
Introduction to Neural Networks

and Backpropagation Algorithm

August 07, 2018

1

Quick Review

2

What you’ve learned so far

• Unsupervised learning

dimension reduction (PCA, multilinear PCA)

clustering algorithms (k-means, SUP or blurring mean-shift)

• Supervised learning

LDA, logistic regression (linear classification)

SVMs (linear and kernel)

All the above methods fall into the category of shallow models.

Here we will introduce “deeper” models using neural networks.

• Data visualization

3

Distance

• Euclidean

• Mahalanobis distance

(standardization by data covariance matrix)

• kernel map, feature Hilbert space

inner product: Φ(x1) ·Φ(x2) = Φ(x1)>Φ(x2) = K(x1, x2)

inner product induced norm: Let zj = Φ(xj).

‖z1 − z2‖ =
√
z>1 z1 + z>2 z2 − 2z>1 z2

All the above are L2-type.

• L1: in SVM we used max{0,1− y(w>x+ b)}
4

• Distance (or statistical distance, or divergence) between two

distributions

KL divergence (used in logistic regression)

DKL(p, p̂θ) =
∑k
j=1

[
pj ln(pj)−pj ln(p̂j)

]
(cross-entropy loss)

Two key concepts:

model building & model fitting (or model training in ML language)

5

Going deeper and nonlinear

• Stacking or composition of linear functions is still linear. Thus,

we need nonlinear transforms for nonlinear model.

• Deep model structure enables us to describe very complex

model.

• However, deep model is difficult to train. It also requires heavy

computation.

6

Single Neuron Neural Network

7

There are three major components of a neural network algorithm:

network architecture, activation function and learning rule.

(model building and model fitting)

A single-neuron network

Below we introduce a single-neuron network for binary-class

logistic regression

Suppose we have training data set {(xi, yi)}ni=1, where x’s are

explanatory variables in Rp and y’s are associated class membership

labeled by {0, 1}.

8

♠ Architecture

(single neuron network)

x1

w0

w1

xp

wp

y = f (a)

a

. . .

The network consists of input attributes x = (x0, x1, . . . , xp) ∈

<p+1, connecting weights (also known as synaptic weights) w =

(w0, w1, . . . , wp) for combining x, and a single output unit y. Here

x0 ≡ 1 and where w0 is an intercept, also named “offset” or “bias”.

♠ Activation rule (transferring derived features to output)

♠ Learning rule (training the network, fitting the model)

9

Activation rule (transferring derived features to output)

• Sigmoid transfer function:

y = f(a) =
1

1 + exp(−a)
, where a = w>x.

At the output neuron, the derived linear feature w>x is trans-

ferred by the activation function f to a value in (0,1) often

interpreted as the probability of being in class 1. The classifi-

cation prediction is then given by sign(y−0.5) or floor(y+0.5).

• There are other transfer functions: linear, ReLU, tanh, etc.

10

Learning rule (training the network, fitting the model)

• An error function has to be specified to measure the discrep-

ancy between the network model and data.

• Two common error functions

-Squared error between two vectors: ‖yi − f(w>xi)‖22
-KL divergence between two probability distributions (also known

as cross-entropy loss):

DKL(data,model) = −
1

n

n∑
i=1

{
yi ln f(w>xi) + (1− yi) ln(1− f(w>xi))

}
.

• To train the neural network is to fit (or to estimate) w based

on the observational data {(xi, yi)}ni=1.

• (logistic regression, stochastic gradient descent, batch, epoch,...)

11

You can try out LDA, linear SVM, logistic regression and single

neuron NN (with sigmoid-transfer and cross-entropy loss) for

linear classification.

Compare results.

12

Stacking Neural Network Layers

for Nonlinearity

13

One-hidden layer neural network

Universal approximation theorem

The universal approximation theorem states that a feedforward

network with a single hidden layer containing a finite number of

neurons can approximate continuous functions on compact subsets

of Rn, under mild assumptions on the activation function. (from

wiki) (not imply one can get reliable parameter estimate)
14

One-hidden layer neural network for m-class classification

• Inputs: x(1) = (x0, x1, . . . , xp1), x0 = 1;

Derived features: z(1), z
(1)
j = v>j x , j = 1, . . . , p2.

• Hidden: x(2), x
(2)
j = h(z(1)

j) , where h(t) is a transfer (or

activation) function of our choice;

Hidden features: z(2), z
(2)
k = w>k x

(2) , k = 1, . . . ,m.

• Outputs: yk = f(z(2)
k).

Softmax activation function:

f(ak|a) =
eak∑m
j=1 e

aj
=

eak

eak +
∑m
j 6=k e

aj
=

eãk

1 + eãk
.

• Fitting criterion: least squares, minimun divergence, ...

15

Two error criteria

• R(θ)
squared error

= 1
2
∑n
i=1 ‖yi − f i‖

2 (f i = ŷi: fitted)

= 1
2
∑n
i=1

∑m
k=1(yki − fki)2

• R(θ)
KL (cross-entropy)

=
∑n

i=1C(yi,f i) =
∑n

i=1

∑m
k=1 yki ln(yki/fki)

• yi = (y1i, . . . , ymi)
> denotes the observed class label for the ith

instance coded using indicator dummy variables.

fki = f(z(2)
k (xi)), which is the predicted probability for xi

being in class k.

16

Deep Neural Network

Notation:

• `-th layer variables: x(`)

• σ(`): activation (transfer) function

• parameters: W (`), b(`)

17

Neural network with L layers for m-class classification

• Inputs: x(1) = (x1, . . . , xp1) ∈ Rp1;

Derived features: z(1) = W (1)x(1) + b(1) ,

• Hidden: x(2) = σ(1)(z(1)) ∈ Rp2 , where σ(1)(t) is a transfer

(or activation) function;

• x(1), . . . x(`), . . . ,x(L)

• Top layer (output layer): ŷ = σ(L)
(
W (L)x(L) + b(L)

)
∈ Rm ,

• Softmax outputs: ŷk =
exp(z(L)

k)∑m
j=1 exp(z(L)

j)
.

• Cross entropy:
∑

all dataC(y, ŷ), C(y, ŷ) = −
∑m
k=1 yk ln(ŷk)

18

Ideas of BP algorithm

• Forward pass: parameters {W (`), b(`)}L`=1 are fixed, and pre-

dicted values ŷ are updated.

• Backward pass: Backpropagation is commonly used by the

gradient descent optimization algorithm to adjust the weights

of neurons by calculating the gradient of the loss function.

19

Back-propagation (using cross-entropy loss as example)∑
i∈mini batch

∂C(yi, ŷi)

∂vec
(
W (L)

)> =
∑
i

∂C(yi, ŷi)

∂ŷ>i

∂ŷi

∂vec(W (L))>

= −
∑
i

r>i
∂σ(z(L)

i)

∂vec(W (L))>
, where r>i =

(
y1

ŷ1
, . . . ,

ym

ŷm

)
∂z(L)

∂vec(W (L))>
= x(L)> ⊗ Im

= −
∑
i

r>i

[
diagσ̇(z(L)

i).
]
m×m

(
x(L)>
i ⊗ Im

)
m×mpL

folded→


σ̇(z(L)

1i) 0

0 σ̇(z(L)
2i) 0 . . .

...

. 0 σ̇(z(L)
mi)

ri x(L)>
i

n∑
i=1

∂C(yi, ŷi)

∂x(L)>
i

=
n∑
i=1

∂C(yi, ŷi)

∂ŷ>i

∂ŷi

∂x(L)>
i

20

Back-propagation -2

• With upper layers gradients ∂C

∂W (`+1) and ∂C
∂x(`+1) being com-

puted, we go for the next lower layer and have

∂C

∂vec(W (`))>
=

∂C

∂x(`+1)>
∂x(`+1)

∂vec(W (`))>

∂C

∂x(`)> =
∂C

∂x(`+1)>
∂x(`+1)

∂x(`)>

where x(`+1) = σ
(
W (`)x(`) + b(`)

)
.

• Updates: θt+1 = θt − γt ∂C∂θt,

γt: learning rate; θ =
{
W (`), b(`)

}
`
.

• stochastic gradient descent, batch, batch size, epoch

21

You can try out kernel SVM and deep NN for nonlinear

classification, and compare results.

22

End of Basic Introduction

some quick review for (a) model building, (b) model fitting and

(c) loss criterion (distance metric)

2 examples of deep models (PCANet, CNN) below

23

PCA Net

Chan et al., IEEE Transactions on Image Processing, 2015

(some quick review for PCA, multilinear PCA)

PCANet demo using Olivetti faces dataset & MNIST

24

25

Convolution neural network

26

Convolution neural network LeNet5 (Yann LeCun)

27

What is a convolution?

• As an illustration example, let W be a 3×3 convolution kernel

with stride = 2.

x =


1 −2 3 1 2
4 5 4 1 5
3 6 0 1 5
2 6 −1 −1 5
7 8 −2 1 −8

, B =



1 3 3 0
4 2 4 −1
3 7 0 −2
−2 6 1 1

5 6 1 −1
6 8 1 1
3 0 2 5
4 −1 5 5
0 −2 5 8


.

vec(W)> ∗B = vec(W)> ∗ φ(x)
folded
−−− → 2× 2 matrix

• Fully connected layer can also be viewed as a convolution layer.

28

For pooling in `th layer

• e.g., average pooling P = 1
9

 1 1 1
1 1 1
1 1 1

,

fixed matrix, no parameter involved

• no ∂C

∂vec(W (`)>)
,

still have ∂C
∂x(`)> = ∂C

∂x(`+1)>
∂x(`+1)

∂x(`)> .

• ∂C

∂vec(W (`−1)>)
= ∂C

∂x(`)>
∂x(`)

∂vec(W (`−1))>
,

· · · · · ·

29

examples demo

logistic regression vs. neural networks

PCA filters vs. convolution filters

robust loss functions against contamination

30

