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Kernel-based learning algorithms

• Information technology related statistics– currently active, cross

discipline research area.

• Kernel-based learning algorithms: SVM, kernel PCA, kernel ICA,

kernel Fisher discriminant analysis, kernel SIR, etc.

convenient algorithm
kernelization
−−− −→ same type algorithm on an RKHS.

• Reproducing kernels (RKs) provide a convenient framework for

efficient computation.

• RKHS lays a theoretical foundation for statistical inference: sparse

approximation, regularization, Gauss-Markov prediction, Bayesics,

likelihood criterion, etc.
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Basic properties of RKHS
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RKHS: Basics -1

• Consider a linear class H of (real) functions f(x) defined in a set

E, forming a Hilbert space.

• Definition (Aronszajn, 1950, Trans. AMS). A real symmetric

function K(x, y) in E × E is called an RK of H if

– For every x ∈ E, K(x, ·) ∈ H.

– For every x ∈ E and f ∈ H, we have the reproducing property

〈 f(·), K(x, ·) 〉H = f(x).

• All kernels considered in this talk are real symmetric.

• The space H is called an RKHS.
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RKHS: Basics -2

RKHS → RK

• For the existence of an RK, it is necessary and sufficient that for

every y ∈ E, the evaluation functional, �y : f → f(y), f ∈ H, is a

continuous functional.

• If an RK exists, it is unique.

• Riesz representation theory: �y(f) = 〈f, gy〉H. The RK is given by

K(x, y) = gy(x).
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RKHS: Basics -3

Positive definite kernel → RKHS

• K(x, y) is positive definite on E × E if, for all x1, . . . , xn ∈ E, the
quadratic form in ξ1, . . . , ξn:

∑n
i,j=1 K(xi, xj)ξiξj ≥ 0.

• To every positive definite kernel K(x, y), there corresponds one
and only one class of functions forming a Hilbert space and ad-
mitting K as an RK. (existence and uniqueness)

• Such a Hilbert space consists of functions of the form
∑

αiK(x, xi)
with norm

||
∑

αiK(x, xi)||2H =
n∑

i,j=1

K(xi, xj)αiαj.

RKHS: H = closure{∑
αiK(x, xi)}
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RKHS: Basics -4

• Restriction of an RK to E1 ⊂ E.

� K1(·, ·) = K(·, ·)|E1×E1
: H1 with norm ||f1||H1

= infF ||f ||H,

where F = {f ∈ H : f |E1
= f1}.

• Sum and product of RKs are still RKs.

� K1(x, y) + K2(x
′, y′): HK1

⊕HK2
.

� K1(x, y)K2(x
′, y′): HK1

⊗HK2
.
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RKHS: Basics -5

• Discrete kernel spectrum.

� K(x, y) =
∑∞

j=1 λjψj(x)ψj(y) =:
∑∞

j=1 ψ̃j(x)ψ̃j(y),

� where ||ψj||2L2(E,P ) = 1 and
∫

K(x, y)ψj(y)dP (y) = λjψj(x).

� Note that, for f(x) =
∑

j fjψj(x), 〈f, f〉H =
∑

j f2
j /λj.

� {ψ̃j =
√

λj ψj}∞j=1: complete orthonormal basis for H.

• If (E, P ) is a finite measure space, then K has a discrete spectrum.
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RKHS: Basics -6

Bounded linear functionals and operators on RKHS

• �f : H → R, �f(h) = 〈f, h〉H (Riesz representation).

• Σ : H → H, there corresponds a kernel on E × E given by

Σ(x, t) = ΣKx(t), where Kx(t) =: K(x, t), as a function of t.
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Kernel SVM (in brief)
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SVM classification on RKHS

Training data: {xi, yi}, xi ∈ Rn and y ∈ {−1,1} for i = 1, . . . , l.

Goal: Look for a discriminant boundary, f(x) = 0, that separates the

positive y’s from the negative y’s with “maximum margin”.

Linear SVM: The algorithm looks for the separating hyperplane w′x+

b = 0 with largest margin (given by 2/||w||2). That is, set f(x) =

w′x + b, and solve the following constrained minimization problem:

min
w∈Rd

1

2
||w||22+C

l∑
i=1

ξi subject to yif(xi) ≥ 1−ξi, ξi ≥ 0, ∀i = 1, . . . , l.
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From linear SVM to kernel SVM

RKHS – a foundation for theoretical properties and

– a framework for efficient computation.

• start with a linear separation algorithm (maximizing margin)

• kernelization of the underlying linear learning algorithm,

• nonlinear separation
RKHS

−−− −→ linear separation in feature space.

• sparse dual representation in an RKHS → efficient algorithm,

• equivalence among regularization, sparse approximation, Bayesics,
Gauss-Markov prediction (Huang and Lee, 2003);

likelihood-based statistical inference, etc.
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SVM, linear separable case

min
w∈Rd,b∈R,αi≥0

1

2
||w||22 −

l∑
i=1

αi{yi(w
′xi + b) − 1}.

∂()/∂b = 0 →
l∑

i=1

αiyi = 0

∂()/∂w = 0 → w =
l∑

i=1

αiyixi.

Dual problem:

max
αi≥0

(
l∑

i=1

αi −
1

2

l∑
i,j=1

αiαjyiyjx
′
ixj) subject to

l∑
i=1

αiyi = 0.

SVM separating hyperplane:

f(x) =
l∑

i=1

αiyi x′i x + b,

with b = −1
2{maxj∈I−(

∑l
i=1 αiyi x′ixj) + minj∈I+

(
∑l

i=1 αiyi x′ixj)}.
13



SVM, linear non-separable case

min
w∈Rd,b∈R,ξi≥0

1

2
||w||22+C

l∑
i=1

ξi subject to yif(xi) ≥ 1−ξi, ∀i = 1, . . . , l.

Dual problem:

max
0≤αi≤C

(
l∑

i=1

αi −
1

2

l∑
i,j=1

αiαjyiyjx
′
ixj) subject to

l∑
i=1

αiyi = 0.

SVM separating hyperplane:

f(x) =
l∑

i=1

αiyi x′ix + b,

with b = −1
2{maxj∈I∗−

(
∑l

i=1 αiyi x′ixj) + minj∈I∗+
(
∑l

i=1 αiyi x′ixj)},
where ∗: zero slack.
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Kernel SVM

• Map the data in X to some high dimensional space Z, called the
feature space: x → Ψ̃(x) = (ψ̃1(x), ψ̃2(x), . . .)

′,

• K(x, u) =
∑∞

ν=1 ψ̃ν(x)ψ̃ν(u) =
∑∞

ν=1 λνψν(x)ψν(u), λν = ||ψ̃ν||22.

f(x) =
∑

ν fνψν(x), ||f ||2HK
=

∑
ν f2

ν /λν.

• feature mapping: X → Z, linear separation on Z.
RKs make the linear separation algorithm practically working
without resorting to the feature mapping Ψ.

• SVM (a regularization problem on RKHS):

minf∈HK+b
1
2||f ||2HK

+ C(
∑l

i=1 ξi)

subject to yif(xi) ≥ 1 − ξi, ξi ≥ 0, ∀i = 1, . . . , l.
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Kernel SVM, continued

Dual problem: f(x) =
∑l

i=1 αiyiK(x, xi) + b

max
0≤αi≤C


 l∑

i=1

αi −
1

2

l∑
i,j=1

αiαjyiyjK(xi, xj)




subject to
l∑

i=1

αiyi = 0.
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Two easy-to-understand kernels

linear spline : Klsp(t, s) = min{s, t}, s, t ∈ [0,1],

Gaussian kernel : Krbf(t, s) = exp
{
− 1

2σ2
||t − s||2

}
, s, t ∈ Rd.
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SVM with linear splines

� Klsp(t, s) = min{s, t}, s, t ∈ [0,1], is the reproducing kernel for the

following RKHS:

HK = {f : abs. conti. on [0,1], f(0) = 0 and ||f ||HK
= ||f ′||2 < ∞}.

� SVM: minf∈HK+b
1
2||f ||2HK

+ C×(data goodness of fit)

subject to ......

� Regularize the first derivatives with penalty on ||f ′||22.

18



SVM with Gaussian kernel

� Krbf(t, s) = exp
{
− 1

2σ2||t − s||2
}
, s, t ∈ Rd, is the reproducing kernel

for the following RKHS:

HK =


f ∈ C∞ : ||f ||2HK

=
∞∑

k=0

σ2k

2k k!
||f(k)||22 < ∞


 .

� SVM: minf∈HK+b
1
2||f ||2HK

+ C×(data goodness of fit)

subject to ......

� Penalize on
∑∞

k=0
σ2k

2k k!
||f(k)||22.

Note the regularization on the k-th derivative is multiplied by σ2k.
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Kernel Fisher discriminant analysis
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Classical Fisher linear discriminant analysis

• Input data: {xj ∈ X ⊂ Rn}l
j=1.

• Group labels: {yj = ±1}l
j=1.

• Find a discriminant hyperplane “wtx+b = 0”, which separates the
two groups.

• Mahalanobis distance criterion: Classify a test input x by

sign{d(x, x̄2) − d(x, x̄1)},
where d(x, x̄i) = (x− x̄i)

tS−1(x− x̄i) with S the pooled covariance
matrix. (i.e., S =

∑2
i=1

∑
j∈Ii

(xj − x̄i)(xj − x̄i)
t/l.)

• Maximal likelihood ratio criterion: xj ∼ N(µi,Σ), j ∈ Ii. logMLR
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Kernel FDA – Ideas behind kernelization

• When the data space X is not big enough for linear separation, or

the coordinate system adopted is not feasible for linear separation,

we resort to other means → kernel approach.

• Map the data in X to some high-dimensional Hilbert space (called

the feature space) Z ⊂ Rq. Often, q = ∞.

• Transformation:

z =: (ψ̃1(x), . . . , ψ̃q(x))
t =: (

√
λ1ψ1(x), . . . ,

√
λqψq(x))

t,

where {ψk}q
k=1 are linear independent functions with unit L2-

length, and λ1 ≥ λ2 ≥ . . . ≥ λq > 0.

• K(x, u) =: z(x)tz(u) =
∑

k λkψk(x)ψk(u).
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• Symbolically, “perform” the classical FLDA on the mapped data

in Z.

z → sign
{
ztS−1

w (z̄1 − z̄2) −
1

2
(z̄1 + z̄2)

tS−1
w (z̄1 − z̄2)

}
,

where Sw =
∑

j∈I zjz
t
j −

∑2
i=1 liz̄iz̄

t
i.

• Since S−1
w (z̄1 − z̄2) is of form α1z1 + · · · + αlzl,

the discriminant function is of form f(x) =
∑l

j=1 αjK(x, xj) + b.

• Operate on {K(xi, xj)}l
i,j=1 and group labels {yj}l

j=1. In practice,

the kernel spectrum, given by Λ and Ψ, is not known.



Notation for KFDA

• Let I1 be the index set of training sample for group label y = 1,
I2 for y = −1 and I = I1 ∪ I2. Let li = |Ii| be the size of Ii and
l = |I| be the size of I.

• Let 1 ∈ Rl be the vector of all ones, and let 11, 12 ∈ Rl be as
binary (0,1) vectors corresponding to their group label with 0 for
non-members and 1 for members. With such definition, it leads
to that 11 + 12 = 1.

• Let Z =: (Λ1/2 ◦Ψ(x1), . . . ,Λ
1/2 ◦Ψ(xl))

t, which is an l×n matrix.
Let K = ZZt. Then, the (i, j)-th entry of K, denoted by Kij, is
given by K(xi, xj).

• Let z̄i = 1
li

∑
j∈Ii

zj, i = 1,2, be the group centroid in the feature

space, where zj(x) = Λ1/2 ◦ Ψ(xj), and let z̄ = (
∑l

j=1 zj)/l.
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• Let k̄i = 1
li

∑
j∈Ii

Kj, i = 1,2, be the kernelized group centroid,

where Kj is the j-th column vector of matrix K.

• Let Sb = (z̄1 − z̄2)(z̄1 − z̄2)
t and Sw =

∑
j∈I zjz

t
j − ∑2

i=1 liz̄iz̄
t
i be

the between- and within-class sample covariances for data in the

feature space.

• Let Mb = (k̄1 − k̄2)(k̄1 − k̄2)
t and Mw = K2 − ∑2

i=1 lik̄ik̄
t
i be the

between- and within-class sample covariances for kernelized data.



KFDA in the feature space

Separating boundary : ztS−1
w (z̄1 − z̄2) − 1

2(z̄1 + z̄2)
tS−1

w (z̄1 − z̄2) = 0.

The KFDA finds the discriminant function of the form

f(x) = wtz + b =
d∑

k=1

wk

√
λk ψk(x) + b

passing through the mid point of group centroids, where w is the

maximizing argument in the Rayleigh coefficient

JKFDA(w) ≡ wtSbw

wtSww
.

A regularized within-class covariance of the form Sw+rW is considered

and w is the solution to the following maximization problem

arg max
w∈Rq

JRKFDA(w) ≡ arg max
w∈Rq

wtSbw

wt(Sw + rW )w
.
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The extra term rW is added to

– to overcome the numerical problem caused by singular within-class

covariance in a high-dimensional feature space,

– to control the smoothness and the shape of the fitted discriminant

hypersurface.
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The discriminant function can be re-formulated as

f(x) = b +
l∑

j=1

αjK(xj, x).

The coefficients αjs can be obtained as the solution to the following

maximization problem

argmax
α∈Rl

JRKFDA(α) ≡ argmax
α∈Rl

αtMbα

αt(Mw + rA)α
.

Again, the extra term rA is added to the within-class sample covari-

ance for the same purposes as before.
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In next slides we formulate the KFDA and its extension as a

likelihood ratio of two Gaussians on an RKHS.
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KFDA – a likelihood ratio criterion

• Classical FLDA: P1 and P2 Gaussian with a common covariance.

log(dP1(x)/dP2(x)) = xtΣ−1(µ1 − µ2) −
1

2
(µ1 + µ2)

tΣ−1(µ1 − µ2)

Plug in MLE for µi and Σ.

• Kernel FDA: Gaussian measures on RKHS, likelihood ratio, MLE.

28



Gaussian measure and covariance operator on an RKHS

Definition 1 (Gaussian measure on H) A probability measure PH
on (H, T ) is said to be Gaussian with respect to {�f}f∈H if for any

k and any bounded linear functionals �f1, . . . , �fk
the joint distribution

of �f1(h),. . ., �fk
(h) is normal, where h is a random element in H with

distribution PH.

Definition 2 (Covariance operator) A covariance operator, denoted

by Σ, is defined to be an operator mapping from H into H which is

bounded, linear, nonnegative definite, self-adjoint and trace class (i.e.,

of finite trace).
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Let P1 and P2 be two equivalent probability measures on (X ,B).

Consider the mapping γ : x → K(x, ·) =: Kx(·) ∈ H. Let P1,H and

P2,H denote the probability measures on (H, T ) induced from P1 and

P2 by γ. Assume that P1,H and P2,H are Gaussian with different mean

functions

mi(t) = EPi
KX(t) =

∑
ν

λνψν(t)EPi
ψν(X), i = 1,2,

and a common covariance operator

ΣH(s, t) = covP1
(KX(s), KX(t)) = covP2

(KX(s), KX(t)).

The mean functions and the covariance operator satisfy the following

properties (see, for instance, Vakhania et al., 1987)

EPi,H〈f, KX〉H = 〈f, EPi
KX〉H,

covPi,H{〈f, KX〉H, 〈g, KX〉H} = 〈ΣHf, g〉H = 〈f,ΣHg〉H.
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Likelihood ratios

Theorem 1 (Grenander, 1952) Let P1,H and P2,H be two equiva-

lent Gaussian measures on (H, T ) with mean m1(t) and m2(t) and

a common covariance operator ΣH, which is assumed non-singular.

Also assume that (m1−m2) is in the range of ΣH. Then the logarithm

of the likelihood ratio is linear and given by

log(dP1,H/dP2,H)(Kx)

= 〈Kx,Σ−1
H (m1 − m2)〉H − 1

2
〈m1 + m2,Σ−1

H (m1 − m2)〉H,

where Kx(t) =: K(x, t), as a function of t.

– a test input x → a realization of the process Kx(t),

– plug in MLE for means and covariance operator.
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KFDA as a maximal likelihood ratio test

Classification for a test input x:

sign{log(dP1,H/dP2,H)(Kx)}

= sign
{
Σ−1

H (m1 − m2)(x) −
1

2
〈m1 + m2,Σ−1

H (m1 − m2)〉
}

.

Plug in ML estimates

m̂i(t) =:
1

li

∑
j∈Ii

K(xj, t),

Σ̂H(s, t) =:
1

l

2∑
i=1

∑
j∈Ii

(K(xj, s) − m̂i(s))(K(xj, t) − m̂i(t)) + εA(s, t).

With some technical details, then we result in the previously discussed

KFDA algorithm.
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Concluding remarks on kernelization

• Kernelization of a linear algorithm, or any convenient algorithm on

X
leads to
−− −→ same type of algorithm on an RKHS, but more flexible

and versatile one on the original data space X .

• RK provides a framework for efficient computation.

• RKHS lays a foundation for theory of statistical inference.
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