6: p-values for simultaneous testing of all six endpoints

under the standard “forward regression” approach as well as the reverse regression (RR) approach. Both the

intersection-union (I-U) principle and the generalized least squares (GLS) approach are used for one-sided

testing.

Alternative Test

Hypothesis std RR

any difference 0.189 0.154

one-sided (I-U) 0.435 0.947

one-sided (GLS) 0.075 0.050
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