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An Intuition Introduction for PCA

The ’Learning Evolution’ of Statistics

• Mean (medium,...)→ Mean Vector

• Variance → Covariance Matrix

• What can you do about the covariance matrix?

• Ans: Eigenvalue Decomposition!
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An Intuition Introduction for PCA

Review of Covariance Matrix

• Let x1, · · · , xn be length-p observation vectors

• WLOG, let their mean be length-p 0-vector.

• Let the data matrix X = (x1, · · · , xn) be a p by n matrix.

• The sample covariance matrix

Σ = XXT /(n− 1) =
∑n

i=1 xix
T
i /(n− 1).

I-Ping Tu (ISSAS) SVD and PCA July 31, 2018 4 / 45



An Intuition Introduction for PCA

A Proof of XXT =
∑n

i=1 xix
T
i

• By X = (x1, · · · , xn), we have Xij = (xj)i.

(XXT )jk =

n∑
i=1

XjiXki

=

n∑
i=1

(xi)j(xi)k

=

n∑
i=1

(xix
T
i )jk

= (

n∑
i=1

xix
T
i )jk
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An Intuition Introduction for PCA

An Intuition Definition for PCA

• PCA: Principal Component Analysis

• The underlying statistical philosophy is ”Larger variance captures

more information.”
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An Intuition Introduction for PCA

An Intuition Definition for PCA

• Find a direction vector (∈ Rp) p1, such that the variance of the data

{xi}i≤n projected to this direction {xTi p1}i≤n has maximum variance.

• Then find p2 orthonormal to p1, such that the variance of

{xTi p2}i≤nhas maximum variance.

• · · · find pk orthonormal to p1, · · · , pk−1, such that the variance of

{xTi pk}i≤n has maximum variance.
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An Intuition Introduction for PCA

An Example with p = 2
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An Intuition Introduction for PCA

Eigenvalue Decomposition

• Given a symmetric p.d. matrix Σp×p, Σ can be decomposed as

Σ =

p∑
i=1

λiuiu
t
i,

where u1, · · · , up are orthonormal and λ1 ≥ · · · ≥ λp. Furthermore,

ui can be uniquely decided up to +/− sign if eigenvalue λi is distinct.

•

Σui = λiui

•

ΣU = UΛ
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An Intuition Introduction for PCA

The Intuition Definition vs Eigenvalue Decomposition

• p1 = argmaxq
∑n

i=1(xTi q)
2

• Will p1 = u1?
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An Intuition Introduction for PCA

The Intuition Definition vs Eigenvalue Decomposition

p1 = argmax
|q|=1

n∑
i=1

(xTi q)
2 = argmax

|q|=1

n∑
i=1

(qTxi)(x
T
i q)

= argmax
|q|=1

n∑
i=1

qT (xix
T
i )q = argmax

|q|=1
qT (

n∑
i=1

xix
T
i )q

= argmax
|q|=1

qT (XXT )q = argmax
|q|=1

qT (

p∑
i=1

λiuiu
t
i)q

= argmax
|q|=1

p∑
i=1

λi(u
t
iq)

2

= u1
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PCA: A Dimension Reduction Method for vector data

PCA Model

• X ∈ Rp is a random vector.

• X = Γν + ε.

• minΓ∈Op×p′ ,ν∈Rp′ E[||X − Γν||2F ].

• Sample version

• Assume the mean X̄ has been taken off.

• minΓ∈Op×p′ ,νi∈Rp′ ,i≤n
1
n

∑n
i=1 ||Xi − Γνi||2.
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PCA: A Dimension Reduction Method for vector data

PCA vs Linear Regression: A Geometric Point of View,

after Γ is chosen.

Ordinary	
  Least-­‐Squares	
  

Geometric	
  interpreta6on	
  

X_i


Gamma


Nu_i=GammaT(X_i)
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PCA: A Dimension Reduction Method for vector data

PCA Demo: Data Matrix (p× n)
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PCA: A Dimension Reduction Method for vector data

PCA Demo:

Data Matrix vs the first 5 Eigenvectors

Data Matrix Eigenvectors
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PCA: A Dimension Reduction Method for vector data

PCA Demo: Data Matrix (p× n)
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PCA: A Dimension Reduction Method for vector data

PCA Demo:

Data Matrix vs the first 5 Eigenvectors

Data Matrix Eigenvectors
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SVD: A Dimension Reduction Method for a Matrix

What’s SVD

• Given a p× n real value matrix X, X = UDV T ,

• U : a p× p orthonormal matrix,

• V : a p× p orthonormal matrix,

• D : p× q and D’s nonzero elements only appear at diagonal with size

min(p, q).
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SVD: A Dimension Reduction Method for a Matrix

SVD: An Optimization Formula

• Given rank k, SVD can be formulated as an optimization problem.

(U1:k,·, D1:k,1:k, V1:k,·) = argmin
A∈Op×k,B∈Oq×k,D∈Rkxk

‖X −ADBT ‖2F
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SVD: A Dimension Reduction Method for a Matrix

A Neat Formula of SVD

• Let the column vectors of U and V be u1, · · · , uk and v1, · · · , vk.

• Let the diagonal elements of D be d1, · · · , dk.

• Then, X = UDVT =
∑k

i=1 diuiv
T
i .

• Each uiv
T
i represents a rank one p× q matrix.
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SVD: A Dimension Reduction Method for a Matrix

A Transformation Point of View: X = UDV T

This completes the construction of the desired orthonormal bases for IRn and EXm. 
Setting ai = fiwe have Avi = aiui for all i 5 k. Assembling the vi as the columns 
of a matrix V and the ui to form U, this shows that AV = UC, where C has the 
same dimensions as A, has the entries ai along the main diagonal, and has all other 
entries equal to zero. Hence, A = UCVT, which is the singular value decomposition 
of A. 

In summary, an m x n real matrix A can be expressed as the product UCVT, 
where V and U are orthogonal matrices and C is a diagonal matrix, as follows. The 
matrix V is obtained from the diagonal factorization ATA = V D V ~ ,in which the 
diagonal entries of D appear in non-increasing order; the columns of U come from 
normalizing the nonvanishing images under A of the colutnns of V, and extending 
if necessary to an orthonormal basis for Rm;the nonzero entries of C are the square 
roots of corresponding diagonal entries of D .  

The preceding construction demonstrates that the SVD exists, and gives some 
idea of what it tells about a matrix. There are a number of additional algebraic and 
geometric insights about the SVD that will be derived with equal ease. Before pro- 
ceeding to them, two remarks should be made. First, the SVD encapsulates the most 
appropriate bases for the domain and range of the linear transfortnation defined by 
the matrix A. A beautiful relationship exists between these bases and the four funda- 
mental subspaces associated with A: the range and nullspace, and their orthogonal 
complements. It is the full picture provided by the SVD and these subspaces that 
Strang has termed the filndamental theorem of linear algebra. He also invented a di- 
agram schematically illustrating the relationship of the bases and the four subspaces; 
see Figure 1. Strang's article [231 is recommended for a detailed discussion of this 
topic. 

Figure 1. Strang's diagram. 

The second remark concerns computation. There is often a gap between mathe- 
matical theory and computational practice. In theory, we envision arithmetic oper- 
ations being carried out on real numbers in infinite precision. But when we carry 

THE COLLEGE MATHEMATICS JOURNAL 4 
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SVD: A Dimension Reduction Method for a Matrix

What does SVD say?

Any real value transformation matrix from Rq to Rp can be decomposed

to 3 steps:

• A rotation matrix V in Rq.

• A scale matrix D.

• A rotation matrix U in Rp.
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SVD: A Dimension Reduction Method for a Matrix

A Neat Formula of SVD

• Let the column vectors of U and V be u1, · · · , uk and v1, · · · , vk.

• Let the diagonal elements of D be d1, · · · , dk.

• Then, X = UDVT =
∑k

i=1 diuiv
T
i .

• SVD finds the k vector-pairs with one to one mapping from Rq to Rp.

• Each uiv
T
i represents a rank one matrix with dimension p× q.
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SVD: A Dimension Reduction Method for a Matrix

SVD vs PCA

• If by SVD, X = UDV T , where U is an orthonormal matrix such that

UUT = Ip

• By PCA, U is the eigenmatrix of XXT = UD2UT .

• Furthermore, V is the eigenmatrix of XTX = V D2V T .
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SVD: A Dimension Reduction Method for a Matrix

Application of SVD: Dimension Reduction

• Xp×q = Up×pDp×qVq×q ≈ Ũp×kD̃k×kṼ
T
k×q

• k : selected rank.

196 X 257 Rank =100
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SVD: A Dimension Reduction Method for a Matrix

Another Point of View

X = UDVT =

k∑
i=1

diuiv
T
i

• A linear combination of bases: {uivTi , 1 ≤ i ≤ k}.

• Each uiv
T
i is a rank one matrix.
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SVD: A Dimension Reduction Method for a Matrix

Figure: The first 25 rank-one bases.
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SVD: A Dimension Reduction Method for a Matrix

SVD Rank Demo: The more, the better.

Rank =50

196 X 257 Rank =25

Rank =100
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SVD: A Dimension Reduction Method for a Matrix

SVD Rank Demo: The more, the better?

196 X 257 Rank =25

Rank =50 Rank =100
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SVD: A Dimension Reduction Method for a Matrix

Gleaners and Angelus
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SVD: A Dimension Reduction Method for a Matrix

Angelus Reconstructed by Gleaners
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SVD: A Dimension Reduction Method for a Matrix

Gleaners Basis 10 x 10
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MPCA: A Dimension Reduction Method for Matrix Data

MPCA, HOSVD: multi-matrix versions of SVD

• We have matrix A1, · · · , An, all from Rq to Rp.

• We want to stick on one set of U and V by sacrificing some bias.

• We relax the condition on the diagonal property of D.

I-Ping Tu (ISSAS) SVD and PCA July 31, 2018 33 / 45



MPCA: A Dimension Reduction Method for Matrix Data

Multilinear Principal Component Analysis (MPCA)

• We define column basis A ∈ Op×p̃, row basis B ∈ Oq×q̃.

• SVD: Find A, B(with p̃ = q̃) and a diagonal matrix D that

min
A,B,D

‖X −ADBT ‖2F

.

• MPCA: Find simultaneous A, B, and Ui by

min
A,B,Ui,1≤i≤n

1

n

n∑
i=1

‖(Xi − X̄)−AUiBT ‖2F

• D diagonal and Ui usually not.
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MPCA: A Dimension Reduction Method for Matrix Data

Implementation: iterative alternating eigenvalue

decompositions(Ye, 2005)

• Â: leading p̃ eigenvectors of Σ̂B̂ = 1
n

∑n
i=1(Xi − X̄)PB̂(Xi − X̄)T .

solve a small eigenvalue problem: a p× p matrix, where PB̂ = B̂B̂T

• B̂: leading q̃ eigenvectors of Σ̂Â = 1
n

∑n
i=1(Xi − X̄)TPÂ(Xi − X̄).

solve a small eigenvalue problem: a q × q matrix, where PÂ = ÂÂT .

• Iterative alternating until convergence.
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MPCA: A Dimension Reduction Method for Matrix Data

Experimental Setting

• 400 face images of 64× 64: partition them to 100-300 training-test

sets.

• Both MPCA and PCA are applied on the training images to produce

basis to reconstruct the test images.
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MPCA: A Dimension Reduction Method for Matrix Data

Basis from the training set

• MPCA: 24 row and 24 column eigenvectors are used to generate 576

basis (24 is selected by hypothesis test for 95% explained-variation)

• PCA: 576 (= 24× 24) eigenvectors

• 500 replicates, for random partition into training-test subsets, are

performed to compare the mean test error.

MPCA PCA

Mean 452 2870

SD 4 43

The error is defined as the Frobenius

norm for two images.
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MPCA: A Dimension Reduction Method for Matrix Data

Visual Comparisons

20 test faces randomly drawn (rows 1-2), reconstructions by MPCA (rows

3-4) and PCA (rows 5-6).
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MPCA: A Dimension Reduction Method for Matrix Data

Basis Comparisons: MPCA vs PCA
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MPCA: A Dimension Reduction Method for Matrix Data

Stepwise Comparison

Mean Face

Mean Face

5x5 bases

25 bases

10x10 bases

100 bases

15x15 bases

225 bases

20x20 bases

400 bases

24x24 bases

576 bases

Target Face

Target Face

5 101520

5
10
15
20

5 101520

5
10
15
20

Test image reconstruction, MPCA (top) and PCA (bottom).
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MPCA: A Dimension Reduction Method for Matrix Data

5000 Ribosome cryoEM images
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MPCA: A Dimension Reduction Method for Matrix Data

A Cluster Example
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MPCA: A Dimension Reduction Method for Matrix Data

24 Cluster Averages for Ribosome Data
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MPCA: A Dimension Reduction Method for Matrix Data

One Interesting Example
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MPCA: A Dimension Reduction Method for Matrix Data

Summary: Properties and Applications of

• PCA

• SVD

• MPCA
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