Dimension Reduction

2018 Statistics Summer School

I-Ping Tu
Institute of Statistical Science, Academia Sinica

July 31, 2018

(1) An Intuition Introduction for PCA
(2) PCA: A Dimension Reduction Method for vector data
(3) SVD: A Dimension Reduction Method for a Matrix
(4) MPCA: A Dimension Reduction Method for Matrix Data

The 'Learning Evolution' of Statistics

- Mean (medium,...) \rightarrow Mean Vector
- Variance \rightarrow Covariance Matrix
- What can you do about the covariance matrix?
- Ans: Eigenvalue Decomposition!

Review of Covariance Matrix

- Let x_{1}, \cdots, x_{n} be length- p observation vectors
- WLOG, let their mean be length- $p 0$-vector.
- Let the data matrix $X=\left(x_{1}, \cdots, x_{n}\right)$ be a p by n matrix.
- The sample covariance matrix

$$
\Sigma=X X^{T} /(n-1)=\sum_{i=1}^{n} x_{i} x_{i}^{T} /(n-1) .
$$

A Proof of $X X^{T}=\sum_{i=1}^{n} x_{i} x_{i}^{T}$

- By $X=\left(x_{1}, \cdots, x_{n}\right)$, we have $X_{i j}=\left(x_{j}\right)_{i}$.

$$
\begin{aligned}
\left(X X^{T}\right)_{j k} & =\sum_{i=1}^{n} X_{j i} X_{k i} \\
& =\sum_{i=1}^{n}\left(x_{i}\right)_{j}\left(x_{i}\right)_{k} \\
& =\sum_{i=1}^{n}\left(x_{i} x_{i}^{T}\right)_{j k} \\
& =\left(\sum_{i=1}^{n} x_{i} x_{i}^{T}\right)_{j k}
\end{aligned}
$$

An Intuition Definition for PCA

- PCA: Principal Component Analysis
- The underlying statistical philosophy is "Larger variance captures more information."

An Intuition Definition for PCA

- Find a direction vector $\left(\in R^{p}\right) p_{1}$, such that the variance of the data $\left\{x_{i}\right\}_{i \leq n}$ projected to this direction $\left\{x_{i}^{T} p_{1}\right\}_{i \leq n}$ has maximum variance.
- Then find p_{2} orthonormal to p_{1}, such that the variance of $\left\{x_{i}^{T} p_{2}\right\}_{i \leq n}$ has maximum variance.
- ... find p_{k} orthonormal to p_{1}, \cdots, p_{k-1}, such that the variance of $\left\{x_{i}^{T} p_{k}\right\}_{i \leq n}$ has maximum variance.

An Example with $p=2$

Eigenvalue Decomposition

- Given a symmetric p.d. matrix $\Sigma_{p \times p}, \Sigma$ can be decomposed as

$$
\Sigma=\sum_{i=1}^{p} \lambda_{i} u_{i} u_{i}^{t}
$$

where u_{1}, \cdots, u_{p} are orthonormal and $\lambda_{1} \geq \cdots \geq \lambda_{p}$. Furthermore, u_{i} can be uniquely decided up to $+/-$ sign if eigenvalue λ_{i} is distinct.

$$
\Sigma u_{i}=\lambda_{i} u_{i}
$$

$$
\Sigma U=U \Lambda
$$

The Intuition Definition vs Eigenvalue Decomposition

- $p_{1}=\operatorname{argmax}_{q} \sum_{i=1}^{n}\left(x_{i}^{T} q\right)^{2}$
- Will $p_{1}=u_{1}$?

The Intuition Definition vs Eigenvalue Decomposition

$$
\begin{aligned}
p_{1} & =\underset{|q|=1}{\operatorname{argmax}} \sum_{i=1}^{n}\left(x_{i}^{T} q\right)^{2}=\underset{|q|=1}{\operatorname{argmax}} \sum_{i=1}^{n}\left(q^{T} x_{i}\right)\left(x_{i}^{T} q\right) \\
& =\underset{|q|=1}{\operatorname{argmax}} \sum_{i=1}^{n} q^{T}\left(x_{i} x_{i}^{T}\right) q=\underset{|q|=1}{\operatorname{argmax}} q^{T}\left(\sum_{i=1}^{n} x_{i} x_{i}^{T}\right) q \\
& =\underset{|q|=1}{\operatorname{argmax}} q^{T}\left(X X^{T}\right) q=\underset{|q|=1}{\operatorname{argmax}} q^{T}\left(\sum_{i=1}^{p} \lambda_{i} u_{i} u_{i}^{t}\right) q \\
& =\underset{|q|=1}{\operatorname{argmax}} \sum_{i=1}^{p} \lambda_{i}\left(u_{i}^{t} q\right)^{2} \\
& =u_{1}
\end{aligned}
$$

PCA Model

- $X \in \mathbb{R}^{p}$ is a random vector.
- $X=\Gamma \nu+\varepsilon$.
- $\min _{\Gamma \in \mathcal{O}_{p \times p^{\prime}}, \nu \in \mathbb{R}^{p^{\prime}}} E\left[\|X-\Gamma \nu\|_{F}^{2}\right]$.
- Sample version
- Assume the mean \bar{X} has been taken off.
- $\min _{\Gamma \in \mathcal{O}_{p \times p^{\prime}, \nu_{i}} \in \mathbb{R}^{p^{\prime}}, i \leq n} \frac{1}{n} \sum_{i=1}^{n}\left\|X_{i}-\Gamma \nu_{i}\right\|^{2}$.

PCA vs Linear Regression: A Geometric Point of View,

 after Γ is chosen.
Geometric interpretation

PCA Demo: Data Matrix $(p \times n)$

PCA Demo:

Data Matrix vs the first 5 Eigenvectors

Data Matrix

I-Ping Tu (ISSAS)

July 31, 2018

PCA Demo: Data Matrix $(p \times n)$

PCA Demo:

Data Matrix vs the first 5 Eigenvectors

Data Matrix

I-Ping Tu (ISSAS)

Eigenvectors

What's SVD

- Given a $p \times n$ real value matrix $X, X=U D V^{T}$,
- U : a $p \times p$ orthonormal matrix,
- V : a $p \times p$ orthonormal matrix,
- $D: p \times q$ and D 's nonzero elements only appear at diagonal with size $\min (p, q)$.

SVD: An Optimization Formula

- Given rank k, SVD can be formulated as an optimization problem.

$$
\left(U_{1: k,},, D_{1: k, 1: k}, V_{1: k, \cdot}\right)=\underset{A \in \mathcal{O}_{p \times k}, B \in \mathcal{O}_{q \times k}, D \in R^{k x k}}{\operatorname{argmin}}\left\|X-A D B^{T}\right\|_{F}^{2}
$$

A Neat Formula of SVD

- Let the column vectors of U and V be u_{1}, \cdots, u_{k} and v_{1}, \cdots, v_{k}.
- Let the diagonal elements of D be d_{1}, \cdots, d_{k}.
- Then, $\mathbf{X}=\mathbf{U D V}^{T}=\sum_{i=1}^{k} d_{i} u_{i} v_{i}^{T}$.
- Each $u_{i} v_{i}^{T}$ represents a rank one $p \times q$ matrix.

A Transformation Point of View: $\mathbf{X}=U D V^{T}$

Figure 1. Strang's diagram.

What does SVD say?

Any real value transformation matrix from R^{q} to R^{p} can be decomposed to 3 steps:

- A rotation matrix V in R^{q}.
- A scale matrix D.
- A rotation matrix U in R^{p}.

A Neat Formula of SVD

- Let the column vectors of U and V be u_{1}, \cdots, u_{k} and v_{1}, \cdots, v_{k}.
- Let the diagonal elements of D be d_{1}, \cdots, d_{k}.
- Then, $\mathbf{X}=\mathbf{U D V}^{T}=\sum_{i=1}^{k} d_{i} u_{i} v_{i}^{T}$.
- SVD finds the k vector-pairs with one to one mapping from R^{q} to R^{p}.
- Each $u_{i} v_{i}^{T}$ represents a rank one matrix with dimension $p \times q$.

SVD vs PCA

- If by SVD, $X=U D V^{T}$, where U is an orthonormal matrix such that $U U^{T}=I_{p}$
- By PCA, U is the eigenmatrix of $X X^{T}=U D^{2} U^{T}$.
- Furthermore, V is the eigenmatrix of $X^{T} X=V D^{2} V^{T}$.

Application of SVD: Dimension Reduction

- $\mathbf{X}_{p \times q}=\mathbf{U}_{p \times p} \mathbf{D}_{p \times q} \mathbf{V}_{q \times q} \approx \tilde{\mathbf{U}}_{p \times k} \tilde{\mathbf{D}}_{k \times k} \tilde{\mathbf{V}}_{k \times q}^{T}$
- k : selected rank.
196×257

Rank $=100$

Another Point of View

$$
\mathbf{X}=\mathbf{U D V}^{T}=\sum_{i=1}^{k} d_{i} u_{i} v_{i}^{T}
$$

- A linear combination of bases: $\left\{u_{i} v_{i}^{T}, 1 \leq i \leq k\right\}$.
- Each $u_{i} v_{i}^{T}$ is a rank one matrix.

Figure: The first 25 rank-one bases.

SVD Rank Demo: The more, the better.

SVD Rank Demo: The more, the better?

196×257

Rank $=50$

Rank $=25$

Rank =100

Gleaners and Angelus

Angelus Reconstructed by Gleaners

Angelus Reconstructed by Gleaner

Gleaners Basis 10×10

MPCA, HOSVD: multi-matrix versions of SVD

- We have matrix A_{1}, \cdots, A_{n}, all from R^{q} to R^{p}.
- We want to stick on one set of U and V by sacrificing some bias.
- We relax the condition on the diagonal property of D.

Multilinear Principal Component Analysis (MPCA)

- We define column basis $A \in \mathcal{O}_{p \times \tilde{p}}$, row basis $B \in \mathcal{O}_{q \times \tilde{q}}$.
- SVD: Find $A, B($ with $\tilde{p}=\tilde{q})$ and a diagonal matrix D that

$$
\min _{A, B, D}\left\|X-A D B^{T}\right\|_{F}^{2}
$$

- MPCA: Find simultaneous A, B, and U_{i} by

$$
\min _{A, B, U_{i}, 1 \leq i \leq n} \frac{1}{n} \sum_{i=1}^{n}\left\|\left(X_{i}-\bar{X}\right)-A U_{i} B^{T}\right\|_{F}^{2}
$$

- D diagonal and U_{i} usually not.

Implementation: iterative alternating eigenvalue

 decompositions(Ye, 2005)- $\hat{\boldsymbol{A}}$: leading \tilde{p} eigenvectors of $\hat{\Sigma}_{\hat{B}}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) P_{\hat{B}}\left(X_{i}-\bar{X}\right)^{T}$. solve a small eigenvalue problem: a $p \times p$ matrix, where $P_{\hat{B}}=\hat{B} \hat{B}^{T}$
- $\hat{\boldsymbol{B}}$: leading \tilde{q} eigenvectors of $\hat{\Sigma}_{\hat{A}}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{T} P_{\hat{A}}\left(X_{i}-\bar{X}\right)$. solve a small eigenvalue problem: a $q \times q$ matrix, where $P_{\hat{A}}=\hat{A} \hat{A}^{T}$.
- Iterative alternating until convergence.

Experimental Setting

- 400 face images of 64×64 : partition them to $100-300$ training-test sets.
- Both MPCA and PCA are applied on the training images to produce basis to reconstruct the test images.

Basis from the training set

- MPCA: 24 row and 24 column eigenvectors are used to generate 576 basis (24 is selected by hypothesis test for 95\% explained-variation)
- PCA: $576(=24 \times 24)$ eigenvectors
- 500 replicates, for random partition into training-test subsets, are performed to compare the mean test error.

	MPCA	PCA
Mean	452	2870
SD	4	43

The error is defined as the Frobenius
norm for two images.

Visual Comparisons

20 test faces randomly drawn (rows 1-2), reconstructions by MPCA (rows 3-4) and PCA (rows 5-6).

Basis Comparisons: MPCA vs PCA

Stepwise Comparison

Test image reconstruction, MPCA (top) and PCA (bottom).

5000 Ribosome cryoEM images

A Cluster Example

24 Cluster Averages for Ribosome Data

$\frac{2}{2}$					

One Interesting Example

Summary: Properties and Applications of

- PCA
- SVD
- MPCA

