Brain MR Image Segmentation via Adaptive Distribution

Juin-Der Lee Philip E. Cheng Michelle Liou

Institute of Statistical Science, Academia Sinica, Taiwan

Lecture Notes at NDHU, Feb. 6, 2004

Brain MR Image Segmentation

Brain Tissues are usually partitioned into two types: Gray Matter and White Matter, excluding CSF.

Applications of MR Image Segmentation

1. Support f(functional)MRI Aalyses

Neurons, the operation units of brains, are located in gray matter.

Locating functional responsive regions of active neurons to experiments.

2. Volumetric Study of Brain Development and Diseases

Gray matter volume loss in the frontal lobe of schizophrenia patients. Growth rates of myelination process with white matters.

MR Image Segmentation Procedure

1. Preprocessing

Removing non-brain voxels (after accurate registration)

Inter-slice intensity normalization

2. Bias field (biased intensity) correction

Nonparametric intensity non-uniformity normalization (N3), Sled et al. (2000)

3. Statistical classification

modulus-transformation modeling plus EM

4. Post-smoothing via Markov random fields

Interslice Intensity Non-uniformity

Up: Sagittal view of the data (biased at back)

Left: Coronal image series (from back to front)

Corrected Images

Left: Coronal image series from back to front Up: Sagittal view of the same data

Bias Field (Inhomogeneity)

nonparametric *intensity* non-uniformity normalization (N3); Sled et al. 1998¹
ranked high in accuracy, precision, stability among six bias correction algorithms²

Biased Image

Bias-corrected Image

• Sled *et al.* A nonparametric method for automatic correction of intensity nonuniformity in MRI data. 1998, *IEEE Trans. Med. Imag.* 17: 87-97.

•Arnold *et al.* Qualitative and quantitative evaluation of six algorithms for correcting intensity nonuniformity effects. 2001. NeuroImage 13: 931-943.

Modulus Transformation Modeling for Tissue Intensity

$$p(y \mid k) = p(y^{(\lambda_k)} \mid k) \cdot |y|^{\lambda_k - 1}$$
$$= G(y^{(\lambda_k)} \mid \mu_k, \sigma_k^2) \cdot |y|^{\lambda_k - 1}$$

y: tissue intensity

p(y|k): intensity distribution of kth voxel type μ_k , σ_k^2 , λ_k : parameters for kth voxel type

Mixture Distribution of Modulus Model

Observed histogram is an adaptive mixture of *K* **distributions:**

$$p(y) = \sum_{k=1}^{K} w_k \cdot G(y^{(\lambda_k)} \mid \mu_k, \sigma_k^2) \cdot |y|^{\lambda_k - 1}$$

Unknown parameters: $\omega_k, \mu_k, \sigma_k^2, \lambda_k$

Validation of Segmentation Methods

- There is no ground true segmentation, and manual segmentation results by two or more experts are taken as gold-standard reference.
- Internet Brain Segmentation Repository (IBSR) http://www.cma.mgh.harvard.edu/ibsr
 20 data sets: 10 biased and 10 unbiased (incl. manual ref.)
- Calculate Jaccard similarity index between computed segmentation and manual segmentation.

$$J = \frac{\left|S_1 \cap S_2\right|}{\left|S_1 \cup S_2\right|}$$

Comparison of Gray Matter Segmentation with Un-biased Data Sets

The Jaccard indices of bmap, fuzzy and ts-k-means are available from IBSR.

Comparison of White Matter Segmentation with Un-biased Data Sets

The Jaccard indices of bmap, fuzzy and ts-k-means are available from IBSR.

For the Workshop

- Do research only with scientifically meaningful problems.
- Make research findings that shall be scientifically useful.
- Do not do statistical mathematical studies for existing methods and procedures, unless it is enlightening and unexpectedly new.
- Science can only progress with new/original findings, we have greater expectations for better research findings from our younger generation in the near future.